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Abstract

Fair allocation of goods to agents has been extensively stud-
ied because of their applications in several socio-economic
contexts, from division of inheritance to recommendation
systems. In a common setting, we have n agents and m items,
and each agent has an individual valuation for each of the
goods. However, in many situations agents may have more
than one valuation - for example when a recommendation
platform must allocate ad slots in order to satisfy both visi-
bility and marketing goals.
To deal with this and other general scenarios, in this pa-
per we study a novel bicriteria fair allocation framework:
a generalization of standard fair allocation settings where
each agent has a common public valuation and an individ-
ual valuation for each good. The goal is to find an allocation
that, for two integers γ, δ ≥ 0, is envy-free-up-to-publicly-γ-
and-privately-δ-goods (EF-(γ, δ)): each agent becomes non-
envious of each other w.r.t. the public (resp. her private) valu-
ation, after deleting at most γ (resp. δ) goods from the bundle
of each other.
We first provide a polynomial-time algorithm that is EF-(1,1)
when private valuations are known to the system. Then, we
focus on the realistic case in which agents can misreport their
private valuations to the system, and we provide a randomized
polynomial-time algorithm that returns EF-(1, δ) allocations
with high probability, where δ = O(α

√
log(n)m/n) and α

is the maximum private valuation for any item.

Introduction
In recent years, the concept of fair allocation has gained sig-
nificant attention in both theoretical and applied realms of
economics and computer science, with the aim of address-
ing several real-life problems connected with fair goods dis-
tribution to people, e.g., division of inheritance, house al-
location and dispute resolution and recommendation sys-
tems. The central idea is to distribute (or allocate) indivis-
ible goods (or items, or resources) to agents in such a way
that no individual feels envious of the resource bundle, that
is, to guarantee the envy-freeness (EF) property (Gamow and
Stern 1958). This ensures a certain level of fairness and sat-
isfaction among participants, which, in turn, can enhance co-
operation and system efficiency.
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Differently from the case of divisible resources (Stein-
haus 1948; Stromquist 1980), an outcome in which no
agent is envious of each other does not always exist.
Thus, several relaxation of envy-free allocations have been
proposed, such as envy-free-up-to-one-good (EF1) (Budish
2011) and envy-freeness-up-to-any-good (EFX) (Caragian-
nis et al. 2019) allocations. In particular, an allocation is EF1
(resp. EFX) if no agent is envious after deleting opportunely
a good (resp. any good) from each others’ bundle. Several
works have shown existence of EF1 allocations, by provid-
ing polynomial-time algorithms to compute them (e.g., the
round-robin algorithm for additive valuations (Caragiannis
et al. 2019) and the envy-cycle-elimination algorithm for
more general monotone valuations (Lipton et al. 2004)). In-
stead, showing the existence of EFX allocations is a ma-
jor open problem in fair allocation, and its existence has
been addressed for restricted setting only (Amanatidis et al.
2021).

Traditional envy-free allocation systems have primarily
considered a single valuation per-agent for each object being
distributed. However, in many real-world scenarios, agents
have complex perspectives towards goods that cannot be
captured by a single valuation per-agent. This is the case of
recommendation systems, where fairness constitutes a de-
sirable aspect when the users and/or the interests of the plat-
form must be satisfied under multiple criteria, without cre-
ating too many disparities between the agents involved (Li
et al. 2023; Wang et al. 2023). As an example, assume that
some companies (i.e., the users) vying for ad slots on a pop-
ular platform. The ad slots can have an objective value based
on factors like visibility and reach (independently on the as-
signment), while companies might also have a personal val-
uation based on their specific marketing goals or target de-
mographics. Allocating these slots in an envy-free manner,
respecting both these valuations, can lead to enhanced ad-
vertiser satisfaction and platform trust. It can also pave the
way for more efficient advertising ecosystems that align with
both platform goals and individual advertiser objectives.

Our Contribution
To model the above scenarios (and many others), we intro-
duce an ad-hoc fair allocation framework, called bicriteria
fair allocation, where a set M of goods (e.g., the ad slots)
must be allocated to some agents (e.g., the companies) in



such a way that the resulting allocation is as fair as possible,
according to two distinct additive valuations: (i) a public (or
common) valuation w (e.g., modeling ad slot visibility and
reach), that is common to all agents and is publicly known
(e.g., if the recommendation system can well-estimate it ac-
cording to its data), and (ii) a private valuation vi for each
agent i (e.g., modeling specific marketing goals of the com-
panies) that may also be unknown or misreported (e.g., if
some company tries to manipulate the choices of the recom-
mendation system for their own interests).

