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Abstract

It is well-known that artificial neural networks are universal approximators. The1

Universal Approximation Theorem proves that, given a continuous function on a2

compact set embedded in an n-dimensional space, there exists a one-hidden-layer3

feed-forward network that approximates the function; however, it does not provide4

a way of building such a network. In a previous work, the authors presented a5

constructive approach to tackle this problem for the case of a continuous function6

on triangulated spaces by connecting the Simplicial Approximation Theorem, a7

classical result from algebraic topology, and the Universal Approximation Theorem.8

In this paper, we revisit such a result and propose future applications.9

1 Introduction10

A classical result in the mathematical theory of neural networks is the Universal Approximation11

Theorem [1, 7]. This result shows that any continuous function on a compact set in Rn can be12

approximated by a multi-layer feed-forward network with only one hidden layer and a non-poly-13

nomial activation function. However, this result has two important drawbacks for its practical use:14

firstly, the width of the hidden layer grows exponentially with respect to the accuracy of the neural15

network, and, secondly, the classical proofs do not provide a practical algorithm for building such a16

network. In [8], the authors proved the existence of a two-hidden-layer neural network which can17

approximate any continuous multivariable function with arbitrary precision, and, in [3], a constructive18

method is provided through a numerical analysis approach. In this work, we revisit a different19

direction to that presented in [8, 3], and address the aforementioned challenges by connecting the20

Universal Approximation Theorem with a classical result from algebraic topology known as the21

Simplicial Approximation Theorem [9]. The result is a family of neural networks, called simplicial22

neural networks, such that their architecture and parameters are found by using algebraic topology23

tools. Namely, an effective method for finding the weights of a two-hidden-layer feed-forward24

network which approximates a given continuous function between two triangulable metric spaces25

is provided. This is a restriction from the classical Universal Approximation Theorem that is valid26

for all compact sets on Rn, but triangulable spaces are common in real-world problems. It is worth27

mentioning that the method presented in [10] for building simplicial neural networks is constructive28

and it only depends on the desired level of approximation to the given function. In this paper, we29

present the basis of such result and propose ideas to further research.30

2 Simplicial Neural Networks31

In this section, the explicit construction of an artificial neural network that is a universal approximator32

for continuous functions between triangulable spaces is presented. In general, a neural network33
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can be formalized as a function Nω,Θ : Rn → Rm that depends on a set of weights ω and a set of34

parameters Θ which involves the description of activation functions, layers, synapses between nodes35

(neurons), and whatever other consideration in its architecture [6]. Multi-layer feed-forward networks36

are a particular case of artificial neural networks that can be formalized as follows.37

Definition 1 (adapted from [7]) A multi-layer feed-forward network defined on a real-valued n-38

dimensional space is a function N : Rn → Rm such that, for each x ∈ Rn, N (x) is the composition39

of k + 1 functions N (x) = fk+1 ◦ fk ◦ · · · ◦ f1(x) where k ∈ Z is the number of hidden layers,40

k ≥ 1, and, for 1 ≤ i ≤ k + 1, fi : Rdi−1 → Rdi is defined as fi(y) = φi(W
(i); y; bi) being W (i) a41

real-valued di−1 × di matrix (that is, W (i) ∈Mdi−1×di ), bi ∈ Rdi the bias term, and φi a bounded,42

continuous, and non-constant function (called activation function). Notice that d0 = n, dk+1 = m43

and di ∈ Z, 1 ≤ i ≤ k, is called the width of the i-th hidden layer.44

It is well-known that multi-layer feed-forward networks are universal approximators. The formal45

details are fixed in the next classical theorem.46

Theorem 1 (Universal Approximation Theorem, [7]) Let A be any compact subset of Rn and let47

C(A) be the space of real-valued continuous functions on A. Then, given any ε > 0 and any function48

g ∈ C(A), there exists a multi-layer feed-forward network N : Rn → R approximating g, that is,49

||g −N|| < ε.50

Classical proofs of the Universal Approximation Theorem are not constructive, and finding the51

correct architecture for a given problem is a challenging task. In [4], a constructive approach to52

build neural networks based on numerical analysis was presented. In contrast, we tackle the problem53

by establishing a connection between the Universal Approximation Theorem and the Simplicial54

