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Abstract

Using language models as a remote service en-001
tails sending private information to an untrusted002
provider. In addition, potential eavesdroppers003
can intercept the messages, thereby exposing004
the information. In this work, we explore the005
prospects of avoiding such data exposure at the006
level of text manipulation. We focus on text007
classification models, examining various token008
mapping and contextualized manipulation func-009
tions in order to see whether classifier accuracy010
may be maintained while keeping the original011
text unrecoverable. We find that although some012
token mapping functions are easy and straight-013
forward to implement, they heavily influence014
performance on the downstream task, and via a015
sophisticated attacker can be reconstructed. In016
comparison, contextualized manipulation pro-017
vides an improvement in performance.018

1 Introduction019

Large language models (LLMs) have greatly ad-020

vanced the field of NLP in recent years, exhibit-021

ing exceptional proficiency across a wide spectrum022

of tasks, including dependency parsing (Duong023

et al., 2015), natural language understanding (Dong024

et al., 2019), automatic question-answering (Ope-025

nAI, 2021; Ouyang et al., 2022), machine trans-026

lation (Dabre et al., 2020), text classification (Mi-027

naee et al., 2021), and many more (Li et al., 2022).028

However, this success comes with potential privacy029

risks, as the models process vast amounts of data030

that might contain personal or sensitive information031

and may abuse or leak it. For instance, informa-032

tion can be leaked by model inversion (Li et al.,033

2017), re-identification techniques (Lison et al.,034

2021; Ben Cheikh Larbi et al., 2023), exploitation035

of feature memorization within the LLM (Carlini036

et al., 2021), and more. Offering LLMs as cloud037

services, such as ChatGPT (Ouyang et al., 2022),038

might also impose potential threats to privacy if039

the server exhibits a semi-honest stance, actively040

Input data
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(C) Token embedding privatization
Encoder

(D) Sequence embedding privatization

Figure 1: A schematic of the various stages where dif-
ferential privacy techniques can be applied in an LLM.
This work focuses on level (B).

seeking to glean more insights from the input than 041

is appropriate or by a possible eavesdropper inter- 042

cepting the input sent to the server. 043

In order to safeguard privacy, many privacy- 044

preserving techniques have been proposed, based 045

on the local differential privacy framework (LDP; 046

Arachchige et al., 2019). In this framework, 047

the user applies a differential privacy mechanism, 048

which can be hosted on a local server, and then 049

sends the privatized data to the remote server. This 050

approach doesn’t require trust from the remote 051

server, and protects the data against potential eaves- 052

droppers. In general, any privacy mechanism can 053

be applied at one or several components of the 054

LLM pipeline. Figure 1 depicts these components: 055

at the text level (text privatization), after the tok- 056

enization process (token privatization), after the 057

initial embedding lookup (token embedding pri- 058

vatization), or after applying several layers of the 059

encoder (sequence embedding privatization). 060

Currently, most privacy-preserving strategies fo- 061

cus on incorporating noise into sequence embed- 062

ding vectors. The rationale behind this strategy 063

is to minimize the privacy-preserving technique’s 064

impact on the downstream task. Specifically, most 065

systems first obtain a sequence embedding repre- 066
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sentation, either by assuming partial access to the067

