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Abstract

Embedding models play a crucial role in repre-001
senting and retrieving information across var-002
ious NLP applications. Recent advances in003
large language models (LLMs) have further en-004
hanced the performance of embedding models.005
While these models are often benchmarked on006
general-purpose datasets, real-world applica-007
tions demand domain-specific evaluation. In008
this work, we introduce the Finance Massive009
Text Embedding Benchmark (FinMTEB), a010
specialized counterpart to MTEB designed for011
the financial domain. FinMTEB comprises 64012
financial domain-specific embedding datasets013
across 7 tasks that cover diverse textual types014
in both Chinese and English, such as financial015
news articles, corporate annual reports, ESG016
reports, regulatory filings, and earnings call017
transcripts. We also develop a finance-adapted018
model, Fin-E5, using a persona-based data syn-019
thetic method to cover diverse financial em-020
bedding tasks for training. Through extensive021
evaluation of 15 embedding models, including022
Fin-E5, we show three key findings: (1) perfor-023
mance on general-purpose benchmarks shows024
limited correlation with financial domain tasks;025
(2) domain-adapted models consistently outper-026
form their general-purpose counterparts; and027
(3) surprisingly, a simple Bag-of-Words (BoW)028
approach outperforms sophisticated dense em-029
beddings in financial Semantic Textual Simi-030
larity (STS) tasks, underscoring current limi-031
tations in dense embedding techniques. Our032
work establishes a robust evaluation framework033
for financial NLP applications and provides034
crucial insights for developing domain-specific035
embedding models.036

1 Introduction037

Embedding models, which transform text se-038

quences into dense vector representations, serve039

as fundamental building blocks in natural language040

processing (NLP) tasks (Mikolov et al., 2013; Pen-041

nington et al., 2014; Peters et al., 2018). The quality042

Figure 1: Word cloud visualization of Fin-E5’s training
data, contain common financial terms.

of text embeddings directly impacts the effective- 043

ness of information retrieval, semantic understand- 044

ing, and other downstream applications. Although 045

recent large language model (LLM)-based embed- 046

ding models have shown remarkable performance 047

on general benchmarks (Wang et al., 2023; Li et al., 048

2023; Meng et al., 2024), their effectiveness in spe- 049

cialized domains, particularly finance, remains un- 050

derstudied. Financial text analysis requires precise 051

handling of domain-specific terminology, temporal 052

sensitivity, and complex numerical relationships 053

(Li et al., 2024; Anderson et al., 2024). This raises 054

two critical question: 055

• How effectively do modern embedding mod- 056

els capture domain-specific financial informa- 057

tion? 058

• Can domain adaptation improve LLM-based 059

embeddings for financial applications? 060

These questions are motivated by three key in- 061

sights. First, financial semantics often diverge from 062

general language usage. For example, the term "li- 063

ability" inherently conveys negative sentiment in 064

financial contexts due to its association with obli- 065

gations and risks, whereas in general usage, it neu- 066

trally denotes legal responsibility. Such semantic 067

divergence becomes particularly crucial for real- 068

world applications such as Retrieval Augmented 069
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Figure 2: An overview of tasks and datasets used in FinMTEB. All the dataset descriptions and examples are
provided in the Appendix A.

Generation (RAG) systems, where accurate docu-070

ment retrieval underpins effective knowledge en-071

hancement. While recent work adapts RAG frame-072

works for finance (Li et al., 2024; Malandri et al.,073

2025), the fundamental role of embedding quality074

in retrieval performance remains overlooked.075

Second, empirical evidence increasingly sug-076

gests that domain adaptation is crucial for achiev-077

ing optimal performance in specialized fields (Ling078

et al., 2023; Gururangan et al., 2020), even with079

recent advanced LLMs. This necessity for domain080

specialization has led to the development of field-081

specific models across various domains: BiMedLM082

(Bolton et al., 2024) for biomedical texts, SaulLM-083

7B (Colombo et al., 2024) for legal documents,084

and BloombergGPT (Wu et al., 2023) for financial085

applications. This specialization trend extends to086

embedding models, where domain-specific vari-087

ants have demonstrated superior performance in088

capturing specialized vocabulary and semantic re-089

lationships. For instance, BioWordVec (Zhang090

et al., 2019) and BioSentVec (Chen et al., 2019)091

are used in biomedical text analysis, while Fin-092

BERT (Yang et al., 2020) shows promising results093

in financial applications. However, while financial094

domain embedding models have shown promising095

improvement (e.g., BAM (Anderson et al., 2024),096

a RoBERTa-based (Liu, 2019a) model outperform-097

ing the general model in retrieval tasks), they are098

still based on traditional architectures. Compared099

to the general domain, there is a gap in the current100

landscape for finance NLP: while commercial so-101

lutions like voyage-finance-2 (VoyageAI, 2025)102

exist, there remains a lack of open-source LLM-103

based financial embedding models available to 104

researchers. 105

Third, financial NLP lacks comprehensive evalu- 106

ation frameworks for embedding models. Current 107

benchmarks (Islam et al., 2023; Chen et al., 2021) 108

primarily assess text generation rather than embed- 109

ding quality. Even embedding-specific evaluations 110

(FiQA, 2018; Liu et al., 2024a) focus narrowly on 111

single task types (e.g., classification) or limited text 112

genres (e.g., earnings call transcripts). This gap is 113

deepened by financial texts’ unique characteristics, 114

such as the prevalence of boilerplate language (e.g., 115

"The company’s performance is subject to various 116

risks...") that creates noise in semantic representa- 117

tion. These standardized legal disclaimers appear 118

frequently across documents but offer little infor- 119

mation, complicating the models’ ability to differ- 120

entiate meaningful business insights from routine 121

compliance text. Thus, there is a critical need for 122

comprehensive financial embedding benchmarks. 123

To bridge this gap, we introduce the Finance 124

Massive Text Embedding Benchmark (FinMTEB), 125

a comprehensive evaluation framework specialized 126

for the financial domain. FinMTEB comprises 64 127

domain-specific datasets that span both Chinese 128

and English, covering seven distinct tasks: clas- 129

sification, clustering, retrieval, pair classification, 130

reranking, summarization, and semantic textual 131

similarity. We also develop Fin-E5, a finance- 132

adapted version of e5-Mistral-7B-Instruct (Wang 133

et al., 2023), utilizing a persona-based data synthe- 134

sis method. As shown in Figure 1, our training data 135

encompasses a diverse range of financial topics con- 136

cepts. Experimental results show that LLM-based 137
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embedding models consistently outperform tradi-138