In the same spirit of EF1 allocations, our goal is to
compute allocations of goods to agents that are approxi-
mately fair according to both valuations. In particular, we
aim at finding envy-free-allocation-up-to-publicly-γ-and-
privately-δ-goods (EF-(γ, δ)), meaning that each agent is
not envious with respect to the public (resp. private) valu-
ation after deleting at most γ (resp. δ) goods from each oth-
ers’ bundle.

Assuming that the private valuations are known to the
system, we provide a polynomial-time algorithm that re-
turns an EF-(1,1) allocation (see Theorem 1). Such algo-
rithm elegantly combines the round-robin (Caragiannis et al.
2019) and the envy-cycle-elimination (Lipton et al. 2004)
approaches, and its fairness guarantee is the best possible,
considering that, even for a single valuation, an agent might
delete at least one good from the bundle of someone else to
recover fairness.

If we assume that the private valuations are initially un-
known and are reported by the agents to the system (i.e,
the recommendation platform), the high fairness considered
above is guaranteed to each player that truthfully declares
her goods valuations (that is, if an agent reports truthfully,
she will be non-envious up to one good w.r.t. both valua-
tions). However, it could be the case that some agents strate-
gically misreport their valuations to influence and manip-
ulate the goods allocation, in order to maximize her pub-
lic and/or private valuation, but possibly, at the expense of
the system performance (e.g., measured in terms of over-
all satisfaction with the recommendation). Such possibil-
ity of strategising may negatively influence the trust of
agents. To address the above issue, we provide a random-
ized algorithm that is strategy-proof (i.e., agents have no
incentive to disclose or misreport their private valuations)
and returns an EF-(1, δ) allocation with high probability,
where δ = O

(
α
√

log(n)m/n
)

and α is the maximum
goods value. The considered algorithm combines the round-
robin approach with further randomness features to recover
strategy-proofness, at the expense of the constant fairness
guarantee on the private valuation achieved by the first pro-
posed algorithm. Anyway, despite the obtained bound on the
fairness under private valuations is non-constant, it is still
sublinear in m/n and is quite small under several cases (e.g.,
it is logarithmic if the maximum item value α and the ra-
tio m/n are kept constant); furthermore, the envy-freeness-
up-to-one-good property is still preserved under public val-
uations. As a result of independent interest, we also have
that the fairness guarantee of our randomized algorithm out-
performs that achieved by the existing strategy-proof ap-

proaches (Caragiannis et al. 2009), even for the case of a
single valuation per-agent.

Further Related Work
Further connections of our model and results with the exist-
ing works are provided below.

Group-fair allocation. Our bicriteria fair allocation
framework can be seen as a particular case of a general
goods allocation framework, known as group-fair alloca-
tion (Kyropoulou, Suksompong, and Voudouris 2020), that
generalizes the standard fair allocation setting as follows:
r players1 are organized in several fixed groups, and we
must distribute goods to groups in such a way that the re-
sulting allocations are as fair as possible for each player in
the group. Several works (e.g., (Segal-Halevi and Suksom-
pong 2019; Kyropoulou, Suksompong, and Voudouris 2020;
Manurangsi and Suksompong 2022)) have studied existence
and computation of allocations which are envy-free-up-to-
δ-goods (EF-δ) under known valuations, for some integer δ.
Among these, the work of (Manurangsi and Suksompong
2022) applies some tools from Discrepancy theory (Alon
and Spencer 2008) to show asymptotically tight bounds on
the lowest integer δ guaranteeing the existence of EF-δ allo-
cations. In particular, they show that EF-O(

√
r) always exist

and can be computed in polynomial time.
We observe that our model of bicriteria fair allocation can

be instantiated in the group-fair allocation model. Indeed,
each agent of our model can be represented as a distinct
group, and each valuation of our model can be represented
as a player having the same valuation, so that each group
has two distinct players, that is, r = 2n. Thus, by apply-
ing the results of (Manurangsi and Suksompong 2022) to
our model, we can compute an allocation where each agent
can recover fairness by removing at most O(

√
r) = O(

√
n)

items, that is worse than the fairness guarantee of envy-
freeness-up-to-one-good that our algorithm for known val-
uations achieved. We conclude that, despite the existing re-
sults on group-fair allocation (e.g., that of (Manurangsi and
Suksompong 2022)) can be directly applied to our frame-
work, the resulting fairness guarantee is not as good as that
provided by our algorithm. This is not surprising, consid-
ering that our algorithm has been developed to work with
a proper sub-case of group-fair allocation problems, where
each group has exactly two valuations and one of them is
common.