remote model (Zhou et al., 2022; Lyu et al., 2020;068

Qu et al., 2021) or by using a dedicated model to069

create these embeddings (Li et al., 2018; Coavoux070

et al., 2018; Mosallanezhad et al., 2019; Plant et al.,071

2021; Zhou et al., 2023). Afterwards, random noise072

is incorporated into the embeddings, thus conceal-073

ing the original input. However, this approach re-074

lies on partial access to the remote model, on the075

ability to provide input to the remote model in vec-076

tor form, or on sufficient computational and mem-077

ory resources on the user’s end. These are often not078

the case. In addition, Kugler et al. (2021) showed079

that publishing a model’s encoder along with the080

contextualized embeddings allows an adversary to081

generate data to train a decoder with a high level of082

reconstruction accuracy, making these approaches083

highly susceptible to violation of privacy.084

We propose a secure way to use LLMs with-085

out assuming access to their parameters. In our086

framework, both input and output for the privacy-087

providing mechanism must be given in a token088

sequence format, eliminating the need to intervene089

with the LLM’s pre-training procedure or text pro-090

cessing. We focus on applying privacy preserva-091

tion techniques at the token level, corresponding to092

layer (B) in Figure 1.093

Specifically, we propose two privacy-preserving094

techniques based on manipulating the input token095

sequence. The first set of techniques relies on naïve096

rules of token substitution. The second is based on097

leveraging contextual information to strategically098

replace tokens, aiming to retain as much actionable099

information as possible for the classifier to mini-100

mize the impact on the performance of the down-101

stream task. We test these techniques both for their102

impact on the downstream task accuracy and for103

their resilience against reconstruction attacks. We104

find that replacing tokens based on simple rules is105

easy for a knowledgeable attacker to reverse, while106

manipulating tokens based on contextual informa-107

tion can enhance privacy without sacrificing much108

of the performance.109

2 Lossy Mapping110

In order to protect against potential eavesdropping111

by a middle party, under the assumption that the112

layers of LLMs are inaccessible to the local device,113

we start by employing several mapping functions114

on the tokens of the input text available at the lo-115

cal device. Our initial, naïve mapping functions116

introduce a random noise component that follows 117

a specific rule: the vocabulary is partitioned into 118

pairs of tokens (u, v), or triplets (u, v, z), and when 119

encountered in an input text to be manipulated, 120

all tokens are mapped to a single representative 121

token of their tuple, without loss of generality u. 122

This strategy produces outputs that are inherently 123

ambiguous, blocking any potential eavesdroppers 124

from recovering the original input text determin- 125

istically, given that a many-to-one mapping is not 126

invertible. The only available recourse for an at- 127

tacker is a statistical strategy, which imposes as- 128

sumptions on the properties of the input, for ex- 129

ample that it was grammatical English text written 130

by a speaker with high proficiency. Indeed, even 131

if an eavesdropper obtains full information of the 132

privacy system, i.e. the partition into token tuples 133

and each tuple’s representative token, each mapped 134

sequence of length m still generates a candidate set 135

of 2m or 3m possible permutations (depending on 136

tuple size) through which the attacker must search. 137

We will examine the practical implications of this 138

large search space later in the section. 139

For our stated use case of manipulating text be- 140

ing input into a sequence classifier operating atop 141

an LLM, there are two distinct scenarios depend- 142

ing on when we may apply our manipulation. The 143

first scenario involves applying the manipulation 144

process only during the inference phase of a model 145

trained on regular, unmanipulated text, which we 146

will refer to as the TEST case. This operation mode 147

simulates a query sent by a user to an already- 148

trained model, such as a user interacting with Chat- 149

GPT or another model allowing only inference text 150

interaction via user interface or an API. In the sec- 151

ond scenario, which we call ALL, we also apply 152

the manipulation during the training phase, pro- 153

tecting sensitive information in the training data, 154

hoping that the inference phase will now leverage 155

the model’s ability to handle manipulated input as 156

expected and produce better results. In this scenario 157

the model does not inadvertently learn or memorize 158

the sensitive data during the training process, nor 159

does it spend learning resources on tokens never to 160

be seen during inference, but since it is not always 161

possible to assume its availability, we perform our 162

experiments in both settings. 163

When protecting the original input data, it is es- 164

sential for the mapper to have minimal impact on 165

the performance of the downstream task, defining 166

the fundamental trade-off in our study. Therefore, 167
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Dataset Mapper TEST ALL Unchanged
Tokens

Plain text 94.5% 94.5% 100%
2-Random 75.0% 85.0% 51.0%

SST2 3-Random 62.0% 80.0% 34.0%
High-freq 90.0% 91.0% 93.0%
Low-freq 60.0% 78.0% 7.0%

Plain text 95.0% 95.0% 100%
2-Random 75.0% 90.0% 50.0%

IMDb 3-Random 68.0% 85.0% 32.0%
High-freq 93.0% 94.0% 94.0%
Low-freq 60.0% 80.0% 6.0%

Table 1: The mapping strategy accuracy on SST2 and
IMDb datasets and the percentage of unchanged tokens
after applying the mappers to the training and test sets.

