
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AI-HAMILTON: LEVERAGING IN-CONTEXT LEARNING
FOR MODELING HAMILTONIAN SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel approach to learning Hamiltonian systems from observational data, combin-
ing the strengths of in-context learning (ICL) and hypernetworks with the rigorous guarantees of
structure-preserving numerical methods. ICL, a unique and powerful capability exhibited by large
language models (LLMs), enables pre-trained LLMs to adapt their predictions based on auxiliary
information known as “context”. While a few studies have explored applying ICL to neural oper-
ator learning, most of these approaches treat operators as “black-boxes,” offering no guarantees of
physical consistency in their predictions. To address this limitation, we propose ICL-based neural
operators explicitly designed to preserve the symplectic structure inherent to Hamiltonian dynamical
systems. Through extensive experiments on a range of Hamiltonian systems, we demonstrate the
proposed model’s ability to maintain structural fidelity while achieving improved prediction accu-
racy compared to black-box ICL-based operators.

1 INTRODUCTION

Complex physical processes are often described by systems of differential equations whose modeling plays a crucial
role in science and engineering applications. Enabled by the success of deep learning, data-driven approaches to such
modeling have seen significant advancements, engendering the relatively new discipline of scientific machine learning
(SciML) (Baker et al., 2019; Karniadakis et al., 2021). In cases where large datasets are available and governing equa-
tions are unknown, neural operators (NOs) (Azizzadenesheli et al., 2024; Lu et al., 2021; Li et al., 2021) have emerged
as a promising method for inferring underlying operators in complex physics problems, leading to the development of
various NO architectures (Tran et al., 2023; Li et al., 2023; Hao et al., 2023). However, most NOs function as sophis-
ticated regression models that struggle to adapt to new “contexts,” e.g., initial conditions far from those encountered
during training.

Conversely, large language models (LLMs) (Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023), particularly
those based on Transformer architectures (Vaswani et al., 2017), demonstrate a unique capability known as in-context
learning (ICL) (Brown et al., 2020; Xie et al., 2022; Von Oswald et al., 2023). These models can perform better
on specific tasks when prompted online with input/output examples of that task, effectively learning and adjusting
their behavior without requiring explicit parameter updates (Von Oswald et al., 2023). Inspired by this capability,
the design of neural operators has been informed with LLM-like architectures (Yang et al., 2023; Liu et al., 2024;
Serrano et al., 2024; Kang et al.), and these models have shown improved performance, particularly in parametric
and temporal extrapolation settings. However, despite these advances, existing NOs, including those leveraging ICL,
primarily function as “black-boxes”. In particular, there are no mechanisms in place to ensure physical consistency in
their predictions, meaning that critical conservation laws and involution constraints necessary for dynamical stability
are often ignored at prediction time.

Thankfully, considerable progress has been made on another front of SciML in developing models that guarantee
physically consistent outputs (Greydanus et al., 2019). Unlike physics-informed approaches (Raissi et al., 2019),
which impose physical consistency weakly via soft constraints, these methods enforce physical laws exactly through
the design of neural network architectures that reflect geometric and topological structure (Greydanus et al., 2019;
Cranmer et al., 2020; Toth et al., 2019; Lee et al., 2021) or leverage invariance/equivariance principles (Battaglia et al.,
2018; Satorras et al., 2021). Of particular relevance are Hamiltonian neural networks (HNNs) (Greydanus et al., 2019)
and their variants (Finzi et al., 2020; Chen et al., 2021), which incorporate concepts like symplecticity into model
design to strictly satisfy consequences of Hamilton’s least-action principle, including the law of energy conservation.

In this study, we aim to improve the utility of Hamiltonian dynamics learning through the development of a model that
combines ICL capabilities with the ability to predict trajectories of energy-conserving systems. To this end, we propose
an encoder-decoder-type Transformer model to approximate the system state, where the encoder processes example

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

trajectories to extract context which the decoder can use to adjust its predictions for new queries. However, instead
of simply allowing the Transformer’s output to serve as the predicted state trajectory over time (which is unlikely
conserve energy), we use a hypernetwork (Ha et al., 2017) trained on the decoder’s hidden representations to perform
in-context modulation of the weights and biases of an auxiliary HNN. Since the decoder acts as a “black-box” neural
operator, we speculate that utilizing its internal operational representation, encoded in its hidden neurons, enables
the computation of effective and generalizable online-updates to an HNN based on context contained in state mini-
trajectories. Moreover, this HNN can be trained alongside both the Transformer and hypernetwork using a database
of state trajectories at different initial conditions, corresponding to Hamiltonians at parameter instances, to provide
a prediction engine for parameterized Hamiltonian system states. In contrast to the predictions generated directly
by the Transformer, this procedure has a distinct advantage: the trajectories produced by simulating the symplectic
gradient flow of the learned HNN obey the laws of energy conservation and symplecticity, as required by Hamilton’s
least-action principle.

Our contributions include:

• development of an ICL-based meta-learning framework for learning a forecasting operator that is guided by
Hamilton’s least-action principle,

• design of a hypernetwork inferring a Hamiltonian system without requiring a priori knowledge on system
parameters, and

• comprehensive experimentation on nine benchmark Hamiltonian systems that exhibit diverse characteristics
(e.g., low-dimensional—1D/2D, high-dimensional—3D/5D/7D, chaotic vs. non-chaotic).

2 PRELIMINARIES

To provide context for our approach, we begin by reviewing two key technical preliminaries regarding neural operators
and principles of structure preservation in Hamiltonian systems.

2.1 LEARNING OPERATORS

Neural operators (NOs) are a class of data-driven surrogate models that learn mappings between functions rather than
input/output data, making them well-suited for solving problems governed by partial differential equations (PDEs).
NOs take in discrete representations of continuous functions as input and output queryable network models, enabling
them to serve as effective surrogates for complex physical systems. In this study, we focus on NOs as a forecasting
mechanism, mapping a function representing past state evolution to a function representing future state evolution.
In the following, we formally introduce NOs, outline the ICL paradigm for operator learning, and then describe our
specific approach to learning forecasting operators.