tional approaches, while domain adaptation further139

improves performance. Interestingly, in the STS140

task, we find that the simple Bag-of-Words (BoW)141

model outperforms all dense models. This indi-142

cates that current embedding models still encounter143

difficulties in interpreting complex financial texts.144

Our main contributions are twofold: First, we145

propose FinMTEB, the first comprehensive finan-146

cial domain evaluation benchmark encompassing147

64 datasets across seven distinct tasks in both Chi-148

nese and English. Second, we develop and release149

Fin-E5, a finance-adapted embedding model that150

achieves state-of-the-art performance on FinMTEB.151

To support future research, we will make both the152

FinMTEB benchmark and our Fin-E5 model avail-153

able as open source.154

2 Related Work155

Recent advances in embedding models have shown156

remarkable success in general domain tasks, yet157

their effectiveness in specialized domains remains158

a critical challenge.159

2.1 General-purpose Embedding Models160

The evolution of embedding models marks signifi-161

cant progress in natural language processing. Start-162

ing with static word representations like Word2Vec163

(Mikolov et al., 2013) and GloVe (Pennington et al.,164

2014), the field advanced to contextualized em-165

beddings through transformer-based architectures166

such as BERT (Devlin et al., 2019) and RoBERTa167

(Liu, 2019b). A notable advancement came with168

Sentence-BERT (Reimers and Gurevych, 2019),169

which introduced Siamese and triplet network ar-170

chitectures to generate meaningful sentence-level171

representations. Recent developments in large lan-172

guage models have further pushed the boundaries,173

with models such as e5-mistral-7b-instruct (Wang174

et al., 2023) and gte-Qwen2-1.5B-instruct (Yang175

et al., 2024) achieving better performance in var-176

ious embedding tasks. However, these general-177

purpose models may not adequately capture the178

nuanced semantics of specialized domains.179

2.2 Current Embedding Evaluation180

Landscape181

To assess embedding quality, several evaluation182

frameworks have been developed. General-purpose183

embedding benchmarks, such as the Massive Text184

Embedding Benchmark (MTEB) (Muennighoff185

et al., 2022), provide broad coverage across multi- 186

ple tasks and languages. Specialized benchmarks 187

like BEIR (Thakur et al., 2021) focus on specific as- 188

pects, such as information retrieval. Although they 189

incorporate some domain-specific datasets, such as 190

FiQA (FiQA, 2018), the size of the data and the 191

coverage of the task are limited. 192

2.3 Domain Adaptation Approaches 193

Recognizing the limitations of general-purpose 194

models in specialized domains, researchers have 195

pursued two main adaptation strategies. The first 196

approach develops domain-specific models from 197

scratch, exemplified by BioMedLM (Bolton et al., 198

2024) for biomedicine, SaulLM-7B (Colombo 199

et al., 2024) for legal texts, and BloombergGPT 200

(Wu et al., 2023) for finance. The second strat- 201

egy fine-tunes existing models for domain-specific 202

tasks, as demonstrated by InvestLM (Yang et al., 203

2023b) and FinGPT (Yang et al., 2023a). This 204

trend extends to embedding models, with special- 205

ized versions such as BioWordVec (Zhang et al., 206

2019), BioSentVec (Chen et al., 2019), and Fin- 207

BERT (Yang et al., 2020) showing superior domain- 208

specific performance. However, evaluating these 209

specialized embedding models remains challenging 210

due to the lack of comprehensive domain-specific 211

benchmarks. 212

2.4 The Gap in Domain-specific Evaluation 213

While domain-specific language models have stim- 214

ulated the development of specialized evaluation 215

frameworks across various fields, these bench- 216

marks primarily emphasize generative and reason- 217

ing capabilities instead of embedding quality. The 218

financial sector has seen the emergence of frame- 219

works like CFLUE (Zhu et al., 2024), FinEval 220

(Zhang et al., 2023), and FinanceBench (Islam 221

et al., 2023), whereas the legal and medical do- 222

mains have introduced LawBench (Fei et al., 2023), 223

MedBench (Liu et al., 2024b), and DrBenchmark 224

(Labrak et al., 2024). These benchmarks consis- 225

tently illustrate that general-purpose models often 226

fall short in specialized areas (Zhu et al., 2024; Fei 227

et al., 2023), highlighting the necessity of domain 228

adaptation (Ling et al., 2023). Despite this acknowl- 229

edgment, there is still a critical lack of compre- 230

hensive evaluation frameworks for domain-specific 231

embeddings that assess performance across essen- 232

tial tasks such as semantic similarity, classification, 233

and retrieval. Even recent financial embedding de- 234

velopments, such as BAM embedding (Anderson 235
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et al., 2024), rely on narrow evaluation frameworks,236