the selection process for grouping tokens and se-168

lecting each tuple’s representative token is crucial,169

as it aims to both minimize the mapping’s effect170

on the downstream task and hinder the attacker’s171

ability to uncover the original text. We consider the172

following mapping functions:173

Purely random mapping the selection of the174

token pairs tuples from the vocabulary and of each175

tuple’s representative is uniformly random.176

High-frequency mapping token pairs are se-177

lected based on their frequency of occurrence in a178

tokenized corpus, such as Wikipedia (Foundation,179

2023). This involves pairing a higher-frequency to-180

ken with a lower-frequency token, with the higher-181

frequency token being designated as the representa-182

tive. In our mapper, given a vocabulary of even size183

V , sorted by descending frequency, each token with184

rank 1 ≤ k ≤ V
2 is paired with the token of rank185

k + V
2 . While selecting the high-frequency token186

as the representative may have a lesser impact on187

the downstream task, it could potentially weaken188

the privacy-preserving characteristics, depending189

on the knowledge possessed by the attacker.190

Low-frequency mapping the process is similar191

to that of the higher-frequency mapper, except that192

the lower-frequency token is chosen as the repre-193

sentative. Opting for less-frequent tokens as repre-194

sentatives can aid in preserving privacy, but it will195

likely harm the downstream task.196

Due to the simplicity of these mapping strategies,197

we consider them baselines for further research198

and developing better, potentially language-aware199

strategies. In addition, these mapping functions can200

easily be generalized to larger tuples, expanding201

the search space even further, but greatly harming202

Mapper Text

Plain Text no apparent joy
2-Random his buffers University
High-freq no apparent joy
Noise(150) non evident joyful
STEN(9, 0.8) No evident joyful
STENp(9, 1.0) apparent No joyful

Table 2: Examples of the privatized textual sequences
obtained with different privacy-preserving techniques.

downstream task performance as a result of a much 203

more restricted active vocabulary. 204

2.1 Task Performance 205

To assess the impact of the baseline models on 206

downstream task performance, we use two datasets 207

for sequence classification: SST2 (Socher et al., 208

2013) and IMDb (Maas et al., 2011). The base 209

model chosen was RoBERTa (Liu et al., 2019), 210

a state-of-the-art encoder language model known 211

for its strong performance in sequence classifica- 212

tion tasks. In Table 1, we present the results of 213

four baselines on the two datasets, compared with 214

the null mapping results labeled “Plain text”. Per- 215

haps unsurprisingly, the high-frequency baseline 216

achieved the highest accuracy, most likely due to 217

the fact that retaining high-frequency tokens while 218

removing low-frequency ones results in a relatively 219

small number of tokens altered in the datasets. In 220

both datasets this number is roughly 6%, compared 221

with low-frequency mapping’s complement of 94% 222

and with the randomly-selected sets’ 50% and 67%, 223

giving a correlative relationship between this num- 224

ber and the performance level: the fewer tokens are 225

altered, the better the model performs. This effect 226

is much more pronounced when only the test set 227

is affected, and the model is dealing not only with 228

loss of information but also with out-of-distribution 229

behavior. In absolute terms, we find it remarkable 230

that this alteration of a non-negligible portion of 231

tokens causes only a 1–2 percentage point reduc- 232

tion in performance for the IMDb dataset and still 233

under 5 points for SST2. 234

In Table 2, we present an example of the out- 235

come of applying the 2-Random and the High- 236

freq privatization techniques on a random phrase 237

(“no apparent joy”) from the SST2 dataset. As ex- 238

pected, the 2-random baseline produces a random 239

sequence of words, whereas the high-frequency 240

mapper leaves the phrase unchanged as the tokens 241

in the original sequence are frequent. 242
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Input: what a nice day what what nice unicorn

Attacker path:

p = 80%

what

p = 20%

a

what what

p = 80% × 0.1%

what a

p = 80% × 99.9%

a what

p = 20% × 10%

a a

p = 20% × 90%

what a nice

p = 80% × 99.9% × 90%

what a is

p = 80% × 99.9% × 10%

a a nice

p = 20% × 90% × 90%

a a is

p = 20% × 90% × 10%

what a nice unicorn

p = 80% × 99.9% × 90% × 1%

P = 7.1928%

what a nice day P = 64.7352%

p = 80% × 99.9% × 90% × 99%

a a nice day

p = 20% × 90% × 90% × 50%

P = 8.1%

a a is unicorn

p = 20% × 90% × 90% × 50%

P = 8.1%

Figure 2: Schematic overview of the proposed heuristic oracle attacking scenario path over trying to reconstruct
the sentence “what a nice day” which is remapped to “what what nice unicorn”. The red boxes indicate that the
probability (presented above the box) of the candidate is low enough to be dropped in the next step, while the green
boxes are the candidates that will be expanded in the next step.