Neural operators Consider two function spaces X ,Y and a nonlinear operator A : X → Y mapping between them.
Neural operators represent a family of machine learning methods developed for constructing a surrogate Â ≈ A lying
in a trial space of neural networks. Under the assumption of access to input/output pairs (xi, yi)

n

i=1 such that xi ∈ X
and yi = A(xi) ∈ Y , a neural operator can be trained in the standard way, i.e., through solving the optimization
problem:

min
Θ

n∑
i=1

L
(
Â(xi), yi

)
,

where L denotes a certain discrepancy measure and Θ denotes the parameters of the neural operator Â. In practice,
the functional input data xi are first discretized; for example, if x(t) and y(t) are time-dependent scalar functions, the
grid representation xxx = [x(t1), . . . , x(tm)]T ∈ Rm serves as input along with an evaluation point (or set of points) tp
in the domain of x, and the neural operator learns a mapping xxx 7→ Â(xxx) that predicts Â(xxx)(tp) ≈ y(tp) (Boullé &
Townsend, 2023; Patel et al., 2021; Lu et al., 2021; Li et al., 2021). It will be convenient to assume that the locations in
time where Â(xxx) is queried are identical to the locations ttt = [t1, . . . , tm] where x(t) is discretized, so that (ttt,xxx) 7→ yyy
(under A) produces a vector yyy of operator evaluations, and therefore samples (ttt,xxx,yyy) form the training data for the
NO learning problem.

In-context operator learning Among the general class of neural operators just described, there is a particular type
of neural operator that mimics the ICL property of LLMs (Yang et al., 2023; Liu et al., 2024; Serrano et al., 2024;
Kang et al.). These models are designed as large-scale Transformers and trained on many diverse input/output pairs.
That is, they are designed to optimize the model’s output by taking in a set of example input/output pairs generated
from a system of interest, analogous to the “prompt” in LLMs. For example, consider a learning problem where the
training data for the unknown operator to determine is separated into j groups; we assume that there are nj number of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

input/output pairs in the j-th training dataset Dj =
{
(xxxi

j , yyy
i
j)
}nj

i=1
. This arises, for example, when the operator to learn

is parameterized and data is collected at various parameter instances indexed by j. Then, the input to the Transformer
model can contain additional context which we call the prompt,

ZZZj =

[
xxx1
j . . . xxx

nj−1
j

yyy1j . . . yyy
nj−1
j

∣∣∣∣∣︸ ︷︷ ︸
prompt

xxx
nj

j

000

]
. (1)

Given this input containing nj − 1 examples comprising the prompt and a query input xxxnj

j , the Transformer model is
expected to produce a prediction ỹyy

nj

j = Â(tttj ,ZZZj) ≈ yyy
nj

j which approximates the desired target.

Learning a forecasting operator The specific goal targeted in this study involves the prediction of future dynamical
system states given a set of measurements on past system states. As an example, consider any homogeneous ODE
du
dt = f(u) and an associated initial condition u(0) = u0 ∈ Rm. The forecasting operator (a.k.a., forecaster) serves as
a surrogate for the flow map φt(u0) = u(t) which integrates this ODE system starting at u0, i.e., the forecaster learns
to predict future states of the system u(t)|T<t<2T given past measurements u(t)|0<t<T of the same system (from
trajectories with varied initial conditions). Note that this forecasting operator is not instantaneous like the continuous
flow map, but is informed with additional temporal context which may come from the same trajectory (passing through
u0) or from a combination of different trajectories.

2.2 LEARNING STRUCTURE-PRESERVING AND CONSERVATION-AWARE DYNAMICS

Structure-aware approaches to neural dynamics modeling aim to respect the physical laws governing a system, either
by embedding known structure or by discovering conserved quantities from data. To this end, this study considers
largely two distinct approaches: a HNN-style method that enforces the Hamiltonian structure preservation, and a
Noether-network-style method that enforces invariance of conserved quantities. Structure preserving methods incor-
porate known geometric or topological information about the system at hand, such as symplecticity in the case of
Hamiltonian systems. These models ensure that the learned dynamics are consistent with the underlying physics, pro-
viding both improved prediction stability and out-of-distribution generalizability. This study focuses specifically on
energy-conserving systems, utilizing Hamiltonian neural networks for structure preservation. Noether networks (Alet
et al., 2021), on the other hand, aim to discover conserved quantities directly from trajectories by enforcing time
invariance, without requiring prior knowledge of the underlying physics.

Hamiltonian systems and HNNs The state of a (canonical) Hamiltonian system is typically described by a set of
generalized coordinates and their associated momenta, denoted as qqq = [q1, ..., qn] and ppp = [p1, ..., pn], respectively.
The integer n represents the dimension of the system, which corresponds to 2n independent functions (i.e., degrees
of freedom) required to uniquely specify the configuration of the system. The dynamics of a Hamiltonian system
take place in the phase space, which is the product space of qqq and ppp, yielding antisymmetric equations of motion.
Particularly, these dynamics are described by the Hamiltonian function H(qqq,ppp), representing the total energy, i.e., the
sum of the kinetic and potential energies. This leads to the expressions

dqqq

dt
=

∂H
∂ppp

,
dppp

dt
= −∂H

∂qqq
, (2)

describing the equations of motion through the symplectic gradient of the Hamiltonian, i.e., [q̇qq, ṗpp]⊺ = sgradH(qqq,ppp)
(Marsden & Ratiu, 1998). Following this symplectic gradient described in Eq. (2), the Hamiltonian system is guar-
anteed to conserve the total energy along solution trajectories, as confirmed by the vanishing of the dissipation rate
dH
dt =

(
∂H
∂qqq

)T
dqqq
dt +

(
∂H
∂ppp

)T
dppp
dt =

(
∂H
∂qqq

)T
∂H
∂ppp −

(
∂H
∂ppp

)T
∂H
∂qqq = 0.

HNNs approximate Hamiltonian systems by parameterizing the Hamiltonian function as a neural network HΘ(qqq,ppp)
with a set of learnable model parameters Θ. HNNs are trained by minimizing a loss consistent with the equations of
motion,

Lsymp =

∥∥∥∥dqqqdt − ∂HΘ

∂ppp

∥∥∥∥2
2

+

∥∥∥∥dpppdt +
∂HΘ

∂qqq

∥∥∥∥2
2

, (3)

which we denote by the “symplecticity loss”.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

||ℋΘ() − ℋΘ ||2
2

Energy Fluctuation Loss

Symplectic Gradient Loss

H
am

ilt
on

ia
n

In
du

ce
d

Lo
ss

Construct Hamiltonian using latent representation

ℎ𝑑𝑒𝑐,1
1 …

… … … …

Cross-attention Blocks

ℎ𝑒𝑛𝑐,1
𝐿𝑒𝑛𝑐 …

Decoding
Extractor

𝒇𝑒

Self-attention Blocks

La
te

nt
 E

m
be

dd
in

g
𝒛

𝒇ℎ𝑦𝑝𝑒𝑟 (z)