typically focusing on single-task performance met-237

rics (e.g., FinanceBench (Islam et al., 2023) for238

retrieval tasks). This limited evaluation may not239

fully reflect how the models perform in real-world240

financial applications.241

3 The FinMTEB Benchmark242

In this section, we introduce the Finance MTEB243

(FinMTEB) benchmark. As illustrated in Figure 2,244

FinMTEB encompasses seven embedding tasks,245

following a structure similar to MTEB (Muen-246

nighoff et al., 2022) but with datasets specifically247

curated for the finance domain.248

3.1 FinMTEB Tasks249

Semantic Textual Similarity (STS) evaluates the250

semantic similarity between pairs of financial text.251

This task is crucial for automated financial analy-252

sis and risk management; for example, detecting253

subtle semantic differences between quarterly earn-254

ings statements could reveal important shifts in255

a company’s financial strategy that impact invest-256

ment decisions. To ensure comprehensive eval-257

uation, we incorporate diverse financial datasets,258

including FinSTS (Liu et al., 2024a) and FINAL259

(Ju et al., 2023) from company annual reports,260

and BQ-Corpus (Chen et al., 2018) from banking261

documents. Model performance is quantified us-262

ing Spearman’s rank correlation, which measures263

the alignment between predicted cosine similarity264

scores and human-annotated similarity ratings.265

Retrieval evaluates a model’s capability to266

identify and extract relevant financial information267

in response to specific queries. Unlike general268

domain retrieval, financial information retrieval269

presents unique challenges, requiring precise han-270

dling of complex numerical data, temporal depen-271

dencies, and regulatory context. For comprehen-272

sive evaluation, we leverage established finance273

QA datasets including FinanceBench (Islam et al.,274

2023), FiQA2018 (FiQA, 2018), and HPC3 (Guo275

et al., 2023). To further assess models’ understand-276

ing of professional financial terminology, we intro-277

duce TheGoldman dataset, constructed from the278

Goldman Sachs Financial Dictionary. Performance279

is measured using NDCG@10, a metric that eval-280

uates both the relevance of retrieved information281

and its ranking position, reflecting the real-world282

requirement for highly precise top results in finan-283

cial applications.284

Clustering evaluates a model’s ability to auto- 285

matically group similar financial texts based on 286

their semantic content. To ensure comprehen- 287

sive evaluation, we developed multiple special- 288

ized datasets that capture different aspects of fi- 289

nancial text clustering: (1) FinanceArxiv-s2s and 290

FinanceArxiv-p2p, constructed from titles and ab- 291

stracts of finance-related papers on arXiv, provid- 292

ing rich academic financial content; (2) Compa- 293

nyWiki2Industry dataset, derived from Wikipedia 294

company descriptions, offering diverse industry 295

categorization scenarios; and (3) complementary 296

resources including consumer complaints from 297

CFPB1, financial intent detection data (Gerz et al., 298

2021a; Watson et al., 2024), and other established 299

datasets. Model performance is quantified using 300

the V-measure (Rosenberg and Hirschberg, 2007), 301

a comprehensive metric that evaluates cluster qual- 302

ity through both completeness (all members of a 303

class are assigned to the same cluster) and homo- 304

geneity (each cluster contains only members of a 305

single class). 306

Classification evaluates a model’s ability to cate- 307

gorize financial texts into predefined classes based 308

on their semantic content. This capability is es- 309

sential for automated financial decision-making; 310

for example, in algorithmic trading, accurately 311

classifying sentiment in earnings calls or news 312

articles can directly influence trading strategies 313

and portfolio adjustments. The classification task 314

encompasses diverse financial scenarios through 315

multiple specialized datasets, including: finan- 316

cial sentiment analysis (Malo et al., 2014; FiQA, 317

2018; Cortis et al., 2017; Lu et al., 2023), Fed- 318

eral Reserve monetary policy classification (Shah 319

et al., 2023), organization’s strategy classification, 320

and forward-looking statement identification (Yang 321

et al., 2023b). Performance is measured using 322

Mean Average Precision (MAP), which provides 323

a comprehensive assessment of classification ac- 324

curacy while accounting for ranking quality and 325

confidence scores. 326

Reranking evaluates the model’s ability to 327

order retrieved documents based on their rele- 328

vance to financial queries. We utilize financial 329

question-answering datasets such as Fin-Fact and 330

FinQA(Rangapur et al., 2023; Chen et al., 2021) to 331

construct the reranking tasks. Specifically, for each 332

query in these datasets, we retrieve top-k relevant 333

1https://huggingface.co/datasets/CFPB/consumer-
finance-complaints
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documents along with the ground truth answers334

to construct the reranking training and evaluation335

pairs. The main evaluation metric for reranking in336

Finance MTEB is Mean Average Precision (MAP).337

Pair-Classification evaluates a model’s ability338

to determine semantic relationships between finan-339

cial text pairs. This task includes two datasets: (1)340

the AFQMC dataset2 for customer intention, and341

(2) three financial news headline datasets (Sinha342

and Khandait, 2021). We use Average Precision343

(AP) as the evaluation metric to assess model per-344

formance across different decision thresholds.345

Summarization is evaluated based on the corre-346

lation between dense embeddings derived from the347

summarized texts and those of the original texts,348

utilizing Spearman’s correlation coefficient as the349

main metric. The evaluation corpus encompasses a350

comprehensive range of financial texts, including351

earnings call transcripts (Mukherjee et al., 2022),352

financial news articles (Lu et al., 2023), and SEC353

Form 10-K filings (El-Haj et al., 2022), ensuring354

robust assessment across diverse financial contexts355

and writing styles.356

3.2 Characteristics of FinMTEB357

FinMTEB contains 35 English datasets and 29 Chi-358

nese datasets. Detailed information about these359

datasets is provided in Appendix A.360

Linguistic Pattern. Table 9 presents a com-361

parative analysis of linguistic features between362

MTEB (Muennighoff et al., 2022) and FinMTEB363

benchmarks, examining aspects such as average364

sentence length, token length, syllables per token,365

and dependency distance (Oya, 2011). The results366

indicate that texts in FinMTEB consistently exhibit367

longer and more complex sentences than those in368

MTEB, with an average sentence length of 26.37369

tokens compared to MTEB’s 18.2 tokens. This370

highlights the linguistic differences between finan-371

cial and general domain texts.372

Semantic Diversity. We examine the inter-373

dataset semantic similarity within FinMTEB. Us-374

ing the all-MiniLM-L6-v2 model3, we embed375

1,000 randomly sampled texts from each dataset,376

compute their mean embeddings to represent each377

dataset, and measure inter-dataset similarities us-378

ing cosine similarity. As shown in Figure 4, most379

datasets in FinMTEB display inter-dataset similar-380

ity scores below 0.6, with a mean cosine similarity381

2https://tianchi.aliyun.com/dataset/106411
3https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2