2.2 Brute-force Attacker243

Although the many-to-one mapping function intro-244

duces some form of protection against data leakage,245

in practice, reconstructing the original text might246

be relatively straightforward under certain circum-247

stances. In particular, if an “oracle” attacker has248

access to the token pairings, it can theoretically249

determine the original text from the pool of 2m pos-250

sible permutations by applying a generative LLM251

such as GPT (Radford et al., 2019) and picking the252

most probable sequence. However, generating and253

evaluating all 2m permutations is impractical even254

for small values of m due to the computational255

complexity involved. To mitigate this challenge,256

alternative approaches, such as employing heuris-257

tics or utilizing statistical methods, can be explored258

to narrow down the potential candidates for the259

original text.260

To cope with this task, we describe a heuristic261

approach to reducing the search space based on262

beam search (Eisenstein, 2019, §11.3.1) and nu-263

cleus sampling (Holtzman et al., 2019). In each264

step of the process, candidates are generated based265

on the prefixes of tokens that were produced in the266

previous steps. In the case of token pairs, each267

prefix sequence is followed by one of two candi-268

date tokens for the next step based on the known269

(oracle) token pair that the observed representa-270

tive token belongs to. Unlike conventional beam271

search, where a fixed number of candidates is re-272

tained following each step, we opt for a dynamic273

approach inspired by nucleus sampling, made pos-274

sible since the scores for each of the two tokens275

reflect a generative probabilistic process where the 276

relative probability of each interim token sequence 277

on the beam can be estimated and used for dropping 278

highly unlikely sequence prefixes. This means that 279

the number of candidates remaining on the beam 280

varies at each step, adapting to their likelihood and 281

ensuring flexibility in the selection process. We es- 282

timate the likelihood of each candidate prefix using 283

a language model.1 After all prefixes on the beam 284

have been scored, we remove the least probable 285

candidates such that the total probability of the re- 286

maining candidates exceeds a certain threshold π 287

set by computational constraints but maintaining 288

discoverability. Since the probability of a sequence 289

cannot exceed that of its prefix, the process guar- 290

antees that complete sequences that are likely are 291

not being discarded before getting the chance to be 292

fully generated. Overall, this process effectively 293

eliminates highly unlikely candidates, dramatically 294

reducing the search space during its application and 295

streamlining the computational efforts. 296

This process is illustrated in Figure 2. The “ora- 297

cle” attacker gains access to the remapped words: 298

(what,a)→ a, (nice, is)→ nice, (day, 299

unicorn)→ unicorn. In the first step, two ini- 300

tial candidates (what and a) are generated based 301

on the first observed token (what). Following the 302

described process, each prefix is evaluated via an 303

LLM to determine its probability, for instance, the 304

probability of what being the first word is 80% 305

when considering the possible set {[s] what, 306

1https://github.com/simonepri/
lm-scorer
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Dataset Mapper MRR Pr@5 Edit dist
(↓) (↓) (↑)

2-Random 0.89 0.97 1.32
SST2 3-Random 0.81 0.92 1.35

High-freq 0.86 0.98 1.33

2-Random 0.48 0.59 1.60
IMDb 3-Random 0.45 0.53 1.70

High-freq 0.63 0.72 1.60

Table 3: The three random mappings’ capability of
preserving privacy against an “oracle” attacker. Edit
distance is calculated at the token level.

