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Abstract

The concept of persona, originally adopted in001
dialogue literature, has re-surged as a promis-002
ing framework for tailoring large language003
models (LLMs) to specific context (e.g., per-004
sonalized search, LLM-as-a-judge). However,005
the growing research on leveraging persona in006
LLMs is relatively disorganized and lacks a sys-007
tematic taxonomy. To close the gap, we present008
a comprehensive survey to categorize the cur-009
rent state of the field. We identify two lines of010
research, namely (1) LLM Role-Playing, where011
personas are assigned to LLMs, and (2) LLM012
Personalization, where LLMs take care of user013
personas. Additionally, we introduce existing014
methods for LLM personality evaluation. To015
the best of our knowledge, we present the first016
survey for role-playing and personalization in017
LLMs under the unified view of persona. We018
continuously maintain a paper collection to fos-019
ter future endeavors.020

1 Introduction021

The striking capabilities of large language mod-022

els (LLMs), exemplified by ChatGPT (OpenAI,023

2022), have significantly advanced the field of nat-024

ural language processing (NLP; Wei et al., 2023;025

Madaan et al., 2024; Shinn et al., 2024). Recently,026

in addition to using LLMs as NLP task solvers or027

general-purpose chatbots, the question of how to028

adapt LLMs for specific context has received great029

attention. To this end, leveraging personas has030

resurfaced as an ideal lens for adapting LLMs in031

target scenarios (Chen et al., 2023a, 2024). By in-032

corporating personas, LLMs can generate more033

contextually appropriate responses, maximizing034

their utility and effectiveness for specific applica-035

tions. However, the growing literature on persona036

in the LLM era is relatively disorganized, lacking037

a unifying overview.038

In this paper, we aim to close the gap by offering039

a comprehensive survey and a systematic catego-040
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Q: Please recommend a song that matches my current mood.

LLM- Adapt to User -
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“We will rock you”

  --- Queen

“I will always love you”

  --- Whitney Houston

“Brian Balmages”

  --- Beathoven

You are a nurse. Your 
extensive medical 
knowledge and technical 
skills allow you ......

You are a judge who 
embodies fairness 
and impartiality, 
ensuring ......

You are an engineer. Precision and 
attention to detail define your work, 
ensuring that ......

You are a painter. 

You find beauty in 
everyday scenes, ......

You are a benevolent King 
who rules with 
compassion and wisdom. 
You lead the ......

Please take into 
consideration and respond 
to the question: {Q.}

{user info.}

Figure 1: In Role-Playing, LLMs act according to as-
signed personas (i.e., roles) under a defined environment.
For example, given role names with descriptions, LLMs
role-play in a social simulation game. For Personaliza-
tion, LLMs consider user personas to generate tailored
responses to the same question. Dashed rectangles are
prompts and solid rectangles are LLMs’ responses.

rization of existing studies. Specifically, we divide 041

current research into two main streams, namely 042

LLM Role-Playing and LLM Personalization, as il- 043

lustrated in Figure 1. The primary distinction is that 044

in role-playing, the persona belongs to the LLM, 045

while in personalization, the persona belongs to the 046

user. The definitions are detailed below. 047

• LLM Role-Playing: LLMs are tasked to play 048

the assigned personas (i.e., roles) and act 049

based on environmental feedback, adapting 050

to the environment. 051

• LLM Personalization: LLMs are tasked to 052

take care of user personas (e.g., background 053

information or historical behaviors) to meet in- 054

dividualized needs, adapting to distinct users. 055
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Taxonomy

LLM Personality Evaluation (§4) BigFive; MBTI; etc

LLM Personalization (§3)

Dialogue (§3.5)
User Persona Modeling

Task-Oriented Modeling
Healthcare (§3.4)

Education (§3.3)

Search (§3.2)

Recommendation (§3.1)

LLM Role-Playing (§2)

Emergent Behaviors (§2.3)

Destructive Behavior

Conformity Behavior

Voluntary Behavior

Role-Playing Schema (§2.2)
Multi-Agent

Single-Agent

Environments (§2.1)

LLM-as-Evaluator (§2.1.4)

Medical Application (§2.1.3)

Game (§2.1.2)

Software Development (§2.1.1)

Figure 2: The taxonomy of LLM role-playing and LLM personalization.