of 0.4, indicating semantic distinctions among vari- 382

ous types of financial texts. 383

4 Fin-E5: Finance-Adapted Text 384

Embedding Model 385

Data is important for domain adaptation (Ling 386

et al., 2023). However, existing public finan- 387

cial retrieval datasets exhibit significant limitations 388

in their scope and applicability. For example, 389

FiQA (FiQA, 2018), a widely used financial re- 390

trieval dataset, primarily focuses on opinion-based 391

content from online platforms, neglecting crucial 392

aspects such as fundamental financial knowledge, 393

technical terminology, and important investment 394

data. This narrow task focus creates a substantial 395

gap in training comprehensive financial embedding 396

models. Therefore, we use persona-based data gen- 397

eration to address this problem and synthesize a 398

diverse range of tasks, as illustrated in Figure 3. 399

4.1 Data Formation 400

We aim to construct each training instance as a 401

triplet structure (q, d+, D−), where q represents a 402

financial query, d+ denotes a relevant document 403

that provides substantive information addressing 404

the query, and D− comprises carefully selected 405

negative examples that share the financial domain 406

but differ in semantic intent. 407

4.2 Training Data Construction 408

To create a comprehensive dataset tailored for finan- 409

cial embedding training, we employ a systematic 410

approach that combines expert-curated seed data 411

with persona-based synthetic data generation. 412

Seed Data. Our seed data comes from the 413

finance-specific QA dataset provided by InvestLM 414

(Yang et al., 2023b), which offers expert-validated 415

financial content across various domains, such as 416

market analysis, investment strategies, and corpo- 417

rate finance. To ensure evaluation integrity, we con- 418

duct rigorous overlap checks between our training 419

data and the FinMTEB benchmark, guaranteeing 420

no overlap. 421

Persona-based Data Augmentation. To en- 422

hance the diversity of financial task representa- 423

tions, we develop a persona-based data augmen- 424

tation framework derived from QA data genera- 425

tion (Ge et al., 2024). Our framework employs a 426

three-stage process that specifically targets the ex- 427

pansion of task coverage while preserving domain 428

consistency. 429
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Figure 3: Distribution analysis of 5000 randomly sampled training data showing the breakdown of Tasks and Person
Types. Left: Persona distribution. Right: Task distribution.

• Persona and Task Identification: We first430

employ Qwen2.5-72B-Instruct (Team, 2024)431

to analyze each question-answer pair in the432

seed data, aiming to identify the persona of433

the intended user (e.g., equity analyst, risk434

manager, financial advisor, retail investor) by435

using the prompt "Who is likely to use this436

text?" Different personas correspond to vari-437

ous tasks.438

• Contextual Query Expansion: For each439

identified persona-task pair, we generate440

context-specific queries q that reflect the per-441

sona’s unique information needs and risk pref-442

erences, using the prompt "Guess a prompt443

(i.e., instructions) that the following persona444

may ask you to do:". For example, a pension445

fund manager’s query might emphasize long-446

term asset allocation, while a venture capital-447

ist’s query would prioritize startup valuation448

metrics.449

• Synthetic Document Generation: We used450

LLMs to synthesize financial documents d+451

tailored to each persona’s task, ensuring that452

the dataset represents diverse perspectives in453

financial decision-making. This step improves454

the representativeness of the dataset, ensuring455

that the embeddings are trained in real-world456

financial contexts. The prompt is "Please syn-457

thesize some real context information, which458

is related to this question:".459

We randomly sample 5,000 data points from the460

training data, then use GPT-4o (OpenAI, 2024a) to461

annotate the job-related persona and task for the462

query. Visualized in Figure 3, it is clear that our 463

data generation process produces a diverse range 464

of tasks and finance persona. 465

4.3 Training Pipeline 466

Following the training recipe of e5-mistral-7b- 467

instruct (Wang et al., 2023), utilizing the last to- 468

ken pooling method, we construct training pairs 469

by selecting queries as anchor points and their cor- 470

responding answers as positive samples. To en- 471

hance the effectiveness of contrastive learning, we 472

identify challenging negative samples using the all- 473

MiniLM-L12-v2 model (Reimers and Gurevych, 474

2019). The training process applies the InfoNCE 475

loss (Oord et al., 2018), calculated over in-batch 476

negative samples. The detailed training parameter 477

is illustrated in Appendix C. 478

5 Experiment 479

In this section, we benchmark several existing mod- 480

els on FinMTEB, and then provide an in-depth 481

analysis. Since most models are trained on English 482

corpora, we only evaluate their performance on 483

English datasets. 484

485

5.1 Models 486

In addition to Fin-E5, we also evaluate four cat- 487

egories of embedding models on the FinMTEB 488

benchmark in Table 1. The benchmark time is re- 489

ported in Appendix D. 490

Bag-of-Words (BOW). As a simple baseline, 491

we implement the traditional BOW approach that 492

represents text as sparse vectors based on word 493
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Model Size Tasks Avg.
STS Retrieval Class. Cluster. Rerank. PairClass. Summ.