[s] a}. This process is repeated, and the can-307

didates with low probability are removed, such308

that the total probability of the remaining candi-309

dates is above 85%, as indicated by the red boxes.310

Finally, the probability of the sequence what a311

beautiful day is the highest, thus the “ora-312

cle” attacker returns it as the inferred original text.313

We note that the low-frequency and high-frequency314

mappers, despite their differences in representative315

token selection, will demonstrate equivalent safe-316

guarding mechanisms against this attacker since317

the attacker does not factor in the choice of the318

representative token and examines all potential can-319

didates in its effort to uncover the original text.320

2.3 Resilience Against Reconstruction Attacks321

In Table 3, we present the outcomes of the at-322

tacker’s endeavors to reveal the original text from323

the three techniques: 2-Random, 3-Random, and324

High-freq (equivalent to Low-freq for a knowledge-325

able attacker). We report the mean reciprocal rank326

(MRR) of the correct sequences, the rate of the327

actual input sequence ranking among the top 5 pre-328

dictions (Pr@5), and the token-level edit distance329

between the produced top prediction and the origi-330

nal sequence. The relative success of the mappers331

in thwarting the oracle attacks on the IMDb dataset332

compared to SST2 can be attributed to the aver-333

age token sequence length (m̄), which is 65 and334

12, respectively. As sequence length increases, the335

attacker’s task of uncovering the original text be-336

comes more challenging.337

Our results indicate that the naïve baselines are338

overly simplistic and allow an easy and straight-339

forward reconstruction, even within a vast search340

space (although attacker knowledge of the map-341

ping specifications is required). In cases where342

performance on the task remains close to that of343

unmapped text, the recovery price is too high to ne-344

glect. Having said that, the computational complex- 345

ity of applying the naïve baselines is relatively low, 346

and the greatly reduced active vocabulary brings 347

great savings in parameter budgets, which embed- 348

ding tables often dominate. In a less powerful at- 349

tack environment, this would make them an effi- 350

cient choice for preserving privacy on low-resource 351

devices. We expect future work on more princi- 352

pled many-to-one static mappings would be able 353

to improve both task performance and resilience 354

to attackers, while work on attack strategies can 355

present challenges hitherto unseen. 356

3 STENCIL Privacy Preservation 357

In the context of protecting privacy within NLP 358

practices, a widely adopted approach for imple- 359

menting local differential privacy involves intro- 360

ducing a controlled level of noise into different 361

components of the model, effectively concealing 362

the original input. These components may include 363

sequence embeddings, token embeddings, or the 364

tokens themselves (Mosallanezhad et al., 2019; 365

Feyisetan et al., 2020; Lyu et al., 2020; Qu et al., 366

2021; Zhou et al., 2022). However, in essence, the 367

success of models in most NLP tasks is primarily 368

attributed to their effective utilization of contex- 369

tual information. Moreover, our study focuses on 370

token-level privacy preservation, i.e., we assume 371

that the parameters of the LLMs are inaccessible, 372

making the importance of contextual information 373

more pronounced. Therefore, a fundamental lim- 374

itation associated with incorporating noise is the 375

exclusion of contextual information when defining 376

the noise. This omission may hinder the potential 377

benefits contextual details can offer for maintaining 378

the performance of the downstream tasks. 379

Given this limitation, we propose a new privacy 380

preservation technique, which we call STENCIL.2 381

With this technique, a mapped token in a sequence 382

“absorbs” information from adjacent tokens to form 383

a new context-aware token, effectively concealing 384

the original token while retaining information ben- 385

eficial for maintaining task performance. 386

In order to generate the new contextualized token 387

tk → t′k, we first retrieve an embedding vector rep- 388

resentation of the neighborhood, of size n+1, con- 389

taining the tokens ti,∀i ∈ {k − n/2 . . . k + n/2} 390

using some embedding lookup table E ∈ RV×d, 391

2This term hails from numerical analysis (Spotz, 1995),
where it denotes a computation that involves the surrounding
values.
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which can be trained independently in a prelimi-392

nary step or obtained from an available model such393

as the target model itself. We then subject the n+1394

embedding vector representations to a weighted395

transformation and incorporate them to form a new396

“quasi-embedding” vector
∑k+n/2

i=k−n/2 fi ·E[ti]. Fi-397

nally, we return the token t′k that is closest to the398

quasi-embedding vector in the embedding space,399

based on cosine-similarity or euclidean distance400

computation, as an output. To further enhance pri-401

vacy, we ensure that the new token is different from402

the original one. Formally, the process can be de-403

fined as follows:404

t′k = argmin
tj∈V

∥∥∥∥∥∥E[tj ]−
k+n

2∑
i=k−n

2

fi ·E[ti]