Strategy-proofness. Several works addressed strategy-
proofness issues for the allocation of indivisible goods (e.g.,
(Lipton et al. 2004; Caragiannis et al. 2009; Amanatidis et al.
2017; Bouveret and Lang 2011; Padala and Gujar 2022;
Halpern et al. 2020; Arbiv and Aumann 2022; Arnosti and
Bonet 2022)). In particular, (Lipton et al. 2004) provides a
randomized strategy-proof algorithm for standard fair allo-
cation with a single valuation per-agent, which guarantees a
sub-linear maximum envy with high probability. The anal-
ysis of such algorithm has been subsequently improved by

1We use term “player” to avoid ambiguity with the agents con-
sidered in our bicriteria fair allocation framework.



(Caragiannis et al. 2009), who showed that the maximum
envy among agents is at most α

√
log(n)m with high prob-

ability, where α denotes the maximum item value; such
bound is proved by the O(α

√
log(n)m/n) bound achieved

by our randomized strategy-proof algorithm. (Amanatidis
et al. 2017) provided some useful characterization of truth-
ful mechanisms for fair allocation, and showed that there is
no strategy-proof algorithm that returns EF1 allocations (so
as for other fairness notions). In light of this result, our EF-
(1, 1) algorithm cannot be strategy-proof.

(Arbiv and Aumann 2022; Arnosti and Bonet 2022) stud-
ied strategy-proofness in the context of group-fair alloca-
tions, but with partially different objectives than ours.

Model and Definitions
Let [k] := {1, . . . , k} denote the set of the first k integers.

Let N := {1, . . . , n} denote a set of n agents and M a
set of m goods. Each agent i ∈ N has a private valuation
vi that assigns a value vi(g) ≥ 0 to each good g ∈ M , and
all agents have a public (or common) valuation w assigning
a value w(g) ≥ 0, that is common to all agents. Valuations
can be extended in an additive way to bundles S ⊆ M of
goods, that is, vi(S) =

∑
g∈S vi(g) for any i ∈ N and

w(S) =
∑

g∈S w(g). The tuple I = (N,M,w, (vi)i∈N )
denotes a generic input instance of bicriteria fair allocation.

A full allocation A = (A1, . . . , An) (simply denoted as
allocation) is a partition of M in n disjoint bundles of goods,
so that Ai is the bundle assigned to agent i ∈ N . A partial
allocation is a general collection A = (A1, . . . , An) of dis-
joint subsets of M , so that Ai is still the bundle assigned to
agent i ∈ N , but some goods are unallocated.

Bicriteria Fairness. Given two integers γ, δ ≥ 0, a (full
or partial) allocation A = (A1, . . . , An) is called bicriteria-
envy-free-up-to-γ-and-δ-goods (BEF-(γ, δ)) if, for any
agent i, j ∈ N , there exist subsets Sj , Qi,j ⊆ Aj with
|Sj | ≤ γ and |Qi,j | ≤ δ such that w(Ai) ≥ w (Aj \ Sj)
and vi(Ai) ≥ vi (Aj \Qi,j) (where Qi,j may depend on
the choice of both i and j, while Sj depends on j only). In-
formally, an allocation is BEF-(γ, δ) if no agent i is envious
of the bundle assigned to each other agent j with respect to
her private (resp. public) valuation, up to at most γ (resp. δ)
goods.

In the remainder of the paper, we will assume that the
public valuation is known to the decision maker who will
be responsible in assigning goods to agents, while private
valuations, depending on the cases, may be either reported
truthfully, or misreported/disclosed.

The Case of Known Valuations
In this section, we assume that agents truthfully report
their private valuations to the designer and we show that,
in such case, BEF-(1, 1) allocations always exist and can
be computed in polynomial time, thus matching the best
possible bound achieved for standard fair allocation prob-
lems with a single valuation per agent (Lipton et al. 2004).
To show this result, we propose a novel algorithm called
Round-robin+Envy-Cycle-elimination (REC), that elegantly

combines two known algorithmic approaches, namely the
round-robin (Caragiannis et al. 2019) and the envy-cycle-
elimination (Lipton et al. 2004) algorithms, already used
to find almost fair allocations in standard goods allocation
problems.

Before describing the algorithm, we first give some pre-
liminary definitions.

Envy-cycle-elimination procedure. Given a partial allo-
cation A = (A1, . . . , An), the envy-graph of A is a graph
GA = (V,E) where nodes are the agents in N , and there
exists an edge (i, j) ∈ E iff vi(Ai) < vi(Aj), i.e., if agent i
is envious of the bundle assigned to agent j, w.r.t. the private
valuation. (Lipton et al. 2004) defined a procedure, called
envy-cycle-elimination that, given a partial allocation A, re-
arranges the bundles of A in such a way that the envy-graph
of the obtained partial allocation becomes a direct-acyclic-
graph (DAG). The envy-cycle-elimination procedure works
as follows: (i) if there is a cycle Ai1 , . . . , Air = Ai1 in G,
then Ai1 becomes the bundle assigned to i0, Ai2 becomes
the bundle assigned to i1, and in general, Ais becomes the
bundle assigned to is−1 for any s ∈ [r]; (ii) we iterate the
above procedure until G becomes a DAG. We observe that,
after each application of (i), the cardinality |E| of the edges
decreases by at least 1, thus, as the number of edges in the
initial envy-graph is at most O(n2), after O(n2) steps the
envy graph necessarily-becomes a DAG.