To the best of our knowledge, we present the056

first survey for LLM role-playing and LLM per-057

sonalization under the unified view of persona. To058

foster future endeavors, we actively maintain a pa-059

per collection available to the research community.060

We aim for this work to serve as both a valuable061

introduction for newcomers and a comprehensive062

resource for current researchers in the field.063

Our taxonomy is illustrated in Figure 2. We064

first introduce LLM role-playing (§2), followed065

by LLM personalization (§3). Next, we provide066

an overview of evaluation methods (§4) assessing067

whether the personality of LLMs (e.g., personal-068

ity traits or psychological behaviors) accurately069

aligns with expected personas after the adaptation070

(i.e., for role-playing LLMs that act according to071

assigned personas and personalized LLMs that fit072

user personas). Lastly, we highlight current chal-073

lenges and future directions (§5). A comprehensive074

list of benchmarks and datasets is provided in the075

Appendix.076

2 LLM Role-Playing077

LLM-based language agents have demonstrated im-078

pressive abilities, such as planning, reflection, and079

tool-use recently (Yao et al., 2022b; Shinn et al.,080

2024; Yao et al., 2024). The predominant approach081

of LLM role-playing is by coupling personas with082

language agents, specifically, by incorporating per-083

sonas directly inside the prompt of language agents.084

Such a training-free paradigm is particularly desir-085

able due to its simplicity and effectiveness.086

Language agents with role-playing elicit the cor-087

responding parametric knowledge in LLMs to gen-088

erate responses aligned with assigned personas (i.e.,089

role), enabling them to adapt to various interac- 090

tive environments. LLM role-playing also extends 091

to multi-agent settings, where multiple language 092

agents are equipped with diverse personas, cooper- 093

ating and communicating with each other to solve 094

complex tasks (Guo et al., 2024). For instance, in 095

one of the first works of role-played LLMs, Park 096

et al. (2023) propose generative agents, which en- 097

gage in a social simulation environment by mim- 098

icking human behaviors according to names, ages, 099

and personality traits specified in the prompts. 100

Following we introduce different environments 101

and associated roles in which LLMs adapt to (§2.1), 102

interactions between LLMs within the environ- 103

ment (§2.2), and emergent behaviors stemming 104

from their interactions (§2.3). Figure 3 provides an 105

illustrative overview. 106

2.1 Environments 107

2.1.1 Software Development 108

For software development, the goal typically in- 109

volves designing programs or coding projects. For 110

instance, “Create a snake game.” or “Create a 111

Python program to develop an interactive weather 112

dashboard.” (Hong et al., 2023a). Due to the com- 113

plexity of these tasks, often too intricate to be 114

completed correctly on the first attempt, existing 115

research leverages approaches like the Waterfall 116

model (Petersen et al., 2009; Bassil, 2012) or Stan- 117

dardized Operating Procedures (SOPs) (Belbin and 118

Brown, 2022; DeMarco and Lister, 2013) to break 119

down the tasks into manageable sub-tasks. 120

Similar to real-world settings, LLMs role-play 121

to operate as a company in a collaborative, multi- 122

agent software development environment (Qian 123
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Choose a better response.

General Public

Critic Psychologist

Create a snake game.

Coder

CEO

CTO

PM

Make an accurate diagnosis.

Doctor Patient

Software DevelopmentMedical Application LLM as Evaluators
Role-Playing

- Adapt to Environment -

{Persona/Role}

{Given Task} {Defined Env.}

LLM

Explore the Minecraft world.

Assistant

Game

Figure 3: An illustration of five LLM role-playing environments: Software Development (§2.1.1), Game (§2.1.2),
Medical Application (§2.1.3), and LLM as Evaluators (§2.1.4). For each environment, we provide a simple scenario
with a task description (red-bordered) and relevant personas (i.e., roles; blue-bordered). The dashed rectangle
represents an example LLM role-playing prompt template. In addition to the above environments, past research also
proposes general frameworks applicable to different environments (§5.1).

et al., 2023; Hong et al., 2023a; Dong et al., 2023).124

Different roles include Chief Technology Officer125

(CTO), Chief Product Officer (CPO), Chief Execu-126

tive Officer (CEO), Product Managers, Engineers,127

Reviewers, and Testers. By assigning specific roles,128

LLMs are capable of carrying out tasks in a step-129

by-step and accurate manner.130

Recent work (Dong et al., 2023) proposed one of131

the first self-collaboration frameworks that encom-132

passes division of labor and collaboration among133

multiple LLM agents, each acting as a special-134

ized “experts” to address complex code genera-135

tion tasks. Following the Waterfall model, Chat-136

Dev (Qian et al., 2023) divides the development137

process into a four-phase pipeline: designing, cod-138

ing, testing, and documenting and proposes Chat139

Chain to decompose each phase into a sequence of140

atomic sub-tasks. Differing from the above work,141

MetaGPT (Hong et al., 2023a) require LLM agents142

to generate structured outputs instead of free-text,143

demonstrating a significant increase in the success144

rate of target code generation.145

2.1.2 Game146

LLMs have been an effective backbone for agents147

in a variety of game environments, including148

Minecraft (Wang et al., 2023a), social simula-149

tion (Park et al., 2023; Wang et al., 2023d), and150

bargaining game (Fu et al., 2023). In these environ-151

ments, LLMs are tasked to role-play as a general152

assistant (Wang et al., 2023a), or characters related153

to the environment, such as buyers and sellers (Fu154

et al., 2023). Gaming environments usually contain155

a wide range of information, including settings, uti-156

lizable tools, and nearby situations, which presents157

challenges for LLMs to memorize and respond.158

Thus, retrieval-based memory stream approaches159

are a crucial component for the effectiveness of160

language agents role-playing in the game environ-161

ments (Park et al., 2023; Wang et al., 2023a). 162

2.1.3 Medical Application 163

In medical domain environments, Wu et al. (2023a) 164

propose DR-CoT prompting, the first approach to 165

leverage LLM role-playing for diagnostic reason- 166

ing. By mimicking doctors underlying thought 167

processes, DR-CoT exhibits a striking improve- 168

ment from standard prompting. Then, Kwon et al. 169

(2024) extend such success to image-based diag- 170

nosis via knowledge distillation, addressing the 171

application in real-world clinical settings. Another 172

work, MedAgent (Tang et al., 2023a), introduces a 173

multi-agent collaboration framework into medical 174

reasoning through five processes: expert gathering, 175

analysis proposition, report summarization, col- 176

laborative consultation, and decision making, to 177

mimic actual medical scenarios. 178

These studies assign medically relevant personas 179

to LLMs, ranging from general roles like doctor 180

and patient to specific ones such as neurology 181

and psychiatry experts. Their research demon- 182

strates LLMs inherently possess medical knowl- 183

edge (Liévin et al., 2024), enabling performance 184

enhancement via LLM role-playing successfully. 185

2.1.4 LLM-as-Evaluator 186

The concept of adopting strong LLMs as evalua- 187

tors has become a de facto framework for evalu- 188

ating LM alignment. It is shown that LLMs are 189

capable of assessing human-like values in model 190

responses, and judgments made by LLMs could re- 191

flect a higher correlation with human ground-truth 192

than traditional metrics (Chiang and Lee, 2023; 193

Wang et al., 2023b; Lin and Chen, 2023). 194

Aiming for a greater similarity with human eval- 195

uation, roles in LLM-as-evaluator environments 196

span a broad spectrum, representing various per- 197

spectives of human beings in society, such as the 198

general public, the critic, and the news author. In 199
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LLM-as-a-judge (Zheng et al., 2023), LLMs role-200

