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ABSTRACT

Diffusion models based on stochastic differential equations (SDEs) gradually per-
turb a data distribution p(x) over time by adding noise to it. A neural network
is trained to approximate the score ∇x log pt(x) at time t, which can be used
to reverse the corruption process. In this paper, we focus on learning the score
field that is associated with the time evolution according to a physics operator
in the presence of natural non-deterministic physical processes like diffusion. A
decisive difference to previous methods is that the SDE underlying our approach
transforms the state of a physical system to another state at a later time. For that
purpose, we replace the drift of the underlying SDE formulation with a differen-
tiable simulator or a neural network approximation of the physics. At the core of
our method, we optimize the so-called probability flow ODE to fit a training set of
simulation trajectories inside an ODE solver and solve the reverse-time SDE for
inference to sample plausible trajectories that evolve towards a given end state. We
demonstrate the competitiveness of our approach for different challenging inverse
problems.

1 INTRODUCTION

Many physical systems are time-reversible on a microscopic scale. For example, a continuous mate-
rial can be represented by a collection of interacting particles (Gurtin, 1982; Blanc et al., 2002) based
on which we can predict future states of the material. We can also compute earlier states, meaning
we can evolve the simulation backwards in time (Martyna et al., 1996). When taking a macroscopic
perspective, we only know the average quantities within specific regions (Farlow, 1993), which con-
stitutes a loss of information. It is only then that time-reversibility is no longer possible, since many
macroscopic and microscopic initial states exist that evolve to yield the same macroscopic state.

In the following, we target inverse problems to reconstruct the distribution of initial macroscopic
states for a given end state. This genuinely tough problem has applications in many areas of scien-
tific machine learning (Zhou et al., 1996; Gómez-Bombarelli et al., 2018; Delaquis et al., 2018;
Lim & Psaltis, 2022), and existing methods lack tractable approaches to represent and sample
the distribution of states. We address this issue by leveraging continuous approaches for diffu-
sion models in the context of physical simulations. In particular, our work builds on the reverse-
diffusion theorem (Anderson, 1982). Given the functions f(·, t) : Rd → Rd, called drift, and
g(·) : R→ R, called diffusion, it can be shown that under mild conditions, for the forward stochas-
tic differential equation (SDE) dx = f(x, t)dt+ g(t)dw there is a corresponding reverse-time SDE
dx = [f(x, t) − g(t)2∇x log pt(x)]dt + g(t)dw̃. In particular, this means that given a marginal
distribution of states p0(x) at time t = 0 and pT (x) at t = T such that the forward SDE transforms
p0(x) to pT (x), then the reverse-time SDE runs backward in time and transforms pT (x) into p0(x).
The term∇x log pt(x) is called the score.

This theorem is a central building block for SDE-based diffusion models and denoising score match-
ing (Song et al., 2021c; Jolicoeur-Martineau et al., 2021), which parameterize the drift and diffusion
in such a way that the forward SDE corrupts the data and transforms it into random noise. By train-
ing a neural network to represent the score, the reverse-time SDE can be deployed as a generative
model, which transforms samples from random noise pT (x) to the data distribution p0(x).

In this paper, we show that a similar methodology can likewise be employed to model physical
processes. We replace the drift f(x, t) by a physics model P(x) : Rd → Rd, which is implemented
by a differentiable solver or a neural network that represent the dynamics of a physical system, thus
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Figure 1: Overview: we employ a physics simulator P to learn the score field ∇x log pt(x) with a neural
network sθ in the presence of noise or uncertainties. The trained model allows for sampling the posterior of p0,
i.e. different states that explain an observation pT , via probability flow or by solving the reverse-time SDE.

deeply integrating physical knowledge into our method. The end state at t = T on which the forward
SDE acts is not fully destroyed by the diffusion g(t), but instead, the noise acts as a perturbation of
the system state over time. An overview of our method is shown in figure 1.

To the best of our knowledge, our work is the first to leverage the reverse-diffusion theorem as a
method for solving inverse problems of physical systems. As such, our primary aim is to demon-
strate how existing algorithms from this field can be used in the context of physics simulations.
We showcase the efficacy of the score matching viewpoint on physics problems with a range of
challenging inverse problems. Specifically, our contributions are:

1. We develop a framework in which we incorporate the reverse-diffusion theorem and score
matching into a method for solving inverse problems that involve the time evolution
of physical systems. We demonstrate its competitiveness against common baseline ap-
proaches using the heat equation as an example.

2. We highlight the effectiveness of our method with a more challenging inverse problem
where we simulate a fluid-based transport process backwards in time in the presence of
randomized obstacles. Here, we compare our method to different strategies for learned
solvers.

3. Finally, we show that this approach can even be used when the underlying SDE is unknown.
Our approach can be combined with operator learning methods and we demonstrate its
effectiveness for learning the Navier-Stokes equation in the turbulent regime.

2 BACKGROUND AND RELATED WORK

Learned solvers: Numerical simulations benefit greatly from machine learning models (Tompson
et al., 2017; Morton et al., 2018; Pfaff et al., 2020; Li et al., 2020). By integrating a neural network
inside differential equation solvers, it is possible learn to reduce numerical errors (Tompson et al.,
2017; Kochkov et al., 2021; Brandstetter et al., 2022) or guide the simulation towards a desired
target state (Holl et al., 2020b; Li et al., 2022). As errors may accumulate quickly over time, trained
networks benefit from gradients that are backpropagated over multiple time steps (Um et al., 2020).

Diffusion models: Diffusion models (Ho et al., 2020; Song et al., 2021c) have been considered for a
wide range of applications. Most notably, diffusion models have been proposed for image (Dhariwal
& Nichol, 2021), video (Ho et al., 2022; Höppe et al., 2022; Yang et al., 2022) and audio synthesis
(Chen et al., 2021). Recently, Bansal et al. (2022) have proposed to train generalized diffusion
models for arbitrary transformations and suggest that fully deterministic models without any noise
are sufficient for generative behaviour.
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Specifically for uncertainty quantification, solving inverse problems and conditional sampling many
methods have been proposed (Chung et al., 2021; 2022; Song et al., 2021b; Kawar et al., 2021;
Ramzi et al., 2020). However, most approaches either focus on the denoising objective that is com-
mon for tasks involving natural images, or the synthesis process of solutions does not take the
underlying physics directly into account.

Generative modeling via SDEs: Classical denoising score matching approaches based on Langevin
dynamics (Vincent, 2011; Song & Ermon, 2019, SMLD) and based on discrete Markov chains, e.g.
Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020, DDPM), can
be unified in a time-continuous framework using SDEs (Song et al., 2021c). Given a distribution of
states p0(x) at time t = 0, an SDE transforms p0(x) to a tractable distribution pT (x)

dx = f(x, t)dt+ g(t)dw, (1)

with w the standard Brownian motion, a drift f(·, t) : Rd → Rd and diffusion g(·) : R→ R, which
for x0 ∼ p0(x) yields a diffusion process (xt)

T
t=0. As outlined above, the reverse-time SDE of the

reverse-diffusion theorem (Anderson, 1982) is given by

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̃, (2)

with ∇x log pt(x) being the score. By sampling from the tractable distribution pT (x) and simu-
lating the reverse-time SDE equation (2), we can generate samples from p0(x). Since the score
∇x log pt(x) is not known analytically, it is approximated by a neural network.

Continuous normalizing flows: Continuous normalizing flows (CNFs) are invertible generative
models based on neural ODEs. Given an initial distribution z0 ∼ pz0(z0) and a function f(z(t), t; θ)
represented by a neural network, a CNF is trained to solve the ODE ∂z(t)/∂t = f(z(t), t; θ) with
boundary conditions z(t0) = z0 and z(t1) = x, where x ∈ Rd is a sample from the training data
set. A useful property of CNFs is that it is cheap to compute the log-likelihood of data samples, due
to the instantaneous change of variables formula ∂ log p(z(t))/∂t = −Tr(∂f/∂z(t)) (Grathwohl
et al., 2019). The evolution of the marginal probability density pt(x) for the SDE in equation (1)
is described by Kolmogorov’s forward equation (Øksendal, 2003). Maoutsa et al. (2020) and Song
et al. (2021c) show that there exists an ODE with the same Kolmogorov forward equation. This
ODE is called probability flow ODE and is given by

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (3)

The probability flow ODE equation (3) represents a CNF and, if f(x, t) is known, a network sθ
parameterized by θ representing∇x log pt(x) can be trained via maximum likelihood using standard
methods (Chen et al., 2018). While the evolution of pt(x) is the same between the probability flow
ODE from equation (3) and the reverse-time SDE from equation (2), there are caveats due to the
approximation by sθ(x, t) (Song et al., 2021b; Lu et al., 2022). Huang et al. (2021) show that
minimizing the score-matching loss is equivalent to maximizing a lower bound of the likelihood
obtained by sampling from the reverse-time SDE.

