Optimizing Chain-of-Thought Reasoners via Gradient
Variance Minimization in Rejection Sampling and RL

Jiarui Yao'* Yifan Hao!
Hanning Zhang! Hanze Dong®> Wei Xiong' Nan Jiang! Tong Zhang'

!University of Illinois Urbana-Champaign
2Microsoft Research

Abstract

Chain-of-thought (CoT) reasoning in large language models (LLMs) can be formal-
ized as a latent variable problem, where the model needs to generate intermediate
reasoning steps. While prior approaches such as iterative reward-ranked fine-tuning
(RAFT) have relied on such formulations, they typically apply uniform inference
budgets across prompts, which fails to account for variability in difficulty and
convergence behavior. This work identifies the main bottleneck in CoT training
as inefficient stochastic gradient estimation due to static sampling strategies. We
propose GVM-RAFT, a prompt-specific Dynamic Sample Allocation Strategy
designed to minimize stochastic gradient variance under a computational budget
constraint. The method dynamically allocates computational resources by moni-
toring prompt acceptance rates and stochastic gradient norms, ensuring that the
resulting gradient variance is minimized. Our theoretical analysis shows that the
proposed dynamic sampling strategy leads to accelerated convergence guarantees
under suitable conditions. Experiments on mathematical reasoning show that
GVM-RAFT achieves a 2-4 x speedup and considerable accuracy improvements
over vanilla RAFT. The proposed dynamic sampling strategy is general and can be
incorporated into other reinforcement learning algorithms, such as GRPO, leading
to similar improvements in convergence and test accuracy.

1 Introduction

We consider mathematical reasoning with large language models (LLMs): given a prompt z € X,
and aims to produce a correct final answer z € Z. A prevalent approach in this area is the chain-of-
thought (CoT) reasoning (Wei et al., 2022), in which the model generates a step-by-step rationale
y € Y before outputting the final answer z. In practice, we are typically given a pre-trained and
instruction fine-tuned LLM parameterized by 6 and training samples {(z;, z;)} of prompt-answer
pairs. Additionally, we assume access to a verifier r*(z,2) — {0, 1} that indicates whether a
predicted answer is correct or not. This is standard in practice and is particularly popular by the recent
DeepSeek-R1 project (DeepSeek-Al et al., 2025), which suggests using only a symbolic verifier
rather than training a neural reward model. The goal is to improve model performance by training it
to generate high-quality CoT rationales that improve the final answer accuracy on unseen prompts.

We formalize CoT reasoning as a latent variable problem, treating the rationale y as hidden. From this
perspective, we propose a new algorithmic framework based on the expectation-maximization (EM)
algorithm, which we formalize in Section 2. Prior works such as Sordoni et al. (2023); Singh et al.

*The first two authors contributed equally with random author order, detailed contributions deferred to Ap-
pendix A. Emails: {jiaruil4, yifanh12, hanningb, wx13, nanjiang, tozhang}@illinois.edu,
hanzedong@microsoft.com.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(2023) have shown that this EM framework can be implemented as a variant of iterative reward-ranked
fine-tuning (RAFT) (Dong et al., 2023; Touvron et al., 2023), also known as rejection sampling
fine-tuning in the literature. Specifically, RAFT iteratively alternates between the E and M steps:

1. E-step: Prompt LLMs to generate n responses per prompt, and keep responses with the
highest reward only (with the correct final answers). This process can be thought to be
approximating the posterior distribution of the latent variable and the evidence lower bound
(ELBO). See Section 2 for a formal presentation.

2. M-step: Fine-tune the LLMs on the selected responses from the E-step. The fine-tuned
model is used for the next-iteration E-step.

T
(Final Policy)

GVM lterations I N
{niYiza
Ty
o= ooooooo oo il {Gi}iey
Lo S Accept Lipschitz
. Rates Coefficients x T times
Stage 2
Budget Assignment Stage 1
Estimation

-1

t=1,2,..,T

Ty
(SFT Model)

Figure 1: The demonstration of the whole pipeline for GVM. Starting from 7y, which a supervised
fine-tuning (SFT) model, GVM will iteratively conduct the estimation and budget assignment process
for T times according to the description in Algorithm 1. Each iteration could be decomposed into
two stages, and the final policy model will be returned after those iterations.

Although RAFT and its variants have been widely applied to tasks in the post-training stage of LLMs,
they are primarily motivated by the idea of imitating the best-of-n sampling rather than variance
reduction. As a result, theoretical understanding is often lacking. For instance, these RAFT-style
approaches typically adopt a uniform sampling strategy that treats all prompts equally, ignoring
differences in sample efficiency or convergence behavior

In this work, we revisit CoT reasoning under the EM framework and provide a deeper theoretical
analysis. We identify the key bottleneck as the Monte Carlo estimation of the ELBO gradient
during the E-step, which arises due to the intractability of going over all possible CoT rationales.
Previous works mainly use the best-of-n sampling to allocate the inference budget uniformly (Sordoni
et al., 2023; Singh et al., 2023), which overlook the differences in the convergence rate under
different prompts. To address this, we propose a dynamic sample budget allocation strategy that
adaptively assigns computational resources across prompts based on theoretical insights. This leads
to a more efficient Monte Carlo estimation of the ELBO gradient. Our resulting algorithm, a refined
RAFT variant with dynamic inference budget scheduling through Gradient Variance Minimization
(GVM-RAFT), achieves substantial performance improvements and even sometimes outperforms
state-of-the-art deep RL methods such as GRPO (Shao et al., 2024) in our Qwen-based case studies.
In particular, the sample budget allocation schedule itself can be of independent interests and we
also extend our techniques to the RL algorithm, where it also brings notable improvements. We
summarize our contributions as follows:

1. We revisit the EM framework and RAFT in the context of CoT reasoning, and identify that
a major limitation of current approaches lies in inefficient stochastic gradient estimation
caused by uniform and static sampling strategies (i.e., best-of-n sampling), which fail to
account for prompt-specific difficulty and convergence behavior.

2. Motivated by the goal of minimizing the variance of stochastic gradient, we propose a
dynamic sampling strategy that adaptively allocates computational resources based on

prompt hardness and gradient norms. Our approach provides both intuitive theoretical insight
and rigorous convergence guarantees, establishing a principled framework for efficient on-
policy sampling under computational budget constraints.

3. We apply GVM to both RAFT++ and GRPO algorithms with real-world experiments on
mathematical reasoning tasks. Our results demonstrate that the proposed approach achieves
2-4x speedup in convergence rate, with considerable improvement of the final test accuracy.

2 Problem Formulation and EM Framework

In this section, we formally define the problem, review existing approaches, and motivate our
algorithm designs. We consider the chain-of-thought (CoT) reasoning process as:

r—y—z, zTeXye)zeZ,

where 2 is a prompt, y is the intermediate CoT and z is the final predicted answer. We fit the data
[x,y, z] within the following distribution function class:

E:={P(y,z|z,0) = P(y|z,0) - P(z[y,0) | 6 € R"}. (0

Our target is to learn a good model M (6) € Z, which can minimize the negative log-likelihood of
predicting the correct answer:

‘C(€> = _EINdO hlP(lev 9), 2
where dj is a prompt distribution and P(-|#) denotes the distribution induced by the model with
parameters . While many math datasets include reference CoT rationales, we do not include these
reference rationales y here. This is because recent practice typically does not fine-tune LLMs on
these CoT rationales after the pre-training/SFT stages (DeepSeek-Al et al., 2025; Team et al., 2025).

The process from z to z can be complex, making it difficult to directly estimate the distribution
P(z | x) from the observed data [z, z]. However, by introducing a latent intermediate variable y, the
conditional distributions P(y |) and P(z | y) are often easier to estimate, thereby simplifying the
problem:

£(0) = _Ewmdo In Z P(y‘xa H)P(Z‘m7 Y, 0)
yey

Introducing the intermediate CoT y naturally motivates the use of the expectation-maximization (EM)
algorithm, which iteratively approximates the posterior over latent variables.

Derivation of the EM algorithm. We consider a training set B = {(z;, z;) }/*, drawn from dg

with z; being the labeled ground-truth answer to illustrate the idea. Following the standard derivation
of EM algorithm, we can bound the £(8) as follows:

£0)= Y WPl 0) = -3 | 3 @i Feie?)

yey Ql(y)
- P(y7 Zilxi7 0)
< - E E Qi(y) In ()
=5 Qi(y) 3

== By Py, 21, 0) + > H(Qi(y))

i=1 i=1

Jq(0)

where Q;(-) is a probability distribution over Y so that Q;(y) > O and >_ y, Qi(y) = 1. The
last inequality is from the convexity of — In(-) and Jensen’s inequality (Lemma 3) and H(p) :=
—E;~p(t) Inp(t) is the entropy.