REC algorithm. The REC algorithm works in T :=
⌈m/n⌉ rounds, and is defined as follows:

1. We first reorder all goods in non-increasing order w.r.t.
the public valuation, that is, w(g1) ≥ w(g2) ≥ . . . ≥
w(gm), where g1, . . . , gm is the sequence of the goods in
M according to the new order. Then, the algorithm splits
all goods into T disjoint subsets M1, . . . ,MT , where
Mt = {g(t−1)n+1, . . . , gtn} for any t ∈ [T − 1], and
MT := {g(T−1)n+1, . . . , gm}.

2. Let A := (A1, . . . , An) be the partial allocation ini-
tially made of n empty sets. At round t = 1, for each
i = 1, . . . , n, agent i picks the good g∗ ∈ M1 that max-
imizes the private valuation vi(g

∗) among the goods in
M1, removes g∗ from M1 and includes it in her bundle
Ai. We observe that, after this first round, the envy-graph
GA associated with A is already a DAG without applying
envy-cycle-elimination (indeed, there are no edges (i, j)
with i < j because of the greedy choice of the agents,
and a graph with such a property is a DAG).

3. At each subsequent round t = 2, . . . , T , we do the fol-
lowing sub-steps:

(a) As GA is a DAG, we can compute a topological or-
dering σ1 ≺ σ2 ≺ . . . ≺ σn of GA, that is, a total
ordering of nodes/agents such that, if there is an edge
from agent σi to agent σj in GA, then σi ≺ σj .

(b) We assign goods of Mt to agents as in step 2, but
following the above topological ordering, that is, for
each i = 1, . . . , n, agent σi picks the good g∗ ∈ Mt

that maximizes the private valuation vσi
(g∗) among

the goods in Mt, removes g∗ from Mt and includes it



in her bundle Aσi ; if t = T , Mt could become empty
before all agents pick a good, thus such agents will not
receive their T -th good.

(c) We apply the envy-cycle-elimination procedure to A,
so that the envy-graph of the new partial allocation is
again a DAG.

4. We repeat step 3 for all T rounds, that is, until all goods
are allocated; finally, we return the resulting (full) allo-
cation A.

See the supplementary material for the pseudo-code of the
REC algorithm.
Theorem 1. For any input instance I of bicriteria fair al-
location, the REC algorithm returns in polynomial time an
EF-(1, 1) allocation.

To show that REC returns an EF-(1,1) allocation, we first
show that each agent is envy-free-up-to-one-good w.r.t. the
public valuation, and this is done by exploiting the defini-
tion of groups M1, . . . ,MT . Then, we show that each agent
envy-free-up-to-one-good w.r.t. her private valuation, by ex-
ploiting the topological ordering used to assign items at each
round, and the subsequent envy-cycle elimination proce-
dure. The full proof on the fairness guarantee of REC and its
polynomial-time complexity is deferred to the supplemen-
tary material.

Strategy-proofness via Randomization
In this section, we assume that agents can misreport their
private valuations with the aim of manipulating the assign-
ment and reaching a certain individual goal (e.g., improv-
ing their public or private valuation). However, misreporting
can affect public or private values of other agents in the final
outcome, possibly creating mistrust among agents. To over-
come the problem of misreporting, we design and analyze
a randomized variant of the round-robin algorithm, called
probabilistic-round-robin (PRR), that only uses the knowl-
edge of the public valuation, without using any information
on the private valuations, and returns an EF-(1, δ) allocation
with high probability, where δ = O(α

√
log(n)m/n) and

α ≥ 0 is the maximum goods valuation.
In the remainder of the section, we will also assume

w.l.o.g. that the minimum non-zero public or private valu-
ation is 1.2

PRR Algorithm. The PRR algorithm works as follows:
1. As in REC, we reorder all goods in non-increasing or-

der w.r.t. the public valuation, that is, w(g1) ≥ w(g2) ≥
. . . ≥ vi(gm), where g1, . . . , gm is the sequence of
the goods in M after the ordering. Then, the algorithm
splits all goods into T groups M1, . . . ,MT , where Mt =
{g(t−1)n+1, . . . , gtn} for any t ∈ [T − 1], and MT :=
{g(T−1)n+1, . . . , gm}. Let A := (A1, . . . , An) be the
partial allocation initially made of n empty sets.
2Indeed, if it is not the case, it is sufficient to divide the goods

valuation of each agent i by min{g ∈ M : vi(g) > 0} to match
this requirement and to preserve the ordering relation among valu-
ations over bundles (i.e., we obtain an equivalent instance of bicri-
teria fair allocation).