A recent variant combines score matching with CNFs (Zhang & Chen, 2021), and employs a joint
training of the drift and score with an integration backwards in time.

3 METHOD

Modeling assumptions We consider a known physics model P(x) : Rd → Rd that is differen-
tiable and approximates the time evolution, i.e. xtm+1 ≈ xtm + (tm+1 − tm) · P(xtm). One of
our key modelling choices is to describe the time evolution of the physical system by a stochastic
differential equation

dx = P(x)dt+ g(t)dw, (4)

with a diffusion process g(·) : R → R that perturbs the simulation states. We can simulate paths
from this SDE using Euler-Maruyama steps, i.e. for a time discretization t0 < t1 < ... < tM and
initial state xt0 , we obtain the iteration rule

xtm+1
← xtm + (tm+1 − tm) · P(xtm) +

√
tm+1 − tm · g(tm)ztm , (5)
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Figure 2: During the training phase, we optimize sθ(x, t) that approximates the score ∇x log pt(x) inside
the probability flow ODE to fit the data trajectories. For the inference part, we simulate trajectories of the
reverse-time SDE.

where ztm are i.i.d. with ztm ∼ N (0, I). The random noise g(tm)ztm that is added to the
data at each time step can be regarded as either noise inherent to the physical problem, or
as noise from a measurement process. As training data, we consider a set of N trajectories
{(xti,n)i=0,...,M}n=0,...,N sampled with equation (5) and which describe the evolution of a physical
system.

Inverse Problem Given an end state xT we are interested in recovering a likely tra-
jectory (xpred

ti )i=0,...,M that evolves towards xT . More formally, the set of trajectories
{(xti,n)i=0,...,M}n=0,...,N implicitly defines marginal likelihoods pt(x) at every time step t which
are linked through the SDE equation (4) of the physical system by the Kolmogorov forward equa-
tion. The solution trajectory may not be unique, so we want to sample from the full posterior instead
of obtaining only a maximum likelihood solution, i.e. we want to sample from p0(x|xT ).

Method In line with previous work in score-based generative modeling (Song & Ermon, 2019;
Song et al., 2021c), we approximate the score ∇x log pt(x) of the marginal likelihoods by a neural
network sθ(x, t). We optimize sθ(x, t) via maximum likelihood training of the probability flow
ODE, as discussed in section 2. For this, we maximize a variational lower bound for the maximum
likelihood objective, which we estimate by minimizing the following loss

L
(
(xti)

M
i=0, θ

)
=

M∑
i=1

||xti − xODE
ti ||22 (6)

s.t. xODE
0 = xT +

∫ 0

T

P(xODE
t )− 1

2
g2(t)sθ(x

ODE
t , t)dt, (7)

where we sample a SDE trajectory (xti)
M
i=0 from the training set. We give theoretical justification

for this objective in appendix A. Intuitively, our method fits bijective and deterministic trajectories
of the probability flow ODE to the non-determinisic SDE trajectories. In contrast to previous work,
our method deeply integrates a prior about the physical system in the form of the simulation operator
P(x) into the training process. In this context, the end state at t = T is not fully destroyed by the
noise, but instead the noise acts as a perturbation of the system state over time. An overview of our
method is shown in figure 2.

Given an end state xT , we can solve the probability flow ODE backwards in time using the trained
score function sθ(x, t) to obtain a trajectory (xpred

ti )i=0,...,M . However, this will only give a sin-
gle, deterministic solution and not allow for sampling from the posterior p(x |xT ). We simulate
trajectories from the reverse-time SDE (see section 1) via

dx =
[
P(x)− g2(t)sθ(x, t)

]
dt+ g(t)dw. (8)

The evolution of marginal probabilities pt(x) for this SDE is the same as for the probability flow
ODE equation (7) (Song et al., 2021c). Moreover, by the reverse-diffusion theorem (Anderson,
1982), SDE equation (8) is the time-reverse of the physical system SDE from equation (4). There-
fore, we can appxocimate sampling from p(x|xT ) by simulating trajectories from SDE equation (8)
using any traditional SDE solver. In the following, we refer to the integration of the physics model
P(x) into the score-based modelling approach as score matching via differentiable physics, or
SMDP in short. We denote trajectories from the probability flow ODE by SMDP-ODE, and those
obtained by simulating the reverse-time SDE by SMDP-SDE.
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Algorithm 1 SMDP-ODE, SMDP-SDE

Require: xtM , {tm}Mm=0, {gtm}
M
m=0

1: for m←M to 1 do
2: p← P(xtm)
3: s← −g2tmsθ(xtm , tm)/2
4: if SMDP-ODE then
5: xtm−1 ← xtm−(tm−tm−1) ·(p+s)

6: if SMDP-SDE then
7: xtm−1 ← xtm−(tm−tm−1)·(p+2s)
8: z ∼ N (0, I)
9: xtm−1 ← xtm−1 +gtm

√
tm − tm−1z

10: return xt0

Training and Inference Algorithm 1 gives
an overview of SMDP inference for the ODE as
well as the SDE variant when using the explicit
Euler method as ODE solver. For simplicity, we
also employ the explicit Euler method for train-
ing and backpropagate gradients through multi-
ple solver steps when computing the ODE tra-
jectory in equation (7) to obtain updates for θ.
We also refer to this procedure as unrolling the
dynamics. Our training setup is similar to Um
et al. (2020), which was originally developed
for training correction functions in the con-
text of controlling numerical errors for physical
simulations. In particular, in our implementa-
tion, we consider a sliding window for unrolling the dynamics, which makes our training very flex-
ible, i.e. we can consider single-step updates as well as unrolling the entire simulation. We give a
more detailed descriptions about our training setup in appendix A. We consider an additional variant
of SMDP, for which we apply a bidirectional training, i.e. instead of only training the probability
flow ODE for the time-backward direction T → 0 we alternate with optimizing the time-forward
direction 0→M , i.e. equation (7) becomes

xODE
T = x0 +

∫ T

0

P(xODE
t )− 1

2
g2(t)sθ(x

ODE
t , t)dt, (9)

4 EXPERIMENTS

We conduct several experiments to demonstrate the advantages of SMDP compared to a number of
baseline methods. The source code for all experiments will be made available upon acceptance. We
first consider the 2D heat equation in section 4.1, where our objective is to find possible initial states
at time t = 0 given a noisy end state at time t = T .

In our second experiment in section 4.2, we transfer the established practices to a more challenging
problem, where we are interested in reconstructing the trajectory of a buoyancy-driven flow within
a closed simulation domain given an end state at time T . What makes this problem challenging
is that for each simulation, we place different obstacles at different positions within the simulation
domain. Then, in section 4.3, we consider the situation where the physics of the system is unknown.
For this purpose, we consider training a network that approximates the solutions to the Navier-
Stokes equations and a network that approximates the score field. We demonstrate that by doing
so, we obtain an improved performance for inverse problems and the learned score can be used to
refine predictions in post-processing. We provide additional results in the appendix. In appendix
B we compare our method with implicit score matching (Hyvärinen, 2005) in a toy experiment,
which demonstrates the importance of include physics dynamics in the training. We analyze how
many steps are required when unrolling the dynamics for obtaining stable trajectories in appendix
C. Finally, in appendix we give an additional evaluation of quality and diversity of the posterior
distribution we obtain when sampling from the reverse-time SDE in the heat equation experiment.

Figure 3: Heat diffusion case. We simulate a Gaussian random field at t = 0 forwards in time using equa-
tion (5).Given sθ we can either solve the probability flow ODE or simulate trajectories of the reverse-time SDE
to obtain solutions for the state at t = 0.
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Method MSE [10−5] ↓ Spectral
error ↓

Full
posterior

SMDP-ODE 0.74 3.62 ✗
SMDP-SDE 5.56 0.56 ✓

ResNet-S 2.17 1.67 ✗
ResNet-P 2.30 1.09 ✗
BNN-S 3.47× 102 1.25 ✓
BNN-P 3.81× 102 0.99 ✓
FNO-S 2.54× 104 1.60 ✗
FNO-P 2.50× 104 1.47 ✗
HeatGen 1.39 4.45 ✗
HeatGen+noise 4.45 3.24 ✓

Table 1: Evaluation of reconstruction MSE and spectral er-
ror for SMDP and baselines. The column full posterior indi-
cates whether models yield point estimates or allow to sample
from the posterior.
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Figure 4: Spectral density on different
scales, the red line indicating ground truth.
The closer a method is to the ground truth,
the better it produces structures of a similar
scale.

4.1 HEAT EQUATION

We consider the heat equation ∂u
∂t = α∆u which plays a fundamental role in many physical systems.

