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Abstract. Light field cameras capture a scene’s multi-directional light
field with one image, allowing the estimation of depth. In this paper,
we introduce a fully automatic fast method for depth estimation from
a single plenoptic image running a RANSAC-like algorithm for feature
matching. The novelty about our approach is the global method to back
project correspondences found using photometric similarity to obtain a
3D virtual point cloud. We then use lenses with different focal-lengths in
a multiple depth map refining phase and their reprojection to the image
plane, generating an accurate depth map per micro lens. Tests with simu-
lations and real images are presented and show a good trade-off between
computation time and accuracy of the method presented. Our method
achieves an accuracy similar to the state-of-the-art in considerable less
time (speedups of around 3 times).

1 Introduction

Plenoptic or light field cameras (PLF) are cameras that acquire the plenoptic
function, that is to say that they know, for each pixel, the amount of light
traveling in all directions. These cameras have received a lot of interest in the
few last years since they inherently allow for multiple view geometry. Although
formalized earlier (about 100 years ago), PLF cameras were commercially built
only in the last decade. These cameras are built by placing a micro-lens array
behind the major optical lens of the system. This construction allows for the
formation of an array of smaller images that compose the 4D light field and by
easily sampling it. It is then straightforward to estimate the scene’s depth due
to the redundancy created by the same point being imaged several times.

The concept behind plenoptic cameras was first addressed in 1908 by Lipp-
mann [7] where he suggests the placement of an array of lenses between the
camera’s main lens and the film. This approach allows the camera to capture
the light field of a scene. The concept was later refined by Ives [4] in 1930 but,
due to the lack of computational power or existence of digital image sensors,
little could be done to extract information from the light field. Now with digital
image sensors, this technology has several possible applications such as robotics,
face recognition, photography and filmography, augmented reality, depth recon-
struction, industrial inspection and more.



2 Rodrigo Ferreira and Nuno Goncalves

Concerning depth estimation from plenoptic images we are able to achieve the
scene depth with only one raw image, which is also essential for image rendering.

In 2004 Dansearau and Bruton [2] proposed a method for depth estimation
using 2D gradient operations. They were able to define the light field direction
and thus the depth of the corresponding elements within the light field. The areas
where the depth could not be estimated were filled by applying region growing.
Since plenoptic cameras are not immune to spatial aliasing, which can result
on depth estimation errors, in 2009 Bishop and Favaro [1] applied a different
approach to compensate the present aliasing, allowing them to recover the depth
map from the multiple views provided by the 4D light field.

Wanner and Goldluecke [14] presented in 2012 a technique for depth estima-
tions for 4D light fields, using dominant directions on epipolar plane images. By
assuming that the 4D light field can be sliced onto 2D dimensions they started
to locally estimate the depth of the epipolar plane images and then labeled the
local estimations, integrating them on the global depth maps by imposing spatial
constraints. Recently, Fleischmann and Koch [3] approach the depth estimation
paradigm with disparity between neighbor lenses. Their method requires a very
dense sampling of the light field. The micro-lens depth maps are fused using a
semi-global regularization process. They further incorporate a semi-global coarse
regularization for insufficiently textured scenes.

In a different approach, Tao et al. [12] used a focal stack to estimate depth in
a depth-from-defocus approach, by simultaneously using defocus and correspon-
dences. They combine both cues using a Markov random field framework. Going
deeper into the focus, Lin et al. [6] proposed, most recently, an approach based
on the symmetry of the focal stack to estimate depth. They prove that the focal
stack is symmetric centered in the in-focus slice, for non-occluded pixels. Oc-
clusions are also studied by Wang et al. [13]. They identify the occlusion edges,
most useful for object segmentation and, hence, to improve the depth estimation
quality. They prove that points in the edge of objects in different depth planes
do not meet the standard photometric consistency equation and they derive new
expressions for these points.

As for the image rendering, it consists in converting the plenoptic image into
a focused image the same way as a conventional camera would see the world.
Although the works presented by Ng et al. [9] and Lumsdaine and Georgiev [8]
are fast, they present many artifacts and low resolution. Another approach and
the one that achieves the best results for multi-focus LF cameras is proposed
by Perwass and Wietzke [11]. Having a scene dense depth map it is possible to
back trace each pixel onto the image plane. This method allows the render of
a high resolution image with few artifacts which can be achieved with a multi-
focus plenoptic camera. The major drawback is the high computational power
required to process the dense depth map and the image rendering.