∥∥∥∥∥∥ , (1)405

where V is the vocabulary and fi is the weighted406

transformation function of the tokens such that407 ∑k+n
2

i=k−n
2
fi = 1.408

The level of privacy enhancement and its impact409

on the downstream task by employing the STENCIL410

method can be managed by adjusting the window411

size and the properties of the weighted function412

f . In our study, we use the gaussian smoothing413

function as the weighted function. Consequently,414

the standard deviation, σ, plays a crucial role in the415

performance and amount of privacy achieved.416

In our experiments, we compared our STENCIL417

mechanism to two other privacy-preserving tech-418

niques. The first, technique was proposed by Qu419

et al. (2021)’s, namely the NOISE mapper. In con-420

trast to our proposed technique, this approach does421

not consider context but rather incorporates random422

noise into token embeddings to enhance privacy.423

Similar to our proposed method, the new token is424

the closest to the quasi-embedding vector in the425

embedding space. The random noise is obtained426

by multiplying a sample from a Gamma distribu-427

tion Γ(d, 1/η) and a uniform sample from a unit428

hypersphere, where η corresponds to the amount429

of noise introduced to the original token and d is430

the dimension of the embedding space.431

For the second technique, we include Chen et al.432

(2023)’s CUSTEXT+ privacy-preserving mecha-433

nism. The CUSTEXT+ mechanism consists of a434

mapping procedure and a sampling function. The435

mapping procedures generate a list of the top K to-436

kens for each token, selecting those with the highest437

semantic relevance to the original token. Similar438

to the NOISE and STENCIL mechanisms, semantic439

relevance is determined by calculating either the 440

cosine similarity or Euclidean distance of the quasi- 441

embedding vectors. Then, each token is remapped 442

to one of the K candidates using an exponential 443

sampling function. 444

We note that the most time-intensive operation 445

in all mechanisms is searching for the closest token 446

to the perturbed quasi-embedding vector, whereas 447

all other operations are negligible in comparison. 448

Overall, the average computational cost per token 449

is 0.005 seconds on two 16-core 3.2 GHz AMD 450

EPYC 7343 Milan processors. 451

3.1 STENCIL+ and STENCILp Mechanisms 452

Identifying sensitive words, such as those involved 453

in named entity recognition (e.g., names, addresses, 454

workplaces), is a challenging task typically ap- 455

proached using statistical methods (Liu et al., 2017; 456

Cohn et al., 2019; Poostchi et al., 2018; Friedrich 457

et al., 2019). As a result, our mechanism treats all 458

tokens as sensitive since we cannot reliably distin- 459

guish sensitive from non-sensitive tokens. How- 460

ever, since treating stopwords as non-sensitive may 461

pose a low privacy risk (Chen et al., 2023), we 462

propose STENCIL+, which applies the STENCIL 463

mechanism to all words except stopwords, thereby 464

enhancing accuracy while maintaining privacy. 465

An additional variation of STENCIL, namely 466

STENCILp, can be obtained by excluding the tar- 467

get token from the computation of the quasi- 468

embedding vector in (1) by setting fk to zero. This 469

exclusion significantly improves the privacy of 470

each token and diminishes the attacker’s ability 471

to reconstruct the original token at the expense of 472

performance. 473

3.2 Downstream Task Performance 474

To evaluate the impact of the STENCIL, NOISE and 475

CUSTEXT+ methods on the model performance, 476

we repeat the methodology outlined in §2: we use 477

RoBERTa as the base model; SST2 and IMDb 478

as the datasets; and the two distinct application 479

cases: manipulating tokens on inference data only 480

(TEST), and applying the technique during the train- 481

ing phase as well (ALL). However, as these pri- 482

vacy techniques exhibit a realistic case, we also 483

test it on an encoder-decoder model T5-small (Raf- 484

fel et al., 2020) on the QNLI task from the GLUE 485

dataset (Wang et al., 2019). As in Raffel et al. 486

(2020), we concatenate the question and its corre- 487

sponding sentence to form a single sequence that 488

serves as the input, while the target prediction is 489
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Dataset Mapper TEST ALL Pr@5
(↑) (↑) (↓)

SST2

Plain Text 94.5% 94.5% -
NOISE(100) 80.0% 87.8% 70.0%
NOISE(150) 83.0% 90.0% 75.0%
CUSTEXT+ 79.4% 82.5% 70.0%
STEN(9, 0.8) 83.5% 89.3% 49.0%