Here, we set the diffusivity constant to α = 1 and initial conditions at t = 0 are generated from
Gaussian random fields with n = 4 at resolution 32 × 32. We simulate the heat diffusion using
a spectral method until t = 0.2 with a fixed step size ∆t = 6.25 × 10−3 using the iteration rule
from equation (5) with g ≡ 0.1. Our training data set consists of 2.500 initial conditions with their
corresponding trajectories sampled with varying step size ∆t and end states at t = 0.2. The test set
is comprised of 500 initial conditions and corresponding end states generated directly without any
noise.

Training We consider a small ResNet-like architecture based on an encoder and decoder part (see
appendix E) as representation for the score function sθ(x, t). The physics model P is implemented
via differentiable programming in JAX (Schoenholz & Cubuk, 2020). For better comparison with
the baseline methods, these are trained with a Gaussian random noise of σ = 0.1 added to the inputs.
This noise is applied to all network inputs during testing.

Baseline methods As baseline methods, we consider the ResNet-like architecture from above, in
addition to a Bayesian neural network (BNN) based on a U-Net architecture with spatial dropout
(Mueller et al., 2022), as well as a Fourier neural operator (FNO) network (Li et al., 2020). For each
of these three methods, we consider two variants: the first variant is trained with a supervised loss,
i.e. the training data consists of pairs (x0,xT ) with initial state x0 and end state xT . The supervised
loss corresponds to the squared L2 distance between the network prediction xpred

0 and the ground
truth, i.e. (xpred

0 −x0)
2. For the second variant, the reconstruction loss, we rely on the differentiable

solver and only make use of the end state xT such that the loss becomes (P(xpred
0 ;T )−xT )

2, i.e we
simulate the network output forward in time using P to obtain a state at t = T , which we compare
to the desired end state xT . We denote the supervised variant by S and the physics-based one by
P. Additionally, we consider an adopted generative model from Rissanen et al. (2022), denoted by
HeatGen. We train this network similarly to SMDP-ODE, but without the solver P , such that the
network has to learn the score and the physics at the same time.

Reconstruction accuracy vs. fitting the data manifold We give an evaluation of our method and
the baselines by considering the reconstruction MSE on the test set: how well a predicted initial
state x̂0 that is simulated forward in time yields states that correspond to the reference end state xT

in terms of MSE. This metric has the disadvantage that it does not measure how well the prediction
matches the training data manifold, i.e. for this case whether the prediction resembles the statistics
of the Gaussian random field. For that reason, we additionally compare the power spectral density
of the states as the spectral loss. The corresponding measurements are given in table 1, which
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Figure 6: Buoyancy flow case. Ground truth shows the marker density and velocity field in the x-direction at
different points of the simulation trajectories. The simulation end state at t = 0.65 is the input to SMDP-ODE
and SMDP-SDE.

show that our method SMDP-ODE performs best in terms of the reconstruction MSE. However,
solutions obtained by SMDP-ODE are very smooth and do not contain the small-scale structures of
the references, which is reflected in a high spectral error that is also visually prominent, as shown
in figure 4. SMDP-SDE on the other hand performs very well in terms of spectral error and yields
visually convincing solutions with only a slight increase in the reconstruction loss. We note that
there is a natural tradeoff between both metrics, and SMDP-ODE and SMDP-SDE perform best for
both cases respectively while using the same set of weights.
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Figure 5: Reconstruction MSE and spectral
errors for the bidirectional (top) and regular
variant (bottom). The x-axis shows the rela-
tive increase of the number of time steps dur-
ing inference compared to training. Large
errors are truncated at the top of each graph.

Ablation study We performed an ablation study to
highlight several design choices of the proposed method.
In particular we note that despite fundamental differences
between SMDP-ODE and SMDP-SDE, as explained in
section 3, the main difference at inference time is the
constant factor for sθ and the noise term g(t)dw for
SMDP-SDE, cf. equations (7) and (8). We investigated
how the change in noise integration affects the perfor-
mance of SMDP-ODE, and considered a variant SMDP-
ODE+noise that includes the addition of the noise term
during inference, but is otherwise identical to SMDP-
ODE. As shown with crosses in figure 5, this method
has a slightly higher reconstruction loss but in contrast
to SMDP-SDE does not improve upon the spectral error.
This indicates that SMDP-SDE can recover small-scale
distributions of the references, while the ODE variant by
construction tends to favour smooth solutions when faced
with uncertainties. We additionally investigated the effect
of the proposed bidirectional training scheme. The error
measurements of Figure 5 show that ODE variant is not
affected, but SMDP-SDE significantly benefits. The re-
sulting model robustly handles a wide range of different
temporal discretizations for inference, which deviate from the training discretization, with high ac-
curacy. In conclusion, our SMDP-SDE model with bidirectional training yields the best performance
for a wide range of hyperparameter settings. In appendix F, we additionally evaluate the effects of a
logarithmic time discretization and a physics-conditioned score field.

4.2 BUOYANCY-DRIVEN FLOW WITH OBSTACLES

Next, we test our methodology on a more challenging problem. For this purpose we consider sim-
ulations of buoyancy-driven flow within a fixed domain Ω ⊂ [0, 1] × [0, 1] and randomly placed
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obstacles. We make use of semi-Lagrangian advection for the velocity and MacCormack advec-
tion for the hot marker density. The temperature dynamics of the marker field are modeled with a
Boussinesq approximation. Each simulation runs from time t = 0.0 to t = 0.65 with a step size of
∆t = 0.01. The inflow at (0.2, 0.5) is active until t = 0.2. Our objective is to employ SMDP-ODE
and SMDP-SDE to obtain trajectories that reconstruct a plausible flow given an end state of the
marker density and velocity fields at time t = 0.65.

Our training data set consists of 250 simulations with corresponding trajectories. For the data gen-
eration, we make use of the differentiable phiflow solver (Holl et al., 2020a). We place spheres and
boxes with varying sizes at different positions within the simulation domain that do not overlap with
the marker inflow. For each simulation, we place one to two objects of each category. The testing set
comprises 5 simulations. In contrast to the previous task, we generate the training data set without
any noise, but add a Gaussian random noise with standard deviation σ =

√
∆t to each simulation

state of the training trajectories.

Configuration MSE↓ LPIPS↓ [10−3]

ODE SDE ODE SDE

SMDP 0.05 0.78 5.82 147.17
Rollout noise 0.12 1.03 9.10 145.72
Physics cond. score 0.15 1.25 5.94 360.54
Bidir. training 0.4 0.61 24.19 134.21
Decoupled score&phys. 0.07 0.72 7.78 67.23

Fully learned 0.28 - 12.54 -
Physics only 0.5 - 346.31 -

Table 2: Evaluation of variants for the buoyancy obstacle case in terms
of reconstruction MSE and LPIPS of the marker field.

Training and Results We em-
ploy a neural network architec-
ture based on dilated convolu-
tions (Stachenfeld et al., 2021)
for sθ(x, t), see appendix E. The
physics operator P(x) is imple-
mented by using a negative step
size −∆t for time integration.
The training of SMDP-ODE is
analogous to the previous exper-
iments on heat equation in sec-
tion 4.1. However, we do not un-
roll the entire trajectory and ap-
ply a sliding window with size
20. For this case, we compare our method to a fully learned baseline method. A quantitative eval-
uation in terms of reconstruction MSE and LPIPS metrics (Zhang et al., 2018) is given in table 2.
It becomes apparent that our ODE method clearly outperform the learned baseline. Interestingly,
the SDE variant performs less well for this test case. This behavior can be explained by the highly
nonlinear system dynamics, and the comparatively approximate reverse simulator which yields the
substantial errors for the Physics only version in table 2. These errors causes the score network to
inadvertently learn significant corrections of the physics operator, which deteriorates the quality of
the score field. Nonetheless, as qualitatively shown in figure 6, both variants are able to accurately
recover the initial states despite the complex motion of the fluid around the obstacles.

Algorithmic variants We evaluate several altered configurations of our SMDP method to further
illustrate its behavior. We consider adding noise during rollouts, i.e. adding a noise term σ · z for
z ∼ N (0, I) to the state x after applying the score and physics updates during training. Additionally,
we experiment with a physics conditioned score, i.e. we extend the input dimension of the score
function to accept concatenated inputs of the form sθ([x,P(x)], t). We also evaluate the effects of
the bidirectional training. Finally, we evaluate a version that decouples score and physics, i.e. we do
not evaluate the score and physics update on the same input x, but instead we first apply the physics
update P(x), and evaluate the score function afterwards. Overall, the error measurements in table 2
justify our choices for the baseline SMDP algorithm.