In this paper we present a novel fully automatic algorithm to estimate a dense
depth map from a single image of a multi-focus plenoptic camera. Our algorithm
rely on a robust search for photometric similarity between micro-lenses and by
smart mixing images with different levels of blur. The obtained point cloud is
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(a) (b)

Fig. 1: (a) Plenoptic camera model. (b top) Hexagonal layout of lenses where the
lens type is identified by a number. (b bottom) Sample from a Raytrix dataset
with different blurs in different lens types.

then filtered to improve the final depth map. We achieve very good results when
compared to the state of the art in a considerable less computational time.

2 Multi-focus Plenoptic Cameras

A multi-focus plenoptic camera has a micro-lens array placed in front of the
image sensor where each micro-lens have a different focal length from its neighbor
lenses. In this paper we are interested in the model presented in [11] and which
is represented in figure 1a. For this type of cameras a real world object X1

(figure 1a) is projected through the camera’s main lens onto a virtual image
Y1. This virtual image is then projected through the micro-lens array into the
image plane, capturing multiple views of the object. There are lenses with three
different focal length, allowing to obtain a larger depth of field. Lenses with
different focal lengths will present different blurs for the same depth and will be
in focus for different depth ranges. The most common lens type arrangement is
hexagonal, as illustrated by the top image of figure 1b. The bottom image of
figure 1b shows a sample of a scene at a constant depth where it is possible to
identify different lens types through blur.

To clarify the different types of depth maps, notice that we define three
different concepts: (1) sparse depth map - it is the raw depth map obtained by
projecting the 3D virtual points to the image plane and attributing a depth value
for each projected pixel, (2) coarse depth map - it is the depth map obtained by
attributing a single depth value for each micro-lens - it is a dense map, since all
pixels have a depth value, but it is not dense in a conventional camera point of
view (it is not a scene’s depth map) and (3) dense depth map - it is the scene’s
depth map obtained by synthesizing the image and attributing a depth value for
each pixel, as if the camera were a conventional pinhole one.



4 Rodrigo Ferreira and Nuno Goncalves

(a) (b) (c)

Fig. 2: (a) Model tested by the RANSAC-like algorithm. The green circle is the
salient point and the red, green and blue lines are the epipolar band where we
search for correspondences. The green epipolar line is the main test line while the
red and blue lines represent the ±1 pixel tolerance. (b) and (c) 3D representation
of the epipolar geometry between two and four micro-lenses respectively. The
green line is the epipolar line, the green circles are best photometric similarities
and the red dot it the estimated 3D point for the detected similarities.

2.1 Feature Detection and Depth Estimation

Our algorithm to estimate a sparse depth map is based on photometric similari-
ties between pairs of micro-lens images. Fleischmann and Koch [3] use a similar
approach, based on photometric similarity. We use SIFT to search for salient
points in the image (as a whole). This method allows us to obtain the most
significant points in the image only by adjusting threshold parameters. Regard
that we use SIFT features for simplicity and since they have good discriminatory
capabilities, however, any salient points detection can replace the use of SIFT.
Having the salient points, neighboring lenses are then searched for photomet-
ric correspondences, by relying on stereo epipolar geometry (notice that salient
points obtained in non useful areas, for instance areas between micro-lenses im-
ages, are discarded). Since we are provided a big number of salient points and
their respective correspondences, we apply a RANSAC-method to obtain the
best 3D point cloud. Our algorithm then back projects the pairs of correspon-
dences. Notice that the distance from the micro-lens array and the image plane
is provided by the camera manufacturer (calibration data), allowing to obtain a
sparse 3D point cloud. We summarize our method as follows:

– Step 1 - Selection of the epipolar lines. For each salient point within
a reference micro-lens image Ia, a subset of epipolar lines are considered
based on a group of target micro-lens images Ia1 , ..., Ian (neighbor micro-
lenses). The n epipolar lines for a point x in the reference image are given
by Li = {x+ tυ : t ∈ R} with υ = (cai − ca)/2r [3], where cai and ca are the
coordinates of the center of the target micro-lens ai with i ∈ {1, ..., n} and
the reference micro-lens a with r radius respectively. See figure 2a.
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– Step 2 - Find a correspondence. Photometric similarities are searched
within the target micro-lenses along the n epipolar lines for possible dis-
parities dj ∈ [0, dmax], dmax < 2r. So, it is calculated the sum of absolute
differences (SAD) (of equation (1)) [3] between local neighborhoods Ω(x),
in the reference image, and Ω(x− djυ), in the target image.

