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Abstract

Recommender systems, crucial for user engagement on plat-
forms like e-commerce and streaming services, often lag be-
hind users’ evolving preferences due to static data reliance.
After Temporal Graph Networks (TGNs) were proposed, var-
ious studies have shown that TGN can significantly improve
situations where the features of nodes and edges dynamically
change over time. However, despite its promising capabili-
ties, it has not been directly applied in recommender systems
to date. Our study bridges this gap by directly implementing
Temporal Graph Networks (TGN) in recommender systems,
a first in this field. Using real-world datasets and a range
of graph and history embedding methods, we show TGN’s
adaptability, confirming its effectiveness in dynamic recom-
mendation scenarios.

Introduction
In the rapidly evolving digital world, recommender systems
have become a cornerstone of user experience, profoundly
influencing choices in e-commerce, content streaming, and
social networking platforms (Alamdari et al. 2020). As
interaction-based recommender systems started to emerge,
models such as NGCF (Wang et al. 2019) and LightGCN
(He et al. 2020) that include neighborhood aggregation
features but also linearly propagate the embeddings on
the user-item interaction graph have been widely used.
However, these existing models often struggle to adequately
capture temporal variations and the continuous evolution
of user-item interactions and features due to their static
nature. These static models are unable to accommodate the
temporal changes in user preferences, leading to outdated
and less relevant recommendations (Gao et al. 2021).

Addressing the need to capture evolving user preferences
over time, sequential recommendation models (Tan, Xu, and
Liu 2016; Sun et al. 2019; Kang and McAuley 2018) have
emerged. These models utilize users’ purchase sequences,
employing attention mechanisms in recent advancements
for next-item prediction. Despite their efficiency, these
models face challenges in adapting to the dynamic nature
of user-item interactions, prompting the exploration of
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dynamic recommendation models. Moreover, while models
(Bai et al. 2020; Xiang et al. 2010) use the term ’temporal’
in their names, they incorporate temporal aspects only in a
rudimentary fashion. These approaches typically treat time
as a linear or categorical feature, overlooking the nuanced
and evolving relationships between users and items.

Amidst these developments, Twitter proposed a frame-
work called Temporal Graph Networks (TGN) (Rossi et al.
2020), suitable for dynamic situations. TGN shows promis-
ing effects in different aspects. Its history module provides
the exceptional capability of TGN to keep long-term history
dependencies for each node in the graph. This means that
nodes can be kept updated based on historical data without
continuous training, which is essential for dynamic change
over the network. In addition to this, its graph embedding
allows to compute the up-to-date embedding for a node by
aggregating one’s neighbor nodes’ memories even if a node
has been inactive for a while. TGN can be used for various
tasks such as edge prediction and node classification. The
authors have mentioned that TGN has potential future re-
search directions in social sciences, recommender systems,
and biological interaction networks.

Zhao et al. (Zhao et al. 2023) highlight the potential of
TGN. They proposed a time-interval aware recommenda-
tion model using bi-directional continuous time dynamic
graphs, employing TGN as a baseline. Their findings
indicate that TGN variants, leveraging historical history
messages, outperform other baselines, underscoring TGN’s
suitability for dynamic recommendations. However, the
paper’s scope is limited, as it only utilizes JODIE (Kumar,
Zhang, and Leskovec 2018) and DyRep (Trivedi et al.
2019) among TGN’s variations, without detailing their
specific applications or explaining how these advantages
impact the recommendation system. Consequently, to the
best of our knowledge, a direct application of the TGN
framework within recommender systems emerges as a novel
and unexplored approach.

In light of this research gap, our study undertook the di-
rect implementation of the TGN framework within a recom-
mender system setting, aiming to fully harness its potential
in capturing dynamic user-item interactions over time. In
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Figure 1: Overview of TGN framework for dynamic recommendation

particular, we suggested different variations across history
embedding and graph embedding methods. This approach
marks a significant step forward in the development of more
sophisticated and temporally aware recommender systems.
Our key contributions are as follows:

• We proposed a TGN framework for dynamic recommen-
dation tailored for use in recommender systems. Its pri-
mary feature is the ability to learn from user-item inter-
actions over time, offering a more realistic and updated
understanding of user preferences.