2. At each round t ∈ [T ], we randomly choose an ordering
σ1 ≺ σ2 . . . ≺ σn of all agents. Then, for each i =
1, . . . , n, good g(t−1)n+i is assigned to agent σi and is
removed from Mt.

3. After executing step 2 over all T rounds, we return the
resulting (full) allocation A.

PRR could be interpreted as a multiple-round variant of
the random serial dictatorship algorithm (RSD) (Bogomol-
naia and Moulin 2001), a strategy-proof algorithm applied
to match n houses to n agents, where the agents’ ordering
is picked uniformly at random, and each agents chooses the
best house for her. PRR randomly picks a distinct ordering at
each round and, differently from RSD, does not assign items
based on the agents’ choices, but following a fixed items or-
dering. See the supplementary material for the pseudo-code
of the PRR algorithm.
Theorem 2. For any input instance I =
(N,M,w, (vi)i∈N ) of bicriteria fair allocation with n
agents and m goods, and any constant β > 0, the PRR
algorithm is strategy-proof and returns in polynomial
time an EF-(1, δ) allocation with probability at least

1 − 1/nβ , where δ =
⌈
α
√

2(β + 2) log(n)
⌈
m
n

⌉⌉
=

O
(
α
√
log(n)mn

)
and α = maxi∈N,g∈M vi(g).

The proof of Theorem 2 is based on the probabilistic anal-
ysis via the Hoeffding’s inequality (Hoeffding 1963), and it
is deferred to the supplementary material.

Future Works
Our work left several interesting research directions. First of
all, it would be interesting to study more general agents val-
uations, e.g., submodular. In particular, it would be nice to
provide new analysis for our algorithms under more general
valuations, or to design new algorithms to deal with them.

Furthermore, it would be good to study more general mul-
ticriteria fair allocation settings than that studied in this work
(e.g., with more than 2 public and/or private valuations per
agent), and seeing if one can obtain better fairness guar-
antees than those already provided for the general frame-
work of group-fair allocation (Kyropoulou, Suksompong,
and Voudouris 2020). To this aim, a direction we are con-
sidering is that of applying a variant of the REC algorithm
to a bicriteria fair allocation setting in which each agent i has
two private valuations v1i and v2i , where v1i is binary, agent
specific, and used in place of the public valuation w consid-
ered in this work. Relatively to this setting, we are exploit-
ing interesting connections between the EF-(1,δ) guarantee
(with δ as small as possible) and the Gap of the value hyper-
graph3 H = (V,E) associated with v1 (Alon 1998), where
V is the set of items and E contains, for each agent i, the set
of items that i values positively under binary valuation v1i .

Finally, it would be nice to see how to get better strategy-
proof algorithms than ours, e.g., if we assume weaker no-
tions of strategy-proofness.

3Given a hypergraph H = (V,E), the Gap of H is defined
as Gap(H) = mino∈L(V ) Gap(o), where L(V ) is the set of all
linear orders of V , Gap(o) is defined as maxe∈E Gap(o, e) and
Gap(o, e) is the number of times o leaves e in H .
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Supplementary Material
REC Algorithm

Algorithm 1: REC Algorithm

Require: An instance I = (N,M, (vi)i∈N , w) of bicriteria
fair allocation.

Ensure: An allocation A = REC(I).
1: Let T := ⌈m/n⌉.
2: Compute an ordering g1, g2, . . . , gm of all goods in such

a way that w(g1) ≥ w(g2) ≥ . . . ≥ w(gm).
3: Let Mt := {g(t−1)n+1, . . . , gtn} for any t ∈ [T − 1],

and MT := {g(T−1)n+1, . . . , gm}.
4: Let A := (A1, . . . , An) be the empty allocation.
5: for t = 1, . . . , T do
6: Let σ1 ≺ σ2 ≺ . . . ≺ σn be a topological ordering of

the envy-graph GA of allocation A, that is, if (σi, σj)
is an edge in GA, then σi ≺ σj .

7: i← 1.
8: while Mt ̸= ∅ do
9: Let g∗ ∈ argmaxg∈Mt vσi(g).

10: Aσi ← Aσi ∪ {g∗}.
11: Mt ←Mt \ {g∗}.
12: i← i+ 1.
13: end while
14: A← EnvyCycleElimination(A).
15: end for
16: return A := (A1, . . . , An).

Algorithm 2: EnvyCycleElimination

Require: An allocation A = (A1, . . . , An).
Ensure: An allocation EnvyCycleElimination(A).