4.3 ISOTROPIC TURBULENCE

As third example, we consider a problem where the physics operator is unknown, i.e. we approxi-
mate both P and the score ∇x log pt(x) by neural networks. We consider the problem of learning
the time evolution of isotropic, forced turbulence as determined by the 2D Navier-Stokes equations
with a viscosity of ν = 10−5 (Li et al., 2020). The training data set consists of vorticity fields
from 1000 simulation trajectories from t = 0 until T = 10 with ∆t = 1 and a spatial resolution of
64×64. Our objective is to predict a trajectory x̂0:10 that reconstructs the true trajectory x0:10 given
an end state x10 of the solution, whereas in the original paper, the objective was to learn an operator
mapping predicting the vorticity at a later point in time.
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Figure 7: Turbulence case. Comparison of reconstructed trajectories at t = 9.

Methods We represent the physics operator P(x) by a FNO neural network and the score by the
ResNet-based architecture from section 4.1. As a first step of our method, we optimize the physics
model P using our SMDP training setup from the previous two experiments, but fix the score to
sθ(x, t) ≡ 0. We denote this method by Learned physics. As a second step, we train SMDP-ODE
with the decoupled score and physics variant by optimizing the time-dependent score sθ(x, t) while
freezing the physics model P . This approach guarantees that any time-independent physics are
captured by P and sθ(x, t) can focus on learning small improvements to P as well as respond to
possibly time-dependent data biases. As this test employs two trained networks for both components
of the SDE, we compare to DiffFlow (Zhang & Chen, 2021) as an additional baseline.

Method MSE↓ [10−2] Spectral Error↓
SMDP-ODE 14.3 0.26
SMDP-SDE 15.3 0.17
DiffFlow 221.2 0.58
Learned physics 16.3 0.30

Table 3: Evaluation of the turbulence case.

Evaluation We give an evaluation of the
improvements of SMDP over the learned
variants in table 3. Compared to the
Learned physics variant, our methods im-
prove the mean squared error (MSE) be-
tween the ground truth trajectories and the
reconstructed trajectories slightly, while
there is an substantial decrease in the spec-
tral error. This can be seen qualitatively in
figure 7. In this scenario DiffFlow has severe difficulties to learn state updates and score field, re-
sulting in large differences in terms of MSE. As before, the SMDP-SDE method performs best in
terms of spectral error at the expense of a slightly increased MSE.

Outlook: Refinement with Langevin dynamics Since the score ∇x log pt(x) represents a data
gradient, we can use gradient-based optimization methods to find local optima of the data distribu-
tion pt(x) that are close to x. Inspired by stochastic gradient Langevin dynamics (Welling & Teh,
2011), we consider the iteration rule xi+1

t = xi
t + ϵ · ∇x log pt(x

i
t) +

√
2ϵzt, for ϵ = 2 × 10−5,

where zt ∼ N (0, I) (details in appendix H.1). Denoted by SMDP-SDE+LD in figure 7, this method
manages to extract even finer details from the reverse-time SDE solution. As such it provides an
interesting starting point for a further refinement of the SMDP results.

5 CONCLUSION

We presented SMDP, a derivative of score matching in the context of physical simulations and dif-
ferentiable physics. We demonstrated its competitiveness against different baseline methods and in
challenging inverse physics problems. We demonstrated the versatility of SMDP with two variants:
while the neural ODE variant focuses on high MSE accuracies, the neural SDE variant allows for
sampling the posterior and yields an improved coverage of the target data manifold. Despite the
promising initial results, our work gives rise to many interesting questions. In particular, the time
discretizations is a crucial issue, as for training data generation and differentiable solvers, we would
favor larger step size and less evaluations due to computational constraints, while for conventional
diffusion models, a large number of smaller time steps often yields substantial improvements in
terms of quality. Determining a good balance between accurate solutions with few time steps and
diverse solutions with many time steps will remain an important direction for future research in this
area.
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APPENDIX

A ADDITIONAL DETAILS OF TRAINING METHODOLOGY

Below we summarize the problem formulation from the main paper, and provide details about the
training procedure together with further information how the solution of the probability flow ODE
solution relates to solutions of the SDE.

Problem setting We consider the time evolution of the physical system modeled by the stochastic
differential equation

dx = P(x)dt+ g(t)dw, (10)

with a drift P : Rd → Rd and diffusion g : [0, T ] → R+, which transforms the marginal distribu-
tion p0 of initial states at time 0 to the marginal distribution pT of end states at time T . Moreover,
we assume that we have sampled N trajectories of length M from the above SDE with a fixed time
discretization 0 ≤ t0 < t1 < ... < tM ≤ T for the interval [0, T ] and collected them in a training
data set {(xti,n)i=0,...,M}n=0,...,N .

We are interested in training a neural network sθ(x, t) parameterized by θ to approximate the score
∇x log pt(x), i.e. minimize the score matching objective

JSM(θ;λ(·)) := 1

2

∫ T

0

Ex∼pt

[
λ(t) ||sθ(x, t)−∇x log pt(x)||22

]
dt, (11)

where λ : [0, T ] 7→ R+ is a weighting function. In the case of densoing score matching, where
the underlying SDE is dx = f(x, t)dt + g(t)dw for affine functions f(·) and g(·), the score can
be learned by minimizing the denoising score matching objective using transition kernels, which
enables an efficient training of diffusion models, see Song et al. (2021c) for a reference.

In our case P is an arbitrary function describing the dynamics of the physical system, and hence we
can not rely on an analytical expression for the transition kernel.

Training via Continuous Normalizing Flows Score-based diffusion models can be transformed
into continuous normalizing flows (Chen et al., 2018, CNFs), which allows for a tractable computa-
tion of the likelihood. We can train the corresponding CNF given by

dx =

[
P(x)− 1

2
g2(t)sθ(x, t)

]
dt (12)

using maximum likelihood training, i.e. maximizing

Ex0∼p0
[log pODE

0 (x0)] (13)

s.t. xT = x0 +

∫ T

0

P(xt)−
1

2
g2(t)sθ(xt, t)dt, (14)

where pODE
0 is the distribution obtained by sampling xT ∼ pT and simulating x0 using ODE

equation (12). The log-likelihood can be computed using the instantaneous change of variables
formula (Chen et al., 2018) and by using the fact that pT is approximately Gaussian. For denoising
score matching, maximum likelihood training of the corresponding CNF is usually not done, because
it requires running an ODE solver for every optimization step and the training with the denoising
score matching objective is more efficient (Huang et al., 2021; Song et al., 2021a). It was shown by
Song et al. (2021a) that there is connection between the Kullback-Leibler divergence and the score
matching objective. In particular

KL(p0 || pSDE
θ ) ≤ JSM(θ; g(·)2) + KL(pT ||π) (15)

for a prior distribution π and pSDE
θ defined by sampling xT ∼ π and solving the reverse-time SDE

using the score approximation sθ(x, t).
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Chaining CNFs For SDE equation (10), the distribution pT describes the perturbed end states and
an exact likelihood computation is no longer possible. Equivalent to maximizing the likelihood of
the CNF, we can minimize the Kullback-Leibler divergence KL(p0 || pODE

0 ).

Since in our problem setting, we do not require p0 or pT to be a simple distribution for which we
can evaluate the likelihood, we can think of the CNF from time 0 to time T as multiple smaller
CNFs chained together, e.g. we consider a chain of CNFs for the time discretizations t1 to t0,
t2 to t1 and so on. Each of those CNFs transforms the marginal probabilities pti to pti+1

via the
probability flow ODE (12) by minimizing KL(pti || p

ODE,ti+1

ti ) during training, where p
ODE,ti+1

ti is
defined by sampling xti+1

∼ pti+1
and simulating the probability flow ODE from time ti+1 until ti.

For example, we can sample xT ∼ pT and generate data from p0 by recursively using the CNFs to
generate xti given xti+1

until we reach x0. Since CNFs are bijective, this also works in the reverse
direction, i.e. we can sample x0 ∼ p0 and simulate x0 from p0 with the same method.

In the following, we will derive our method using the regular, increasing flow of time, i.e. 0 → T .
The direction T → 0 follows analogously by replacing the SDE (10) with the corresponding reverse-
time SDE (Anderson, 1982). Then, the new objective obtained by chaining the CNFs becomes the
minimization of

M−1∑
i=0

KL(pti+1
|| pODE,ti

ti+1
), (16)

where pODE,ti
ti+1

is now defined for the time increasing direction, i.e. sampling xti ∼ pti and simulat-
ing xti+1 via the probability flow ODE. If sθ(x, t) ≡ ∇x log pt(x), then by the theory of probability
flow ODEs (Song et al., 2021c), the above objective will become 0, since the marginal probabilities
pt of the SDE will coincide with the marginal likelihoods of the probability flow CNF at every time
t. In this case, then we also obtain KL(pT || pODE

T ) = 0, i.e. when sampling xt0 ∼ p0 and solving
the probability flow ODE, we obtain exactly the distribution pT .