In the E-step, our goal is to find a Q;(y) to get a sharper upper bound for £(6). In particular, the
equality is reached with the posterior distribution of y:

P(y, 2|z, 0) P(y|zi, 0) - P(2ily, 0) P(y|z;, 0) - P(2iy, 0)
i(y) = P(y|zi, 2, 0) = = = ;
Q) (wlos, 2:,6) P(zi];,0) Zyey P(y|zs, 0)P(zily, 0) Z(i,2i,0) @

where Z(x;, z;,0) denotes the normalization constant and the second equality uses Equation (1).
Here —Jg(0) — X1~ | H(Qi(y)) is referred to as the evidence lower bound (ELBO)* in the litera-
ture (Bishop and Nasrabadi, 2006; Kingma et al., 2013), and P(y|z;, z;,) is the induced posterior
distribution, which is not the equivalent to the autoregressive distribution of CoT when we present
the LLMs with prompts and answers.

In the M-step, to minimize £(6), we can fix);(y) as in Equation (4) and indirectly minimize Jg (6).
Note that we do not include the entropy loss because it is a constant in the M-step since we will fix
Q;(y). To summarize, the EM algorithm will alternate between the following two steps: at iteration ¢,

1. E-step: Update the posterior distribution of the latent CoT Q* according to Equation (4)
and obtain the J+ defined in Equation (3).

2. M-step: The goal of the M-step is to update LLMs M (6,) to minimize J¢:

1 m
“m > Eyqi(y) mP(y, il 0).

=1

The updated model M (6;. 1) is used for the next-iteration E-step.

To apply the EM algorithm, we need to sample y ~ Q!(y) to approximate the objective. A central
challenge is that computing Q%(y) and Jg¢(6) requires summing over all possible latent CoT
reasoning y €) as we need to get the normalization constant in Equation (4). This process is usually
computationally intractable. Therefore, the objective J¢+ (6) must be approximated via sampling.

To approximate the posterior Q;(y), one standard approach is rejection sampling (Neal, 2003). We
remark that we refer rejection sampling to the one in statistics, which is used to approximate a
target distribution @;(y) by a proposal distribution P(y|x, #), which we can sample from. In the
literature of RLHF or LLM, rejection sampling is often referred to as the best-of-n sampling (Bai
et al., 2022; Ouyang et al., 2022). Specifically, to approximate Q;(y) by P(y|x;, 8), the rejection
sampling proceeds as follows:

1. Sample y ~ P(y|z;, 6);
2. Draw u ~ Uniform([0, 1]);

3. Accept y if u < %, where M > 0 satisfies Q;(y) < M - P(y|z;,0) forally €).
We notice that a valid choice of M is 1/Z(x;, z;,0), leading to an accept probability of P(z;|y,).
In mathematical reasoning, given the CoT rationale, the final predicted answer is typically of low
randomness. Then, the rejection sampling in statistics aligns well with the best-of-n sampling,
where we only keep all the responses with the correct answer. This eventually leads to the RAFT-
type algorithms. We remark that this connection between the EM framework and the RAFT-type
algorithms has been previously observed in Singh et al. (2023); Sordoni et al. (2023).

However, we argue that the current best-of-n sampling implementation is overly coarse and insuffi-
ciently faithful to the true E-step. Specifically, if a prompt x; is very difficult for current M (6;), the
density of P(y|x;, 8) will concentrate on the wrong CoT rationales so that P(z;|y, €) is close to zero.
In this case, the accept probability will be very low and we need many samples before we can accept
one valid y. In contrast, if our current model M (6,) can already output correct CoT rationale y in
most of the time, we will accept most of the generated responses. Eventually, with a fixed inference
budget, this uniform allocation (n responses per prompt) tends to bias the accepted samples toward
easier prompts with higher acceptance rates.

Notation The true marginal negative log-likelihood is denoted as £(6). The negative ELBO at
iteration ¢ is denoted as £?, which is equal to

L) = T (6 JrZH

Our derivation in the next section will focus on J:(6) since entropy term is considered to be a
constant in M-step when fixing Q?. We also present a notation table in Table 3 to improve readability.

“We consider the negative log-likelihood here so it becomes an upper bound

Algorithm 1 Meta Algorithm: GVM-EM

1: Input: Initial parameters 6y, training samples D = {(z;, 2;) }i=,, number of epochs 7', initial posterior
QY =B(-| 00).

2: fort=20,...,7 do

3: > E-step (Expectation):

4: Sample a set of samples B; = {;, 2; }i~1. Update the posterior distribution over latent CoT rationales
Q*(+) using Equation (4).

5: For each prompt x;, compute the required number of samples n! according to (1) Theoretical Proposition 1
or (2) Practical Algorithm 2.

6: Perform rejection sampling to obtain accepted responses y. Collect corresponding (z;, z;,y) into Df,
such that y ~ Q%(-).

7. > M-step (Maximization):

8: Update model parameters via gradient descent using:
VgM(@t) = 7i i ! Z Vg log]P’(yj Zi | xX; 0)
m — |Dj] ’ ’
i=1 Y; €D}
9: end for

10: Output: Final model M (67).

3 Gradient Variance Minimization by Dynamic Sample Allocation

To address the limitations of best-of-n sampling, we propose a dynamic inference budget allocation
strategy that adapts to the acceptance rates of rejection sampling for each prompt z;. The overall
meta-algorithm is presented in Algorithm 1, and in what follows, we describe the budget allocation
mechanism in detail.

3.1 Dynamic Inference Budget Scheduling to Minimize Gradient Variance

Unbiased gradient estimation. We begin by formulating the true gradient at iteration ¢ under the
EM objective Jge:

vat (0) - Z Z Qf(y)v In P(yv Zi‘xia 0) - Z }EyNQi-’V In]P)(ya Zi|xia 0), (5)

i=1yey i=1

where Q!(y) = P(y|zi, 2;,0:—1) is the posterior distribution of y. However, this distribution is
intractable to compute exactly. Therefore, we approximate Q! (y) via rejection sampling by drawing
nt times from current LLMs P(y|x;,6;—1). This leads to the following unbiased estimator for
Equation (5).(Detailed proof deferred to Appendix E.)

Lemma 1 (Unbiased Gradient Estimator). In the iteration t, denoting D! as the set of accepted
samples on y related to (z;, z;), we have the following unbiased gradient estimator for Jqt :

1
= 2 VPl a0, ©)
=1

w Yj EDE’

where p! = By p(.|x;,0)P(2i|y, 0) is the average accept rate of rejection sampling.

Variance-aware sampling allocation. While the estimator above is unbiased, its variance can
vary significantly across prompts. Prompts with low acceptance rates introduce high variance due
to the small number of accepted samples. Reducing variance is crucial for efficient training with
stochastic gradient, as also emphasized in prior works in statistics and optimization, including Roux
et al. (2012); Johnson and Zhang (2013); Defazio et al. (2014); Chen et al. (2018). To design a
more efficient sampling strategy, we analyze the variance of the gradient estimator and optimize the
allocation.

Lemma 2 (Upper Bound of Variance of Gradient Estimator).

m

1 1
=1 (24

i ij'Df =1

a2

The proof is deferred to Section E. Given a ﬁxed total sampling budget N, we seek to allocate {n!}

to minimize this upper bound: min {Z;" ¥ } sty it ont=

In practice, some prompts are totally beyond the ability of the current LLMs or cannot be evaluated by
the verifier (e.g., due to some label error). This leads to extremely low acceptance rates and unstable
gradient estimations. To mitigate this, we introduce a regularization term that penalizes sampling on
such prompts. The revised objective becomes:

<& 1 G?
mm{i;lm/(17 pin } Z” - @

where o > 0, 8 > 2 are hyperparameters that control the regularlzatlon strength. For example, as the
accept rate pt — 0, the weight (1+a/(pt)?)~! — 0, which leads to the fact that sample size n{ — 0
and prevents excessive sampling on uninformative prompts. Recent studies such as Xiong et al.
(2025a) have also demonstrated the critical role it plays for stable training of online RL algorithms.

Solving the regularized optimization problem in Equation (7) yields the following closed-form
solution to the optimal sampling allocation:

Proposition 1. The optimal number of samples allocated to each prompt is:
Gi/ W G,

n;, =N Vi=1,...,m.

Zz 1Gl/\/p1+(p)a T \/Pi‘ﬁ‘(pﬁ)%

The proof is deferred to Appendix E.

Remark 1. Accepted sample size has a lower bound as:
-1/2
@
NV (a(8 - 1)/C9. (v)
Z Zl 1 G (pf)P=t

With Remark 1, our proposed budget scheduling method is not only efficient but also guarantees a
sufficient number of accepted samples during the training process, even in the presence of informative
prompts. Algorithm 2 shows a practical implementation of the GVM algorithm.

3.2 Theoretical Result

In this section, we present the theoretical guarantee of loss convergence. Without loss of general-
ization, we assume that each E-step is followed by k M-steps. For the ¢-th E-step, let b] denote the
batch size for prompt z; at the r-th M-step, where kt — k < r < kt, and the corresponding sample
batch is denoted by B!. The upper bound loss function we construct is denoted by £(6):*

L(0) = —EznaoEynqr(y) nP(y, 2|z, 0).

We take the notations below for simplification:

T k-1
Ay(k,T) :=> > E|VeLe(Ori—irr)|> >0, Ag(k,T) Z]EHZVQ (Ot—rsn)I” > 0,
t=1 r=0
k—1
Uk, T) :=> > EV (gt—ktr) >0,
t=1 r=0

where V(git—p1r) = V (—i S g e Z Bkt Vo (InP(y;, z| s, Ope— k+r))) . Under
mild smoothness conditions, we can derive the followmg result.