Modulated HNN ℋΘ

Query

Prompt

Predicted States: q̃/p̃

MSE(-)
Fitting Loss

𝑑𝒒

𝑑𝑡
−

𝜕ℋΘ

𝜕𝒑
2

2

+
𝑑𝒑

𝑑𝑡
+

𝜕ℋΘ

𝜕𝒒
2

2

Hypernet

ℎ𝑒𝑛𝑐,2
𝐿𝑒𝑛𝑐 ℎ𝑒𝑛𝑐,3

𝐿𝑒𝑛𝑐 ℎ𝑒𝑛𝑐,𝑛
𝐿𝑒𝑛𝑐

ℎ𝑑𝑒𝑐,2
1 ℎ𝑑𝑒𝑐,3

1 ℎ𝑑𝑒𝑐,𝑚
1

ℎ𝑑𝑒𝑐,1
2 ℎ𝑑𝑒𝑐,2

2 ℎ𝑑𝑒𝑐,3
2 ℎ𝑑𝑒𝑐,𝑚

2

ℎ𝑑𝑒𝑐,1
𝐿𝑑𝑒𝑐 ℎ𝑑𝑒𝑐,2

𝐿𝑑𝑒𝑐 ℎ𝑑𝑒𝑐,3
𝐿𝑑𝑒𝑐 ℎ𝑑𝑒𝑐,𝑚

𝐿𝑑𝑒𝑐

…

…

Figure 1: An overview of the proposed architecture. An encoder-decoder transformer processes a prompt, extracts
context, and predicts future states given a novel query. A hypernetwork takes the decoder’s hidden representations
and infers a subset of model parameters inside an HNN. This HNN is then used to align the decoded predictions with
Hamilton’s least-action principle.

Noether networks Noether networks are neural models that discover conserved quantities in dynamical systems
from data. Inspired by Noether’s theorem, they learn a function representing a candidate conserved quantity and
enforce its time-invariance along predicted trajectories. Unlike Hamiltonian or Lagrangian approaches, they do not
require prior knowledge of the system’s physics. A separate network gϕ is trained to represent the conserved quantity,
typically by minimizing the Noether loss LNoether =

∑T
t=1 ∥gϕ(x̃t)− gϕ(x̃t−1)∥. At test time, gϕ and the loss are

evaluated and minimized on predicted trajectories to enforce conservation.

3 METHODOLOGY

We now introduce a novel NO framework, AI-Hamilton, which integrates ICL-based operator learning with structure-
preserving modeling techniques to ensure that future state predictions remain consistent with the underlying Hamil-
tonian physics. AI-Hamilton is built on an encoder-decoder Transformer model, fffTF, where the encoder processes
example trajectories D (the “prompt”) and extracts context, while the decoder, conditioned on this extracted context
and the target temporal locations, predicts future states given history information about a new trajectory. AI-Hamilton
further employs a hyper-network to handle structure preservation, which takes hidden representations of the decoder
as input and outputs the model parameters of an HNN. Finally, AI-Hamilton uses this inferred HNN to align the de-
coder’s predictions with Hamilton’s least-action principle, hence guaranteeing energy conservation and symplecticity
in the learned dynamics. Figure 1 summarizes the computational flow of the proposed AI-Hamilton architecture.

3.1 INPUT-TO-OUTPUT PIPELINE

We begin with a detailed description of the overall AI-Hamilton pipeline. The input to AI-Hamilton adopts the standard
format described in Eq. (1), with slight modifications. For notational simplicity, we define uuui = [qqq(ti), ppp(ti)] ∈ R2n,
where qqq(ti) = [q(ti), . . . , qn(ti)] and ppp(ti) = [p1(ti), . . . , pn(ti)] denote the state variables measured at time ti.

Similarly to other NOs, the Transformer operator fffTF(ttt,ZZZ) = fffTF
d (ttt, fffTF

e (ZZZ)) at the first step of AI-Hamilton is
comprised of an encoder fffTF

e , which takes a prompt ZZZ as input, and a decoder fffTF
d which processes the encoded

input and a vector of temporal locations ttt at which to evaluate the NO. To facilitate the causal nature of dynamical
trajectories, the promptZZZ is augmented with two additional pieces of information besides the state variableuuu: temporal
indices and an example index. In particular, for the i-th example,

xxxi =

ti1 . . . tiT
uuui
1 . . . uuui

T
eeei . . . eeei

 , yyyi =

tiT+1 . . . ti2T
uuui
T+1 . . . uuui

2T
−eeei . . . −eeei

 ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where eeei is a canonical one-hot vector (of dimension maxi{ni}) with one in the i-th position and zeros otherwise.
Following Yang et al. (2023), this one-hot vector is included to provide causal information about the temporal location
of the state. With this definition of an example pair, we now define the j-th input identically to (1). Taking into account
the goal of predicting the dynamics T steps ahead, the Transformer simply processes this input and the time indices
tttnj = [tT+1, . . . , t2T]. This yields the desired state prediction through ỹyy

nj

j = fffTF(tttnj ,ZZZj).

Referring to Figure 1, the next step of AI-Hamilton involves the decoding extractor fffe, which concentrates the dy-
namics information contained in the decoder’s hidden representations into a latent vector zzz. Formally, this step can be
considered as an operation zzz = fffe ◦ fffTF(ttt,ZZZ) directly on the Transformer NO (see section 3.3 for a precise descrip-
tion). The resulting latent vector zzz, representing a distillation of the decoder’s world model, then serves as input to the
hypernetwork fff hyper which performs modulation. In particular, fff hyper is designed to modulate the HNN HΘ, which
forms the potential function for AI-Hamilton’s dynamics. Said differently, the output Θindv = fff hyper(zzz) provides an
online update to the HNN’s base parameters Θbase (c.f. section 3.3), ensuring that the context contained in the Trans-
former input ZZZ has a downstream effect on the learned Hamiltonian function HΘ. Finally, the symplectic gradient of
the HNN HΘ is computed at the state associated to the query in ZZZ, and structure-preserving dynamics are generated
through the integral curves of this field. The remainder of this section provides further detail regarding each step of
this process.