STEN+(9, 0.8) 85.3% 89.5% 47.0%
STENp(9, 1.0) 84.7% 87.0% 0.0%
STEN+

p (9, 1.0) 85.0% 89.4% 0.0%

IMDb

Plain Text 95.0% 95.0% -
NOISE(100) 89.0% 92.6% 86.0%
NOISE(150) 90.0% 93.5% 90.0%
CUSTEXT+ 88.9% 91.1% 90.0%
STEN(9, 0.8) 90.2% 93.1% 67.0%

STEN+(9, 0.8) 92.4% 94.0% 69.0%
STENp(9, 1.0) 89.7% 92.4% 0.0%
STEN+

p (9, 1.0) 89.7% 92.4% 0.0%

QNLI

Plain Text 88.1% 88.1% -
NOISE(100) 80.0% 84.0% 93.0%
NOISE(150) 81.1% 84.4% 93.0%
CUSTEXT+ 78.5% 81.5% 85.0%
STEN(9, 0.8) 74.8% 83.1% 54.0%

STEN+(9, 0.8) 81.4% 84.8% 52.3%
STENp(9, 1.0) 67.9% 82.5% 0.0%
STEN+

p (9, 1.0) 71.4% 83.8% 0.0%

Table 4: The best results achieved by the different
STENCIL mapper variations, the NOISE mapper and
CUSTEXT+ considering the Test and All cases on the
SST2, IMDb, and QNLI datasets. Pr@5 represents the
average token hit managed by the nearest-neighbor at-
tacker.