SAD(x, dj ; a, ai) =
1

A(x, υ, dj)

∑
u∈Ω(x)

|Ia(u)− Iai(u− djυ)|1(u− djυ) . (1)

with

A(x, υ, dj) =
∑

u∈Ω(x)

1(u− djυ) . 1(x) =

{
1 if ||x|| < r

0 else
.

By minimizing the SAD through equation (2) it is obtained the pixel coor-
dinates for the best photometric similarity within each epipolar line of the
neighbor micro-lenses.

X(a, ai) = argmin
x

SAD(x, dj ; a, ai), s.t. X(a, ai) ∈ Iai (2)

– Step 3 - Estimation of the 3D virtual points. A subset of lines are
defined, representing one pixel tolerance for the epipolar line (figure 2a),
and are grouped two by two. For each pair it is computed the 3D point that
minimizes the distance (in 3D) between lines Pi and Pc (figure 2b). The final
3D point has the median of their coordinates

– Step 4 - Testing the model. Having an hypothetical 3D point obtained
in the previous step, we now need to test the hypothesis for this virtual
point. The chosen error measurement is the average distance of the virtual
candidate points to the correspondent lines obtained in the previous step.

– Step 5 - Assessment of the model. A threshold on the measure defined
on the previous step is defined so that only the best estimations are selected.
This allows to assume which lines are suited to add to the model (inliers). If
there is more than one outlier, the hypothetic model is discarded and we go
back to step 1.

– Step 6 - Re-estimations of the 3D virtual point. This step is similar
to step 3. We re-estimate all 3D virtual points using only the inliers. These
lines are again grouped two by two and the 3D point for every combination
is the point that minimizes the distance between them. The final 3D point
is the median coordinates of all points generated by every line combination.

– Step 7 - Error metrics. In this step we evaluate the model in terms of
error. It is a mean error from the inliers’s distances obtained in step 3, as
well as the number of neighbor micro-lenses where a correspondence is found.
This will be further discussed on section 2.2.

– Step 8 - Repeat steps 1-7 for every salient point.

The output of the previous algorithm is a 3D point cloud of virtual points as
projected by the main lens of the camera to their virtual image. At a final stage,
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a coarse regularization method will reproject the 3D points of the cloud to the
micro-lens images and, thus, attribute an average depth for every micro-lens.

As for the lens pattern used in step 1 (where neighbor lenses are searched
for replications of a given salient point) we use different combinations of lenses.
Knowing that for a multi-focus plenoptic camera there are lenses with different
types, we define lens groups based on the lens type and the distance to the
central lens. Figure 3 shows these configurations. We do a smart mixture of lens
groups that, even mixing different blurs due to the different focal lengths, is able
to optimize the depth estimated throughout the scene’s depth ranges. Notice
that the depth accuracy depends on the stereo baseline, which is smaller for
farther scene depths. Our smart adaptive mixture of micro-lens is able to adjust
baseline and range. The neighborhood is limited to R5 because there is no major
correspondences beyond this distance to the center lens (about 3.5D). Table 1
summarizes all lens patterns studied in our work, where D is the lens diameter.