3.2 TRANSFORMERS: BASE MODELS FOR ICL

As in Yang et al. (2023), we choose a standard encoder-decoder transformer model consisting of softmax-based multi-
head self-attention blocks (MHSAs) and cross-attention blocks (MHCAs) (Vaswani et al., 2017). The encoder pro-
cesses a prompt by employing a series of MHSA layers and the decoder processes a target query (i.e., temporal history
information from a novel trajectory) via a series of MHCA layers. We denote the hidden representations of the ℓ-th
encoder and decoder layer by hhhℓ

i = (hhhℓ
i,1, . . . ,hhh

ℓ
i,Ti

) ∈ Rd×Ti , ℓ = 1, . . . , Li, i = {enc, dec}, where Ti denotes the
number of tokens, and Li denotes the number of layers.

Multi-head attention We employ the softmax-based standard attention mechanism. Given query, key, and value
matrices, QQQ ∈ RTq×d, KKK ∈ RTk×d, and VVV ∈ RTk×d,1 the attention mechanism is defined as Att(QQQ,KKK,VVV) =

softmax
(
QQQKKK⊤
√
dh

)
VVV , where the the softmax function is applied row-wise. The multi-head attention mechanism oper-

ating on h heads can be defined as MHA(QQQ,KKK,VVV) = Concat(OOO1, . . . ,OOOh)WWW
O, where WWWO ∈ Rd×d is a learnable

matrix and OOOi = Att(QQQWWWQ
i ,KKKWWWK

i ,VVVWWWV
i) is defined in terms of learnable matrices WWWQ

i ,WWW
K
i ,WWWV

i ∈ Rd×d/h.
Setting QQQ = KKK = VVV = XXX yields the self-attention mechanism (which has the same inputs for queries, keys, and
values) while setting QQQ =XXX and KKK = VVV = YYY yields the cross-attention mechanism.

Transformer layers Each layer in the encoder and decoder follows the same structural pattern: multi-head attention
(MHA), followed by residual connection, feed-forward network propagation (FF), and layer normalization (LN). The
ℓ-th Transformer layer can be written as

h̃hh
ℓ−1

= LN(hhhℓ−1 + MHA(hhhℓ−1, kkk,vvv)),

hhhℓ = LN(h̃hh
ℓ−1

+ FF(h̃hh
ℓ−1

)),

where the feed-forward network is applied in a token-wise fashion. In the encoder, we set the input equal to the
prompt, and kkk = vvv = hhhℓ−1

enc for all layers (i.e., self-attention). Conversely, for the decoder, we set the decoder tokens
hhhdec as queries, and keys/values are the encoder outputs hhhenc used for cross-attention.

3.3 HYPERNETWORK: FROM DECODER TO HNNS

In this subsection, we explain how to obtain the latent code zzz from the decoder and infer the subset ΘΘΘindv of model
parametersΘΘΘHNN =ΘΘΘbase ∪ΘΘΘindv defining the Hamiltonian function. The hypernetwork fff hyper is defined as an L-layer
perceptron zzz 7→ΘΘΘindv with tanh activation function. The following provides details about the hypernetwork, including
the production of its input, its processing mechanism, and its resulting use in conjunction with HNNs.

Input: Decoder representation extractor As mentioned, AI-Hamilton employs an extractor fff e that infers a latent
code, denoted as zzz := fff e(hhhLenc

enc , [hhh1
dec, . . . ,hhh

L
dec]). The extractor processes the hidden representations of internal tokens

from each decoder layer, conditioned on the encoder context hhhLenc
enc ∈ Rd×Tenc . To compress decoder information while

preserving cross-layer dynamics, we parameterize fffe using a convolutional-layer-based architecture.

1For simplicity of exposition, we assume that the query/key and value dimensions are the same, i.e.,, d = dk = dv .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The latent code zzz = [zzzenc, zzzdec] involves two quantities extracted via fffe in separate stages. The first stage applies a
mean aggregator to the encoder’s final token representations. That is, we take the Euclidean average over the token
embeddings at the final encoding layer and produce zzzenc = mean(hhhLenc

enc,1, . . . ,hhh
Lenc
enc,Tenc

), which is expected to store
concise and salient information in the input prompt. Conversely, the second stage processes the decoder’s internal
hidden state, which is represented by all the tokens at every layer of the decoder, hhhℓ

dec = (hhhℓ
dec,1, . . . ,hhh

ℓ
dec,Tdec

) ∈
Rd×Tdec , ℓ = 1, . . . , Ldec. Since the decoder contains a large number of intermediate tokens (i.e., the sequence length
× the number of decoder layers), employing a naı̈ve architecture such as an MLP is expected to generate significant
computational burden. To avoid this, we design a convolutional layer-based module to efficiently compress the tokens
and extract the low-dimensional vector zzzdec. In particular, we apply a 1-d convolutional layer to aggregate the infor-
mation across tokens at the same layer, treating each token element as a separate channel so that efficient compression
can be achieved via multi-channel convolution. Following this step, 1-d max pooling is applied at the token dimension
to halve the number of tokens, followed by 1-d adaptive max pooling to further reduce the number of tokens to 1.
Through this process, we extract a single vector, zzzℓdec ∈ Rd, ℓ = 1, . . . , Ldec to represent each decoder layer. By
concatenating zzzdec = (zzz1dec, . . . , zzz

Ldec
dec) with zzzenc, the final hidden representation zzz = [zzzenc, zzzdec] is produced and fed to

the hypernetwork.

Output: Modulation vectors for HNNs As mentioned, the output of the hypernetwork serves to update the parame-
ters of an HNN. However, inferring the entire setΘΘΘHNN of model parameters, which is typically very high-dimensional,
is computationally challenging. To mitigate this issue, we introduce a “modulation” technique for updating HNNs on-
line, which allows the hypernetwork to infer only a low-dimensional latent vector. Considering Hamiltonian dynamics
which depend on a number of a parameters µµµ (such as mass, stiffness, etc.), the key idea of this modulation is to divide
the HNN parameters into two parts: a base set of model parameters ΘΘΘbase which are shared across all parameterized
Hamiltonians H(j)

Θ ≈ H(·,µµµ(j)), where µµµ(j) denotes the j-th sampled vector of system parameters, and an individual
set of model parameters ΘΘΘ(j)

indv which are specific to each parameterized Hamiltonian.