play an impartial judge and consider factors such201

as helpfulness, relevance, accuracy, depth, and cre-202

ativity. Wu et al. (2023b) propose DRPE to assess203

the quality of summarization by assigning LLMs204

statically objective roles and dynamically subjec-205

tive roles based on task settings. Another work,206

ChatEval (Chan et al., 2023), further adds discus-207

sion rounds within roles to improve the evaluation208

process, simulating a judge group in reality.209

2.2 Role-Playing Schema210

We categorize two schemas in LLM role-playing211

environments: single-agent and multi-agent.212

Single-Agent We define the single-agent schema213

as follows: One agent is able to achieve its goal in-214

dependently without assistance from others, though215

multiple agents may coexist in the same environ-216

ment.217

Single-agent schema is most common in game218

environments, where LLMs attend more to envi-219

ronmental information and feedback rather than220

collaboration. For example, Voyager (Wang et al.,221

2023a) agents, playing general assistant roles, are222

tasked to continuously explore the defined envi-223

ronment, acquire diverse skills, and make novel224

discoveries in Minecraft. Despite the presence of225

multiple Voyager agents in Minecraft, each agent is226

capable of exploring the gaming world on its own.227

Multi-Agent We define the multi-agent schema228

as follows: Supports (e.g., collaborate and com-229

municate) from other agents are necessary for one230

agent to achieve its goal.231

Software development and medical applica-232

tions are the primary environments for multi-agent233

schema. Similar to real world, interaction within234

environments is crucial. Representative works like235

AgentVerse (Chen et al., 2023c) and ChatDev (Qian236

et al., 2023) both propose multi-agent frameworks237

that exchange information and cooperate to accom-238

plish their tasks efficiently. Further, we identify239

two collaboration paradigms in the multi-agent240

schema (Xi et al., 2023; Guo et al., 2024): Cooper-241

ative and Adversarial. The cooperative paradigm242

facilitates information sharing among agents, for243

example, several works use message pools to store244

each agent’s current state and ongoing tasks (Hong245

et al., 2023a; Tang et al., 2023a; Chen et al., 2023c).246

For the adversarial paradigm, including debate,247

competition, and criticism, enhances the decision-248

making process and seeks more advantages by249

adopting opposing perspectives (Chan et al., 2023; 250

Fu et al., 2023). 251

2.3 Emergent Behaviors in Role-Playing 252

Under the multi-agent schema, different behaviors 253

reflecting phenomena in human society (e.g., con- 254

formity and consensus reaching) emerge through 255

LLM collaboration. We introduce three collabora- 256

tive behaviors following Chen et al. (2023c). 257

Voluntary Behavior Voluntary behaviors usually 258

occur in the cooperative collaboration paradigm, 259

where agents proactively assist their peers or in- 260

quire if there is anything they can help with to 261

accomplish team goals. In addition, they may con- 262

tribute resources to others, such as unallocated time 263

and possessed materials. Through voluntary behav- 264

iors, LLMs enhance team efficiency and demon- 265

strate cohesion and commitment within defined en- 266

vironments (Chen et al., 2023c; Hong et al., 2023a). 267

Conformity Behavior Conformity behaviors oc- 268

cur in situations where an agent deviates from the 269

team goal. After receiving criticism and sugges- 270

tions from others, the deviating agent then refines 271

and adjusts its behavior or decisions to better co- 272

operate with the team. Through conformity behav- 273

iors, LLMs align with the mutual goal and pursue 274

improved accuracy and completeness (Tang et al., 275

2023a; Fu et al., 2023). 276

Destructive Behavior Occasionally, LLMs un- 277

dertake various actions that lead to undesired and 278

detrimental outcomes. For instance, it may exhibit 279

a Bad Mind that seeks to control the world (Li 280

et al., 2024a). Additionally, LLMs might display 281

toxicity or reveal deep-seated stereotypical biases 282

when equipping personas (Deshpande et al., 2023; 283

Gupta et al., 2023). Such destructive behaviors 284

raise safety and bias concerns of role-playing. 285

3 LLM Personalization 286

Prominent approaches for aligning LLMs to user 287

intents typically leverage reinforcement learning 288

from human feedback (RLHF), a process that in- 289

fuses collective consciousness and biases into the 290

model. To enhance individual experience and pref- 291

erence, personalized LLMs consider user personas 292

(e.g., individual information, historical behaviors) 293

and cater to customized needs (Chen et al., 2023e; 294

Deshpande et al., 2024). Following we introduce 295

various personalized tasks with associated methods 296
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Your BMI is 29.3, putting 
you at risk of overweight...

Healthcare

 AllRecipes: ... [Link
 Food Network: ... [Link]

Search

They are regions in space where ...

Correct. Additionally, ...

What do you know about black holes?

Teach me the concept of black hole.

1. La La Land

2. Groundhog Day ...

Recommendation

Personalization
- Adapt to User -

LLM

Education

May 28 to June 10.

When would you like to travel?

Sure. How many people?

Book a flight from Taipei to New York.

Dialogue

Figure 4: An illustration of five types of personalized LLMs: Recommendation (§3.1), Search (§3.2), Educa-
tion (§3.3), Healthcare (§3.4), and Dialogue (§3.5). On the left side, dashed rectangles are prompts, and solid
rectangles are the responses of LLMs. On the right side, we depict multi-turn interactions between LLMs and users.