Additional assumptions In the following, we make the same additionally assumptions as Song
et al. (2021a), Appendix A. Specifically, we require that

(i) ∃Cp > 0 ∀x ∈ Rd t ∈ [0, T ] : ||∇x log pt(x)||2 ≤ Cp(1 + ||x||2)
(ii) ∃Cs > 0 ∀θ ∀x ∈ Rd t ∈ [0, T ] : ||sθ(x, t)||2 ≤ Cs(1 + ||x||2)

(iii) ∃CP > 0 ∀x ∈ Rd : ||P(x)||2 ≤ CP(1 + ||x||2)

(iv) ∀t ∈ [0, T ] ∃k > 0 : pt(x) ∈ O(e−||x||k2 ) as ||x||2 →∞

Minimizing the Kullback-Leibler divergence The i-th summand of equation (16) can be simpli-
fied to

KL(pti+1 || p
ODE,ti
ti+1

) = Exti+1
∼pti+1

[
log

(
pti+1(xti+1)

pODE,ti
ti+1

(xti+1)

)]
(17)

= Exti
∼pti

Exti+1
∼pti+1

|xti

[
log

(
pti+1(xti+1)

pODE,ti
ti+1

(xti+1
)

)]
(18)

= −Exti
∼pti

Exti+1
∼pti+1

|xti

[
log
(
pODE,ti
ti+1

(xti+1)
)]

+ C, (19)

where C is a constant independent of θ. Thus, we can maximize the expectation:

Exti
∼pti

Exti+1
∼pti+1

|xti

[
log
(
pODE,ti
ti+1

(xti+1
)
)]

(20)

Locality of CNFs and estimating pODE,ti
ti+1

(xti+1) With the law of iterated expectations, we can
write the probability pODE,ti

ti+1
(xti+1

) in equation (20) as

pODE,ti
ti+1

(xti+1
) = Ex̂ti

∼pti

[
pODE,ti
ti+1

(xti+1
|x̂ti)

]
. (21)
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We show in the following that we can approximate the expectation in equation (21) with only neg-
ligible error κ > 0 on a different distribution p̃ti(xti+1

) that depends on xti+1
and κ. Importantly,

the support of p̃ti(xti+1
) is a bounded set with diam(supp(p̃ti(xti+1

))) → 0 as ti+1 − ti → 0 for
all xti+1 ∈ Rd . Intuitively, the score ∇x log pt(x) is determined by the (local) probabilities pt in a
small environment around x instead of the global properties of pt. This insight is an important part
of our methodology and loss estimation.

To prove this, given xti+1
, we first define a set of points x for which the density pODE,ti

ti+1
(xti+1

|x) is
greater than a chosen κ > 0, i.e. we define

Sκ(xti+1
) =

{
x ∈ Rd | pODE,ti

ti+1
(xti+1

|x) ≥ κ
}
. (22)

Then, for this set, we consider the indicator function Iκxti+1
(·), which is 1 for elements in Sκ(xti+1

)

and 0 otherwise. Then, we can rewrite equation (21) as

Ex̂ti
∼pti

[
pODE,ti
ti+1

(xti+1
|x̂ti)

]
(23)

= Ex̂ti
∼pti

[
Iκxti+1

(x̂ti)p
ODE,ti
ti+1

(xti+1
|x̂ti) + (1− Iκxti+1

(x̂ti))p
ODE,ti
ti+1

(xti+1
|x̂ti)

]
. (24)

By the definition of the set Sκ(xti+1
), we can derive the following bounds

Ex̂ti
∼pti

[
(1− Iκxti+1

(x̂ti))p
ODE,ti
ti+1

(xti+1
|x̂ti)

]
≤ κ (25)

and

Ex̂ti
∼pti

[
Iκxti+1

(x̂ti)p
ODE,ti
ti+1

(xti+1
|x̂ti) + (1− Iκxti+1

(x̂ti))p
ODE,ti
ti+1

(xti+1
|x̂ti)

]
(26)

≥ Ex̂ti
∼pti

[
Iκxti+1

(x̂ti)p
ODE,ti
ti+1

(xti+1
|x̂ti)

]
. (27)

≥ pODE,ti
ti+1

(xti+1
)− κ (28)

.

For the next part, we need to make an approximation for pODE,ti
ti+1

(·|xti).

Approximating pODE,ti
ti+1

(·|xti) as a Gaussian Since the CNF is bijective, choosing pODE,ti
ti+1

(·|xti)

as a Dirac delta function with spike located at µODE(xti) is the correct choice. Here, µODE(xti)
is defined as the solution of the probability flow ODE equation (12) for xti integrated from time
ti to ti+1. However, we are assuming that we are limited by machine precision and inexact ODE
solvers to compute µODE(x) anyway. Therefore, we make the assumption that given xti , solving
the probability flow ODE equation (12) until ti+1 will give a solution xODE

ti+1
that is approximately

Gaussian with mean µODE(xti) = xti+(ti+1−ti)(P(xti)− 1
2g

2
tisθ(xti , ti)) and standard deviation

σODE = ϵ(ti+1− ti), for an arbitrary, but small ϵ > 0. This approximation makes use of the explicit
Euler method and thus also relies on the time step ti+1−ti being sufficiently small to ensure stability
of the time integration.

Given the above approximation with Euler steps, we can derive the following bound on the distance
between x and µODE(x) using assumptions (i), (ii) and (iii)

||x̂ti − µODE(x̂ti)||2 = ||x̂ti − x̂ti − (ti+1 − ti)(P(x̂ti) +
1
2gtisθ(x̂ti , t))||2 (29)

≤ (ti+1 − ti)(||P(x̂ti)||2 + 1
2g

2
ti ||sθ(x̂ti , t))||2) (30)

≤ (ti+1 − ti)
[
(1 + CP)||x̂ti ||2 + 1

2g
2
ti(1 + Cs)||x̂ti ||2

]
(31)

≤ (ti+1 − ti)CODE||x̂ti ||2. (32)

Morover, the approximation using Gaussians gives us the following equivalence for the term
ptODE

i+1 ,ti(xti+1
|x̂ti), which we have used to define the set Sκ(xti+1

) in equation (22)

ptODE
i+1 ,ti(xti+1

|x̂ti) ≥ κ (33)

⇐⇒ 1√
(2π)d|Σ|

exp (xti+1
− µODE(x̂ti))Σ

−1(xti+1
− µODE(x̂ti))

T ≥ κ, (34)
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where Σ = σ2
ODEI . The above is then equivalent to

||xti+1
− µODE(x̂ti)||22 ≤ − log

(
κ
√

(2π)dσ2d
ODE

)
σ2
ODE (35)

Note that σODE depends on ϵ and (ti+1 − ti).

We can now finally define the distribution p̃ti(xti+1
). For this, we define the set

S̃κ(xti+1) :=
⋃

x∈Sκ(xti+1
)

{
x̃ ∈ Rd | ||x̃− x||2 ≤ (ti+1 − ti)CODE||x̃||2

}
, (36)

Now, by combining equation (35) and equation (32), we obtain diam(S̃κ(xti+1
))→ 0 as ti+1−ti →

0. For the indicator function Ĩκxti+1
(·) on S̃κ(xti+1

)), we get the bound

Iκxti+1
(x) ≤ Ĩκxti+1

(x) ∀x ∈ Rd (37)

and therefore also

Ex̂ti
∼pti

[
(1− Ĩκxti+1

(x̂ti))p
ODE,ti
ti+1

(xti+1
|x̂ti)

]
≤ κ. (38)

Given S̃κ(xti+1
), we define the distribution p̃ti(xti+1

) based on pti but with support restricted to
S̃κ(xti+1

). Then, we get the following equality

Ex̂ti
∼pti

[
Ĩκxti+1

(x̂ti)p
ODE,ti
ti+1

(xti+1
|x̂ti)

]
= Ex̂ti

∼p̃ti
(xti+1

)

[
Cxt+1

pODE,ti
ti+1

(xti+1
|x̂ti)

]
, (39)

where Cxt+1 is a normalizing constant depending on κ, ti+1 − ti and xt+1.

Maximizing the variational lower bound From Jensen’s inequality, equation (39) and equa-
tion (38), we obtain a lower bound on equation (20)

Exti
∼pti

Exti+1
∼pti+1

|xti

[
log
(
pODE,ti
ti+1

(xti+1
)
)]

(40)

≥ Exti
∼pti

Exti+1
∼pti+1

|xti

[
log
(
Ex̂ti

∼p̃ti
(xti+1

)

[
Cxt+1

pODE,ti
ti+1

(xti+1
|x̂ti)

])]
(41)

≥ Exti
∼pti

Exti+1
∼pti+1

|xti
Ex̂ti

∼p̃ti
(xti+1

)

[
log
(
Cxt+1

pODE,ti
ti+1

(xti+1
|x̂ti)

)]
(42)

= Exti
∼pti

Exti+1
∼pti+1

|xti
Ex̂ti

∼p̃ti
(xti+1

)

[
log
(
pODE,ti
ti+1

(xti+1
|x̂ti)

)
+ log(Cxt+1

)
]
, (43)

which is the same as maximizing

Exti
∼pti

Exti+1
∼pti+1

|xti
Ex̂ti

∼p̃ti
(xti+1

)

[
log
(
pODE,ti
ti+1

(xti+1
|x̂ti)

)]
(44)

Thus, instead of the original objective equation (20), we instead maximize the lower bound from
equation (44).