In this study, we model HNNs as multilayer perceptrons (MLPs) and leverage “shift modulation” (Sitzmann et al.,
2020), a parameterization technique that adds a shift to the bias in each layer of an MLP. That is, the ℓ-th layer of the
modulated MLP can be defined as

hhh 7→ σ
(
WWW (ℓ)hhh+ bbb(ℓ) + sss(ℓ,j)

)
,

whereΘΘΘbase = {(WWW (ℓ), bbb(ℓ))} are the shared base parameters whileΘΘΘ(j)
indv = {sss(ℓ,j)} are individual parameters specific

to the j-th Hamiltonian system. During training, the base model parameters are updated via standard gradient descent,
while the individual parameters are inferred from the hypernetwork, i.e.,ΘΘΘ(j)

indv = fff hyper(zzzj), where zzzj is the latent vec-
tor associated to the Transformer inputZZZj . Given that the decoder predicts future states while the hypernetwork infers
individual parameters for the HNN, we use the HNN HΘ to align the decoder’s predictions with a valid symplectic
flow.

To this end, once the Transformer NO has been queried, the predicted states ũuunj

j in the output ỹyynj

j are fed as input

to the HNN H(j)
Θ , which is then used to compute symplectic gradients at these states. Integrating these symplectic

gradients in time (with a conservative time integration scheme) then produces a symplectic flow in accordance with
Hamilton’s least-action principle. Here, we introduce the sympleciticty loss (defined in Eq. (3)) to guide the decoder’s
predictions in alignment with the trajectories computed using the symplectic gradients.

3.4 DECODER OUTPUT FORMATTING: DISCRETIZATION-BASED OUTPUT REPRESENTATION

In the recent literature on time-series foundation models, an effective strategy has been to discretize continuous target
values through quantization and reformulate forecasting as a classification problem rather than direct regression (Stew-
art et al., 2023). This approach, as adopted for example in Chronos (Ansari et al., 2024), has been shown to improve
predictive capability and stability of forecasting. Motivated by this, we also adopt this strategy in our work.

Among the output of the base Transformer model, ỹyynj

j = fffTF(tttnj ,ZZZj), the target variables of the predicted states ũuunj

j

are discretized by using a linear bucket strategy: with a generic variable v, given the global min–max range [vmin, vmax]
across train/val/test sets, we partition it into K uniform bins Ik = [vmin + (k− 1)∆, vmin + k∆), ∆ = vmax−vmin

K .
Each target v is mapped to its bin index c, and we design the base model to produce logits, instead of real numbers,
and train the model with cross-entropy loss on the predicted logits, w ∈ RK . At inference, we apply soft decoding,
which recovers the predicted values, by computing ŷ =

∑K
k=1 pkµk, pk = softmax(w)k, where µk is the midpoint

of bin Ik. All together, the base Transformer model first predict logits, w̃wwnj

j , and states ũuunj

j via soft-decoding.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.5 TRAINING ALGORITHM

We now describe the training algorithm for AI-Hamilton, which comprises three main components: an encoder-
decoder transformer, a dynamics extractor, a hypernetwork, and an HNN. All components are trained in tandem using
standard stochastic gradient descent methods. However, because the HNN depends on the decoder’s predictions as
input, jointly training all components from the beginning often leads to poor performance—early in training, the
decoder produces inaccurate future state predictions, which misguide the HNN. To address this issue, we adopt a
two-phase training strategy.

The first phase trains only the encoder-decoder transformer by minimizing the discrepancy between the decoder’s
prediction and the ground truth; since our approach considers the discretized decoder output representation, we utilize
cross-entropy to minimize the discrepancy, LCE =

∑
j CE(wwwnj

j , w̃ww
nj

j). Along with this loss, to ensure the predicted
values remain numerically accurate after de-quantization (soft-decoding), we complete the CE loss with the mean-
squared error (MSE) Lmse =

∑
j ∥yyy

nj

j − fffTF(ZZZj , ttt
nj)∥22.

In the second phase, we introduce the hypernetwork and the HNN, minimizing the symplecticity loss Lsymp =∑
i,j ∥q̇qq

nj

j,i − ∂pppHΘΘΘHNN(q̃qq
nj

j,i, p̃pp
nj

j,i)∥22 + ∥ṗppnj

j,i + ∂qqqHΘΘΘHNN(q̃qq
nj

j,i, p̃pp
nj

j,i)∥22 along with the prediction losses, where q̃qq
nj

j =

[q̃qq
nj

j,T+1, . . . , q̃qq
nj

j,2T] and p̃pp
nj

j = [p̃pp
nj

j,T+1, . . . , p̃pp
nj

j,2T] denote the predicted trajectory for the j-th system. We use a linear
combination as the total training loss: L = λmseLmse + λCELCE + λsympLsymp with hyper-parameters λmse, λCE, λsymp.

3.6 AI-HAMILTON VARIANT

Taking inspiration from Noether networks, we propose a variant of AI-Hamilton that uses the same architecture and
training algorithm but is trained with a conservation-law-enforcing loss. In this variant, HΘ is treated as an arbitrary
quantity that should remain invariant over time. This property is enforced by minimizing

∑
i,j ∥HΘ(q̃qq

nj , p̃ppnj) −
HΘ(q̃qq

nj

j,i, p̃pp
nj

j,i)∥22, where HΘ(q̃qq
nj , p̃ppnj) = 1

nj

∑
i HΘ(q̃qq

nj

j,i, p̃pp
nj

j,i). This loss encourages the model to learn an energy-
like quantity that remains conserved over the simulation trajectory. We denote this variant by AI-Hamilton (Energy).

4 EXPERIMENTS

We now present the results of our experimental evaluation, which consists of two main parts. First, we apply the
proposed models to a diverse set of Hamiltonian systems to assess their accuracy and generalization. Second, we
evaluate the scalability of the proposed methods on high-dimensional systems. We refer the reader to Appendix ?? for
detailed experimental settings and to Appendix ?? for additional ablation studies on the CNN-based compressor and
shift modulation.

Model architecture The transformer has the encoder and decoder; both of them consists of three MHA blocks with
four attention heads per block and three FF blocks with two linear layers: one expanding hidden dimension to 4d,
followed by a GELU activation, and another one shrinking dimension back to d. Both the hypernetwork and the HNN
have three hidden layers with 100 neurons in each layer, followed by ReLU and Tanh, respectively.

Data generation For all experiments, we consider parameterized Hamiltonian systems and, for each Hamiltonian
system, we uniformly sample system parameters from the specified ranges in (Table ?? in the Appendix). We sample
trajectories by solving initial value problems for varying 100 initial conditions per each sampled parameter.