for achieving personalization. Figure 4 presents an297

illustrative overview of personalization tasks.298

3.1 Personalized Recommendation299

Recommendation systems aim to recommend items300

(e.g., books or movies) to users that match their301

preferences. We compare existing research in Ta-302

ble 3 and compile relevant datasets in Table 4.303

Existing studies explore various prompting meth-304

ods for using LLMs in recommendation systems.305

Li et al. (2023a) develop a method for efficient in-306

corporation of users’ personal information. Li et al.307

(2023b) combine aspect extraction with aspect-308

based recommendations via LLMs prompt tun-309

ing. Chen et al. (2022) generate personalized chit-310

chat to enhance recommendation. Focusing on the311

framework design, Yang et al. (2023b) present a312

novel LLM fine-tuning recommendation system.313

Chu et al. (2023) merge different recommendation314

systems to address the challenge of effectively in-315

tegrating the commonsense and reasoning abili-316

ties of LLMs into recommendation systems. Hu317

et al. (2024) propose a sequential recommendation318

framework to preserve fine-grained item textual319

information.320

A lot of works have focused on the zero-shot321

setting, leveraging the powerful out-of-the-box ca-322

pabilities of LLMs. Wang and Lim (2023) adopt323

a three-step prompting pipeline to achieve bet-324

ter zero-shot next-item recommendation. Hou325

et al. (2024) propose a zero-shot sequential recom-326

mendation system via in-context learning. Zhang327

et al. (2023) enhance user-friendliness by allowing328

users to freely interact with the system and receive329

more precise recommendations through natural lan-330

guage instructions. For generalizability, Wang et al.331

(2024d) highlight that current recommendation sys-332

tems mostly focus on specific tasks and lack the333

ability to generalize to new tasks. They propose334

an LLM-powered agent for general recommenda- 335

tion purposes. Although LLM-based personalized 336

search systems present a more convenient and sim- 337

ple solution for information search, ensuring the 338

accountability and trustworthiness of the synthe- 339

sized results still requires further development (Li 340

et al., 2024b). 341

3.2 Personalized Search 342

Compared to traditional search systems that pro- 343

vide a list of hard-to-organize relevant results and 344

are limited to simple queries, personalized search 345

systems enable understanding of complex queries 346

and past interactions to infer user preferences, syn- 347

thesizing information from multiple sources and 348

presenting it in a cohesive, natural language form. 349

Spatharioti et al. (2023) demonstrate that LLM- 350

based search systems improve users’ performance 351

in certain situations. Ziems et al. (2023) suggest 352

that LLMs act as built-in search engines given few- 353

shot demonstrations. Specifically, LLMs can gen- 354

erate correct web URLs for corresponding docu- 355

ments. Building upon Zhou et al. (2021), Zhou 356

et al. (2024) present a strategy to combine the cog- 357

nitive memory mechanism with LLMs for person- 358

alized search, enabling LLMs to efficiently retrieve 359

memory. Some works also leverage search en- 360

gine results to enhance LLM personalization (Baek 361

et al., 2024; Salemi and Zamani, 2024). Empir- 362

ically, Sharma et al. (2024) conduct experiments 363

to investigate how LLM-powered search systems 364

could lead to opinion polarization. 365

3.3 Personalized Education 366

The capability of LLMs can be utilized in a variety 367

of ways to facilitate personalized education. For 368

example, LLMs can provide detailed, step-by-step 369

explanations in the Socratic teaching style (Hao 370

et al., 2024), answer questions on technical and 371
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complicated subjects (Arefeen et al., 2023), and au-372