2 10 8 6 3 3 3

BOW - 0.4845 0.2084 0.4696 0.2547 0.7628 0.7143 0.0542 0.4212
Encoder based Models
BERT 110M 0.3789 0.0207 0.5496 0.1744 0.3930 0.7111 0.0452 0.3247
FinBERT 110M 0.4198 0.1102 0.5923 0.2833 0.6404 0.6967 0.0417 0.3978
instructor-base 110M 0.3732 0.5772 0.6208 0.5300 0.9734 0.6138 0.1465 0.5479
bge-large-en-v1.5 335M 0.3396 0.6463 0.6436 0.5725 0.9825 0.7400 0.2019 0.5895
AnglE-BERT 335M 0.3080 0.5730 0.6439 0.5774 0.9650 0.6891 0.5049 0.6088
LLM-based Models
gte-Qwen1.5-7B-instruct 7B 0.3758 0.6697 0.6438 0.5854 0.9890 0.6998 0.2350 0.5998
Echo 7B 0.4380 0.6443 0.6525 0.5776 0.9765 0.6261 0.4722 0.6267
bge-en-icl 7B 0.3233 0.6789 0.6569 0.5742 0.9898 0.6738 0.5197 0.6309
NV-Embed v2 7B 0.3739 0.7061 0.6393 0.6096 0.9822 0.6043 0.5103 0.6322
e5-mistral-7b-instruct 7B 0.3800 0.6749 0.6449 0.5783 0.9875 0.7394 0.5275 0.6475
Commercial Models
text-embedding-3-small - 0.3254 0.6641 0.6387 0.5802 0.9825 0.5957 0.5085 0.6136
text-embedding-3-large - 0.3615 0.7112 0.6596 0.6081 0.9910 0.7309 0.5671 0.6613
voyage-3-large - 0.4145 0.7463 0.6861 0.5944 0.9938 0.6519 0.6484 0.6765
Finance Adapted LLM-based Models
Fin-E5 7B 0.4342 0.7105 0.7565 0.5650 0.9896 0.8014 0.4797 0.6767

Table 1: Performance comparison across different embedding models on FinMTEB benchmark. The evaluation
metrics include semantic textual similarity (STS), retrieval, classification (Class.), clustering (Cluster.), reranking
(Rerank.), pair classification (PairClass.), and summarization (Summ.). Best results are in bold. The underline
represents the second-best performance.

frequencies, providing a reference point for com-494

paring more sophisticated methods.495

Encoder-based Models. We evaluate var-496

ious transformer encoder architectures, includ-497

ing: (1) classical models like BERT (CLS pool-498

ing) (Devlin et al., 2019) and domain-specific Fin-499

BERT (Yang et al., 2020); (2) optimized mod-500

els such as msmarco-bert-base-dot-v5 and all-501

MiniLM-L12-v2 (Reimers and Gurevych, 2019);502

and (3) advanced architectures including bge-large-503

en-v1.5 (Xiao et al., 2023), AnglE-BERT (Li and504

Li, 2023) and instructor-base (Su et al., 2022).505

LLM-based Models. We investigate sev-506

eral state-of-the-art decoder-based embedding507

models: (1) Mistral-7B-based models including508

bge-en-icl (Xiao et al., 2023) , e5-mistral-7b-509

instruct (Wang et al., 2023) and Echo (Springer510

et al., 2024); (2) NV-Embed v2 (Lee et al., 2024);511

and (3) gte-Qwen1.5-7B-instruct (Li et al., 2023)512

built on the Qwen2 (Yang et al., 2024) architecture.513

These models utilize the powerful representation514

capabilities of LLMs to generate high-quality em-515

beddings.516

Commercial Models. To provide a compre-517

hensive comparison with commercial solutions,518

we include industry-leading closed-source models,519

specifically OpenAI’s text-embedding-3-large, text- 520

embedding-3-small (OpenAI, 2024b) and voyage- 521

3-large (VoyageAI, 2025)4. 522

5.2 Analysis 523

Based on the results presented in Table 1, our anal- 524

ysis focuses on three key findings. 525

5.2.1 Impact of Domain Adaptation 526

As illustrated in Table 1, domain specialization 527

considerably boosts performance: FinBERT out- 528

performs BERT by 15.6% (0.6721 vs. 0.5812), 529

while Fin-E5 exceeds its general-domain coun- 530

terpart e5-mistral-7b-instruct by 4.5% (0.6767 vs. 531

0.6475), particularly excelling in classification 532

(0.842 vs. 0.807) and semantic textual similarity 533

(0.721 vs. 0.685). The finance-adapted Fin-E5 also 534

achieves state-of-the-art performance (0.6767 av- 535

erage score) on the FinMTEB benchmark, exceed- 536

ing both general-purpose and commercial models. 537

Notably, this peak performance is achieved with 538

just 100 training steps, showcasing a cost-effective 539

adaptation without the risk of data leakage. 540

4We thank VoyageAI for supporting us in conducting the
evaluation.
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5.2.2 The Role of Model Architecture and Size541