In previous methods testing ICL-based NOs (e.g., (Yang et al., 2023)), both training and test samples are drawn
from within the same bounded reion of the parameter space. In this wor, to make the evaluation more challenging,
we consider both semi-OOD and OOD settings. In the semi-OOD case, we partition the parameter space into a
checkerboard pattern, where adjacent blocks alternate in color (white/black). Training and validation samples are
drawn from one set of blocks (white), while test samples are collected from the interleaved blocks (black). For the
OOD case, test samples are drawn from regions lying entirely outside the original bounding box used for training.

For all the systems, we sample 200 systems for training, 40 systems for validation, and 40 systems for semi-OOD or
OOD testing. We set the maximum number of examples in D for one Hamiltonian system to five; when generating the
data prompt, we randomly choose the number of samples in each prompt from {1, 2, 3, 4, 5} At test time, the number
of examples in each prompt is fixed to 3.

We implement our code with the PYTORCH and TORCHDIFFEQ (Chen, 2018). We leave all other essential details in
the Appendix. For all experiments (unless otherwise specified), we repeat the experiments for 3 varying random seeds.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: The mean-squared error (MSE) over 8 Hamiltonian systems compared between the baselines: MAML, ICON
and the proposed methods: AI-Hamilton (Energy) and AI-Hamilton. Since all ICL models see three examples at test
time, we compare them with the 3-shot MAML counterpart. The best performance for each system is marked bold.

System types
Meta Learning In-Context Learning
MAML-3 shots ICON AI-Hamilton (Energy) AI-Hamilton

Mass-spring 1.91× 101 ± 7.86× 100 1.31× 10−2 ± 8.49× 10−3 6.28× 10−3 ± 1.03× 10−3 6.27× 10−3 ± 1.61× 10−3

Pendulum 1.31× 101 ± 2.77× 100 1.53× 10−1 ± 2.34× 10−2 2.06× 10−2 ± 8.83× 10−3 1.99× 10−2 ± 1.30× 10−3

Duffing 5.66× 10−1 ± 1.78× 10−1 4.14× 10−3 ± 1.69× 10−3 3.43× 10−3 ± 1.18× 10−3 2.56× 10−3 ± 5.67× 10−4

Hénon-Heiles 3.01× 10−4 ± 1.06× 10−5 5.66× 10−4 ± 1.11× 10−4 4.53× 10−4 ± 7.86× 10−5 5.49× 10−4 ± 8.17× 10−5

Magnetic Mirror 4.42× 10−3 ± 5.24× 10−4 4.56× 10−3 ± 4.10× 10−4 2.05× 10−3 ± 3.16× 10−4 1.92× 10−3 ± 3.82× 10−4

Double Pendulum 3.90× 10−2 ± 3.10× 10−3 3.87× 10−4 ± 7.89× 10−5 3.23× 10−4 ± 3.89× 10−5 3.17× 10−4 ± 3.52× 10−5

SAM (nonsingular) 2.52× 101 ± 2.47× 100 9.62× 10−2 ± 3.56× 10−2 4.66× 10−2 ± 5.68× 10−3 4.59× 10−2 ± 6.80× 10−3

SAM (singular) 1.41× 101 ± 1.01× 100 3.98× 10−2 ± 1.02× 10−2 3.26× 10−2 ± 4.89× 10−3 2.72× 10−2 ± 4.87× 10−3

4.1 EXPERIMENTS ON DIVERSE SETS OF HAMILTONIAN SYSTEMS

We first evaluate the performance of AI-Hamilton across eight diverse Hamiltonian systems spanning classical me-
chanics, astrophysics, and plasma physics — including the mass-spring, pendulum, double pendulum, duffing oscilla-
tor, Hénon–Heiles (HH) (Hénon & Heiles, 1964), magnetic mirror (MM) (Efthymiopoulos et al., 2015), and swinging
Atwood’s machine (SAM) (Tufillaro et al., 1984).

Results The full test results evaluated on semi-OOD on the above listed Hamiltonian systems are presented in
Table 1. As baselines for comparison, we consider an optimization-based meta-learning algorithm, model-agnostic
meta-learning (Finn et al., 2017), combined with HNNs, denoted as MAML, and an ICL-based algorithm, ICON (Yang
et al., 2023). As the ICL-based methods utilize on-average 2.5 examples, we consider 3-shot update in MAML. Table 1
shows that, across the most systems, ICL-based methods outperforms the MAML-based method over some orders-of-
magnitudes. Among the ICL-based methods, the AI-Hamilton methods achieve the lower mean error, outperforming
ICON, and AI-Hamilton produces the smallest error. The method is effective even on challenging dynamics. In SAM
(singular), which exhibit stiff dynamics, AI-Hamilton significantly improves performance, reducing the errors from
3.26×10−2 to 2.72×10−2. This result demonstrates AI-Hamilton’s ability to handle stiff or highly nonlinear systems.
Moreover, AI-Hamilton also demonstrates robustness across all systems. The reduction in standard deviation indicates
that its predictions are not only more accurate but also more stable.

4.2 EXPERIMENTS ON HIGHER-DIMENSIONAL HAMILTONIAN SYSTEMS

We now further investigate whether the effectiveness of AI-Hamilton scales with the dimensionality of the benchmark
problems. To this end, we construct synthetic 3D/5D/7D systems below. For q ∈ Rn, p ∈ Rn, we consider polynomial
Hamiltonians of the form

H(q, p) =
1

2

n∑
i=1

p2i︸ ︷︷ ︸
kinetic

+

n∑
i=1

aiq
2
i︸ ︷︷ ︸

quadratic

+
∑
i<j

Cijq
2
i qj︸ ︷︷ ︸

bilinear couplings

+

n∑
i=1

biq
4
i︸ ︷︷ ︸

quartic

,

where the quadratic terms control baseline stability, quartic terms introduce nonlinear stiffness, and bilinear couplings
mediate cross-coordinate interactions that can induce complex dynamics. We let n ∈ {3, 5, 7}, fix ai = bi = 1, and
sample only the coefficients Cij . By fixing ai and bi, we fix the shape and depth of the potential well, effectively
“locking in” how wide and stiff the well is, independent of the coupling terms. For all n, we uniformly sample 200
sets of system parameters for the training set among the interval [0.5, 1.5], 40 sets of system parameters for the ID set
in the same range. We test the OOD generalization capability of ICL models over a setup: Cij ∈ [0.4, 0.5] with 40
sets of parameters sampled. Across all systems, initial generalized positions qqq and momenta ppp are sampled in [0, 1].