tomatically summarize lectures to enhance learning373

experience (Gonzalez et al., 2023).374

Personalized LLMs have the potential to create375

a more inclusive and equitable educational ecosys-376

tem, obviating the need for individuals to pay dis-377

proportionate fees. Recent works have illustrated378

various opportunities and visions for integrating379

LLMs into educational environments. These ap-380

plications range from personalized learning and381

teaching assistance to homework assessment and382

feedback (Kasneci et al., 2023; Gan et al., 2023;383

Wang et al., 2024b; Jeon and Lee, 2023; Huber384

et al., 2024).385

For example, EDUCHAT (Dan et al., 2023) pre-386

trained models on an educational corpus to es-387

tablish a foundational knowledge base, and sub-388

sequently fine-tune models on personalized tasks389

such as essay assessment, Socratic teaching, or390

emotional support. HUMSUM (Shehata et al., 2023)391

summarize personalized lecture transcripts from di-392

verse scenarios, considering factors such as length,393

depth, tone, and complexity. This is followed by394

prompt tuning to modify the summary based on the395

personalization options given by users. Park et al.396

(2024) incorporate the student’s affective state, cog-397

nitive state, and learning style into the prompt to398

create a personalized conversation-based tutoring399

system.400

3.4 Personalized Healthcare401

LLMs have exhibited expert-level capabilities in a402

range of general biomedical tasks, with the poten-403

tial to integrate into people’s everyday lives (Cohan404

et al., 2020; Milne-Ives et al., 2020; Singhal et al.,405

2023; Saab et al., 2024; Abbasian et al., 2024b).406

Towards personalized healthcare assistant, Ab-407

basian et al. (2024a) propose OPENCHA, an LLM408

agentic framework that integrates external data409

and personalized health data to address person-410

alized medical problems. Following OPENCHA,411

Abbasian et al. (2024c) infuse domain-specific412

knowledge to effectively utilize health data, knowl-413

edge bases, and analytical tools for diabetes-related414

questions. MALP (Zhang et al., 2024a) combine415

parameter-efficient fine-tuning (PEFT) with a mem-416

ory retrieval module to generate personalized medi-417

cal responses. Other frameworks such as HEALTH-418

LLM (Jin et al., 2024b) combine LlamaIndex (Liu,419

2022) to make diagnosis predictions, and is ca-420

pable of generating personalized medical advice421

based on symptom descriptions provided by users.422

Moreover, LLMs also show great potential for psy- 423

chotherapy (Stade et al., 2024; Chen et al., 2023b; 424

Xu et al., 2024). 425

3.5 Personalized Dialogue Generation 426

Depending on the goals, dialogue generation tasks 427

can be categorized into: (1) Task-oriented dialogue 428

modeling (ToD modeling) and (2) User persona 429

modeling. Following we discuss ToD modeling and 430

User persona. We also organize various datasets 431

for dialogue generation in Table 2. 432

ToD Modeling ToD modeling guides users in 433

completing specific tasks, such as hotel bookings or 434

restaurant reservations, through multiple interactive 435

steps. See an example in Table 5. 436

Hudeček and Dusek (2023) leverage instruction- 437

tuned LLMs and employ in-context learning for 438

retrieval, and state tracking. Focusing on factuality, 439

REFGPT (Yang et al., 2023a) generate truthful re- 440

sponses by augmenting the dialogue history with 441

reliable sources and use prompts to guide LLM 442

according to predefined dialogue settings. Li et al. 443

(2024c); Hu et al. (2023) explore prompt augmen- 444

tations; on the other hand, DSP (Li et al., 2024c) 445

train a small policy model to generate hints and 446

guide LLMs in completing tasks. A lot of works 447

used LLMs to generate multi-turn dialogue as train- 448

ing datasets (Yang et al., 2023a; Huryn et al., 2022; 449

Xu et al., 2023). Further, personalized dialogues 450

have been applied in procedural content genera- 451

tion for customized dialogue generation in video 452

games (Ashby et al., 2023). 453

User Persona Modeling User persona modeling 454

detects the user persona based on dialogue history 455

and generates customized responses tailored for 456

each user. See an example in Appendix B. 457

COBERT (Zhong et al., 2020) proposed persona- 458

based empathetic conversations using BERT with 459

a two-hop co-attention mechanism (Lu et al., 2017) 460

to refine embeddings and identify the most relevant 461

response given the context and persona informa- 462

tion. Song et al. (2020) utilized natural language 463

inference (NLI) as an RL task with response per- 464

sona as the reward to generate persona-consistent 465

dialogue. Liu et al. (2020) proposed P2, a mutual 466

persona perception model, and employ supervised 467

training and self-play fine-tuning in the training pro- 468

cess. Tang et al. (2023b) combined sparse persona 469

descriptions, dense persona descriptions, and dia- 470

logue history to generate personalized responses. 471
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4 LLM Personality Evaluation472

In the previous sections, we summarize the current473

progress in LLM role-playing and LLM person-474

alization. Equally important is the evaluation of475

whether the personality of LLMs accurately reflects476

the intended persona after the adaptation (i.e., for477

role-playing LLMs that act based on designated478

personas and personalized LLMs tailored to indi-479

vidualized personas).480

A line of works has carried out the evaluation481

leveraging human personality assessments, includ-482

ing BigFive (Jiang et al., 2023; Sorokovikova et al.,483

2024) and MBTI (Pan and Zeng, 2023; Song et al.,484

2024). For example, Sorokovikova et al. (2024);485

Jiang et al. (2024) quantitatively evaluate LLM486

personality based on the BigFive Personality Inven-487

tory (BFI) test and story writing test. In the BFI488

evaluation, LLMs often can reflect their intended489

persona accurately. Moreover, their personas often490

influence their linguistic style and personality con-491

sistency (Frisch and Giulianelli, 2024; Jiang et al.,492

2023). While most works focus solely on either493

semantic accuracy or personality consistency, Har-494

rison et al. (2019) further explore controlling the495

two aspects simultaneously.496

Jiang et al. (2024) introduce Machine Personal-497

ity Inventory (MPI) for evaluating LLMs’ person-498

ality traits. They use BigFive Personality Factors499

to evaluate each personality trait consisting of a500

series of descriptions and a set of options and sta-501

tistically measure each trait. By comparing with502

human evaluation, they find that the internal con-503

sistency correlates with model capabilities. On the504

other hand, Pan and Zeng (2023) evaluate LLMs505

with the MBTI test to assess whether LLMs pos-506

sess human-like personalities, and conclude that507

different LLMs have different MBTI types, which508

are often attributable to their training corpus. More-509

over, they find that simply modifying the prompts510

is unlikely to change the MBTI type of LLMs.511

Another work by Wang et al. (2024c) evaluate512

the personality fidelity of role-playing LLMs via513

personality test interviewing, and ask LLM to rate514

the score of each personality dimension according515

to the interview. Their results suggest that LLMs’516

demonstrated personalities align well with the as-517

signed character personas. However, whether the518

aforementioned human psychometric tests are di-519

rectly transferable to be applied to LLMs remains520

an open question (Dorner et al., 2023).521

5 Limitations and Future Directions 522

5.1 Towards a General Framework 523

Despite the effectiveness of various role-playing 524

frameworks, they are mostly task dependent and 525

heavily rely on human-crafted personas. Both re- 526

quire prior knowledge and deep understanding of 527

the tasks (Chen et al., 2023c). Consequently, en- 528

hancing the generalizability of the framework and 529

employing automatic prompt engineering is a fruit- 530

ful directions (Li et al., 2024a; Wang et al., 2023c). 531

To this end, Li et al. (2024a) propose a novel 532

task-independent framework that allows agents to 533

collaborate autonomously, but is limited to two 534

roles and still requires human assigned personas. 535

Subsequently, Wang et al. (2023c) introduce meth- 536

ods for LLMs to automatically identify personas 537

based on given problems. Another work by Chen 538

et al. (2023c) also enable LLMs to dynamically 539

adjust the personas. However, they require prior 540

knowledge of the intended tasks and pre-defined 541

configuration (e.g., the number of agents). 542

5.2 Long-Context Personas 543

Richardson et al. (2023) note that incorporating 544

user history data into the prompt for personalizing 545

LLMs could lead to input exceeding context length 546

as well as increased inference costs. Leveraging 547

retrieval-based methods may have the problem of 548

potential information loss. Some works have pro- 549

posed to summarize user profiles, design long-term 550

memory mechanisms focusing on user portrait, pre- 551

storing user information, or ways to efficiently rep- 552

resent for retrieval augmentation (Richardson et al., 553

2023; Zhong et al., 2024; Zhang et al., 2024b; 554

Sun et al., 2024). However, retrieval augmenta- 555

tion might be underperforming due to unrelated or 556

noisy prompts (Tan et al., 2024). How to better 557

store, encode, and integrate long-context personas 558

in LLMs requires further investigation. 559

5.3 Lack of Datasets and Benchmarks 560

For LLM role-playing, several tasks lack suitable 561

datasets with specific formats and environmental 562

information (e.g., game environments require in- 563

formation about configurations and tools). For 564

personalized dialogue generation, user persona 565

modeling lacks contradictory persona datasets that 566

would more accurately represent real human be- 567

haviors (Kim et al., 2024b). Furthermore, LLM 568

personalization faces a scarcity of high-quality per- 569

sonal data for model development due to privacy 570
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concerns, hindering a thorough evaluation of differ-571