Theorem 1 (Decreasing rate with smoothness condition.). Suppose —InP(y, z|x, 0) is 1/y-smooth
with respect to 0. If 0 < n < ~, then the proposed algorithm satisfies that

BIL(Okr) — £0°)) - BIL(@0) — £0°)] < ~280067) + Lk,),

*The expectation is taken over all sources of randomness, including the sampled data {D!} and the selected
batches {5} }.

In Theorem 1, with sufficiently large sample size, {2(k, T") will be small enough, which ensures that
the right-hand side of the inequality is negative. This guarantees the loss function decreases at each
iteration. Furthermore, if the loss function exhibits convexity, we can derive the following result:

Theorem 2 (Decreasing rate with smooth and convex condition.). Suppose —InP(y, z|x,0) is
1/~-smooth and convex with respect to 0. If 0 < 1 < ~y/2, then the proposed algorithm satisfies that
E [L(0kr) — L£(0%)] — E[L(00) — L(O)] < — L Ag(k, T) — ~L Ay (k, T) + ~LQ(k, T).

2k 4k 4k
In Theorem 2, the right-hand side includes an additional negative term, —As(k, T'), which indicates

a faster rate of decrease in the loss function. Specifically, during each E-step, the gradients across
M-steps vary only slightly, this implies that:

k—1 k—1
Bl Y " VLOkt—rrr)|? = KBV L Opi—r) 13 & kY B[VL(Okt—krr) | = Dok, T) = kA (, T),
r=0 r=0

which further induces that

2
1 U (1M n U 1
S (k,T) + Ak T) & (3 + 1) As(k,T) > FA1(k 1), -0k, T) < 3 AT

as well as
2

n n U n Ui
——A T — —A T —Q(k, T ——A T —Q(k,T).
o 2<k‘,) Ak 1(ka) —+ Ak (ka) < 2 1(k7) + 2,}/ (k7)

All of the proofs are deferred to Appendix E.

Guaranteed Decrease in Our Proposed Method. From the theorems above, we know that with a
sufficiently large sample size, 2(k, T') becomes small, and the upper bound for E [L(0,1) — L(6*)]—
E [L£(6y) — L(6%)] is strictly negative. This implies that our proposed method consistently decreases
the objective loss, thereby ensuring an effective training process.

Reduction of the variance term (k,7"). According to the upper bounds derived above, a smaller
Q(k,T) leads to more efficient training. On one hand, increasing the sample size reliably reduces
this term. On the other hand, under a finite budget in practice, an effective budget scheduling strategy
can also reduce §2(k,T') and thereby improve training efficiency. Our algorithm achieves this via the
scheduling scheme defined in Algorithm 2.

Trade-off in Budget Scheduling Update Frequency. In our algorithm, the budget scheduling is
updated every k optimization steps. Updating more frequently (i.e., using a smaller k) improves
training efficiency but increases computational overhead. Conversely, updating less frequently reduces
computation, but as optimization proceeds, the loss gradient norm ||V gL, || tends to become small,
which can slow down training. Therefore, choosing an appropriate value of k requires balancing this
trade-off between efficiency and computational cost.

3.3 Practical Implementation

Practical implementation of GVM. In this subsection, we describe how to implement the inference
budget allocation strategy in practice, as summarized in Proposition 1, and the implementation is
referred to GVM - Gradient Variance Minimization. Although the optimal sample sizes are of
closed form, the expression involves the average accept rate p! and the gradient norm G; 4, both of
which depend on the posterior Q! (-) and are therefore not available directly. Specifically, suppose

that we are given the training set {z;, z; }I_; and current LLM M (). We can write:

Di = Eywp(.mhe)}?(zﬂy), Gi = EyNQf(') ||V1nIP’(y, Zi|xi7 9)”

We also use sampling to estimate these quantities. We can first generate N " samples per prompt to
get {z;,y!, =] ;\f:l. Then, we can compute the following empirical estimators:

N’ j

Zj:] 1(z] = z)

bi = - N G; = E
1<G<N’ 2l=2

1 .
WHVG lnP(yf,zi\mi, 0)]l2-

Then, we simply plug these empirical Average accuracy: GVM-RAFT++ vs RAFT++
estimators into Proposition 1 to get the N'=8,N=8n N'=32,N=32n
sample sizes. The entire procedure is
summarized in Algorithm 2.

0.450

0.425

o
'S
o
o

GVM-RAFT++. We implement
GVM and the meta EM Algorithm |
in a highly online fashion, building
on the RAFT++ framework. In each 0.325

iteration ¢, we draw a set of prompts 30 T g
{xi7 Zi} ~ do and use the current 0 20 40 60 80 100 120 0 5 10 15 20 25 30 35 40
model 6,4 to collect D' = U; D! as Steps Steps

the replay buffer where the inference
budget allocation is determined via
Algorithm 2. RAFT++ then uses
these samples to compute a stochastic
gradient estimator of the objective Jg:. To accelerate training, we perform multiple gradient
steps per iteration in a mini-batch way. This causes the model distribution to shift away from the
distribution used to generate the data. To address this mismatch, RAFT++ incorporates importance
sampling and clipping strategies from PPO (Schulman et al., 2017) into the original RAFT, arriving
at the following loss function on the prompt-response pair (x, a):

0.375

Average Accuracy
o
w
&
3

Figure 2: Average accuracy of (GVM-)RAFT++ with sample
sizes 8 and 32, respectively, on Math500, Minerva Math, and
Olympiad Bench, with base model Qwen2.5-Math-1.5B.

lal

LRAFTH () — \a| Z [mm (st ,clip(sy(0),1—e, 1+e))] Z(r(z,a) = argmaxr(z,a;)), (8)

%

7o (at|T,a1:6—1)
TO01d (at]z,a1:6—1)
train on accepted responses: those approximating the posterior via rejection sampling.

where s;(0) = and a; is the t-th token of a. Here, the indicator ensures that we only

Extension to the RL algorithms. While we focus primarily on RAFT-like algorithms, the proposed
GVM strategy can be readily adapted to other RL-style fine-tuning algorithms. We focus on the
GRPO, which receives significant attention recently due to its successful application to training

DeepSeek-R1. Specifically, for each prompt =, GRPO will sample m > 1 responses and compute the
following advantage for the t-th token of the i-th response: A¢(z,a;) = %(“T’)")
denotes the final reward of the i-th response. This leads to the following loss function for GRPO,

lyil
T (Yi, t|, Yi, <t) 2
Jareo(0) = Eq {y: T~y (YlT) [Z Z { {—Ai’t’

|yb T o1 (yz t|x Yi, <1‘)

, where r;

. T9\Yi,t| L, Yi 2
Chp(w, 1—e1+ e)Aw} _ BDKL[mhrref]} .
e (Vi t|T, Yi<t)

4 Experiments and Results

4.1 Experiments Setup

To validate the effectiveness of the proposed methods, we conduct experiments with Qwen2.5-Math-
1.5B and Qwen2.5-Math-7B (Yang et al., 2024b). We focus on the mathematical reasoning task
and use Math-Verify" as the verifier. For detailed experiments setup such as hyperparameters and
compute resources, please refer to Appendix C.

4.2 Main Results

In this section, we summarize the results from integrating GVM into both RAFT++ and GRPO
algorithms as a sample budget rebalancing strategy. The performance is measured by Average @ 8§,
which means we randomly sample 8 instances from the model with a non-zero temperature, and take

*https://github.com/huggingface/Math-Verify

https://github.com/huggingface/Math-Verify

the average accuracy as the final result. For Qwen2.5-Math-1.5B, we use a temperature of 1.0 in
evaluation, while for Qwen2.5-Math-7B, we use a temperature of 0.7 as the entropy loss is higher
after integrating the clip higher trick, which leads to more diverse outputs.

GVM Improves Efficiency with Comparable Performance From Table 1, we could conclude that
GVM could improve the final performance of both RAFT++ and GRPO when applied on Qwen2.5-
Math-1.5B. For Qwen2.5-Math-7B, the final performance is comparable to baselines, under a faster
convergence rate. This verifies the effectiveness of GVM using both the accept rates (standing for the
hardness) and the Lipschitz coefficients (standing for the gradients) of different prompts.

Table 1: Performance of different algorithms across five benchmarks including Math500 (Hendrycks
et al., 2021), Minerva Math (Lewkowycz et al., 2022), Olympiad Bench (He et al., 2024), AIME24,
and AMC23. From the results, we could observe that after reweighting the sample size of prompts,
GVM-RAFT++ and GVM-GRPO could outperform both vanilla RAFT++ and GRPO.