1: The envy-graph GA = (V,E) associated with A is de-
fined in such a way that V := [n], and there exists an
edge (i, j) ∈ E iff vi(Ai) < vi(Aj).

2: while ∃ a cycle Ai1 , . . . , Air = Ai1 in the envy-graph
GA do

3: Atemp ← Ai1 .
4: for h = 1, . . . , r − 1 do
5: Aih ← Aih+1

.
6: Update A and GA.
7: end for
8: Air ← Atemp.
9: Update A and GA.

10: end while
11: return A

Proof of Theorem 1
Let I = (N,M,w, (vi)i∈N ) denote the input instance of
bicriteria fair allocation, with |N | = n and |M | = m. We
first show that REC can be executed in polynomial time.
Lemma 1. REC can be executed in O(m log(m) + n3m)
time.

Proof of Lemma 1. REC first requires to order the goods
according to the public valuation and to split them in

T := ⌈m/n⌉ disjoint subsets, and this can be done in
O(m log(m)) time. If m ≤ n, we have that T = 1, thus
the time complexity is uniquely determined by the previ-
ous ordering, and the claim follows. If m > n, we have
T > 1, and for each round t ∈ [T ], the algorithm computes
the topological ordering of the envy-graph GA = (V,E);
this can be done in time O(|V | + |E|) ≤ O(n2). Then,
REC let each agent chooses in set Mt her best good ac-
cording to the private valuation, and this can be done in
O(n2) time. Finally, REC applies the envy-cycle elimi-
nation procedure at each round, and this can be done in
O(n4) time. Indeed, each cycle detection can be performed
in O(|V | + |E|) ≤ O(n2) time, and each cycle-elimination
is applied at most O(n2) times at each round, that is, the
overall time complexity at each round is O(n4). We con-
clude that, the time-complexity of REC over all rounds is
O(m log(m)+T (n2+n4)) = O(m log(m)+(m/n)(n2+
n4)) = O(m log(m) + n3m).

In the remainder of the proof, we only focus on the fair-
ness guarantee achieved by REC. For the sake of simplic-
ity, we assume w.l.o.g. that n divides m. Indeed, if it is not
the case, it is sufficient to add some dummy goods having
zero value that will be assigned at the last round only, to the
agents who would not have receive any good in the initial in-
stance. Such dummy goods having zero value will not affect
the value of the bundles, so as the fairness guarantees.

Let At = (At
1, . . . , A

t
n) be the partial allocation obtained

by REC at the end of round t, for any t ∈ [T ]; furthermore,
let gti,r denote the r-th good included in bundle At

i for any
t ∈ [T ], i ∈ N , r ∈ [t]. In the following lemmas, we show
that, under partial allocation At, each agent is not envious of
each other up to one good, with respect to both valuations,
and this will be sufficient to show the claim of the theorem.
Lemma 2. For any i, j ∈ N and t ∈ [T ], we have that
w(At

i) ≥ w(At
j \ {gtj,1}), that is, each agent is not envi-

ous of each other up to one good, with respect to the public
valuation and under partial allocation At.

Proof of Lemma 2. Let i, j ∈ N and t ∈ [T ]. REC assigns
goods in such a way that agent i evaluates any good assigned
at each round r ∈ [t − 1] at least as any good assigned at
round r + 1, under the public valuation (that is common to
all agents). This implies that

w({gti,r}) ≥ w({gtj,r+1}), ∀r ∈ [t− 1]. (1)

Then, we have that

w(At
i) =

t∑
r=1

w({gti,r})

≥
t−1∑
r=1

w({gti,r})

≥
t∑

r=2

w({gtj,r}) (2)

= w(At
j \ {gtj,1}),

where (2) follows from (1).



Lemma 3. For any i, j ∈ N and t ∈ [T ], there exists g ∈ At
j

such that vi(At
i) ≥ vi(A

t
j \ {g}), that is, each agent is not

envious of each other up to one good with respect to the
private valuation, under partial allocation At.

Proof of Lemma 3. We show the lemma by induction on t.
For t = 1, the lemma is obviously satisfied, as each bundle
has one good only.