2.2 Depth improvement

Assume z as the virtual depth of a generic point of the captured scene. As stated
by Perwass and Wietzke [11], the maximum radius (Rmax) that determines the
number of micro-lenses that replicate a certain feature is given by equation (3),
where B is the distance between the micro-lens plane and the image plane and
D is the micro-lens diameter (in pixels). Consequently, the closer a point is to
the camera (higher virtual depth), the more lenses will replicate it. Figure 4 is an
example for both close and far features on a raw image. When using the R0 lens
pattern (see figure 3) the algorithm searches adjacent lenses with different types
for feature matching, being adequate for farther depth ranges. On the other
hand, the R1 configuration is always adequate since it searches lenses of the
same type (same focal length). Notice that, as for the R5 pattern, although the
number of correspondences obtained is much lower, their baseline is much higher

Fig. 3: Illustration of the lens neighbor-
hood, with every group labeled from R0
to R5, and lens type from 0 to 2.
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Table 1: Table summarizing the lens
pattern parameters (assumes that the
central lens type is 0).

Lense
Patterns

# Of
Lenses

Lenses
Types

Distance to
central micro-lens

R0 6 1, 2 D

R1 6 0
√

3×D
R2 6 1, 2 2×D

R3 12 1, 2
√

7×D
R4 6 0 3×D

R5 6 0 2
√

3×D



Fast and accurate micro lenses depth maps for multi-focus light field cameras 7

Fig. 4: Salient point replication on neighbor lenses: a) feature replication for a
low z value sample. b) feature replication for a high z value sample

and, therefore, the back projection of its correspondences is more stable. Our
algorithm then presents an adaptive mixture of micro-lens patterns, by using as
many information as possible, and selecting the more stable configurations when
available.

Rmax =
|z| ×D
2×B

(3)

Lens selection On seeking a more precise reconstruction of the depth map we
propose the aggregation of both R0, R1, R4 and R5 depth data points by quartile
sectioning and weight attribution. Our work focuses on the usage of R0, R1, R4

and R5 lens configuration since they produce the majority and most consistent
results of all configurations. Since correspondences in R4 and R5 are not always
available (only for very close points relative to the camera position) and their
blur is similar to the blur of correspondences in R1, we mention the union of
both configurations as R1 + R4 + R5. For the fusion of R0 and R1 + R4 + R5

depth maps we consider a linear combination of their estimated depths, given by
equation (4), where α is the weight parameter, varying between 0 and 1 based
on the depth of the corresponding depth point. We divided the depth map range
(from the sparse point cloud) into quartiles so that the first quartile represents
the closer depth data points and the fourth quartile the farther depth data points
relative to the camera position. For the first quartile the depth data points are
extracted from the R1 +R4 +R5 depth map, being z = zR1+R4+R5

. The same
applies for the fourth quartile, being z = zR0. For the second and third quartile
we use a linear weight of both depth maps.

z =


zR1+R4+R5 , if ẑ ∈ Q1

(1− α)zR0 + αzR1+R4+R5 , if ẑ ∈ Q2 ∪Q3

zR0
, if ẑ ∈ Q4

(4)
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where ẑ =
zR0

+zR1+R4+R5

2 .

Detection and Correction of Highly Blurred Areas. Some plenoptic im-
ages might contain sections where none of the lens types can focus. In these cases
it is more favorable to assume z = zR1+R4+R5

rather than use highly blurred
lenses for the final depth map. The texture in these far depth sections is blurred
and it is hard to find salient points since they highly depend on texture detail.
Then, the algorithm might detect salient points and correspondences for a min-
imum solution of the RANSAC-like algorithm (when only two correspondences
are detected), which will result in a less accurate depth map. For these cases
the estimated depth points are not consistent and assume a noisy representation
(overfitting). For a non-minimum solution (when more then two correspondences
are used) the depth map is not dense enough for a sufficiently dense reconstruc-
tion. To solve this problem we generate a minimum solution depth map and
we cross it with the non-minimum (robust) solution depth map of the same
plenoptic image. For the lack of space we omit the details.

2.3 Coarse Depth Map

For the reconstruction of the dense depth map we use a coarse depth map,
having one depth per micro-lens. This process is related with the reprojection
of the sparse map points from the source virtual object onto the image plane
through the center of the micro-lenses. First, we have to identify which features
of the sparse point set are projected through each micro-lens. Even though we do
not have the focal length value for each micro-lens, since the distance between
image plane and micro-lens array is known, we project every feature within
the cone centered on every micro-lens and with radius Rlens (figure 5). This is
of key importance since even without calibration of the lenses we are able to
reconstruct depth. The lens depth is estimated by averaging the depth values of
the point set projected into its Rlens radius. Notice that a point can be projected
through several micro-lens depending on its virtual depth. For each set of points

x

y

Image plane

Micro-lens plane

Virtual image

Rlen
s

Fig. 5: Rlens projection cone for one micro-lens and features that fall inside it.
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Table 2: Computational time (in seconds) and mean absolute disparity error
(in pixels) for both our and Fleischmann and Koch [3] algorithm and root mean
square error for our dense depth map.