Method Math500 Minerva Math Olympiad Bench AIME24 AMC23 5 Average
Base 56.35 17.00 25.22 3.33 37.81 27.94
Qwen2.5 GRPO 70.78 29.00 33.56 10.00 47.19 38.11
Math-1.58 RAFT++ 69.02 27.71 31.74 9.58 44.06 36.42
GVM-GRPO 73.92 29.96 36.26 12.92 49.06 40.42
GVM-RAFT++ 72.90 29.04 36.20 9.17 51.88 39.64
Base 42.00 12.82 19.20 12.92 30.00 23.39
Qwen2.5 GRPO 81.20 36.03 44.15 20.83 63.12 49.07
Math-7B RAFT++ 81.68 35.85 43.83 20.83 63.12 49.06
GVM-GRPO 81.55 36.26 43.56 22.92 65.00 49.86
GVM-RAFT++ 81.00 36.67 43.48 22.92 61.56 49.13
Base 24.28 4.37 4.80 0.83 9.06 8.67
Llama-3.2 GRPO 33.35 6.99 7.65 1.67 12.19 12.37
1B_Instruct RAFT++ 30.10 6.62 6.46 0.83 13.44 11.38
GVM-GRPO 32.02 6.76 7.22 2.08 15.31 12.68
GVM-RAFT++ 30.08 6.07 6.48 0.83 13.44 11.38
Base 35.62 9.33 9.09 2.92 15.00 14.49
Llama-3.2 GRPO 53.40 19.16 20.67 8.33 27.50 25.81
3B-Instruct RAFT++ 47.38 17.69 17.20 8.33 29.06 23.93
GVM-GRPO 51.75 17.74 19.48 7.50 33.44 25.98
GVM-RAFT++ 49.05 20.04 17.87 6.25 29.06 23.93

In Figure 2, we display the step-wise performance of both RAFT++ and GVM-RAFT++ based on
Qwen2.5-Math-1.5B with sample sizes per prompt of 8 and 32, respectively. GVM could enhance
the convergence rate evidently, with about 2x speedup for N’ = 8 N = 8n and 4x speedup for
N’ = 32, N = 32n measured in update steps compared to the baselines. Besides, upon convergence,
GVM-RAFT++ could achieve around 1.25% and 5% performance gain for both configurations.

GVM Could Be Generalized to RL Algorithms Though our derivation and theoretical proofs
are based on EM algorithm, the sampling strategy itself could be disentangled from the pipeline and
utilized solely. Take the GRPO algorithm proposed in Shao et al. (2024) as an example. Figure 6
demonstrates that with the same sample budget rebalancing strategy as in RAFT++, GVM-GRPO
could perform similarly to GVM-RAFT++. This further verifies the effectiveness of GVM as a
single sampling strategy compared to being deployed in the EM pipeline. Zhong et al. (2025) makes
extra assumptions (Example 3.5) on the reward structure, which enables their framework’s natural
generalization to RL from a theoretical perspective. The similar ideas shed light on the generalization
of GVM to RL algorithms, and we verified the empirical effectiveness of GVM in our experiments,
indicating the success of budget reweighting through gradient variance minimization.

5 Conclusion, Discussion and Limitations

In summary, we propose a novel dynamic sampling and updating strategy - GVM, which could
assign prompt-specific sampling budget in a fine-grained manner. The algorithm consists of two
stages: a pre-sampling phase that estimates the difficulty of each instance and computes prompt-
specific Lipschitz coefficients, followed by an update phase that performs parameter optimization.
Our experiments have demonstrated the effectiveness of GVM, achieving faster convergence and
even superior final performance under suitable settings compared to other baselines. GVM could

improve the convergence for both rejection sampling backed pipelines and then be generalized to
RL algorithms like GRPO, which demonstrates the significant potential for adaptively reweighting
the sampling and update budget. Finally, we also provide rigorous theoretical analysis and establish
performance guarantees for this class of two-stage algorithms.

The experiments are conducted with Qwen series base models, while the effectiveness of GVM
still awaits a broader verification on other base models. Besides, we believe GVM could generalize
to other RL algorithms like PPO and Reinforce, while more experiments need to be performed to
support the hypothesis. These could serve as the directions for possible further explorations.

Acknowledgment

This work is partially supported by NSF grant No. 2416897 and ONR grant No. N000142512318.
This research used the DeltaAl (NSF OAC-2320345) and Delta (NSF OAC-2005572) advanced
computing and data resources, supported by the National Science Foundation and the State of Illinois.

References

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer, J., Pietquin, O., Ustiin, A., and Hooker, S.
(2024). Back to basics: Revisiting reinforce style optimization for learning from human feedback
in llms. arXiv preprint arXiv:2402.14740.

Al@Meta (2024). Llama 3 model card.

Anthony, T., Tian, Z., and Barber, D. (2017). Thinking fast and slow with deep learning and tree
search. Advances in neural information processing systems, 30.

Azar, M. G., Rowland, M., Piot, B., Guo, D., Calandriello, D., Valko, M., and Munos, R. (2023).
A general theoretical paradigm to understand learning from human preferences. arXiv preprint
arXiv:2310.12036.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D.,
Henighan, T., et al. (2022). Training a helpful and harmless assistant with reinforcement learning
from human feedback. arXiv preprint arXiv:2204.05862.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning, volume 4.
Springer.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: 1. the method of
paired comparisons. Biometrika, 39(3/4):324-345.

Chen, J., Zhu, J., Teh, Y. W., and Zhang, T. (2018). Stochastic expectation maximization with
variance reduction. Advances in Neural Information Processing Systems, 31.

DeepSeek-Al, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P.,
Bi, X., Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., Liu, A., Xue, B.,
Wang, B., Wu, B., Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Chen, D., Ji,
D.,Li, E., Lin, F,, Dai, F,, Luo, E., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu, H., Wang,
H., Ding, H., Xin, H., Gao, H., Qu, H,, Li, H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang, K., Yu,
K., Wang, L., Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia, L., Zhang, M., Zhang, M.,
Tang, M., Li, M., Wang, M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen, Q., Du, Q.,
Ge, R., Zhang, R., Pan, R., Wang, R., Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S.,
Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou, S., Wu, S., Ye, S., Yun, T., Pei, T., Sun,
T., Wang, T., Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W., Zhang, W., Xiao, W. L.,
An, W., Liu, X., Wang, X., Chen, X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang, X., Li,
X., Su, X, Lin, X,, Li, X. Q., Jin, X., Shen, X., Chen, X., Sun, X., Wang, X., Song, X., Zhou, X.,
Wang, X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y.,
Wang, Y., Yu, Y., Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y., Tan, Y., Ma, Y., Liu, Y.,
Guo, Y., Ou, Y., Wang, Y., Gong, Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y.,
Zhu, Y. X, Xu, Y., Huang, Y., Li, Y., Zheng, Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren,

10

Z.7.,Ren, Z.,Sha, Z.,Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao, Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z.,
Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang, Z., and Zhang, Z.
(2025). Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in neural information processing
systems, 27.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan, R., Diao, S., Zhang, J., SHUM, K., and
Zhang, T. (2023). RAFT: Reward ranked finetuning for generative foundation model alignment.
Transactions on Machine Learning Research.

Dong, H., Xiong, W., Pang, B., Wang, H., Zhao, H., Zhou, Y., Jiang, N., Sahoo, D., Xiong, C.,
and Zhang, T. (2024). Rlhf workflow: From reward modeling to online rlhf. arXiv preprint
arXiv:2405.07863.

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova, K., Weerts, L., Sharma, A., Siddhant, A.,
Ahern, A., Wang, M., Gu, C,, et al. (2023). Reinforced self-training (rest) for language modeling.
arXiv preprint arXiv:2308.08998.

He, C., Luo, R,, Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu, J., Han, X., Huang, Y., Zhang, Y., et al.
(2024). Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
multimodal scientific problems. arXiv preprint arXiv:2402.14008.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt,
J. (2021). Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Hoffman, M. D., Phan, D., Dohan, D., Douglas, S., Le, T. A., Parisi, A., Sountsov, P., Sutton, C.,
Vikram, S., and Saurous, R. A. (2023). Training chain-of-thought via latent-variable inference. In
NeurIPS.

Hu, J. (2025). Reinforce++: A simple and efficient approach for aligning large language models.
arXiv preprint arXiv:2501.03262.

Hu, X., Zhang, F., Chen, S., and Yang, Z. (2024). Unveiling the statistical foundations of chain-of-
thought prompting methods. arXiv preprint arXiv:2408.14511.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky, A., Low, A., Helyar, A., Madry, A., Beutel,
A., Carney, A., et al. (2024). Openai ol system card. arXiv preprint arXiv:2412.16720.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26.

Kingma, D. P., Welling, M., et al. (2013). Auto-encoding variational bayes.
Kool, W., van Hoof, H., and Welling, M. (2019). Buy 4 reinforce samples, get a baseline for free!

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A.,
Anil, C., Schlag, I., Gutman-Solo, T., et al. (2022). Solving quantitative reasoning problems with
language models. Advances in Neural Information Processing Systems, 35:3843-3857.

LI, J., Beeching, E., Tunstall, L., Lipkin, B., Soletskyi, R., Huang, S. C., Rasul, K., Yu, L., Jiang,
A., Shen, Z., Qin, Z., Dong, B., Zhou, L., Fleureau, Y., Lample, G., and Polu, S. (2024). Nu-
minamath. https://github.com/project-numina/aimo-progress-prize/blob/main/
report/numina_dataset.pdf.

Li, Z., Xu, T., Zhang, Y., Yu, Y., Sun, R., and Luo, Z.-Q. (2023). Remax: A simple, effective, and
efficient reinforcement learning method for aligning large language models. arXiv e-prints, pages
arXiv-2310.