Assume that, for some t ≥ 2, the claim is true for t − 1,
and let us show it for t. To obtain partial allocation At from
At−1, the REC algorithm first assigns the most valuable
good (among the remaining ones) to each agent, but fol-
lowing the topological ordering defined by the envy-graph
GAt−1 , and let Ãt = (Ãt

1, . . . , Ã
t
n) denote the partial allo-

cation obtained after this procedure. We will show that no
agent is envious up to one good, w.r.t. the private valuation
and partial allocation Ãt, that is, for any i, j ∈ N there exists
g∗ ∈ Ãt

j such that vi(Ãt
i) ≥ vi(Ã

t
j \ {g∗}). Given i, j ∈ N ,

we have two possible cases:

Case vi(A
t−1
i ) ≥ vi(A

t−1
j ): Let g∗ = Ãt

j \ A
t−1
j be the

good assigned to agent j at round t. Then, we have that

vi(Ã
t
i) ≥ v2i (A

t−1
i ) ≥ vi(A

t−1
j ) = vi(Ã

t
j \ {g∗}). (3)

Case vi(A
t−1
i ) < vi(A

t−1
j ): By the considered topologi-

cal ordering, at round t agent i will choose her most valu-
able good before agent j. Thus, denoting as g∗i and g∗j the
goods assigned to i and j, respectively, we have that

vi({g∗i }) ≥ vi({g∗j }). (4)

Furthermore, by the inductive hypothesis, we have that
there exists g∗ ∈ At−1

j such that vi(At−1
i ) ≥ vi(A

t−1
j \

{g∗}). Then, we obtain

vi(Ã
t
i) = vi(A

t−1
i ) + vi({g∗i })

≥ vi(A
t−1
i ) + vi({g∗j }) (5)

≥ vi(A
t−1
j \ {g∗}) + vi({g∗j }) (6)

= vi(Ã
t
j \ {g∗}),

where (5) holds by (4), and (6) holds by the inductive
hypothesis.

We conclude that, in both cases, there exists a good g∗ ∈ Ãt
j

such that vi(Ãt
i) ≥ vi(Ã

t
i \ {g∗}).

After obtaining the partial allocation Ãt, the REC algo-
rithm applies the envy-cycle-elimination procedure to Ãt,
and the resulting allocation is At. As each agent is not en-
vious up to one good under the allocation Ãt and w.r.t.
the private valuation, if we apply the envy-cycle-elimination
procedure to Ãt the above fairness guarantee continues to
hold under the new allocation At. Indeed, the envy-cycle-
elimination procedure, when assigning a new bundle to
some agent, the valuation of such agent does not decrease
if compared with that she had for the previously assigned
bundle. Thus, we have that, for any i, j, there exists a good
g∗ ∈ Ãt

j such that vi(At
i) ≥ vi(A

t
i \ {g∗}). This shows the

inductive step, and concludes the proof of the lemma.

By using Lemma 2 and 3 with t = T , we obtain that no
agent is envious up to one good, with respect to both public
and private valuations, thus the claim of the theorem follows.
Remark 1. We observe that the REC algorithm would return
an EF-(1, 1) even if the public valuation is not common to
all agents, but agents assign the same ranking to the goods
under their individual public valuation. Indeed, under such
partial generalization, the REC algorithm would order the
goods according to the common ranking, and the proof of
Lemma 2 (stating that the returned allocation is envy-free-
up-to-one good w.r.t. the public valuation) would continue to
hold, as it only uses the fact the goods ranking is common.

PRR Algorithm

Algorithm 3: PRR Algorithm

Require: An instance I = (N,M,w, (vi)i∈N ) of bicriteria
fair allocation.

Ensure: An allocation A = PRR(I).
1: Let T := ⌈m/n⌉.
2: Compute an ordering g1, g2, . . . , gm of all goods in such

a way that w(g1) ≥ w(g2) ≥ . . . ≥ w(gm).
3: Let Mt := {gt, gt+1, . . . , gt+n−1} for any t ∈ [T − 1]

and MT := {gT , . . . , gm}.
4: Let A := (A1, . . . , An) be the empty allocation.
5: for t = 1, . . . , T := ⌈m/n⌉ do
6: Compute a random ordering σ1 ≺ σ2 ≺ . . . ≺ σn of

all agents.
7: i← 1.
8: while Mt ̸= ∅ do
9: g∗ ← g(t−1)n+i

10: Aσi
← Aσi

∪ {g∗}.
11: Mt ←Mt \ {g∗}.
12: i← i+ 1.
13: end while
14: end for
15: return A := (A1, . . . , An).

Proof of Theorem 2
Strategy-proofness holds since PRR does not use any in-
formation about the private valuations of the agents. Thus,
agents have no benefit in misreporting their valuations (that,
indeed, are not even used by the algorithm).

We observe that the complexity of the algorithm depends
on the ordering of all goods according to the public valua-
tion, that requires O(m log(m)) steps. Thus, we have shown
that PRR runs in polynomial time and, in the remainder of
the proof, we can only focus on the fairness guarantee of
PRR.

We assume w.l.o.g. that m ≥ n, otherwise PRR will triv-
ially returns an EF-(1, 1) allocation, and the claim follows.
By exploiting the same arguments as in Lemma 2, we can
show that the resulting allocation is envy-free up to one good
w.r.t. to the public valuation.