ent personalization methods. In addition, existing572

benchmarks for both LLM role-playing and person-573

alization are relatively limited, lacking comprehen-574

sive evaluations across various dimensions (Chang575

et al., 2023). Therefore, expanding datasets and576

benchmarks for specialized environments and per-577

sonal information under privacy protection is an578

important future direction.579

5.4 Bias580

While a large number of studies focus on enhanc-581

ing end-task performance, fewer works explore the582

biases induced by role-playing and personlization583

in LLMs. In this context, Gupta et al. (2023), as584

one of the first studies, highlights the deep-seated585

stereotypical biases found in LLMs assigned with586

socio-demographic personas. For personalized587

LLM recommendation systems, biases can be ob-588

served due to item popularity or item positions in589

the prompts (Hou et al., 2024). Empirically, Dorner590

et al. (2023) also reveal the presence of agree bias591

in LLMs – a tendency to agree with both true and592

false content, regardless of the actual facts. In sum,593

there exists ample room for investigating and miti-594

gating different classes of biases in the context of595

LLM role-playing and personalization.596

5.5 Safety and Privacy597

Past research has shown safety issues in LLM role-598

playing and personalization. Jin et al. (2024a)599

and Shah et al. (2023) successfully manipulate600

LLMs to perform jailbreak collaboratively. Desh-601

pande et al. (2023) also show that assigning per-602

sonas to LLMs aid in jailbreaking. Negative behav-603

iors in LLM role-playing are also demonstrated by604

Chen et al. (2023c) and Li et al. (2024a). Further,605

Deshpande et al. (2023) find that LLMs consis-606

tently exhibit toxicity in a range of topics when607

assigned personas. These works demonstrate the608

discovery of unsafe problems, indicating an urgent609

need and more efforts to prevent potential exploits.610

Since LLM personalization heavily relies on user611

personas, including personal information and his-612

torical behaviors, ensuring privacy is especially613

crucial. Recently, Wang et al. (2024a) discover614

that using the membership inference attack can615

leak personal information, raising concerns about616

encoding personal data into models. Although ex-617

isting research provides methods to address this618

personal information leakage (Lukas et al., 2023;619

Gambarelli et al., 2023; Huang et al., 2022; Chen620

et al., 2023d), the risks remain in need of more 621

effort and attention from the research community. 622

5.6 Broader Influences 623

As LLM personalization continues to advance in 624

education domains, individuals could easily access 625

personalized educational contents, lecture materi- 626

als, and receive affordable tutoring, largely benefit- 627

ing minority groups with limited resources. How- 628

ever, the concern of polarizing trends might arise, 629

where the privileged group enjoys private tutors 630

and underrepresented individuals only have access 631

to LLM-powered supports (Li et al., 2023c). Also, 632

personalized LLMs for healthcare could potentially 633

be widely integrated into clinical scenarios, mental 634

health assessments, or prescribed therapeutic treat- 635

ments in the near future, where critical questions 636

such as legal considerations of the liability associ- 637

ated with these personalized systems needs careful 638

considerations (Swift and Allen, 2010). 639

As discussed in (§4), though methods for LLM 640

personality evaluation have been proposed, there 641

still lacks a unifying understanding of how to quan- 642

tify personality in LLMs (Fang et al., 2023). Song 643

et al. (2024); Jiang et al. (2024) also show that 644

LLMs sometimes do not hold consistent person- 645

alities. It is crucial to continuously explore new 646

measurements for reliable assessment of personal- 647

ity and psychological traits in LLMs, considering 648

that in the future they might take on more advanced 649

roles and capabilities in society. 650

6 Conclusion 651

Leveraging personas, LLMs can generate tailored 652

responses and effectively adapt to a wide range of 653

scenarios. In this survey paper, we summarize two 654

lines of work – role-playing and personalization – 655

for research of personas in the era of LLMs. We 656

also present various evaluation methods for LLM 657

personality. Lastly, we highlight current challenges 658

and promising future directions. We hope our ex- 659

tensive survey and resources serve as an introduc- 660

tory guide for beginners to the field and a practical 661

roadmap to foster future endeavors. 662
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A Web1564