Computation time MAE RMSE

Datastes
Our sparse

est.
Our coarse

est.
Our dense

est.
Our
total

F&K
total

Our coarse
est.

F&K
est.

Our dense
est.

Bunny 368s 710s 77s 1155s 3874s 0.497 0.195 3.4%
Bolt 450s 855s 80s 1385s 4473s 0.271 0.174 2.9%
4plane 556s 1109s 85s 1750s 4300s 0.230 0.178 2.5%

projected into each micro-lens a fine filter is applied. This filter allows a more
robust estimation for the depth of each micro-lens, being this depth the averaging
of every point’s color intensity that follows equation (5) for a local median p̂ and
standard deviation σp of P (n) (local point set with n points) where Ωp is the
point set domain. We then obtain a single depth per micro-lens given by Z(ai).

Pfiltered = {P (n) : P (n) ∈ [p̂− σp, p̂+ σp], n ∈ Ωp] . (5)

To densely fill every micro-lens without depth we propagate its neighbor
lens’s depth value. The propagated depth is an averaging of the neighbor lenses
depth (assuming a robust region growing with three or more neighbor lenses).

2.4 Dense Depth Map

As for the rendering of the dense depth map we use, as basis information, the
coarse depth map. This algorithm is based on the synthesization method of
Perwass and Wietzke [11] with a modification at the micro-lens selection for the
depth estimation. Instead of selecting the micro-lenses inside the Rmax radius
based on their effective resolution ratio (since we avoid to use the focal length of
micro lenses), we use all the lenses inside Rmax. The final depth (or intensity)
value is the weighted mean of the depth (or intensity) of the selected micro-
lenses, where the weight accounts for the vignetting effect on lenses (notice that,
as stated by [5,10], the micro-lenses have a considerable vignetting effect).

3 Results

We compare our results to the method of Fleischmann and Koch [3]. We measure
the computational time and the mean absolute error (MAE) for both methods,
as shown on table 2. These measurements where performed on synthetic datasets
and on real world datasets provided by Raytrix. Our algorithm achieves compa-
rable results to those of [3] with less computation time for the micro-lens coarse
map, and additionally estimating a dense depth map. Since Fleischmann and
Koch do not produce a dense depth map, we present the root mean square error
(RMSE) between our dense depth map and the depth ground truth of the syn-
thetic datasets (table 2). The RMSE for the synthetic datasets is considerably
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: Excerpts of ours, ground truth and Raytrix’s results. (a-e) our coarse
depth estimation, (b-f) Fleischmann and Koch’s disparity estimation, (c-g) our
dense depth estimation, (d) depth ground truth, (h) Raytrix’s results.

low but, since Raytrix do not provide the depth ground truth, we present a vi-
sual comparison with Raytrix’s results, shown in figure 6. Since these images are
not immune to aliasing effects due to resize, we present excerpts of the scenes.
Detailed full resolution images can be found on the supplementary material. The
color pallet we used on our dense depth map is different from Raytrix’s. Since
we don’t know the color pallet used by Raytrix, we applied the OpenCV ”col-
ormap jet” pallet to the scene’s depth. Results on several additional datasets are
also present in supplementary material.

4 Conclusion

In this paper we propose a light weight algorithm to estimate the depth of a
plenoptic image based on detected features for a multi-focus plenoptic camera.
Our method uses a coarse map with one depth value per micro-lens to estimate
the dense depth map of the captured scene. We test our method on synthetic and
real world datasets, comparing them to the method of Fleischmann and Koch
[3]. This is an accuracy vs. computation time comparison where our algorithm
achieves comparable results in substantial less time. Although our algorithm
presents higher error measurements but relatively close to [3], the achieved error
values are lower than half of a pixel size. The computation time of our algorithm
can still be improved with GPU parallel processing.
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