• We tested our TGN framework using real-world datasets.
The positive results from these tests confirm the frame-
work’s effectiveness in practical scenarios.

• To our knowledge, this is a new direction in this field of
study. The significance of this work lies in its exploration
of how TGN can be applied directly in recommender sys-
tems, a concept not widely explored before.

Preliminaries
Problem Definition
We introduce the definition of the task associated with dy-
namic recommendations. For the problem in focus, let’s
denote the user set as U = {u1, u2, ...u|U |}, item set as
V = {v1, v2, ..., v|V |}, and time set as T = {t1, t2, ...t|T |}.
Then, the interaction can be represented by ytu,v . If user u
interacts the item v at time t, then ytu,v = 1; otherwise
ytu,v = 0.

Our primary goal is to predict the value of ytu,v . Ulti-
mately, for each user and time instance, the system aims to
select and recommend the top-k items, leading to a person-
alized and time-sensitive set of recommendations for each
user in the system.

Continuous Time Dynamic Graph
The graph of interest in our problem is not static but dy-
namic, changing its structure over continuous time. This ne-
cessitates a representation suitable for temporal variations.
Therefore, we define a continuous-time bipartite graph as
G(T ) = (V, ET ) where V denotes U, V ∈ V and ET denotes

the set edges at time t. Each edge in ET is characterized by
a tuple e = (u, v, t, euv), consisting of a start node (user),
an end node (item), a timestamp t, and an edge feature euv .
This stands apart from sequential recommendations by in-
tegrating edge features that dynamically evolve over time,
enhancing its ability to capture dynamic user behavior and
item features.

Methodology
We propose the TGN Framework, inspired by (Rossi et al.
2020), for a recommender system that is designed to han-
dle temporal dynamics and interactions between users and
items. Our goal is to effectively learn the evolving char-
acteristics of users and items over time using graph-based
methods. To achieve this, we introduce an effective tempo-
ral graph embedding method, known as TGN, along with a
recommendation approach that utilizes this method.

Temporal Graph Networks
Memory embedding The approach begins with generat-
ing memory embeddings for each node to capture their dy-
namics. We extract information associated with a node i at
time t as mi(t) = si (t

−) ∥sj (t−) ∥∆t∥eij , where su (t
−)

and sj (t
−) represent the memory embedding at the previous

time step for the source and destination nodes, respectively.
∆t is the time interval, and eij is the edge feature. In in-
stances where nodes appear multiple times within the same
batch, we incorporate information from the last time step to
update the memory.

After extracting information, we use recurrent neural net-
work to update memory embeddings. Using GRU (Chung
et al. 2014), memory of node i can be updated as follows:

si(t) = GRU(mi(t), si(t
−)) (1)

Graph embedding In this module, node embeddings are
created for each node at time step t, resulting in node em-
beddings that encapsulate temporal information. If graph at-
tention is utilized, a node embedding can be represented as:

zi(t) =
∑

j∈nk
i (t)

attn (si(t), sj(t), eij) (2)



where attn refers to the graph attention mechanism de-
scribed in (Rossi et al. 2020), and s represents memory. The
neighborhood set of node i, denoted as nk

i (t), refers to the
k-hop temporal neighborhood connected up to time t. Other
methods such as temporal graph sum (Rossi et al. 2020)
and graph convolutional network (GCN) can be utilized for
graph embedding learning.

Model Optimization
Our main contribution is proposing a suitable learning ap-
proach for recommendation within the TGN framework. In
other words, we introduce the methods of negative sampling
and loss formulation that enable recommend top-k items for
each user.

Negative sampling We have a unique setting that requires
negative sampling, taking into account time. Instead of us-
ing a static positive item set, we utilize a positive item set
consisting of items that the user has purchased up to time t
within a batch. In other words, given a user u and a specific
time t, pu,t represents user’s current positive item set. Then,
from all item sets within the batch, we randomly sample n
candidate items that do not belong to pu,t. That is, we sam-
ple items from the set VB−pu,t where VB is the set of items
in a batch where t belongs to.