Neal, R. M. (2003). Slice sampling. The annals of statistics, 31(3):705-767.

11

https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A, et al. (2022). Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 35:27730-27744.

Owen, A. and Zhou, Y. (2000). Safe and effective importance sampling. Journal of the American
Statistical Association, 95(449):135-143.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C. D., and Finn, C. (2023). Di-
rect preference optimization: Your language model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Roux, N., Schmidt, M., and Bach, F. (2012). A stochastic gradient method with an exponential
convergence _rate for finite training sets. Advances in neural information processing systems, 25.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M., Li, Y., Wu, Y., and Guo, D. (2024).
Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang, R., Peng, Y., Lin, H., and Wu, C. (2024).
Hybridflow: A flexible and efficient rlhf framework. arXiv preprint arXiv: 2409.19256.

Shi, T., Wu, Y., Song, L., Zhou, T., and Zhao, J. (2025). Efficient reinforcement finetuning via
adaptive curriculum learning. arXiv preprint arXiv:2504.05520.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil, P., Liu, P. J., Harrison, J., Lee, J., Xu,
K., Parisi, A., et al. (2023). Beyond human data: Scaling self-training for problem-solving with
language models. arXiv preprint arXiv:2312.06585.

Sordoni, A., Yuan, E., Coté, M.-A., Pereira, M., Trischler, A., Xiao, Z., Hosseini, A., Niedtner, F.,
and Le Roux, N. (2023). Joint prompt optimization of stacked llms using variational inference.
Advances in Neural Information Processing Systems, 36:58128-58151.

Tang, Y., Guo, Z. D., Zheng, Z., Calandriello, D., Munos, R., Rowland, M., Richemond, P. H., Valko,
M., Pires, B. A., and Piot, B. (2024). Generalized preference optimization: A unified approach to
offline alignment. arXiv preprint arXiv:2402.05749.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C., Li, C., Xiao, C., Du, C., Liao, C,, et al.
(2025). Kimi k1. 5: Scaling reinforcement learning with llms. arXiv preprint arXiv:2501.12599.

Tong, Y., Zhang, X., Wang, R., Wu, R., and He, J. (2024). Dart-math: Difficulty-aware rejection
tuning for mathematical problem-solving. arXiv preprint arXiv:2407.13690.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D, et al. (2022).
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Williams, R. J. and Peng, J. (1991). Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241-268.

Xiong, W., Dong, H., Ye, C., Wang, Z., Zhong, H., Ji, H., Jiang, N., and Zhang, T. (2023). Iterative
preference learning from human feedback: Bridging theory and practice for rlhf under kl-constraint.

Xiong, W., Shi, C., Shen, J., Rosenberg, A., Qin, Z., Calandriello, D., Khalman, M., Joshi, R., Piot,
B., Saleh, M., et al. (2024). Building math agents with multi-turn iterative preference learning.
arXiv preprint arXiv:2409.02392.

12

Xiong, W., Yao, J., Xu, Y., Pang, B., Wang, L., Sahoo, D., Li, J., Jiang, N., Zhang, T., Xiong, C., et al.
(2025a). A minimalist approach to 1lm reasoning: from rejection sampling to reinforce. arXiv
preprint arXiv:2504.11343.

Xiong, W., Zhang, H., Ye, C., Chen, L., Jiang, N., and Zhang, T. (2025b). Self-rewarding correction
for mathematical reasoning. arXiv preprint arXiv:2502.19613.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D., Tu, J., Zhou, J., Lin, J., et al. (2024a).
Qwen?2. 5-math technical report: Toward mathematical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B, Li, C., Liu, D., Tu, J., Zhou, J., Lin, J., Lu, K., Xue,
M., Lin, R., Liu, T., Ren, X., and Zhang, Z. (2024b). Qwen2.5-math technical report: Toward
mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan, T., Liu, G., Liu, L., Liu, X., et al.
(2025). Dapo: An open-source llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476.

Yuan, Z., Yuan, H., Li, C., Dong, G., Tan, C., and Zhou, C. (2023). Scaling relationship on learning
mathematical reasoning with large language models. arXiv preprint arXiv:2308.01825.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. (2022). Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476—15488.

Zhang, H., Yao, J., Ye, C., Xiong, W., and Zhang, T. (2025). Online-dpo-rl: Un-
locking effective reasoning without the ppo overhead. https://efficient-unicorn-
451.notion.site/Online-DPO-R 1-Unlocking-Effective-Reasoning-Without-the-PPO-Overhead-
1908b9a70e7b80c3bc83f4cf04b2f1757pvs=4. Notion Blog.

Zhang, T. (2023). Mathematical analysis of machine learning algorithms. Cambridge University
Press.

Zhao, P. and Zhang, T. (2014). Accelerating minibatch stochastic gradient descent using stratified
sampling. arXiv preprint arXiv:1405.3080.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and Liu, P. J. (2023). Slic-hf: Sequence
likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425.

Zhong, H., Feng, G., Xiong, W., Zhao, L., He, D., Bian, J., and Wang, L. (2024). Dpo meets ppo:
Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922.

Zhong, H., Yin, Y., Zhang, S., Xu, X., Liu, Y., Zuo, Y., Liu, Z., Liu, B., Zheng, S., Guo, H., et al.
(2025). Brite: Bootstrapping reinforced thinking process to enhance language model reasoning.
arXiv preprint arXiv:2501.18858.

13

https://efficient-unicorn-451.notion.site/Online-DPO-R1-Unlocking-Effective-Reasoning-Without-the-PPO-Overhead-1908b9a70e7b80c3bc83f4cf04b2f175?pvs=4
https://efficient-unicorn-451.notion.site/Online-DPO-R1-Unlocking-Effective-Reasoning-Without-the-PPO-Overhead-1908b9a70e7b80c3bc83f4cf04b2f175?pvs=4
https://efficient-unicorn-451.notion.site/Online-DPO-R1-Unlocking-Effective-Reasoning-Without-the-PPO-Overhead-1908b9a70e7b80c3bc83f4cf04b2f175?pvs=4

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The pipeline of our workflow is demonstrated by Figure 1, and details are
reflected in Section 3 and Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss some limitations of the current work in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: The main theoretical results are provided in Section 3, and Section E and
Section F offer complete proofs and technical lemmas.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The settings and configurations of our experiments are summarized in Section
4 and Section C.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use existing open-source datasets as the training and test datasets, and will
release our code repo for public access.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings and details are summarized in Section 4 and Section
C.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The test accuracy is evaluated through the average on multiple rollouts.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details about compute resources for reproducing the experiments are
summarized in Section C.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked the Code of Ethics and spared no effort to achieve the
requirements.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work mainly focuses on the mathematical reasoning ability of LLMs,
which has little effect on society except the relevant research field.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks, as we train small open-source models on a
limited amount of data, and the mathematical reasoning ability for LLMs has little potential
to be misused in other fields.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and code we use are all open-sourced and cited in our paper. We also
mention the resource and license of the code in our code repo.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

18

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The processed datasets and code will be released in public along with docu-
mentation introducing how to use them.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are only used for polishing the writing and checking any spelling or
grammatical errors in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Author Contributions

This work stems from all authors’ valuable contributions and close collaborations.

JY implements the workflow based on the algorithm pipeline; conducts preliminary experiments and
verifies the effectiveness of GVM in the early stage; scales up the experiments; mainly writes the
experiments-relevant sections of this paper.

YH initializes the project; contributes to the algorithm proposal and the clarification of the pipeline
procedure; derives the theoretical analysis for GVM and establishes corresponding bounds for the
algorithm; mainly writes the sections on methodology and theoretical analysis.

HZ devotes to the conduct of experiments; contributes to the ablation studies of the tradeoff between
entropy loss and model performance; reviews related works on the techniques to mitigate fast entropy
loss in the early stage of RL training and provides insightful suggestions on how to balance the
tradeoff.

HD implements baselines and provides practical implementation suggestions; conducts a series of
experiments, including baselines comparisons, GVM iterations in both RAFT++ and RL (GRPO)
algorithmic settings; provides discussions and suggestions about experiment design; contributes to
writing.

WX provides insightful advice through the project timeline on theoretical analysis, experiment
design, and paper writing; contributes to the initial codebase and baseline training; mainly writes the
introduction, related works, and problem formulation sections; and revises the draft version of this

paper.

NJ and TZ support the work and provide computational resources, guidance, and suggestions for
theoretical analysis, experiment design and paper writing.