Deriving the L2 loss Since pODE,ti
ti+1

(· |x̂ti) is the density of a Gaussian, the objective equation (44)
is equivalent to minimizing

Exti
∼pti

Exti+1
∼pti+1

|xti
Ex̂ti

∼p̃ti
(xti+1

)

[
||xti+1 − µODE(x̂ti)||22/σ2

ODE

]
(45)

∝ Exti
∼pti

Exti+1
∼pti+1

|xti
Ex̂ti

∼p̃ti
(xti+1

)

[
||xti+1

− µODE(x̂ti)||22
]
, (46)

where

µODE(x̂ti) = x̂ti + (ti+1 − ti)

[
P(x̂ti)−

1

2
g2tisθ(x̂ti , ti)

]
. (47)
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+

+

Figure 8: Training overview for the trajectory (xt0 ,xt1 , ...,xtM ). Gradients are backpropagated over multiple
time steps via automatic differentiation. This requires that the physics operator P is differentiable. Incoming
gradients at sθ(xti , ti) are used to obtain gradients for θ, which are summed over all steps i. The network
weights θ are then updated based on the optimizer, e.g. stochastic gradient descent or Adam.

Estimating the loss The training data set {(xti,n)i=0,...,M}n=0,...,N is sampled directly from the
SDE of the physical system equation (10), so the empirical distribution pemp

ti induced by the train-
ing data set at time discretization ti is close to the marginal distribution pti for 0 ≤ i ≤ M and
sufficiently large N . We make use of this fact to approximate the sampling of xti ∼ pti and
xti+1

∼ pti+1
|xti in equation (46), by drawing a data sample xti at time ti and its next successor

xti+1
on the trajectory at time ti+1 from the training data set.

We approximate sampling from the distribution p̃ti(xti+1) by reusing the sampled xti . Intuitively,
for the CNF from ti to ti+1, our optimization fits a deterministic (bijective) process defined by the
probability flow to the non-deterministic SDE trajectories, which start at the same point.

Extension to multiple time steps We jointly train multiple time steps. First, we sample a trajec-
tory (xti , ...,xtj ) with 0 ≤ i < j ≤M from the training data set. Then, the loss becomes

j∑
k=i+1

||xtk − µk
ODE(xti)||22, (48)

where µk
ODE(xti) is the discretized trajectory from the probability flow ODE, i.e.

µi
ODE(xti) = xti (49)

µk
ODE(xti) = µk−1

ODE(xti) + (tk − tk−1)

[
P(µk−1

ODE(xti))−
1

2
g2tksθ(µ

k−1
ODE(xti), tk)

]
. (50)

For multiple steps, instead of reusing xti as a sample from p̃ti(xti+1
), we use the previous ODE

solution µk
ODE(xti). An overview of the training for multiple steps is shown in Figure 8.

Bidirectional training Since CNFs are bidirectional and our loss formulation does not make any
specific assumptions about pti and pti+1

, we can consider training the reverse time direction. In this
case, the SDE describing the physical system becomes the reverse-time SDE. Analogous to the in-
creasing time direction, we sample the trajectory (xt′i

, ...,xt′j
), but the time direction is reversed, i.e.

t′i > t′j and t0 = t′M and tM = t′0. We train the combined objective by sampling a trajectory from
the training data set and alternating between optimizing the time-forward direction equation (48),
and the corresponding time-backwards direction loss. Note that training both the directions (i.e. p0
to pT and vice versa) has been explored in other works as well, for example for training Schrödinger
Bridges (Bortoli et al., 2021; Chen et al., 2022), where the discrepancy between the final marginal
distribution (i.e. either pSDE

T or pSDE
0 ) for the time-forward and respectively time-backward (or

reverse-time) SDE is minimized.
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Rollout length The training of SMDP requires unrolling algorithm 1 as shown in figure 8. Addi-
tionally, we adopt a training method based on sliding windows. For a window size S, we consider
the points (xtM ,xtM−1

, ...,xtM−S
) from a training trajectory and unroll the SMDP algorithm 1 for

S steps. We compute the loss equation (48) and backpropagate gradients through all steps to obtain
updates for θ. Then, we move the window by 1, i.e. consider the points (xtM−1

,xtM−2
, ...,xtM−S−1

)
and compute the updates for θ. We repeat the above M times until we have covered the entire trajec-
tory. If the training data trajectories are short, we use S = M , otherwise, we pick a lower window
size S.

If S = 1, then we do not require differentiability of the physics operator P , as SMDP reduces to
predicting the next point on the trajectory given the previous point.

Starting with an untrained score network, long rollouts may yield divergent trajectories because of
the physics dynamics. Therefore losses may be very high and the training becomes unstable. We
therefore typically start training with a short sliding window, e.g. 2. We train for a few epochs and
then increase the sliding window size by a constant. We repeat this until we reach a sufficiently high
rollout length, which yields stable trajectories for the entire simultion.

We give details of this for each specific experiment either directly in the main text or the accompa-
nying appendix.

Comparison to DiffFlow Zhang & Chen (2021) train DiffFlow by considering forward and back-
ward processes in the context of generative modelling. In their setting, the drift f(x, t) is also
a learnable neural network and they consider p0 to be the data distribution and pT to resemble a
simple noise distribution. Specifically, they implement the forward and backward processes as

xi+1 = xi + fi(xi)∆ti + giδ
F
i

√
∆ti (51)

xi = xi+1 − [fi+1(xi+1)− g2i+1si+1(xi+1)]∆ti + gi+1δ
B
i+1

√
∆ti (52)

for two samples δFi , δ
B
i ∼ N (0, I) and time discretization {ti}Ni=0 and ∆ti = (ti+1 − ti).

Zhang & Chen (2021) directly minimize the KL divergence between the trajectory distribution for
the forward and backward process, i.e. they minimize

KL(pF (τ)||pB(τ)) = Eτ∼pF
[log pF (x0)] + Eτ∼pB

[log pB(xN )] (53)

+

N−1∑
i=1

Eτ∼pF

[
log

pF (xi|xi−1)

pB(xi−1|xi)

]
(54)

Using the forward and backward process discretizations as well as the fact that pB(xN ) is a Gaussian
distribution, they are able to derive a loss based on the squared difference between the forward and
backward process as well as an additional likelihood term for − log pB(xN ), see equation (15) in
their paper.

Our method on the other hand directly minimizes the KL divergence between marginal distribution
pt and the ones produced by deterministic probability flow ODE pODE

t . Thus, our loss likewise
minimizes the difference between a forward and backward trajectory. Moreover, in our case, pT is
not constrained to a simple noise distribution.

19



Under review as a conference paper at ICLR 2023

B ADDITIONAL EXPERIMENT: 1D PROCESS

We discuss an additional experiment, where we compare SMDP with Implicit Score Matching (ISM)
(Hyvärinen, 2005). For this task, we consider the SDE given by

dx = −
[
λ1 · sign(x)x2

]
dt+ λ2dw. (55)

The corresponding reverse-time SDE is given by

dx = −
[
λ1 · sign(x)x2 − λ2

2 · ∇x log pt(x)
]
dt+ λ2dw. (56)

Throughout this experiment, p0 is a categorical distribution, where we draw either 1 or −1 with
the same probability. In figure 9, we show trajectories from this SDE simulated with the Euler-
Maruyama method. Trajectories either start at 1 or −1 and approach 0 as t increases. Given the
trajectory value at t = 10, it is no longer possible to infer the origin of the trajectory at t = 0.

We employ a neural network sθ(x, t) parameterized by θ to approximate the score via ISM and
compare it to SMDP. In both cases, the neural network is a simple multilayer perceptron with tanh
activations and 5 hidden layers with 20 neurons for the first four hidden layers and 10 neurons for
the last hidden layer.

Our training data set consists of 250 simulated trajectories from t = 0 until t = 10 and ∆t = 0.02.
Therefore each training trajectory has length M = 500.