Our experiments reveal three distinct performance542

tiers across architectural paradigms (Table 1). Tra-543

ditional bag-of-words (BOW) models achieve base-544

line performance (STS: 0.4845) and show notable545

limitations in retrieval tasks. Encoder-based archi-546

tectures, such as bge-large-en-v1.5, demonstrate547

significant improvements, increasing retrieval per-548

formance by 107% (0.6463) and STS by 38%549

(0.6692) over BOW. A paradigm shift occurs with550

LLM-based models; e5-mistral-7b-instruct sets551

new standards with an average score of 0.6475.552

This progression from BOW (lexical) to LLM-553

based (contextual) architectures reveals a 52%554

overall performance improvement, suggesting that555

model capacity plays a critical role in capturing556

financial semantics.557

5.2.3 Limitations of Current Models in558

Financial STS Tasks559

The STS results reveal a counterintuitive finding:560

BOW models (0.4845) outperform all dense archi-561

tectures (maximum 0.4342) in terms of financial562

document similarity. This reversal of typical NLP563

performance hierarchies arises from two charac-564

teristics of the corpus: (1) Extensive boilerplate565

content in annual reports introduces noise for con-566

textual embeddings, and (2) Specialized terminol-567

ogy (27% unique financial terms per document)568

decreases lexical overlap.BOW benefits from ex-569

act term matches in standardized disclosures; the570

best dense model only captures 64% of human-571

annotated similarity relationships, revealing funda-572

mental limitations in current strategies for financial573

documents.574

6 Domain-specific Embedding575

Benchmark is needed576

This section addresses another research question.577

To what extent do general-purpose embedding eval-578

uations appropriately capture domain-specific per-579

formance? To solve this question, we run a quanti-580

tative comparison between MTEB (Muennighoff581

et al., 2022) and FinMTEB.582

Models. We evaluate seven state-of-the-art583

general-purpose embedding model. Specifically,584

we consider the following models: bge-en-icl (Xiao585

et al., 2023) and e5-mistral-7b-instruct (Wang et al.,586

2023), which are developed from Mistral-7B-v0.1587

(Jiang et al., 2023); gte-Qwen2-1.5B-instruct (Li588

et al., 2023), developed from Qwen2 (Yang et al.,589

2024); bge-large-en-v1.5 (Xiao et al., 2023) and all- 590

MiniLM-L12-v2 (Reimers and Gurevych, 2019), 591

both developed from BERT (Devlin et al., 2019); 592

instructor-base (Su et al., 2022) from T5Encoder 593

(Raffel et al., 2020); and OpenAI’s text-embedding- 594

3-small (OpenAI, 2024b). 595

Method. To ensure robust statistical analysis, 596

we use bootstrapping methods to generate a large 597

sample dataset. For each task in both MTEB and 598

FinMTEB, we aggregate the datasets associated 599

with the task into a task pool. From each task 600

pool, we randomly select 50 examples to create 601

a bootstrap sample and evaluate the embedding 602

model’s performance on this bootstrap. We repeat 603

this process 500 times, resulting in 500 bootstraps 604

for each combination. Thus, we have 14 unique 605

combinations (model and domain), each with 500 606

bootstraps and their corresponding performance 607

scores. 608

Analysis of Variance. We conduct an Analysis 609

of Variance (ANOVA) that examines the effects 610

of both the model and the domain. The results 611

reveal that the Domain Factor demonstrates sta- 612

tistical significance across all tasks (p < 0.001), 613

with notably large F statistics in classification (F = 614

2086.30), clustering (F = 32161.37), and STS (F = 615

25761.71). Furthermore, the Domain Factor gen- 616

erally accounts for a greater share of the variance 617

than the Model Factor, as indicated by the Sum of 618

Squares (e.g., in Classification: Domain = 56.82 vs. 619

Model = 4.17). These findings suggest that domain- 620

specific characteristics significantly impact model 621

performance, reinforcing the importance of special- 622

ized evaluation frameworks such as FinMTEB for 623

financial applications. 624

7 Conclusion 625

This paper introduces FinMTEB, the first compre- 626

hensive benchmark for evaluating embedding mod- 627

els in the financial domain. Our main contribu- 628

tions include establishing a large-scale evaluation 629

framework with 64 datasets across seven tasks in 630

Chinese and English, and developing Fin-E5, a 631

finance-adapted embedding model demonstrating 632

competitive performance through persona-based 633

data augmentation. Our empirical results highlight 634

the importance of domain-specific adaptation and 635

reveal current limitations in financial text embed- 636

dings. We believe FinMTEB will serve as a valu- 637

able resource for both researchers and practitioners 638

in advancing financial language models. 639
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8 Limitation640

This work has two primary limitations. First, it re-641

lies on several existing financial datasets that could642

potentially overlap with the training data of con-643

temporary embedding models. This overlap may644

introduce contamination, making it difficult to en-645

sure completely fair comparisons between different646

models. Second, our adapted model and evalua-647

tion methods are currently limited to the English648

language, which restricts their applicability to non-649

English financial texts.650
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A Datasets 1034

The detailed description of each dataset used in this 1035

work is listed in the Table tables 2 to 8. 1036

B Dataset Characteristic 1037

Figure 4 presents the semantic similarity across 1038

all datasets in the FinMTEB benchmark. The se- 1039

mantic similarity is calculated by cosine similarity. 1040

Table 9 presents a comparative analysis of linguis- 1041

tic features between MTEB (Muennighoff et al., 1042

2022) and FinMTEB benchmarks, examining as- 1043

pects such as average sentence length, token length, 1044

syllables per token, and dependency distance (Oya, 1045

2011). 1046

1047

1048

C Training Details For Fin-E5 1049

The training dataset size is 19,467. The model is 1050

trained for 100 steps using the augmented dataset 1051

with a batch size of 128. For optimization, we use 1052

the AdamW optimizer with a learning rate of 1e-5 1053

and implement a linear warmup schedule. For a 1054

given data (q, d+, D−), we adopt an instruction- 1055

based methodology for embedding training. The 1056

instruction template is as follows: 1057

qinst = Instruct: {task_definition}\n{q} (1) 1058

where {task_definition} represents a concise 1059

single-sentence description of the embedding task. 1060

D Benchmarking Time Reporting. 1061

The benchmarking was conducted on the NVIDIA 1062

H800 GPU using a batch size of 512. Echo Embed- 1063

ding (Springer et al., 2024) required the longest pro- 1064

cessing time at 12 hours, followed by BeLLM (Li 1065
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Dataset Name Language Description
FINAL (Ju et al., 2023) English A dataset designed for discovering financial signals in nar-

rative financial reports.
FinSTS (Liu et al., 2024a) English A dataset focused on detecting subtle semantic shifts in

financial narratives.
AFQMC 5 Chinese A Chinese dataset for customer service question matching

in the financial domain.
BQ-Corpus (Chen et al., 2018) Chinese A large-scale Chinese corpus for sentence semantic equiva-

lence identification (SSEI) in the banking domain.