BPR loss At the time when the interaction takes place, an
item interaction by a user u treated as positive. The set of
negative items is sampled for the same time point. Then,
Bayesian Personalized Ranking (BPR) loss is applied to
scores for positive pairs and negative pairs.

LBPR =
∑

(u,p,n,t)∈D

− log σ
(
zu(t)

T zp(t)− zu(t)
T zn(t)

)
(3)

In this equation, D denotes the edge set, which is derived
from ET with additional negative sampling. Here, u repre-
sents user, p is positive item, n is negative item, and t repre-
sents time.

Experiments
Experiments Settings
Datasets To assess the model’s ability to effectively cap-
ture temporal dynamics, we employed datasets in which
interactions are ordered by time. The MovieLens dataset
(1,000,209 interactions, 6,040 users, and 3,952 items) and
the RetailRocket transaction dataset (22,457 interactions,
11,719 users, and 12,025 items) were utilized for this pur-
pose.

Baseline To assess the effectiveness of our stock recom-
mendation model, we compared it with basic recommenda-
tion models, static graph-based recommendation models, se-
quential recommendation models, and dynamic graph learn-
ing models. For the basic recommendation models, we uti-
lized Pop, which recommends the most frequently traded
items, ItemKNN (Deshpande and Karypis 2004) based on

item similarity, and BPR (Rendle et al. 2012), a matrix fac-
torization model. Within the static graph-based recommen-
dation models, we employed NGCF (Wang et al. 2019),
which uses graph convolutional networks (GCN) to learn
node embeddings of the user-item bipartite graph, and its
lightweight version, LightGCN (He et al. 2020). For sequen-
tial recommendation models, we utilized SASRec (Kang
and McAuley 2018) and STAMP (Liu et al. 2018), both
based on Transformer architectures, and GRU4REC (Tan,
Xu, and Liu 2016) were used. In the dynamic methods cate-
gory, Jodie (Kumar, Zhang, and Leskovec 2018) and DyRep
(Trivedi et al. 2019) were used.

Hyperparameter Setting Our model was experimented
with the following settings: 10 epochs, a batch size of 1000,
a learning rate of 0.0001, a node embedding dimension of
31, a memory embedding dimension of 31, and a time em-
bedding dimension of 100. Additionally, following the ex-
perimental results in (Rossi et al. 2020), we used GRU as
the memory embedding module and Graph Attention as the
graph embedding module. For baseline models, the number
of epochs was consistently set to 50 with a batch size of 2000
for each experiment.

Metrics and Evaluation We utilized a commonly used
metric, Recall, to assess the effectiveness of a ranked list.
In the process of evaluating, we take 100 negative samples
per each positive samples. Following the setting of dynamic
graph learning model (Kumar, Zhang, and Leskovec 2018),
we performed a chronological split of the data, dividing in-
teractions into training, validation, and test sets in an 8:1:1
ratio based on the chronological order of time.

Performance Comparison
In our comprehensive evaluation, we focused on contrast-
ing the effectiveness of static, sequential, and temporal rec-
ommender models across two key datasets: MovieLens and
RetailRocket. The evaluation metrics centered on Recall at
varying thresholds (5, 10, and 20).

The highlight of our analysis was the performance of
our model, TGN. In both datasets, TGN demonstrated re-
markable superiority in almost all evaluated metrics. For
the MovieLens dataset, TGN achieved an impressive Re-
call@20 score of 0.2211, outshining both the static and se-
quential models. In the RetailRocket dataset, TGN’s perfor-
mance was even more striking, with a Recall@20 score of
0.3610, leading all other models.

The results of our study are particularly noteworthy given
the intricacies and challenges involved in integrating tempo-
ral aspects into recommendation models. TGN’s adeptness
in incorporating time-aware components has proven pivotal
in accurately capturing the dynamic and evolving nature of
user preferences. This effectiveness underscores the vital
importance of considering temporal dynamics in recommen-
dation systems, especially pertinent in scenarios where user
preferences are not static, but fluid and subject to change
over time. Additionally, the effectiveness of GNN module
used for learning the final graph embedding is evident. It
successfully reflected user-item interactions, reinforcing the



Dataset Metric ItemKNN BPR NGCF LightGCN GRU4Rec STAMP SASRec Jodie DyRep TGN improv.