In this environment, LLMs operate web navigation1565

autonomously, performing actions such as clicking1566

items, capturing contents, and searching from ex-1567

ternal knowledge on the web, without a specific1568

persona assigned. Certainly, web tasks involve two1569

key components: HTML understanding and visual1570

grounding, which are highly related to the effective-1571

ness of web agents (Zheng et al., 2024; Koh et al.,1572

2024). Meanwhile, a stream of works, compiled1573

in Table 1, proposes several benchmarks to assess1574

web agents in diverse aspects.1575

HTML Understanding. Kim et al. (2024a)1576

showcase that the ability of HTML understand-1577

ing is inherent in LLMs with the Recursive Criti-1578

cism and Improvement (RCI) prompting method.1579

However, due to the special formats and long con-1580

text elements of HTML which are hard for LLMs1581

to process and respond accurately, most research1582

enhances this capability through fine-tuning meth-1583

ods (Gur et al., 2022, 2023; Deng et al., 2024).1584

Visual Grounding. Another line of research fo-1585

cuses on the visual grounding aspect of HTML1586

understanding, which directly operates on ren-1587

dered webpages instead of the HTML source1588

code. Some literature proposes web agent frame-1589

works, such as CogAgent (Hong et al., 2023b) and1590

SeeClick (Cheng et al., 2024), leveraging Large1591

Multi-modal Models (LMMs) (Achiam et al., 2023;1592

Team et al., 2023). With additional information1593

from webpage screenshots, LMMs usually outper-1594

form text-based LLMs (Zheng et al., 2024).1595

B Background of Dialogue Generation1596

ToD modeling typically consists of four modules:1597

Natural Language Understanding (NLU), Dialogue1598

State Tracker (DST), Dialogue Policy (DP), and1599

Natural Language Generator (NLG). Among these,1600

DST (Jacqmin et al., 2022) plays a crucial role in1601

modeling a multi-turn dialogue while updating the 1602

state of the conversation. The state could include 1603

user information, preferences, and goals. Mrkšić 1604

et al. (2016) propose a novel method known as 1605

Neural Belief Tracker (NBT), which features an en- 1606

hanced version of update mechanisms as described 1607

in Mrkšić and Vulić (2018). This method advances 1608

representation learning by predicting and updat- 1609

ing various aspects of the user’s requests and goals 1610

through belief tracking. 1611

Prior to the rise of LLMs, many models fo- 1612

cus on improving different parts of the module, 1613

such as state tracking (Mrkšić et al., 2017; Rastogi 1614

et al., 2018; Wu et al., 2019; Zhang et al., 2020), 1615

while others concentrate on policy optimization 1616

using ground-truth dialogue states (Wang et al., 1617

2020; Sun et al., 2021). Various attempts tried to 1618

combine different modules to create a fully end- 1619

to-end ToD modeling: Liu et al. (2018); Yang 1620

et al. (2021) use reinforcement learning (RL) to 1621

combine DP and NLG. Lei et al. (2018) combine 1622

DST and NLG with a sequence-to-sequence ap- 1623

proach. Huang et al. (2020) propose a method 1624

based on the variational autoencoder (VQ-VAE) 1625

framework (Kingma and Welling, 2013) and use 1626

three-stage learning, including Semantic Latent Ac- 1627

tion Learning, Action Alignment across Domains, 1628

and Domain-Specific Action Learning. Finally, the 1629

SIMPLETOD (Hosseini-Asl et al., 2020) model 1630

integrates different sub-tasks in a unified end-to- 1631

end manner, paving the way for fully LLM-based 1632

approaches in ToD modeling. 1633

On the other hand, in the pre-LLM era, User 1634

persona modeling used methods like Sordoni et al. 1635

(2015) and STARSPACE (Wu et al., 2018) to rank 1636

the most similar utterance in the dataset and gen- 1637

erate a candidate reply. Additionally, Miller et al. 1638

(2016) enhanced its ability by considering the dia- 1639

logue history. 1640
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Benchmark #Instances #Domains
Realistic Dynamic Visual

AssessmentEnv. Interaction Needed

WebShop (Yao et al., 2022a) 12,087 1 ✗ ✓ ✗ End-to-end
Mind2Web (Deng et al., 2024) 2,350 5 ✓ ✗ ✗ End-to-end
WebArena (Zhou et al., 2023) 812 4 ✓ ✓ ✗ End-to-end
VisualWebArena (Koh et al., 2024) 910 3 ✓ ✓ ✓ End-to-end
VisualWebBench (Liu et al., 2024) 1,500 12 ✓ ✗ ✓ Fine-grained

Table 1: Comparison between recent benchmarks in the web environment. Realistic Env. denotes whether the
benchmark’s environments are based on actual web pages or realistic web navigation simulations. Dynamic
Interaction indicates whether the benchmark supports dynamic interactions rather than remaining in static states.
Visual Needed denotes whether the benchmark involves visually grounded tasks. Assessment refers to the types of
assessment. An end-to-end benchmark includes tasks with simple instructions, requiring step-by-step solutions to
reach the final answers. A fine-grained benchmark contains tasks with a detailed assessment of essential skills in the
web environment such as Optical Character Recognition (OCR), and semantic understanding.

Category Dataset #Dialogues #Utterance #Domains

ToD

MultiWOZ 1.0 (Budzianowski et al., 2018) 10,438 75,894 7
MultiWOZ 2.0 (Ramadan et al., 2018) 8,438 63,841 7
MultiWOZ 2.1 (Eric et al., 2020) 7,032 57,022 7
MultiWOZ 2.2 (Zang et al., 2020) 10,438 71,572 7
SGD (Rastogi et al., 2020) 22,825 463,284 20
STAR (Mosig et al., 2020) 6,652 127,833 13
AirDialogue (Wei et al., 2018) 4,000 52,000 1
UniDA (He et al., 2022) 70,726 975,780 13

User Persona

PersonaChat (Zhang et al., 2018a) 11,907 164,356 1
ConvAI2 (Dinan et al., 2019) 13,500 182,150 1
Baidu PersonaChat (PapersWithCode, 2020) 20,000 280,000 1
JPersonaChat (Sugiyama et al., 2021) 10,000 140,000 1
JEmpatheticDialogues (Sugiyama et al., 2021) 25,000 350,000 1
DailyDialog (Li et al., 2017) 13,118 102,979 10

Table 2: A list of commonly used datasets for ToD modeling and user persona modeling. Among them, different
versions of MultiWOZ (Budzianowski et al., 2018; Ramadan et al., 2018; Eric et al., 2020; Zang et al., 2020)
and PersonaChat (Zhang et al., 2018a) are the most commonly used. Updated versions of MultiWOZ improve in
several aspects: data quality, dialogue complexity, schema and ontology updates, and dataset sizes. PersonaChat
contains various persona profiles, consisting of background, preferences, and personality traits. These profiles
enable the modeling of coherent and contextual multi-turn diverse dialogue scenarios. For applications in user
persona modeling, Tu et al. (2023) match individuals with persona-compatible virtual supporters and introduces the
MBTI-S2Conv dataset, containing conversations between characters with distinct profiles. Lotfi et al. (2024) and
Han et al. (2024) both propose synthetic datasets related to the Big Five personality.
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Paper Scene Dataset Method Task

Li et al. (2023b)
Hotel, Movies

& TV,
Restaurant

TripAdvisor,
Amazon, Yelp

Embeddings,
Prompting,
Fine-tuning

Aspect extraction, Rating Prediction

P5 (Geng et al.,
2022)

Sports, Beauty,
Toys, Yelp

Amazon (Ni et al.,
2019), Yelp

Pretraining,
Prompting

Rating Prediction, Sequential Recommendation,
Explanation Generation, Review Generation,
and Direct Recommendation

PETER Li et al.
(2021)

Hotel, Movies
& TV,

Restaurant

TripAdvisor,
Amazon, Yelp

Transformer Rating prediction and Explanation Generation

PEPLER (Li et al.,
2023a)