Approximation Theorem. Specifically, in [10], a constructive approach to Theorem 1 through a55

two-hidden-layer feed-forward network for continuous functions between triangulable spaces is56

provided. Roughly speaking, the approach presented in [10] for building neural networks is based57

on two observations: (1) triangulable spaces can be modelled using simplicial complexes; and (2)58

a continuous function between two triangulable spaces can be approximated by a simplicial map59

between simplicial complexes.60

We assume that the reader is familiar with basic concepts from algebraic topology and refer to [2, 5, 9]61

for classical definitions and results. The next proposition shows one of the key ideas of the main result62

presented in this paper: If a continuous function g is considered between two finitely triangulable63

metric spaces, then successive barycentric subdivisions1 can be applied on triangulations of such64

spaces such that the compositions of such triangulations with an appropriate simplicial map can65

approximate g as much as desired.66

Proposition 1 ([10]) Let X and Y be two finitely triangulable metric spaces, g : X → Y a67

continuous function, and ε > 0. Then, there exist two finite triangulations (K, τK) and (L, τL) of X68

and Y , respectively, and a simplicial approximation ϕc : |Sdt1K| → |Sdt2L| such that ||g−ϕ̃c|| ≤ ε69

being ϕ̃c = τ−1
L ◦ ϕc ◦ τK .70

In order to find a simplicial map that approximates the continuous function g, the Simplicial Approxi-71

mation Theorem is considered.72

Theorem 2 (Simplicial Approximation Theorem [2, p. 56]) If g : |K| → |L| is continuous then73

there is an integer t > 0 such that ϕc : |SdtK| → |L| is a simplicial approximation of g.74

Now, it remains to show how to compute a two-hidden-layer feed-forward network that models a75

simplicial map ϕc : |K| → |L| where K and L are finite pure simplicial complexes.76

Proposition 2 ([10]) Let us consider a simplicial map ϕc : |K| → |L| between the underlying space77

of two finite pure simplicial complexes K and L. Then a two-hidden-layer feed-forward network Nϕ78

such that ϕc(x) = Nϕ(x) for all x ∈ |K| can be explicitly defined.79

Proof (hints) Let us assume that dim(K) = n and dim(L) = m. Let
{
σ1, . . . , σk

}
be the max-80

imal n-simplices of K, where σi =
(
vi0, . . . , v

i
n

)
for all i; and let

{
µ1, . . . , µ`

}
be the maximal81

1The t-th iteration of the barycentric subdivision of a simplicial complex K will be denoted by SdtK.
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m-simplices of L, where µj =
(
uj0, . . . , ujm

)
for all j. Let us consider a multi-layer feed-forward82

network Nϕ with the following architecture: (1) an input layer composed of d0 = n neurons; (2) a83

first hidden layer composed of d1 = k · (n+1) neurons that correspond to the vertices of the maximal84

simplices of K; (3) a second hidden layer composed of d2 = ` · (m+ 1) neurons that correspond85

to the vertices of the maximal simplices of L; and (4) an output layer with d3 = m neurons. Then,86

Nϕ = f3 ◦ f2 ◦ f1 being fi(y) = φi(W
(i); y; bi), i = 1, 2, 3, is constructed as follows.87

Firstly, a point x in Rn is transformed into a k ·(n+1) vector that can be seen as the juxtaposition of k88

vectors of dimension n+ 1 (one for each of the k simplices in K), each one representing the barycen-89

tric coordinates of x with respect to the corresponding simplex. From the barycentric coordinate90

relations, we obtain the matrix W (1) =

W
(1)
1
...

W
(1)
k

 and the bias term b1 =

B1

...
Bk

 ∈ Rk(n+1),91

where W (1)
i ∈ M(n+1)×n and Bi ∈ Rn+1 are

(
vi0 · · · vin
1 · · · 1

)−1

=
(
W

(1)
i

∣∣ Bi

)
being92

{vi0, . . . , vin} the set of vertices of the maximal simplex σi of K. The function f1 is then defined as93

φ1(W (1); y; b1) = W (1)y + b1.94

Secondly, the matrix of weights W (2) ∈ M`(m+1)×k(n+1) encodes the vertex map ϕ and it95

is composed of values zeros and ones. An element of W (2) has value 1 if the correspond-96

ing vertices in K and L are related by the vertex map ϕ, and it has value 0 otherwise. Then,97