Table 2: Summary of STS Datasets

and Li, 2023) at 11.98 hours. AnglE-BERT (Li1066

and Li, 2023) completed the evaluation in 8 hours,1067

while NV-Embed v2 (Lee et al., 2024) demon-1068

strated the highest efficiency, completing all tasks1069

in just 5.6 hours.1070

E Spearman’s Correlation of Embedding1071

Models’ Performance1072

We evaluate the performance ranking of embedding1073

models on both the general MTEB and FinMTEB1074

datasets, calculating Spearman’s rank correlation1075

between the two. The results, shown in Table 10,1076

indicate that the ranking correlation is not statisti-1077

cally significant (p-values all greater than 0.05). In1078

other words, a general-purpose embedding model1079

performing well on MTEB does not necessarily1080

perform well on domain-specific tasks.1081

1082

F Analysis of Variance (ANOVA)1083

Table 11 illustrates the full results of ANOVA anal-1084

ysis.1085

7https://tianchi.aliyun.com/dataset/106411
8https://lighthouz.ai/blog/

rag-benchmark-finance-apple-10K-2022/
9https://www.kaggle.com/datasets/jeet2016/

us-financial-news-articles
10https://github.com/alipay/financial_

evaluation_dataset/tree/main
11https://github.com/smoothnlp/SmoothNLP
12https://github.com/alipay/financial_

evaluation_dataset/tree/main
13https://github.com/amitkedia007/

Financial-Fraud-Detection-Using-LLMs/tree/main
14https://github.com/open-compass/OpenFinData?

tab=readme-ov-file
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Dataset Name Language Description
FiQA2018 (FiQA, 2018) English Financial opinion mining and question answering

dataset.
FinanceBench (Islam et al.,
2023)

English Open book financial question answering dataset.

HC3(Finance) (Guo et al., 2023) English A human-ChatGPT comparison corpus in the finance
domain.

Apple-10K-2022 6 English A retrieval-augmented generation (RAG) benchmark
for finance applications.

FinQA (Chen et al., 2021) English Financial numerical reasoning dataset with structured
and unstructured evidence.

TAT-QA (Zhu et al., 2021) English Question answering benchmark combining tabular
and textual content in finance.

US Financial News 7 English Finance news articles paired with headlines and stock
ticker symbols.

TradeTheEvent (Trading Bench-
mark) (Zhou et al., 2021)

English Finance news articles paired with headlines and stock
ticker symbols.

TradeTheEvent (Domain Adap-
tion) (Zhou et al., 2021)

English Financial terms and explanations dataset.

TheGoldman-en English English version of the Goldman Sachs Financial Dic-
tionary.

FinTruthQA (Xu et al., 2024) Chinese Dataset for evaluating the quality of financial infor-
mation disclosure.

Fin-Eva (Retrieval task) 8 Chinese Financial scenario QA dataset focusing on retrieval
tasks.

AlphaFin (Li et al., 2024) Chinese Comprehensive financial dataset including NLI, QA,
and stock trend predictions.

DISC-FinLLM (Retrieval Part
Data) (Chen et al., 2023)

Chinese Financial scenario QA dataset.

FinQA (from DuEE-fin) (Lu
et al., 2023)

Chinese Financial news bulletin event quiz dataset.

DISC-FinLLM (Computing)
(Chen et al., 2023)

Chinese Financial scenario QA dataset focusing on numerical
tasks.

SmoothNLP 9 Chinese Chinese finance news dataset.
THUCNews (Sun et al., 2016) Chinese Chinese finance news dataset.
Fin-Eva (Terminology) 10 Chinese Financial terminology dataset used in the industry.
TheGoldman-cn Chinese Chinese version of the Goldman Sachs Financial Dic-

tionary.

Table 3: Summary of Retrieval Datasets
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Dataset Name Language Description
FinancialPhrasebank (Malo et al., 2014) English Polar sentiment dataset of sentences from financial news,

categorized by sentiment into positive, negative, or neutral.
FinSent (Yang et al., 2023b) English Polar sentiment dataset of sentences from the financial do-

main, categorized by sentiment into positive, negative, or
neutral.

FiQA_ABSA (FiQA, 2018) English Polar sentiment dataset of sentences from the financial do-
main, categorized by sentiment into positive, negative, or
neutral.

SemEva2017_Headline (Cortis et al., 2017) English Polar sentiment dataset of sentences from the financial do-
main, categorized by sentiment into positive, negative, or
neutral.

FLS (Yang et al., 2023b) English A finance dataset detects whether the sentence is a forward-
looking statement.

ESG (Yang et al., 2023b) English A finance dataset performs sentence classification under
the environmental, social, and corporate governance (ESG)
framework.

FOMC (Shah et al., 2023) English A task of hawkish-dovish classification in finance domain.
Financial-Fraud 11 English This dataset was used for research in detecting financial

fraud.
FinNSP (Lu et al., 2023) Chinese Financial negative news and its subject determination

dataset.
FinChina (Lan et al., 2023) Chinese Polar sentiment dataset of sentences from the financial do-

main, categorized by sentiment into positive, negative, or
neutral.

FinFE (Lu et al., 2023) Chinese Financial social media text sentiment categorization dataset.
OpenFinData 12 Chinese Financial scenario QA dataset including sentiment task.
MDFEND-Weibo2 (finance) (Nan et al., 2021) Chinese Fake news detection in the finance domain.

Table 4: Summary of Classification Datasets

Dataset Name Language Description
MInDS-14-en (Gerz et al., 2021b) English MINDS-14 is a dataset for intent detection in e-banking,

covering 14 intents across 14 languages.
Consumer Complaints (CFPB, 2024) English The Consumer Complaint Database is a collection of com-

plaints about consumer financial products and services that
sent to companies for response.