It remains to show the probabilistic fairness guarantee
on the private valuation, and to do this, we resort the Ho-
effding’s concentration bounds (Hoeffding 1963). For any



i, j ∈ N and t ∈ [T ], let (i) Xi,j,t be the random variable
equal to the private valuation of agent i for the good that
agent j receives at round t, (ii) Yi,j :=

∑
t∈T Xi,j,t, i.e.,

Yi,j is the random valuation of agent i for the bundle as-
signed by PRR to agent j, (iii) Wi,j,t := Xi,j,t −Xi,i,t, (iv)
Zi,j := Yi,j−Yi,i =

∑
t∈T Wi,j,t, i.e., Zi,j is the difference

between the valuation of agent i for the bundle assigned to
agent j and her own bundle, and (v) Q := maxi,j∈N Zi,j is
the maximum additive envy among all agents.

In the remainder of the proof, we will show that the fol-
lowing inequality holds:

P(Q < δ) ≥ 1− 1

nβ
, (7)

where δ :=
⌈
α
√
2(β + 2) log(n)

⌈
m
n

⌉⌉
. As α is defined as

the maximum goods valuation and the minimum non-zero
valuation is 1 (w.l.o.g., by the assumptions on the model),
if Q < δ holds, then each agent can delete at most δ goods
from the bundle of each other to be non-envious according
to her private valuation. Thus, by showing that Q < δ holds
with probability at least 1− 1

nβ (i.e., inequality (7)), we get
the fairness guarantee on the private valuation stated in the
theorem, and this would conclude the proof.

We have that

P(Q < δ) = P
(
max
i,j∈N

Zi,j < δ

)
= P(Zi,j < δ, ∀i, j ∈ N)

= 1− P(∃i, j ∈ N : Zi,j ≥ δ)

≥ 1−
∑
i,j∈N

P(Zi,j ≥ δ)

= 1−
∑
i,j∈N

P

∑
t∈[T ]

Wi,j,t ≥ δ

 . (8)

The following lemma resorts to the Hoeffding’s concen-
tration bounds to provide an upper bound on each term
P
(∑

t∈[T ] Wi,j,t ≥ δ
)

.

Lemma 4. For any i, j ∈ N , we have

P

∑
t∈[T ]

Wi,j,t ≥ δ

 ≤ 1

nβ+2
. (9)

Proof of Lemma 4. As Yi,j is the random valuation of agent
i for the bundle assigned to agent j, and the agents ordering
are picked uniformly at random by PRR, by symmetry argu-
ments we necessarily have that, for any fixed i ∈ N , E [Yi,j ]
does not depend on j. Thus, we have

E

∑
t∈[T ]

Wi,j,t

 = E [Zi,j ]

= E [Yi,j − Yi,i] = E [Yi,j ]− E [Yi,i] = 0, (10)

where the last equality holds by the above observations. We
observe that the random variables (Wi,j,t)t∈[T ] are indepen-
dent, as the agents ordering selected by PRR at each round

t ∈ [T ] are picked independently. Furthermore, as each vari-
able Wi,j,t represents the difference Xi,j,t −Xi,i,t between
two goods valuations bounded by α from above, we neces-
sarily have that Wi,j,t belongs to interval [a, b] := [−α, α].
Then, by applying the Hoeffding’s inequality, we get

P

∑
t∈[T ]

Wi,j,t ≥ δ


= P

∑
t∈[T ]

Wi,j,t − E

∑
t∈[T ]

Wi,j,t

 ≥ δ

 (11)

≤ e
− 2δ2∑

t∈[T ](b−a)2 = e
− δ2

⌈m/n⌉2α2 (12)

≤ 1

nβ+2
, (13)

where (11) holds by (10), (12) holds by Hoeffding’s inequal-
ity and (13) holds by definition of δ. By (13), the claim fol-
lows.

By using the upper bound provided by Lemma 4 in (8),
we get

P(Q < δ) ≥ 1−
∑
i,j∈N

P

∑
t∈[T ]

Wi,j,t ≥ δ


≥ 1−

∑
i,j∈N

1

nβ+2

= 1− n2 · 1

nβ+2

= 1− 1

nβ
,

that is, we showed inequality (7). Thus, each agent can
delete at most δ goods from the bundle of each other to be
non-envious according to her private valuation, with proba-
bility at least 1− 1

nα , and this concludes the proof.
Remark 2. As observed in Remark 1 for the REC algorithm,
we have that the PRR algorithm would return an allocation
that is envy-free up to one good w.r.t. to the public valuation,
even if the public valuation is not common to all agents, but
agents assign the same ranking to the goods under their indi-
vidual public valuation. Furthermore, the fairness guarantee
on the public valuation always holds, and not only with high
probability, even if the algorithm only knows the ranking of
goods, and not the precise public valuation.