Hotel, Movies,
TV and

Restaurant

TripAdvisor5
(Hotel), Amazon

(movies& TV) and
Yelp7 (restaurant)

Prompting,
Fine-tuning

Explanation Generation

PALR (Yang et al.,
2023b)

Movies, Beauty MovieLens-1M
(Harper and

Konstan, 2015),
Amazon Beauty (Ni

et al., 2019)

Fine-tuning,
User Profile
Generation,
Retrieval

User Profile Generation and Direct Recommen-
dation

Chu et al. (2023)
Sports,

Outdoors,
Beauty, Toys
and Games

Amazon Fine-tuning Rating Prediction, Sequential Recommendation,
Direct Recommendation, Explanation Genera-
tion and Review Summarization

Liu et al. (2023)
Beauty Amazon Prompting Rating Prediction, Sequential Recommendation,

Direct Recommendation, Explanation Genera-
tion and Review Summarization

Zhang et al. (2023)
Video Games Amazon Instruction

tuning
Sequential Recommendation and Direct Recom-
mendation

Hou et al. (2024)
Movies Amazon (Ni et al.,

2019),
MovieLens-1M

Harper and Konstan
(2015)

Prompting Sequential Recommendation

Wang and Lim
(2023)

Movies MovieLens-1M
(Harper and

Konstan, 2015)

Prompting Sequential Recommendation and Direct Recom-
mendation

Chen et al. (2022)
News MIND (Wu et al.,

2020), Reddit
Fine-tuning
with weak

labels

Direct Recommendation

Table 3: An overview of existing research in recommendation. Following the classification of Liu et al. (2023),
we classify recommendation systems into five types: rating prediction, sequential recommendation, explanation
Generation, and review generation, and direct recommendation.

Dataset Scene Task #Instances #Users #Items

Amazon Review (Ni et al., 2019) Products Ratings,
Reviews

233.1M 43.53M 15.17M

MovieLens (Harper and Konstan, 2015) Movies Ratings 100,000 1,000 1,700

Yelp (Yelp, 2013) Businesses Ratings &
Reviews

6,990,280 1,987,897 150,346

TripAdvisor (Li et al., 2023a) Hotels,
Restaurants

Ratings &
Reviews

320,023 9,765 6,280

MIND (Wu et al., 2020) News Sequence rec-
ommendation

15M 1M 160k

Table 4: A list of commonly used datasets in personalized LLMs for recommendation and search task. For the fifth
column, the instances include reviews and ratings.
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Domain Dialogue, Slots, and State

Restaurant

[USER:] I need a place to dine in the center that’s expensive.
Slots: restaurant-area: centre, restaurant-pricerange: expensive
State: active_intent: find_restaurant

[SYSTEM:] I have several options for you; do you prefer African, Asian, or British food?
State: active_intent: find_restaurant, requested_slots: restaurant-food

[USER:] Any sort of food would be fine, as long as it is a bit expensive. Could I get the phone number for
your recommendation?
Slots: restaurant-area: centre, restaurant-pricerange: expensive, restaurant-food
State: active_intent: find_restaurant, requested_slots: restaurant-phone

[SYSTEM:] There is an African place named Bedouin in the center. How does that sound?
Slots: restaurant-name: Bedouin

[USER:] Sounds good, could I get that phone number? Also, could you recommend me an expensive hotel?
Slots: restaurant-area: centre, restaurant-name: Bedouin, restaurant-pricerange: expensive, restaurant-phone
State: active_intent: find_restaurant, requested_slots: restaurant-phone

Hotel

[SYSTEM:] Bedouin’s phone is 01223367660. As far as hotels go, I recommend the University Arms Hotel
in the center of town.
Slots: hotel-name: University Arms Hotel
State: active_intent: find_hotel

[USER:] Yes. Can you book it for me?
State: active_intent: find_hotel, requested_slots: hotel-booking

[SYSTEM:] Sure, when would you like that reservation?

[USER:] I want to book it for 2 people and 2 nights starting from Saturday.
Slots: hotel-bookday: Saturday, hotel-bookpeople: 2, hotel-bookstay: 2
State: active_intent: book_hotel, slot_values: hotel-bookday: Saturday, hotel-bookpeople: 2, hotel-
bookstay: 2

[SYSTEM:] Your booking was successful. Your reference number is FRGZWQL2. May I help you further?
Slots: hotel-bookday: Saturday, hotel-bookpeople: 2, hotel-bookstay: 2, reference number: FRGZWQL2

[USER:] That is all I need to know. Thanks, goodbye.
[SYSTEM:] Thank you so much for Cambridge TownInfo center. Have a great day!

Table 5: An example of ToD modeling from the MultiWOZ dataset (Zang et al., 2020).

Persona Chat

I fly airplanes.
I enjoy building
computers.
My favorite band
is tool.
I am in the army.
I dropped out of
college.

[PERSON 1:] Hello how are u tonight
[PERSON 2:] Hi. I am okay. tired, but okay. how are you ?
[PERSON 1:] I am doing good should be sleeping i have school but can’t sleep
[PERSON 2:] I did not finish school, I enlisted in the army instead .
[PERSON 1:] Wow I am only 14 so I can’t do that just yet but I hope too
[PERSON 2:] nice. stay in school and work hard .
[PERSON 1:] I try i like video games and race cars
[PERSON 2:] I like video games too, fallout is my favorite.
[PERSON 1:] I am a call of duty girl i can’t wait for the new one
[PERSON 2:] My younger brother is a cod player too. he is pretty good .
[PERSON 1:] I have three best friends but lots of other friends that play it
[PERSON 2:] I have a best friend, she is a pilot like me.
[PERSON 1:] What kind of plane do u fly
[PERSON 2:] A bomber, it is awesome. do you want to take lessons
[PERSON 1:] I am kinda afraid of heights so not sure flying is for me
[PERSON 2:] You should at least try to go up in a plane, it is a blast.

Table 6: An example of user persona modeling (§3.5) from Persona-Chat dataset (Zhang et al., 2018b).
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