Implicit Score Matching Implicit Score Matching (Hyvärinen, 2005) is a score matching method
that leverages the fact that for a random vector x ∈ Rd with probability density function p, mini-
mizing the score matching objective

J(θ) :=
1

2
Ex∼p

[
||sθ(x)−∇x log p(x)||22

]
(57)

is equivalent to minimizing the following objective

J ′(θ) := Ex∼p

[
d∑

i=1

∂sθ(x)i
∂xi

+
1

2
sθ(x)

2
i

]
. (58)

Note that for ISM, there is no explicit time dimension, so we are absorbing the time dimension into
x, i.e. for the trajectory (x1, x2, ..., xM ) sampled at time (t1, t2, ..., tM ), we concatenate value and
time with x(i) := (xi, ti) ∈ R2. We collect xi for i = 1, ...,M from all trajectories in a new
training data set. When training sθ(x), we therefore lose the information, to which trajectory a
value-time pair originally belonged. We obtain the time-dependent score ∇x1

log px2
(x1) from the

first coordinate of the output of sθ(x), i.e. sθ(x)1.

We compute the partial derivative ∂sθ(x)i/∂xi using reverse-mode automatic differentiation in JAX
(jax.jacrev). We train sθ(x) with the Adam optimizer for 15.000 epochs with learning rate 10−3,
which we decrease by a factor of 0.1 every 5.000 epochs.

SMDP Training The training of SMDP follows the experiments in section 4 with slight problem-
specific modifications. Since the length of the trajectories is very long (M = 500), we subsample
the trajectories, and keep every 5th point in time. We train with a sliding window of size 4, which
we increase every 500 epochs by 2 until we reach an window size of 40 with the Adam optimizer
and learning rate 10−5. Then, we finetune the network and train on the complete trajectories for an
additional 500 epochs and sliding window size 70 with learning rate 10−6.

Comparison We show a direct comparison of the learned score, the reverse-time SDE trajectories
and the probability flow trajectories between ISM and SMDP in figure 10. The learned score of ISM
and SMDP in figure 10a and figure 10b is similar until t = 2. Then, the score for both networks
becomes positive for points marginally above 0, i.e. the score pushes points up, leading them to 1
at t = 0. Analogously, points marginally below 0 are pushed down. For SMDP, the absolute value
of the score in this region is considerably higher than ISM, thus having a more significant shearing
effect.
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This affects the reverse-time SDE trajectories. Because of the stronger shearing, SMDP trajectories
result in states of either 1 or −1, see figure 10d. On the other hand, for ISM in figure 10c, where
the shearing is less pronounced, many trajectories end up in-between 1 and −1. These states are not
valid samples from the posterior distribution of the solution from equation (55).

Interestingly, the probability flow solutions for both SMDP and ISM have comparable quality, cf.
figure 10e and figure 10f. In both cases, trajectories that start above 0 at t = 10 end close to 1 at
t = 0, and vice versa.

Overall, this case illustrates that the learned score of SMDP is more accurate than the one of ISM,
because of its stronger shearing. This results in a better quality of the reverse-time SDE trajectories.
SMDP performs better here, because it is directly trained with an integration of the physics dynam-
ics, whereas ISM is purely data-driven and does not incorporate the physics model with its temporal
evolutions at training time.
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(a) λ2 = 0 (b) λ2 = 0.03

Figure 9: Trajectories from SDE equation (55) with λ2 = 0 (a) and λ2 = 0.03 (b).

(a) ISM learned score. (b) SMDP learned score.

(c) ISM reverse-time SDE trajectories. (d) SMDP reverse-time SDE trajectories.

(e) ISM probability flow trajectories. (f) SMDP probability flow trajectories.

Figure 10: Comparison of Implicit Score Matching (ISM, left) and Score Matching via Differentiable Physics
(SMDP, right). Colormap in (a) and (b) truncated to [-75, 75].
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(b) SMDP-SDE

Figure 11: Heat equation reconstruction MSE for different sliding window sizes S (Rollout length) and number
of gradient backpropagation steps for SMDP-ODE (a) and SMDP-SDE (b).

C ABLATION FOR GRADIENT BACKPROPAGATION AND ROLLOUT LENGTH

Gradient backpropagation steps It is possible to unroll for S steps, but stop the gradient back-
propagation after G < S steps. For example, when unrolling the algorithm for S = 32 steps, we
can unroll the first G = 8 steps, save the intermediate results, then backpropagate the gradient to
optimize θ. Then, we continue unrolling with the intermediate results as a new initialization, again
stopping and updating θ after G steps. For this example, we can repeat this S/G = 4 times in total
until we obtain combined rollout of S steps.

An advantage of stopping the gradient after G steps is that it reduces memory requirements, as we
do not need to store all intermediate results and therefore this allows for training with large window
sizes.

For all other experiments in the paper, we have set G = S always.

Effect on reconstruction MSE We evaluate the effect of changing the window size S and the
number of steps until we stop the gradient backpropagation using the setup of the heat equation
experiment in section 4.1. In figure 11, we show the results on the reconstruction MSE for SMDP-
ODE and SMDP-SDE. We keep the time discretization fixed, i.e. a full simulation trajectory consists
of 32 steps from t = 0 until t = 0.2, however we vary the window size S. In this case, we
always backpropagate gradients through all unrolling steps. In the second case, where we change
the number of gradient backpropagation steps, we keep the window size S fixed at 32, which is
the entire simulation trajectory. For both SMDP-ODE and SMDP-SDE, our evaluation shows that
both longer rollouts and more gradient backpropagation steps improve the reconstruction MSE. The
improvements are more significant for SMDP-SDE.
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D 1D HEAT EQUATION: EVALUATION OF POSTERIOR

To demonstrate the diversity and high quality of the reverse-time SDE trajectories we provide an
additional evaluation of the posterior for a one-dimensional heat equation case. We compare the
SDE solutions with samples obtained from filtering a large data set. To simplify the comparison, we
consider 1D processes based on the 2D Gaussian random fields from section 4.1. Each process has
a length of 100 and corresponds to a Gaussian random field of size 1× 100. Analogously to section
4.1, we use the heat equation to simulate the states forward in time from t = 0.0 until t = 0.2.
Figure 12 shows some examples of the 1D processes we consider here.

Training of SMDP The network sθ(x, t) representing the score is trained as described for the heat
equation experiment, section 4.1, using the same ResNet architecture with padding in y-direction
removed. We consider a time discretization with ∆t = 0.01. We begin training with an initial
rollout of 6 steps and increase the rollout length every 5 epochs by 2 until we reach 14 rollout steps.
For every epoch, we train on 20 randomly generated 1D processes. We use the Adam optimizer with
learning rate 10−4.

In the following, we randomly generate a 1D process P . We describe how we generate samples for
t = 0.0 conditioned on the simulation end state of P at t = 0.2.

Reverse-SDE posterior We initialize the state based on P at t = 0.2. Then, we simulate the
reverse-time SDE with the learned score sθ(x, t) via Euler-Maruyama steps. A visualization of 100
samples is shown in figure 14.

Empirical distribution We sample 106 processes and form pairs of initial state t = 0 and end
states t = 0.2. We filter the 100 process end states that are closest to the end state of P in terms of
the L2 distance. As solutions from the empirical sampling, we consider the 100 corresponding initial
states as shown in figure 13. This empirical distribution makes a qualitative comparison possible,
as shown in figures 14 and 13. They indicate that the reverse-time SDE solutions are diverse while
matching P very well. Simulating the obtained solutions forward in time gives end state that are in
excellent agreement with P.
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Figure 12: Examples of training data for 1D heat equation with initial states at t = 0.0 (a) and end states at
t = 0.2 (b).
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(a) t = 0.2 (b) t = 0.0

Figure 13: Empirical distribution: we generate 106 Gaussian processes and simulate them forward in time
from t = 0.0 until t = 0.2. We pick one specific process P and sort all other processes in ascending order
based on the L2 distance to P at time t = 0.2. Then we pick the first 100 and visualize them at time t = 0.0
(a) and t = 0.2 (b). The top row in both plots shows the process P.

(a) t = 0.0 (b) t = 0.2

Figure 14: Reverse-time SDE: We pick the process P from figure 13. Then, we simulate 100 trajectories from
the reverse-time SDE with learned score and P at t = 0.2 as initialization. We sort the states at t = 0.0 based
on their distance to P and visualize them (a). We then simulate all states from (a) forward in time again until
t = 0.2, see (b). The forward simulated trajectories almost exactly match P at t = 0.2.
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E ARCHITECTURES

ResNet We employ a simple ResNet-like architecture, which is used in Section 4.1 for the score
function sθ(x, t) and the convolutional neural network baseline (ResNet-S and ResNet-P) as well
as in Section 4.3 again for the score sθ(x, t).

Since in both experiments, there are periodic boundary conditions, we apply a periodic padding
with length 16, i.e. if the underlying 2-dimensional data dimensions are N ×N , the dimenions after
the periodic padding are (N+16)×(N+16). We implement the periodic padding by first tiling the
input 3 times in x- and y-direction and then cropping to the correct sizes. The time t is concatenated
as an additional constant channel to the 2-dimensional input data when this architecture is used to
represent the score sθ(x, t).