B Related Work

Iterative rejection sampling fine-tuning. A line of works studies the RAFT-type algorithms
(iterative rejection sampling fine-tuning) (Dong et al., 2023; Touvron et al., 2023; Gulcehre et al.,
2023; Yuan et al., 2023). These algorithms iteratively generate n responses per prompt, discard
those with incorrect answers, and fine-tune the LLLM on the remaining accepted samples. Another
closely related method is STaR (Zelikman et al., 2022), which also involves iterative training on
self-generated CoT responses. In comparison, STaR uses greedy decoding rather than sampling,
which deviates from the EM principle and suffers from severe bias across prompts of different
difficulty levels (see Section 2 for details). STaR also proposes to provide the answer in the prompt
to generate CoT responses for harder problems. However, our preliminary experiments suggest
that LLMs often generate wrong reasoning path and output the correct answer regardless of the
context. Additionally, STaR retrains from the original pre-trained model in each iteration, rather
than bootstrapping from the updated model. These algorithms have been widely applied in the
post-training stage of LLMs since then (Touvron et al., 2023; Xiong et al., 2025b; Al@Meta, 2024;
Yang et al., 2024a). We also mention in passing that this algorithm framework can further date back
to the expert iteration in the RL literature Anthony et al. (2017). Lastly, Tong et al. (2024) study
inference budget allocation in the context of synthetic data construction. Their approach uses a fixed
model to repeatedly sample responses until m correct CoT rationales are obtained per prompt (m is a
hyper-parameter). While this setup also studies budget-aware sampling, they only study the offline
setting and their method lacks a dynamic scheduling mechanism so cannot be applied to more general
iterative online algorithms.

Chain-of-thought reasoning under EM framework. Our work is also closely related with the
line of work studying EM framework in CoT reasoning. Singh et al. (2023) connects RAFT with the
EM algorithm under the CoT reasoning framework. We will cover such a connection in Section 2
for completeness and also discuss the limitation of the vanilla RAFT algorithm, and motivate our
algorithm designs. Another related work is Sordoni et al. (2023), which proposes a gradient-free
EM-based approach for prompt selection, emphasizing a different direction. Our work is also closely
related to Hoffman et al. (2023), which proposes TRICE that optimizes an ELBO-inspired objective
using MCMC to approximate the posterior over the latent CoT rationales. TRICE maintains a table of

21

prompt—CoT pairs and, in each iteration, samples a new CoT y per prompt, and replace the old CoT
record y,14 With g if ¢ leads to correct final answer. They also propose to add a mean-zero baseline to
reduce the variance of the gradient estimator (Owen and Zhou, 2000). In comparison, we design a
dynamic inference budget allocation scheduling for a more effective estimation of the ELBO gradient
by rejection sampling so the algorithm framework and techniques diverge significantly. Moreover, we
implement our algorithm in a highly online and on-policy way (see Section 3.3 for details) to achieve
the best performance. The lazy update of TRICE in maintaining the table of prompt-CoT pairs may
not fit in this scenario. Beyond algorithmic differences, we also provide a theoretical analysis under
standard conditions such as smoothness, which is missing in all these prior works. Hu et al. (2024)
offers a more detailed statistical perspective on CoT reasoning as latent variable modeling. However,
they mainly focus on in-context learning rather than iterative fine-tuning. Lastly, recent work Zhong
et al. (2025) proposes to use a neural network to approximate the posterior distribution of latent CoT
rationales and train the network by PPO. They then use the network to generate responses for the
SFT or DPO algorithms, whose techniques are completely different from ours. They also provide a
theoretical convergence analysis of EM algorithm under the KL-regularized Markov Decision Process
(MDP) framework using the techniques from RL theory literature (Zhong et al., 2024). This type of
analysis typically ignores the optimization complexity and requires to find the exact minimizer of
E-step and M-step at each iteration, thus differing from our techniques and results.

RL algorithms for LLM post training. Reinforcement learning has played a central role in the
post-training of LLMs. The most prominent example is reinforcement learning from human feedback
(RLHF), which brings the first generation of Chat-GPT3.5 (Ouyang et al., 2022; Bai et al., 2022).
These methods typically optimize a learned Bradley-Terry reward model (Bradley and Terry, 1952)
using the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017). To simplify the
RLHEF, a long line of works has proposed simplified contrastive learning objectives based on pairwise
comparisons, such as Slic-HF (Zhao et al., 2023), DPO (Rafailov et al., 2023), IPO (Azar et al., 2023),
GPO (Tang et al., 2024), and their online variants (Xiong et al., 2023; Dong et al., 2024; Zhang et al.,
2025). After the release of OpenAl’s O1 (Jaech et al., 2024) and DeepSeek’s R1 (DeepSeek-Al et al.,
2025), RL methods based on verifier scores, which evaluate the correctness of the final answer, have
attracted significant attention in building reasoning models (Yu et al., 2025; Shi et al., 2025). This
project also follows the recent convention and falls into this framework. In particular, to avoid the
critic in PPO, both industry and academic researchers have revisited REINFORCE-style algorithms
(Williams and Peng, 1991), including ReMax (Li et al., 2023), RLOO (Ahmadian et al., 2024; Kool
et al., 2019), GRPO (Shao et al., 2024), Reinforce++ (Hu, 2025), and Reinforce-rej (Xiong et al.,
2025a). We also mention in passing that the RAFT-type algorithms can also be viewed as a special
variant of Reinforce-style algorithms, where reward is either 1 or 0. Throughout the rest of this paper,
we primarily present our methods with RAFT, since it aligns most naturally with the EM objective.
However, the presented dynamic inference budget scheduling can be of independent interests beyond
the RAFT algorithm. We will show that integrating it into other RL-style methods, such as PPO,
REINFORCE, or GRPO, can also bring notable improvements.

C Experiment Details

Sample size vs accepte rate

350 Iteration 2 3004 Iteration 3 400 1 Iteration 4
300 2501
] 300
8 250 2001
(2]
o 200+
= 150 200+
€ 150
©
Y] 1004
100 1004
50 501
0 01 0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Accepted Rate Accepted Rate Accepted Rate

Figure 3: The assigned sample budget in GVM-RAFT++ with N’ = 32, N = 32n for three iterations.

22

Visualization We present the relationship between the final sample budget and the accept rates of
different prompts for GVM-RAFT++ in Figure 3. From the trend, it could be inferred that the sample
budget allocated to prompts increases smoothly as the accept rates decrease. However, other affecting
factors together determine the trend of the sample budget besides the hardness, where the Lipschitz
coefficients measuring the contribution of the samples by the gradients play a role. If we do not
take the impact of Lipschitz coefficients {G;} into account, then we could have the allocated sample
budget to prompts with different levels of hardness measured by accept rates as shown in Figure 4.

Hyperparameters We utilize verl (Sheng et al., 2024) as the training framework, and implement
the RAFT++ as Xiong et al. (2025a) show that the additional importance sampling and clipping
improve over the vanilla RAFT (Dong et al., 2023). For each iteration, we use a prompt batch size
of 1024, and use a mini-batch size 256 for gradient update. The max prompt length is set to be
1024, and the models are allowed to generate at most 3072 tokens so that they do not exceed the
context window of 4096 tokens. There is no warmup stage and the learning rate is chosen to be a
constant 1e — 6. For the training dataset, we use the Numina-Math (LI et al., 2024). For simplicity of
implementation, we update the posterior distribution (i.e., the GVM in Algorithm 2) every 10 steps.
In other words, we will compute the inference buget allocation for the next 10 M-steps and take 10
M-steps before entering another E-step. The 10 M-steps and the 1 E-step are together referred to as
one iteration of GVM-RAFT++. We also experiment with the clip higher (Yu et al., 2025) to use an
asymmetric clip threshold design. Specifically, we clip the importance sampling ratio 7y /7y, to
the range (1 — €jow, 1 + €hign), Where €10, = 0.2, and epign = 0.28,0.4 then 0.35 for RAFT++ and
GVM-RAFT++ respectively. We omit this technique in GRPO training as we observe it leads to
worse performance in our experiments.

To understand how to choose the hyperparameters « and 3, we first simplify the question and omit

the impacts of gradients here. Then the sample weight of function f(z) = \/% with different
x —B—-1

choices of « and f is visualized as the figure below. From Figure 4, we could see that in order to
assign more sample weights on problems with lower accept rates, we should choose both « and 3
as low as possible within a reasonable region. Therefore, in our experiments, we fix o = 0.001 and
8 = 2.0. For all the hyperparameters, please refer to Table 2.

Table 2: Full hyperparameters.

Parameter | Value
« le —3
B 2
batch size 1024
mini batch size 256

max prompt length 1024

max response length | 3072
learning rate le—6

KL loss coefficient | 0.001

As for the choices of v and (3 is GVM stage two sample budget assignment, we visualize the effects
of both parameters in Figure 4. From the figure, we could see that when [is fixed, the smaller « is,
the more sample budget will be allocated to harder prompts. Similarly, when « is fixed, the smaller 3
is, the more sample budget will be allocated to harder prompts.

To analyze the impacts of which layers are used in the gradients calculation and the reduction methods
of gradients, we conduct a series of experiments using Qwen2-math-7B-Instruct (Yang et al., 2024a).
For the layers from which we retrieve the gradients, we choose the top one, 1m_head, and the bottom
one, embed_tokens, as the activated layers for loss backpropagation and gradients calculation. For
gradients reduction, we compare both summation and average by sequence length. From the results
shown in Figure 5, we could see that different kinds of layers for gradient calculation do not make a
huge difference on the final sample sizes, while the summation of gradients biases the sample sizes to
problems with lower accept rates, which we speculate the correct answers for problems with lower
accept rates could steer the model more than easier problems. Therefore, in our experiments, we
choose summation as the method for gradients reduction. According to the relationship between
the sample sizes and accept rates. The relationship between gradients and accept rates, it could be

23

Effects of « and B on f(x) = 1/Vx + ax! B

74 — a=1.0e-04, B=2.0
a=1.0e-04, B=3.5
a=1.0e-04, B=5.0
a=1.0e-03, B=2.0
a=1.0e-03, B=3.5
a=1.0e-03, B=5.0
a=1.0e-02, B=2.0
41 a=1.0e-02, B=3.5
a=1.0e-02, B=5.0

0.4 0.6 0.8 1.0
X

Figure 4: Visualization of different choices of « and 3 for f(z) = 1/Vx + azl=5.

inferred that in a high level, the gradients are larger for prompts with lower accept rates if we use the
average reduction. At the same time, it is not always the case, as prompts with higher accept rates
may also have large gradients.