MovieLens
Recall@5 0.0494 0.0471 0.0444 0.0472 0.0455 0.0506 0.0584 - 0.0483 0.0577 -1.19%

Recall@10 0.0825 0.0727 0.0643 0.0807 0.0812 0.0897 0.1021 - 0.0966 0.1126 10.28%
Recall@20 0.1338 0.1127 0.1044 0.1197 0.1379 0.1417 0.1561 - 0.1916 0.2211 15.40%

retailrocket
Recall@5 0.0197 0.0422 0.0713 0.0366 0.0454 0.0785 0.0997 0.0145 0.0165 0.1030 3.31%

Recall@10 0.0480 0.0824 0.1167 0.0518 0.0679 0.1022 0.1428 0.0265 0.0295 0.2000 40.02%
Recall@20 0.1118 0.1830 0.2276 0.1011 0.1242 0.1371 0.2238 0.0540 0.0535 0.3610 61.23%

Table 1: Performance comparison with baselines. The best scores in each row are represented in bold, while the second-best
scores are underlined. The improvement values (improv.) indicate TGN’s percentage changes relative to the best-performing
baseline.

model’s comprehensive approach. TGN’s outstanding per-
formance, despite the demanding predictive requirements
of time-aware modeling, distinctly highlights its robustness
and effectiveness, making it highly relevant in modern rec-
ommendation scenarios.

One important point to note is that among temporal mod-
els, Jodie and DyRep perform poorly. This poor perfor-
mance seems to be attributed to their method of generating
graph embeddings based on time and ID, respectively. This
suggests that approaches not utilizing GNN modules are un-
suitable for recommender system datasets forming user-item
bipartite graphs. Therefore, GNN modules are crucial for
the effectiveness of TGN frameworks in recommender sys-
tems. We also attempted a comparison with JODIE using
the MovieLens dataset; however, we do not report it due to
out-of-memory errors on this large dataset.

Choice of Modules

Dataset Module
Recall@10

attn sum GCN

Movielen
GRU 0.1126 0.1075 0.1033
RNN 0.1076 0.1053 0.1039

retailrocket
GRU 0.1890 0.1630 0.1330
RNN 0.2000 0.1760 0.1440

Table 2: Recall@10 metrics for different modules in Movie-
len and retailrocket datasets.

The advantage of utilizing the TGN framework lies in the
ability to choose from various embedding modules. To ex-
amine the effects of each module, an ablation study com-
paring them was performed. Specifically, experiments were
conducted using GRU and RNN as history embedding meth-
ods and temporal graph attention (attn), temporal graph
sum (sum), and graph convolution network (GCN) as graph
embedding methods. Summarized results in Table 2 reveal
that among the graph embedding methods, the attn method
demonstrated the best performance across all datasets. This
is attributed to its ability to obtain the most recent infor-
mation from the graph and select crucial neighbors effec-
tively. While the TGN paper confirmed this through basic
graph learning tasks such as node classification and edge

prediction, this paper further confirms that these TGN char-
acteristics are applicable to recommendation datasets and
tasks. Regarding history embedding methods, different re-
sults were observed depending on the dataset. This indicates
that the influence of module selection is not as pronounced
as with graph embedding methods. Therefore, it is reason-
able to select an appropriate method based on the dataset.

Conclusion and Discussion
In this study, we introduced the TGN framework for the dy-
namic recommender system. It demonstrates a significant
improvement over traditional static models by accurately
adapting to the dynamic nature of user preferences. The ap-
plication of TGN captures the temporal shifts in user behav-
ior, showcasing both theoretical and practical enhancements
in real-world dataset evaluations.

Looking to the future, our focus will shift towards enhanc-
ing the practicality of TGN for large-scale applications. This
will involve integrating a temporal network hashing (Vau-
daine et al. 2023) method, designed to optimize learning ef-
ficiency and reduce memory requirements while preserving
the temporal sensitivity of the data. This advancement is piv-
otal for the scalable application of TGN-based recommender
systems, potentially leading to more responsive and efficient
platforms across various online services.
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