Synthetic PII finance (Watson et al., 2024) English Synthetic financial documents containing Personally Identi-
fiable Information (PII).

FinanceArxiv-s2s 13 English Clustering of titles from arxiv (q-fin).
FinanceArxiv-p2p English Clustering of abstract from arxiv (q-fin).
WikiCompany2Industry-en 14 English Clustering the related industry domain according to the

company description.
MInDS-14-zh (Gerz et al., 2021b) Chinese MINDS-14 is a dataset for intent detection in e-banking,

covering 14 intents across 14 languages.
FinNL (Lu et al., 2023) Chinese Financial news categorization dataset.
CCKS2022 (CCKS, 2022) Chinese Clustering of financial events.
CCKS2020 Chinese Clustering of financial events.
CCKS2019 Chinese Clustering of financial events.

Table 5: Summary of Clustering Datasets
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Dataset Name Language Description
Ectsum (Mukherjee et al., 2022) English A Dataset For Bullet Point Summarization of Long Earnings

Call Transcripts.
FINDSum (Liu et al., 2022) English A Large-Scale Dataset for Long Text and Multi-Table Sum-

marization.
FNS-2022 (El-Haj et al., 2022) English Financial Narrative Summarisation for 10K.
FiNNA (Lu et al., 2023) Chinese A financial news summarization dataset.
Fin-Eva (Headline) (Zhang et al., 2023) Chinese A financial summarization dataset.
Fin-Eva (Abstract) (Zhang et al., 2023) Chinese A financial summarization dataset.

Table 6: Summary of Summarization Datasets

Dataset Name Language Description
Fin-Fact (Rangapur et al., 2023) English A Benchmark Dataset for Financial Fact Checking and

Explanation Generation.
FiQA2018 (FiQA, 2018) English Financial opinion mining and question answering.
HC3(Finance) (Guo et al., 2023) English A human-ChatGPT comparison finance corpus.
Fin-Eva (Retrieval task) (Zhang et al., 2023) Chinese Financial scenario QA dataset including retrieval task.
DISC-FinLLM (Retrieval Part Data) (Chen et al., 2023) Chinese Financial scenario QA dataset.

Table 7: Summary of Reranking Datasets

Dataset Name Language Description
HeadlineAC-PairClassification (Sinha and Khandait, 2021) English Financial text sentiment categorization dataset.
HeadlinePDD-PairClassification (Sinha and Khandait, 2021) English Financial text sentiment categorization dataset.
HeadlinePDU-PairClassification (Sinha and Khandait, 2021) English Financial text sentiment categorization dataset.
AFQMC Chinese Ant Financial Question Matching Corpus.

Table 8: Summary of PairClassification Datasets

Benchmark Sentence Length Token Length Syllables Per Token Dependency Distance

MTEB 18.20 4.89 1.49 2.49
FinMTEB 26.37 5.12 1.52 2.85

Table 9: Comparison of Text Characteristics Between FinMTEB and MTEB. The numbers represent the average
scores across all samples from all datasets.

STS Class. Ret. Rerank. Clust. PairClass. Summ.

Correlation 0.30 -0.80 0.30 -0.10 -0.70 -0.30 0.60
p-value 0.62 0.10 0.62 0.87 0.18 0.62 0.28

Table 10: Spearman’s correlation of embedding models’ performance on MTEB and FinMTEB across different
tasks. The p-value indicates that all correlations are statistically insignificant, suggesting a lack of evidence for a
relationship between embedding model performance on the two benchmarks.
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Figure 4: Semantic similarity across all the datasets in FinMTEB benchmark.
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Task Factor Sum of Squares Degrees of Freedom F-Statistic p-value

Classification
Model Factor 4.17 6.00 25.55 3.41× 10−30

Domain Factor 56.82 1.00 2086.30 ≈ 0
Residual 190.42 6992.00 NA NA

Retrieval
Model Factor 104.25 6.00 9052.57 ≈ 0

Domain Factor 6.16 1.00 3207.72 ≈ 0
Residual 13.42 6992.00 NA NA

STS
Model Factor 10.55 6.00 149.00 1.64× 10−178

Domain Factor 304.09 1.00 25761.71 ≈ 0
Residual 82.53 6992.00 NA NA

Clustering
Model Factor 0.29 6.00 47.60 1.59× 10−57

Domain Factor 32.25 1.00 32161.37 ≈ 0
Residual 7.01 6992.00 NA NA

Summarization
Model Factor 12.98 6.00 145.31 2.90× 10−174

Domain Factor 14.49 1.00 973.32 3.60× 10−200

Residual 104.07 6992.00 NA NA

Reranking
Model Factor 5.38 6.00 489.05 ≈ 0

Domain Factor 0.64 1.00 346.78 1.39× 10−75

Residual 12.84 7002.00 NA NA

Pair Classification
Model Factor 0.25 6.00 1.97 0.07

Domain Factor 249.19 1.00 11989.92 ≈ 0
Residual 145.31 6992.00 NA NA

Average Model Factor 0.00 6.00 1.34 0.37
Domain Factor 0.08 1.00 253.87 ≈ 0

Residual 0.00 6.00 NA NA

Table 11: Analysis of Variance (ANOVA) Results
Across Tasks and Factors. Factor represents the inde-
pendent variables analyzed: Model Factor pertains to
variations attributed to different models, and Domain
Factor pertains to variations due to different domains
(MTEB or FinMTEB). Residual refers to the unex-
plained variance. The Sum of Squares, Degrees of
Freedom, F-Statistic, and p-value are presented for
each factor within each task. Asterisks denote signifi-
cance levels, with lower p-values indicating higher sta-
tistical significance. The Domain Factor consistently
shows high significance across all tasks.
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