In the second stage of GVM, to make the total sample budget exactly N, we sort the prompts
according to their accept rates in descending order, and add more samples to the prompts with lower
accept rates. In our experiments, for GVM, each iteration consists of nine steps of update as the
amount of training data per iteration is slightly less than 10 x 1024 = 10240, which is the amount of
data needed for ten steps of update with train batch size 1024.

For the implementation of GVM-GRPO, we divide the sample budget calculated in the second stage
by a fixed size (for example, 4 in our experiments), and copy the prompts multiple times by n; /4.
Then we set the rollout number to 4 during the training procedure.

For compute resources, we mainly conduct the experiments on NVIDIA RTX A6000 and H100
GPUs, and each iteration in GVM typically takes 90 minutes with sample sizes N’ = 8, N = 8n on
a 4xH100 GPU server.

C.1 Ablation Study

GVM Balances the Sampling Budget in a Stable Way Figure 9 displays the performance trend
concerning the training steps, with each training step corresponding to exactly 1024 x 4 samples,
which means that the definition of “step” here may not be mapped to the actual training step. Take
the case N’ = 16, N = 16n for example, under this setting, each iteration is optimized over 1024
prompts, with a total sampling budget 1024 x 16 = 4 x (1024 x 4), therefore corresponding to
4 steps in the figure. Though increasing the number of samples in the first stage, N’, could make
more prompts be accepted at least once, thus leading to more useful prompts during the training
procedure, the convergence rate does not change evidently. This means GVM could possibly estimate
the difficulties of the prompts with a relatively small sampling budget to a sufficient threshold, and
we could choose small N” and N in realistic applications.

Existing RL training paradigms with Qwen-2.5-Math-7B suffers from distribution collapse
and worse pass@n. In Figure 6, we observe that GVM consistently improves the convergence rate
for both RAFT++ and GRPO, and across both the Qwen-2.5-Math-1.5B and 7B models. However,
we also find that (1) GVM yields larger gains with the 1.5B model than with the 7B model; and (2)

24

GVM is more effective when combined with GRPO than with RAFT++. To better understand these
observations—as well as the dynamics of GVM—we conduct further ablation studies. Specifically,
one can interpret vanilla RAFT++ as imitating a fixed best-of-n policy. In contrast, GVM-RAFT++
adaptively selects a best-of-n; policy for each prompt z;, based on its difficulty and gradient signal.
GRPO (REINFORCE-based) further incorporates unlearning from negative samples. Intuitively, all
these methods are influenced by the quality of the underlying best-of-n; policy. To examine this
effect, we plot the pass@n curves of different checkpoints below.

We plot the pass@n curves of GVM-RAFT++ using both the Qwen-2.5-Math-1.5B and 7B models
in Figure 7. As shown in the figures, the pass@n curve (for n > 4) remains relatively stable across
different training iterations for the 1.5B model. In contrast, the performance consistently degrades
with the 7B model. Notably, the GVM-RAFT++ 7B model at iteration 10 underperforms even the
1.5B model when n > 40. Since the imitation target gets worse and worse during the training, the
GVM-RAFT++ does not improve the final test performance with the 7B model. We also mention in
passing that it is expected that the current RL training paradigm cannot improve the pass@n at large
n, a trend also observed in prior work (Shao et al., 2024; Xiong et al., 2024). However, our results
show that the pass@n actually gets worse with the Qwen-2.5-Math-7B model.

We note that the observed performance difference essentially arises from existing RAFT++ or GRPO
training paradigm, rather than the proposed computational resource allocation strategy (i.e., GVM).
In Figure 8, we plot the pass@n curves for both the vanilla RAFT++ and vanilla GRPO. As shown in
the first two plots, RAFT++ without GVM already exhibits the same trend: the 1.5B model maintains
a stable pass@n curve, whereas the 7B model shows a clear degradation as training progresses.
The middle plot further indicates that the “clip higher” technique helps mitigate this decline hence
improving the final test performance. Finally, GVM still improves GRPO performance with the 7B
model, likely because its pass@n curve deteriorates more slowly than RAFT++. This is due to the
use of negative samples in GRPO (Xiong et al., 2025a).

In addition, we observe that for Qwen2.5-Math-1.5B, when N’ = 8, the training rewards of GVM-
RAFT++ are higher than RAFT++, and when N’ = 16, the training rewards of GVM-RAFT++
are approximately the same as RAFT++, while when N’ = 32, the training rewards are lower than
RAFT++. This implies that using a larger N’ for GVM will bias the sample budget to harder prompts,
which may be because with a larger N, harder problems are more likely to be solved at least once
compared to when N is smaller.

D Notation Table

All of the notations are listed in Table 3.

Table 3: The table of notations used in this paper.

Notation | Description
T,Y, % Prompt, CoT rationale, and predicted answer
X,V Z the space of prompt, CoT rationale, and predicted answer
m the number of training samples (z;, z;)
t(y) the posterior distribution P(y|z;, z;, @) on the ¢-th E-step
D! the collected sample set for (x;, 2;, y) on the ¢-th E-step
nt the size of scheduling budget for prompt x; on the ¢-th E-step
p! the average accept rate for prompt x; on the ¢-th E-step
N the whole size of sampling budget
(, B) tuning parameters in budget scheduling
B! the sample batch corresponding to z; on the r-th M-step
bt the batch size of B}
n} required number of samples for prompt z; on the ¢-th E-step
k the number of M-step after each E-step
Okt—k+r | the model parameter on the r-th M-step within the ¢-th E-step
n learning rate
L:(0) upper bound loss function on the ¢-th E-step

25

E More Theoretical Results and Missing Proofs

Proof of Lemma 1 . Taking the expectation of Equation (6), we obtain:

Z t i Z VinP(ijzz‘xzagt 1)

— ’LZyGDt

= Z nint ZEy1~P(|@i,0:—1) [1(accept y;) - VInP(y;, zi|xi, 0r—1)]
i=1 Zpli 1

- *Z [Zp i@t VI P(y5, 22, 0 1)

=1 Zp’L -7

=- ZEwagva(y,ziwxi,et_o,

i=1

which is the same as Equation (5). L]

Proof of Lemma 2 .

H~

Z . Z (InP(y;, zilx:, 0))

i=1 ’L y]eDf

3

:Z 2 ZVy7~IP’ (J2s.0:—1) (1(accept y;)V (InP(y;, zi |24, 0)))
i=1 1

t
g

<> :(n,;pt_)z > Eynpfess) 1 Laccept y))V (InP(y;, 2z, 6))]
i=1 s =1
m 1 nﬁ
2
=2 i D DBy g IV Py, 2l2:,0))]
i1 \MPi)” ST
=3 s oy |V Py, zilai,)|

ﬁ
Il
-

G?

i

If we consider further strongly convex loss function, there will be:

Theorem 3 (Decreasing rate with smooth and strongly convex condition.). Suppose —InP(y, z|z, 6)
is 1/~y-smooth and H-strongly convex with respect to 0. If 0 < n < min{~/2,1/(4kH)}, then the
proposed algorithm satisfies that

E(£(00r) — £0%)] ~ E[£(00) — £07)] < ~ 2L Ak 1) — LAy (k. T) + (k. T),
where

T k r—1
Ak, T) =Y S "E[Y VL(Oki—im) | > 0.
t=1r

=1 m=0

Proof of Proposition 1. Based on the objective function in Equation (7), we can define the Lagrange
objective function as
- 1

G({nih A) = ZW Z”E—

26

Taking derivative on the variables, we could obtain that
oG 2 Gf '

oni 14/ pinh? T
G SN,

To achieve the quations as

i€ [m]a

oG oG
ol = a0

7
we can obtain the result as

Gi/\JPi + Gy

i Vi e [m
Zl 1Gl/1/pl+(p)B 1 1/p7,+(p)ﬂ 1

which finishes the proof.