either “entailment” or “not_entailment”, thus form-490

ing a classification task.491

We report three distinct manipulations based on492

STENCIL, STENCIL+, and STENCILp. The weight-493

ing function fi, for all three variations, is derived494

from a gaussian smoothing. For the STENCIL and495

STENCIL+ mechanism, we consider a standard de-496

viation of σ = 0.8, and the number of adjacent497

tokens considered is set to nine (four from each498

side, as well as the target token). The standard499

deviation we consider for the STENCILp approach500

is σ = 1.0, with a window width of nine. In all501

approaches, to preserve model performance, the502

tokenizer and embedding lookup table used to de-503

rive the new tokens were sourced directly from the504

model being trained. For the NOISE mechanism,505

we report the two best η values: η = 100, 150. For506

the CUSTEXT+ mechanism, the K parameter was507

set to 20 with the privacy parameter ϵ = 3, which508

yields the overall best results.509

The results are presented in Table 4. The over-510

all best accuracy is achieved by STENCIL and511

STENCIL+, demonstrating the advantage of uti-512

lizing contextual information to achieve privacy 513

and maintain high performance. Nevertheless, in 514

the SST2 dataset, NOISE (η = 150) achieves the 515

highest accuracy. NOISE with η = 150 introduces 516

minimal noise, resulting in negligible alterations to 517

the original tokens. However, the NOISE method 518

comes at great cost in discoverability, to be pre- 519

sented in §3.3. 520

Compared to the sentiment analysis tasks (SST2 521

and IMDb), the QNLI task presents greater chal- 522

lenges, primarily due to the complex logical con- 523

nections required for the model to discern entail- 524

ment between the given sentence and question. 525

Therefore, despite its instance sizes being very 526

similar to those of IMDb (62 vs. 65), the fact 527

that noise-based perturbations disrupt contextual 528

and semantic information leads to a significant de- 529

crease in the model’s ability to discern the logical 530

connections between the parts of the input. This 531

results in a more pronounced performance degra- 532

dation compared to the long-sequenced IMDb on 533

the TEST case. In contrast, training the model on 534

the noisy data (the ALL setup) proves effective in 535

overcoming this effect, leading to improved results 536

for T5-small. 537

In Table 2, we present an example of the out- 538

come of applying STENCIL, STENCILp, and the 539

NOISE mapper on a random phrase from the SST2 540

dataset. The NOISE mapper with a value of η = 541

150 introduces negligible noise, thus producing a 542

similar sequence to the original one. The STENCIL- 543

based techniques also produce a similar sequence, 544

although STENCILp swaps the positions of some to- 545

kens as a direct result of excluding the target token 546

from the obfuscation process. 547

3.3 Nearest-neighbor Reconstruction 548

An attacker can potentially exploit the fact that 549

these techniques utilize contextualized tokens and 550

the selection of the nearest token as the quasi- 551

embedding vector (Qu et al., 2021). Specifically, 552

given the new perturbed token t′, the attacker can 553

obtain the embedding vector representation E[t′]. 554

Afterward, the attacker can calculate the cosine 555

similarity between E[t′] and the other embedding 556

vector representations (E[t] where t ∈ V \ {t′}) 557

and statistically determine the original token. 558

Additionally, since STENCIL incorporates infor- 559

mation from its neighboring tokens, the new per- 560

turbed token t′k might resemble the original token 561

of a neighboring token, for instance, tk+1. This 562
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allows the attacker to attempt to determine the orig-563

inal token by analyzing and comparing the neigh-564

bors’ most similar tokens.565

To test the resilience of these techniques against566

token inversion attacks, we implement the de-567

scribed attacker and report whether the original to-568

ken was found to be one of the nearest five (Pr@5),569

or its neighbor’s nearest five.570

The success rate of the attacker for the four tech-571

niques is presented in Table 4. While the minor572

alterations in the original tokens contributed to per-573

formance improvement in the NOISE mapper, it is574

found to be highly vulnerable to simple reconstruc-575

tion attacks. Taking into account both accuracy and576

resilience against reconstruction attacks, the STEN-577

CIL method demonstrates the best results, with a578

marginal trade-off in performance. The STENCILp579

demonstrates the best privacy protection against580

the attacker, highlighting the effectiveness of ex-581

cluding the target token from the computation of582

the new token.583

4 Conclusion584

In this paper, we propose several token manipula-585

tion methods to preserve privacy under the assump-586

tion that the model parameters are inaccessible.587

We first introduce four simple mappers that offer588

distinct advantages compared to existing privacy-589

preserving techniques. Notably, these mappers op-590

erate independently of the LLM and the specific591

downstream task, resulting in a high degree of ver-592

satility. Additionally, their computational complex-593

ity is relatively low, making them efficient choices594

for privacy preservation on local, low-resource de-595

vices. However, it is essential to acknowledge that596

these mappers harm the performance of the down-597

stream tasks and can be easily reconstructed by a598

knowledgeable attacker.599

The second mapper class we propose is based600

on utilizing contextualized information to maintain601

performance while obfuscating the original input602

text. This technique achieves higher privacy mea-603

sures and has less impact on the downstream task,604

which makes it more applicable for cases where the605

downstream task is important. Nevertheless, opt-606

ing for different weighted functions, such as ones607

based on a trained model, can further help improve608

both accuracy and privacy.609

An inherent problem with existing privacy-610

preserving techniques is their inability to maintain611

linguistic properties such as grammar and read-612

ability (as seen in Table 2) that are crucial for the 613

performance of the model. Therefore, an additional 614

avenue we plan to explore is application of these 615

and similar rules in differential privacy techniques. 616

For instance, following the application of random 617

perturbations to an embedding vector, instead of 618

simply returning the nearest token to the perturbed 619

vector, one could consider returning a token with 620

similar syntactic attributes, such as part of speech, 621

or verbs with similar causative meanings or stable 622

subcategorization frames. 623

Lastly, our experiments were limited to classi- 624

fication tasks in the English language. In future 625

research, we intend to explore the effectiveness of 626

these methods in generative tasks, across languages, 627

and in multilingual settings. 628

Limitations 629

We demonstrated the privacy achieved by our meth- 630

ods empirically under one attacking scenario. Fur- 631

ther comprehensive testing or mathematical proofs 632

would enhance our understanding of the extent of 633

privacy achieved. 634

An additional limitation of our proposed mech- 635

anism is the unchanged sentence length. This im- 636

poses a privacy breach in which an author who 637

prefers writing longer or shorter sentences can be 638

re-identified even when introducing random per- 639

turbations. Hence, another avenue in this research 640

is reducing the amount of tokens by introducing, 641

for example, a stride parameter to the STENCIL 642

family of mappers. This parameter will determine 643

how often tokens will be output, thus reducing the 644

amount of tokens. 645
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