The encoder-part of our network begins with a single 2D-convolution encoding layer with 32 filters,
kernel size 4 and no activation function. This is followed by 4 consecutive residual blocks, each
consisting of 2D-convolution, LeakyReLU, 2D-convolution and Leaky ReLU. All 2D convolutions
have 32 filters with kernel size 4 and stride 1. The encoder part ends with a single 2D convolution
with 1 filter, kernel size 1 and no activation. Then, in the decoder part, we begin with a transposed 2D
convolution, 32 filters, kernel size 4. Afterwards, there are 4 consecutive residual blocks, analogous
to the encoder residual blocks, but with the 2D convolution replaced by a transposed 2D convolution.
Finally there is a final 2D convolution with 1 filter and kernel size 5. Parameters statistics of this
model, as well as the others are given in table 4.

UNet We use the UNet architecture with spatial dropout as given in (Mueller et al., 2022), Ap-
pendix A.1. The dropout rate is set to 0.25. We do not include batch normalization and apply the
same periodic padding as done for our ResNet architecture.

FNO For all experiments, we consider the FNO-2D architecture introduced in (Li et al., 2020)
with kmax,j = 12 Fourier modes per channel.

Dil-ResNet The Dil-ResNet architecture is described in (Stachenfeld et al., 2021), Appendix A.
Since this architecture represents the score sθ in Section 4.2, we concatenate the constant time
channel analogously to the ResNet architecture. Additionally, positional information is added to the
network input by encoding the x-position and y-position inside the domain in two separate channels.

Architecture Parameters

ResNet 330.754
UNet 706.035
DilatedConv 336.915
FNO 465.377

Table 4: Summary of architectures.
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F HEAT EQUATION

F.1 ADDITIONAL TRAINING DETAILS

Spectral loss We consider a spectral error based on the two-dimensional power spectral density.
For two 2d-images, we compute their 2d Fourier transform and compute the radially averaged power
spectrum s1 and s2. Then, we define the spectral error as the difference between the log of the
spectral densities

L(s1, s2) = | log(s1)− log(s2)|. (59)

SMDP-ODE For inference, we consider the linear time discretization tn = n∆t with ∆t =
0.2/32 and t32 = 0.2. During training, we sample a random time discretization t̃n for each batch
based on tn by t̃n ∼ U(tn −∆t/2, tn + ∆t/2) for n = 1, ..., 31 to not overfit on the step size. In
the warmup phase of training, we unroll Algorithm 1 for N = 6, 8, ..., 32 steps, where we increase
N every 2 epochs. We employ Adam to update the weights θ with learning rate 10−4. After the
warmup is finished, we finetune the network weights for 80 epochs with an initial learning rate of
10−4 which we reduce by a factor of 0.5 every 20 epochs.

Diffusion model The diffusion model is inspired by (Rissanen et al., 2022). We make use of the
same ResNet architecture as SMDP-ODE, however we keep the time discretization tn fixed. The
diffusion model does not include the physics operator P in the rollout. Therefore, it has to learn
the score and physics at the same time. Except for those changes, the training setup is identical to
SMDP-ODE.

Baseline methods All other baseline methods are trained for 80 epochs using the Adam optimizer
algorithm with an initial learning rate of 10−4 which is decreased by a factor of 0.5 every 20 epochs.
For the training data, we consider solutions to the heat equation consisting of initial state x0 and end
state xT that are noise-free and add a Gaussian noise with standard deviation σ = 0.1 to the network
input.

F.2 LOGARITHMIC TIME DISCRETIZATION

For this experiment, we consider a logarithmic time discretization during training and inference.
This discretization is finer around t = 0, where most of the small-scale structures are smoothened
out. We find that this method also works well, but the linear time discretization performs better for
most cases, especially when ∆t is changed for inference, cf. figure 5 and figure 15.
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Figure 15: Logarithmic time discretization. Reconstruction MSE and spectral errors for varying time steps of
regular variant (a) and bidirectional variant (b). Large errors are truncated at the top of each graph.
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F.3 PHYSICS-CONDITIONED SCORE

We extend the definition of the score function, to also include information about the physics at time
t, i.e. P(xt). Thus, we replace sθ(x, t) in algorithm 1 by sθ([x,P(x)], t), where we concatenate
both inputs. An evaluation is shown in figure 16. Although the stability of SMDP-ODE and SMDP-
ODE + noise is greatly increased, we do not obtain results with a low spectral error for SMDP-SDE.
Interestingly, the bidirectional training also seems harmful in this case.
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Figure 16: Physics-conditioned score. Reconstruction MSE and spectral errors for varying time steps of regular
variant (a) and bidirectional variant (b). Large errors are truncated at the top of each graph.

F.4 HIGHER TRAINING NOISE

We increase the diffusion coefficient from g ≡ 0.1 to g ≡ 1.0 during training, but for inference, we
set it back to the lower value. An evaluation is shown in figure 17. Overall, SMDP-SDE produces
results with low spectral error and SMDP-ODE has a much lower MSE, similar to the standard case.
However, overall, the MSE is much higher, indicating shortcomings of this approach.
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Figure 17: Higher training noise. Reconstruction MSE and spectral errors for varying time steps of regular
variant (a) and bidirectional variant (b). Large errors are truncated at the top of each graph.

F.5 ADDITIONAL RESULTS
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(a) Ground truth (b) Input (c) SMDP-ODE (d) ResNet-S (e) ResNet-P

(f) FNO-P (g) FNO-S (h) Diffusion (i) Diffusion + noise

(j) SMDP-SDE (k) BNN-S

Figure 18: Predictions of different methods for the heat equation problem (example 1 of 2).

(a) Ground truth (b) Input (c) SMDP-ODE (d) ResNet-S (e) ResNet-P

(f) FNO-P (g) FNO-S (h) Diffusion (i) Diffusion + noise

(j) SMDP-SDE (k) BNN-S

Figure 19: Predictions of different methods for the heat equation problem (example 2 of 2). Neither the BNN
nor the Diffusion+noise model are able to produce small-scale structures.
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Figure 20: Comparison of SMDP-SDE predictions and ground truth for buoyancy-driven flow at t = 0.36.

G BUOYANCY-DRIVEN FLOW WITH OBSTACLES

G.1 TRAINING

We train all networks with Adam and learning rate 1 × 10−4 with batch size 16. We begin with
unrolling N = 2 steps, which we increase every 30 epochs by 2 until we reach N = 20.

G.2 ADDITIONAL RESULTS

We give more detailed time evolutions of results for the buoyancy-driven flow case in figure 21 and
figure 22. These again highlight the difficulties of the physics simulator to recover the initial states
by itself. The SMDP variants significantly improve upon this behavior.

In figure 20 we also show an example of the posterior sampling for this case. It becomes apparent
that the inferred small-scale structures of the different samples change. However, in contrast to cases
like the heat diffusion example, the physics simulation in this scenario leaves only little room for
substantial changes of the states.
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Figure 21: Predictions for buoyancy-driven flow with obstacles (example 1 of 2).
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Figure 22: Predictions for buoyancy-driven flow with obstacles (example 2 of 2).
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Ground truth Learned physics 100 steps 200 steps 300 steps

400 steps 500 steps 750 steps 1000 steps 2000 steps

Figure 23: Steps of Langevin dynamics for ϵ = 2× 10−5.

Ground truth Learned physics 100 steps 200 steps 300 steps

400 steps 500 steps 750 steps 1000 steps 2000 steps

Figure 24: Steps with Langevin dynamics for ϵ = 2 × 10−5 and an additional step with ∆t · sθ(x, t) which
smoothes the images.

H ISOTROPIC TURBULENCE

For the learned physics network, we employ a FNO neural network with batch size 20. We train the
FNO for 500 epochs using Adam optimizer with learning rate 10−3, which we decrease every 100
epochs by a factor of 0.5. We train SMDP-ODE with the ResNet architecture for 250 epochs with
learning rate 10−4, decreased every 50 epochs by a factor of 0.5 and batch size 6.

H.1 REFINEMENT WITH LANGEVIN DYNAMICS

We do a fixed point iteration at a single point in time via:

xi+1
t = xi

t + ϵ · ∇x log pt(x
i
t) +
√
2ϵzt, (60)

for a number of steps T and ϵ = 2 × 10−5 as a post-processing and refinement strategy, cf. fig-
ure 23 and figure 24. This is motivated by established methods in score-based generative modelling
(Welling & Teh, 2011; Song & Ermon, 2019). For a prior distribution πt, x0

t ∼ πt and by iterating
equation (60), the distribution of xT

t equals pt for ϵ → 0 and T → ∞. There are some theoretical
caveats, i.e. an additional Metropolis-Hastings update needs to be added in equation (60) and there
are regularity conditions (Song & Ermon, 2019).
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Figure 25: Predictions for isotropic turbulence (example 1 of 2).
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Figure 26: Predictions for isotropic turbulence (example 2 of 2).
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