W (2) =
(
W

(2)
s1,s2

)
where W

(2)
s1,s2 =

{
1 if ϕ(vit) = ujr,
0 otherwise; being s1 = j(r+1) and s2 = i(t+1)98

for i = 1, . . . , k; j = 1, . . . , `; t = 0, . . . , n; and r = 0, . . . ,m. The bias term b2 is the null vector.99

Then, the function f2 is defined as φ2(W (2); y; b2) = W (2)y.100

The output of the second hidden layer can be seen as the juxtaposition of ` vectors of dimension101

m+ 1, one vector for each simplex in the simplicial complex L. Each of these vectors represents the102

barycentric coordinates of ϕc(x) with respect to the corresponding simplex in L.103

Finally, only vectors whose all coordinates are greater than or equal to 0 are considered. This104

condition encodes the simplices of L to which ϕc(x) belongs. Then, φ3(W (3); y; b3) maps the105

barycentric coordinates of ϕc(x) with respect to each maximal simplex of L to which ϕc(x)106

belongs, to the Cartesian coordinates of ϕc(x). Specifically, W (3) =
(
W

(3)
1 · · · W

(3)
`

)
∈107

Mm×`(m+1), being W (3)
j =

(
uj0 · · · ujm

)
; and b3 is the null vector. Finally, f3 is defined108

as φ3(W (3); y; b3) =
∑`

j=1 z
jψ(yj)∑`

j=1 ψ(yj)
for y =

y
1

...
y`

 ∈ M`·(m+1), with zj = W
(3)
j yj and109

ψ(yj) = 1 if all the coordinates of yj are greater than or equal to 0 and ψ(yj) = 0 otherwise.110

The particular choice of φ3 and ψ is motivated by the use of the barycentric coordinates that depend111

on the maximal simplex considered. Besides, maximal simplices can share common vertices. Then,112

the map ψ is used to determine if a given input is located in a specific simplex. The map φ3 is used to113

normalize the result in case that a point belongs to more than one simplex. �114

Summing up, Proposition 2 establishes that a two-hidden-layer feed-forward network can act equiva-115

lently to a simplicial map. The architecture and the specific computation of the parameters of the116

network are provided in the proof of the theorem. Now, we have all the ingredients to state and prove117

a constructive version of the Universal Approximation Theorem that approximates any continuous118

function between triangulable spaces arbitrary close. Figure 1 illustrates the process.119

Theorem 3 ([10]) Given a continuous function g : X → Y between two finitely triangulable metric120

spaces X and Y and finite triangulations (K, τK) and (L, τL) of, respectively, X and Y , a two-121

hidden-layer feed-forward network N such that ||g − Ñ || ≤ ε, being Ñ = τ−1
L ◦ N ◦ τK , can be122

explicitly defined.123

Proof By Proposition 1, there exists a simplicial approximation ϕc such that ||g − ϕ̃c|| ≤ ε. Finally,124

by Proposition 2, there exists N such that N = ϕc in all the domain. �125
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Figure 1: From left to right: a continuous function that deforms a plane into a cloth-like folding and a
simplicial map between triangulations of both spaces. Then, the triangulations would be subdivided
until reaching a desired proximity between the continuous and the simplicial version. Finally, that
simplicial map would be used to define a two-hidden neural network.

3 Conclusions and Further Work126

The main contribution presented here is a constructive method to find the exact weights of a two-127

hidden-layer feed-forward network without the need for a training process, which approximates a128

continuous function between two finitely triangulable metric spaces. Such technical restriction has129

no influence on real-world problems, where non-finitely triangulable metric spaces are very odd.130

Currently, most of the real-world applications of neural networks try to find a set of weights via a131

local search method (mainly based on gradient of a loss function) on a large amount of hidden layers.132

The present alternative method can be a good approach for computing boundaries of complex spaces133

in classification problems or volumes in medical applications.134

As further work, we plan to use simplicial neural networks to address one of the main weakness of135

deep learning methods: adversarial examples [11]. Namely, we will study how simplicial neural136

networks can be constructed by maximizing the margin of the models to improve their robustness.137
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