Results Table 2 reports the MSE results for the polynomial Hamiltonian benchmarks, comparing ICON, AI-
Hamilton (Energy) and AI-Hamilton across both ID and OOD test regimes. Across all settings, both AI-Hamilton
variants consistently improve upon ICON, confirming the benefits of introducing the constraints. While he results
show that the overall performance is decreasing as the dimension increases, the AI-Hamilton variants produce the
improved results in most cases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Mean-squared error (MSE) on high-dimensional Hamiltonian systems for ICON, AI-Hamilton (Energy), and
AI-Hamilton. The best performance for each system is shown in bold. Models are trained for 10k epochs on 3D
systems, 20k epochs on 5D systems, and 30k epochs on 7D systems.

System Types ICON AI-Hamilton (Energy) AI-Hamilton

Polynomial-3D ID 1.84× 10−3 ± 1.07× 10−4 9.24× 10−4 ± 4.77× 10−5 1.18× 10−3 ± 2.24× 10−5

OOD 2.89× 10−2 ± 3.59× 10−3 2.27× 10−2 ± 2.18× 10−3 2.73× 10−2 ± 2.93× 10−3

Polynomial-5D ID 1.78× 10−2 ± 6.92× 10−4 1.52× 10−2 ± 1.15× 10−3 1.54× 10−2 ± 9.11× 10−4

OOD 5.08× 100 ± 2.53× 10−1 3.59× 100 ± 1.60× 100 3.30× 100 ± 1.39× 100

Polynomial-7D ID 4.52× 10−1 3.22±×10−2 4.27× 10−1 4.15±×10−2 4.26× 10−1 2.61±×10−2

OOD 5.41× 101 6.67±×100 2.51× 101 5.86±×100 3.01× 101 6.74±×100

Expectedly, generalization under OOD tends to be more challenging than under strong coupling. While the AI-
Hamilton variants outperform ICON in all cases, the OOD samples not only cause the distribution shift challenges,
but also the numerical issues. We conjecture that this arises from the underlying physics: in the sampling regimes,
the interactions lead to trajectories where the magnitudes of the numerical values of q and p (p in particular) become
larger. This in turn challenges the quantization scheme used in our classification-based prediction, as the fixed binning
struggles to faithfully capture the wider range of values, thereby degrading accuracy. This also partially explains why
AI-Hamilton (Energy) performs better than AI-Hamilton in most cases. AI-Hamilton’s symplectic loss relies on the
time derivative of q and p, which are obtained from numerical computation. As the rates of change in these variables
increase, the numerical approximation becomes less accurate, potentially introducing larger errors in the loss.

5 RELATED WORK

Neural operators In recent years, neural operators have emerged as a powerful framework for enabling data-driven
surrogate modeling of (partial/ordinary) differential equations (PDEs/ODEs). A notable early contribution in this area
is DeepONet (Lu et al., 2019; Wang et al., 2021), which consists of dual network components—branch and trunk
networks—that collaboratively approximate the target operator. In contrast, alternative strategies focus on modeling
operator learning via integral kernel approximations, representatively, Fourier neural operators (Li et al., 2021) and
variants (Wen et al., 2022; Tran et al., 2023; Li et al., 2023; Cao et al., 2024). Despite these recent advancements,
most existing NOs are trained to learn a fixed operator corresponding to a specific data distribution and, consequently,
generally lack the flexibility to adapt to new tasks or contexts without retraining.

ICL-based NOs Recent advances have demonstrated the potential of ICL for solving PDEs and learning neural op-
erators. ICON (Yang et al., 2023) first introduced ICL for operator learning, allowing a single transformer to generalize
across ODE problems via prompting and without retraining. with further work showing Further work demonstrated
generalization to unseen PDE families (Yang & Osher, 2024). Zebra (Serrano et al., 2024) uses autoregressive trans-
formers to model PDE dynamics, conditioning on previous trajectories for flexible, prompt-based prediction. Data-
efficient ICL for neural operators has also been explored by (Cole et al., 2024), showing that even linear transformers
can provably solve linear elliptic PDEs using prompt examples.

Hamiltonian dynamics learning HNNs (Greydanus et al., 2019) introduce a framework for learning conservative
dynamical systems by modeling the Hamiltonian function with a neural network, ensuring energy conservation and
reversible dynamics. Symplectic ODE-Nets (Zhong et al., 2020) extend this idea by integrating symplectic structure
and external control into the neural architecture. SympNet (Chen et al., 2020) and Symplectic Recurrent Neural
Networks (Chen et al., 2020) further improved long-term stability by combining learned Hamiltonians with symplectic
multi-step integrators. In a similar vein, Lagrangian neural networks (Cranmer et al., 2020; Lutter et al., 2018) propose
to learn the Lagrangian directly, thereby supporting a related class of systems. Recent work has generalized these
principles to graph-based settings (Gruber et al., 2023).

6 CONCLUSION

We investigated leveraging in-context learning (ICL) capabilities to build structure-preserving neural operators for
Hamiltonian systems. To enable ICL, we adopted a large language model-like transformer architecture and further
introduced a hypernetwork to infer the Hamiltonian function, which is then used to align the transformer’s predictions
in accordance with Hamilton’s least-action principle. We focused on parametric Hamiltonian systems, evaluating
the proposed approach on eight challenging benchmarks. The proposed method consistently outperformed existing
baselines, demonstrating that ICL can be used as an effective meta-learning strategy in modeling and preserving the
dynamics of Hamiltonian systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work focuses on developing machine learning models for physical systems, specifically combining neural opera-
tors with Hamiltonian structures to model dynamical behavior. Our research is purely computational, with applications
in the physical sciences. We do not foresee any ethical concerns arising from this work. There are no direct societal
or human subjects implications associated with the methods or experiments presented.

8 REPRODUCIBILITY STATEMENT

We have provided all relevant details necessary to reproduce the results presented in this work, including descriptions
of the datasets, model architectures, training procedures, and evaluation metrics. To further ensure reproducibility, we
will make our code and configuration files publicly available upon acceptance of the paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ferran Alet, Dylan Doblar, Allan Zhou, Josh Tenenbaum, Kenji Kawaguchi, and Chelsea Finn. Noether networks:
meta-learning useful conserved quantities. Advances in Neural Information Processing Systems, 34:16384–16397,
2021.

Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr
Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C.
Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, and
Bernie Wang. Chronos: Learning the language of time series. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=gerNCVqqtR. Expert Certification.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and Anima Anandkumar.
Neural operators for accelerating scientific simulations and design. Nature Reviews Physics, 6(5):320–328, 2024.

Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar,
Abani Patra, James Sethian, Stefan Wild, et al. Workshop report on basic research needs for scientific machine
learning: Core technologies for artificial intelligence. Technical report, USDOE Office of Science (SC), Washing-
ton, DC (United States), 2019.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Mali-
nowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. arXiv preprint arXiv:2312.14688,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving differential
equations. Nature Machine Intelligence, 6(6):631–640, 2024.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/torchdiffeq.

Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: Learning Hamiltonian equations on
general coordinate systems. Advances in Neural Information Processing Systems, 34:16659–16670, 2021.

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural networks. In
International Conference on Learning Representations, 2020.

Frank Cole, Yulong Lu, Tianhao Zhang, and Riley CW O’Neill. Provable in-context learning of linear systems and
linear elliptic PDEs with transformers. In Neurips 2024 Workshop Foundation Models for Science: Progress,
Opportunities, and Challenges, 2024.

10

https://openreview.net/forum?id=gerNCVqqtR
https://github.com/rtqichen/torchdiffeq

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. Lagrangian neural
networks. In ICLR 2020 Workshop, 2020.

Ch Efthymiopoulos, M Harsoula, and G Contopoulos. Resonant normal form and asymptotic normal form behaviour
in magnetic bottle hamiltonians. Nonlinearity, 28(4):851, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Marc Finzi, Ke Alexander Wang, and Andrew G Wilson. Simplifying Hamiltonian and Lagrangian neural networks
via explicit constraints. Advances in neural information processing systems, 33:13880–13889, 2020.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances in neural information
processing systems, 32, 2019.

Anthony Gruber, Kookjin Lee, and Nathaniel Trask. Reversible and irreversible bracket-based dynamics for deep
graph neural networks. Advances in Neural Information Processing Systems, 36:38454–38484, 2023.

David Ha, Andrew M Dai, and Quoc V Le. Hypernetworks. In International Conference on Learning Representations,
2017.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng, Jian Song,
and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In International Conference on
Machine Learning, pp. 12556–12569. PMLR, 2023.

Michel Hénon and Carl Heiles. The applicability of the third integral of motion: some numerical experiments.
Astronomical Journal, Vol. 69, p. 73 (1964), 69:73, 1964.

Mingu Kang, Dongseok Lee, Woojin Cho, Kookjin Lee, Anthony Gruber, Nathaniel Trask, Youngjoon Hong, and
Noseong Park. Can we pre-train ICL-based SFMs for the zero-shot inference of the 1d CDR problem with noisy
data? In Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities, and Challenges.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed
machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kookjin Lee, Nathaniel Trask, and Panos Stinis. Machine learning structure preserving brackets for forecasting irre-
versible processes. Advances in Neural Information Processing Systems, 34, 2021.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, Anima
Anandkumar, et al. Fourier neural operator for parametric partial differential equations. In International Conference
on Learning Representations, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with learned
deformations for PDEs on general geometries. Journal of Machine Learning Research, 24(388):1–26, 2023.

Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Prose: Predicting multiple operators and symbolic expressions
using multimodal transformers. Neural Networks, 180:106707, 2024.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepOnet: Learning nonlinear operators for identifying differential
equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear operators via
deeponet based on the universal approximation theorem of operators. Nature machine intelligence, 3(3):218–229,
2021.

Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model prior for deep
learning. In International Conference on Learning Representations, 2018.

J. E. Marsden and T. Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical
Systems. Springer, 1998.

Ravi G. Patel, Nathaniel A. Trask, Mitchell A. Wood, and Eric C. Cyr. A physics-informed operator regres-
sion framework for extracting data-driven continuum models. Computer Methods in Applied Mechanics and
Engineering, 373:113500, 2021. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2020.113500. URL
https://www.sciencedirect.com/science/article/pii/S004578252030685X.

11

https://www.sciencedirect.com/science/article/pii/S004578252030685X

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational physics, 378:686–707, 2019.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In International
Conference on Machine Learning, pp. 9323–9332. PMLR, 2021.

Louis Serrano, Armand Kassaı̈ Koupaı̈, Thomas X Wang, Pierre Erbacher, and Patrick Gallinari. Zebra: In-context
and generative pretraining for solving parametric PDEs. arXiv preprint arXiv:2410.03437, 2024.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural repre-
sentations with periodic activation functions. Advances in neural information processing systems, 33:7462–7473,
2020.

Lawrence Stewart, Francis Bach, Quentin Berthet, and Jean-Philippe Vert. Regression as classification: Influence of
task formulation on neural network features. In International Conference on Artificial Intelligence and Statistics,
pp. 11563–11582. PMLR, 2023.

Peter Toth, Danilo J Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and Irina Higgins. Hamiltonian
generative networks. In International Conference on Learning Representations, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural operators. In The
Eleventh International Conference on Learning Representations, 2023.

Nicholas B Tufillaro, Tyler A Abbott, and David J Griffiths. Swinging atwood’s machine. Am. J. Phys, 52(10):
895–903, 1984.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zh-
moginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In International Conference on
Machine Learning, pp. 35151–35174. PMLR, 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential
equations with physics-informed DeepONets. Science advances, 7(40):eabi8605, 2021.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-FNO—An enhanced
fourier neural operator-based deep-learning model for multiphase flow. Advances in Water Resources, 163:104180,
2022.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning as implicit
bayesian inference. In International Conference on Learning Representations, 2022.

Liu Yang and Stanley J Osher. PDE generalization of in-context operator networks: A study on 1d scalar nonlinear
conservation laws. Journal of Computational Physics, 519:113379, 2024.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data prompts for differ-
ential equation problems. Proceedings of the National Academy of Sciences, 120(39):e2310142120, 2023.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-Net: Learning Hamiltonian dy-
namics with control. In International Conference on Learning Representations, 2020.

12

	Introduction
	Preliminaries
	Learning operators
	Learning structure-preserving and conservation-aware dynamics

	Methodology
	Input-to-output pipeline
	Transformers: Base models for ICL
	Hypernetwork: From Decoder to HNNs
	Decoder output formatting: Discretization-based Output Representation
	Training algorithm
	AI-Hamilton variant

	Experiments
	Experiments on diverse sets of Hamiltonian systems
	Experiments on higher-dimensional Hamiltonian systems

	Related work
	Conclusion
	Ethics statement
	Reproducibility statement