O
Proof for Theorem 1. To simplify the analysis, we denote
o 1
Ght—htr =~ Z G Y Ve (nP(y;, zilas, Oe—pir) -

i=1 "1t jert—IH-r

With the fact that — InP(y, z|z, 6;) are 1/~v-smooth, we can obtain
2
E[L(Ort—ktr+1) = Le(Ort—psr)] < —U]EHVeﬁt(ekt—k-s-r)HQ + %E|lgkt—k+r||27
forany r = 0,1,...,k — 1 on iter-t. Summing the above inequality over all r, and with the fact that
EL(Okt) < ELi(Okt) < BLH(Oki—1) = EL(Okt—1),

we have

k—1 n?
E[L(6kt) — LOki—k)] < =1 E[VoLi(Orirsr) | + Z ,YIE”gkt ke ?

r=0 =

k-1

=Y EIVeLi(Ori—ktr) > + Z (EV (gkt—k+r) + ElIVoLt(Ore—rrr)[?)

r=0

Z]E”ve»ct(ekt k) |12 +Z i EV (Grt—ktr)

t=0 -
where the last inequality is due to 1/~ < 1. Further summing ¢ over 1,...,T, we can obtain that

. T k-1 T k-1 2
2
E(£(0r) — £00)] € ~F 3 S EIVoLeBuaiar)| + 30 D0 3BV (ghrmser)
t=1 r=0 t=1 r=0
O

Proof for Theorem 2. The proof techniques are mainly from Zhao and Zhang (2014). To be specific,
for each iteration ¢, we denote that

1. 1
Ot —k4r = <—m > P > Ve (P(y;, zilas, Okt—rir) Okt kir — 9ktk>

=1 "1 yj€B§t7k+T

1. 1
+ Z SRR Z (InP(y;, zi|ws, Opt—kar) — InP(y;, 2i|Ts, Opt 1)) 5

y;eBRtkET

27

which implies that
Ebit—ktr = E(VL(Ort—ttr), Ort—totr — Okt—t) — EL:(Ont—ktr) + ELt (O—1) > 0.

Based on these notations, we can obtain that

0kt —ktr — Okt—il|* = |Okt—ttrs1 — Oke—kl|* = 2(0Gkt—k-tr Okt—ttr — Okt—ic) — |NGt—totr ||*

2 1
= 200t —ktr — En > G > WPy, i, Ok kpr) — WPy, zilas, Okr—r)) — [19ke—kir]|,
i=1 "1 kt—k+r
v €B;

taking expectation of both sides, we have

E||0kt—ktr—Okt—k |> —ENOkt—ktr+1—Okt—kl|* > 20 (ELLOkt—k1r) — EL(Okt—1)) —1°El Grot—totr |-
Summing over r = 0,1,...,k — 1, we have
k-1

k—1
1 n
;E (Le(Okt—k+r) — Le(Okt—r)) < *%Eﬂokt — Ol + 5 ZEHth—k+r”2-

Also, considering the fact obtained in previous analysis as:
k—1 k—1

k1o
D E[LeOkt—kiri1) = LeOkt—nir)] < =1 Y EIVoLe(Or—rir)I> + 7E|\th kel
r=0 r=0

r=0

we can combine the two inequalities above, and obtain that

ke
E [L(Okt) — L(Okt—r)] < E[Le(Okt) — Lt(Ot—r) EZ (Lt (Okt—totr+1) — Lt (Ont—r)]
—0
k-1)

k

1 n
< = g Bl = bl = ¢ ;Enveﬁtwm_wnﬁ <) ZEHgkt kel
0 k—1 1(n k—1 n? k—
= _ﬁEH ZVEt(ekt—kJrr)Hz T (2 -) ZEHVGEt(akt k) 1P+ 7 Z (gki— k+T
=0

n
< **EH Z VL Otk lI” — i ZEHVGEt(th—kw)Hz 1 Z]EV (Grt—krr)?
r=0 r=0

where the last inequality is from n/v < 1/2.

Summing overt = 1,...,T, we have
T k-1 T k-1
B (£(0kr) = £O0) < =3 5B 3 VL Brukn) I = 3 5 S EIVoLulBrae I
+ i & kil EV (gkt—tr)” -
Pl

Proof for Theorem 3. For each iteration ¢, we denote that

o~ 1
Okt—ktr = <m Z SRR Z Vo (InP(y;, 2|z, Opt—ktr)) , 0 — 0kt-k>

i=1 "1 ijBi_ct—kJrr

1 1
L, Z P Z (InP(y;, zi| i, Okt —k+r) — I P(y;, zil@s, Okt—i))
=1 "t

kt—k
Yi 681 h

H
- §||9t — Ore—nll3,

28

which implies that

H
Edkt—ktr = <v£t(9kt—k+r)79kt—k+r_9kt—k>_ﬁt(ekt—k+r)+£t(9kt—k)_5||9kt—k+r_9kt—k||§ > 0.
Based on these notations, we can obtain that
1Okt —tsr — Okt—rl|* = 1Okt—ktr+1 — Ore—il|?
= 2(NsGkt—k+r, Okt—ktr — Okt—r) — |MsGret—retr||?
21 | = 1 H
= 200kt—kir — l] Z P Z (InP(y;, zi|zi, Okt—ktr) — InP(y;, 23|25, Ope—r)) + EHokt—k—&-r — Ore—re||?

i=1 "t yjeB;ct—k-f—r

2
= [Ingkt—r+- 7,
taking expectation of both sides, we have

H
Bl — Ot~ ElOhcosrss = Ous-sll 220 (BLuGhs-ssr) = Laba—s) + % Wa—ver = Bue—al?)

- 772E||gkt7k+r||2'

Summing over r = 0,1,...,k — 1, we have
k—1 o k=t
> E(Li(Okt—rir) = Le(Oki—k)) < —*EH@M ke~ Okt~ k||2—*ZEH9kt k= Okt >+ 5 ZE”gkt kel
r=0 r=0 r=0
Also, considering the fact obtained in previous analysis as:
k—1 k—1 k—1 n?
D EILiOkt—kiri1) = LeOkt—rsr)] < =0 Y EIVoLe(Or—rir)I> + lyEHgkt kel
r=0 r=0 r=0
we can combine the two inequalities above, and obtain that
=
E[L(0kt) = LOkt—r)] < E[Li(Or) — Lo(Ori—r) EZ (L4 (Ot—rtri1) — Le(Oni—r)]
r=0

k—1
1 s H 2 7 2
< —TWEHQM L % T§:0E||9kt—k+r — Ore—kll” — z E EVoLt(Ort—rrr)l

r=0
k—1
L(n n? 5
Sl (A El|grt—psr
+2 (2 +2v> ;:O | gttt

k—1 k—
1
-~ DIy) > :Enveﬁt(ekt el + o > EV (gheie)
r=0 =0
H772 k r—1 H77
T ZEH Z VL Ort—rim) |I* = Z Z EV(Gkt—tm)

r=1m=0

k—1
Hn?
< **EH ZVﬁt (Ore—rr)lI” = 7] ZEH Z VL (Ort—r+m)|* — ;CZE“Veﬁt(ekt—k+r)||2
r=0

k—1

n
8 ;EV (Gt —ktr) 5

where the last inequality is from n/v < 1/2.

Summing overt = 1,...,T, we have
E[L(Orr) — L(07)]
T Hip? k -1 T . k—1
* 2 2
B(C00) ~ £O) =3 S5 D Bl 3 Varkem) I =3 g 3 EIVoLilOhusa)

T k—1
n
— EV — .
+ ;:1 sk ;:0 (Grt—k+r)

29

E.1 Discussion on sample size
To be more specific, to achieve a negative upper bound, the sample size on each batch should satisfy
that:
y 5 M e IVe lnPly;, ziles, 0)13
T Iyt Y05 Ve lnP(y;, zili, 0)]13

F Technical Lemmas

Lemma 3 (Jensen’s Inequality). Suppose that ¢(w) is a convex function on Q. Consider
Wy, , Wy € S, and non-negative numbers o, - -+ , &, € R so that 2211 a; = 1. Then,

¢(Z ajw;) < Z a;p(w;).

More generally, let p be a probability measure on , then ¢(Eypw) < Eynpd(w). In particular,

since || - || is convex (by triangle inequality of the norm), we know that
|Ez|| < Ell2].
Proof. See Proposition A.9 of Zhang (2023) for a proof. O

G More on GVM Algorithms

Here we present a practical version of GVM in Algorithm 2.

Algorithm 2 GVM: Practical Implementation

1: Input: Model parameter 6, training samples {x;, z; }{—,, total inference budget N, parameter estimation
sample size N’, penalty parameter {c, 3}.
2: fori=1,...,mdo

3: For each prompt z;, sample N’ times to get {z;, y{, zf }é\il
4: Estimate the accept rate p! and Lipschitz bounds G; on each prompt z; as
N’ j
. Zj:l 1(z] = z)
e
1 .
Gi= > _ W”Ve InP(y}, zi|zi, 0) |2
1<j<N’,2) =2;
5: Calculate sample size {n;} as:
Gi/ /pi + —%=
ni= N - . (pi) .
2121 Gl/ P+ (Pl;ﬁ
6: end for
7: Output: {n;};~;.

A general algorithm pipeline for rejection sampling is displayed in Algorithm 3, while in practice, we
directly use the outcome-based reward signal to decide whether a prompt will be chosen or not.

30

Algorithm 3 Rejection sampling

1

Al

—_

@Y D

: Input: probability with current model {P(y|x;,0:—1),P(zi|y, 0:—1)}, auxiliary probability q(y|x;, z;),
sample size n!, accept rate pt, empty set D

Qi(y;)

end if
end for
: Output: set D.

cforj=1,...,nldo

Obtain a sample point y; from the distribution g(y|x;, z;).
Sample a random point u; ~ U£(0,1).

Calculate Q;(y;) as:

= P(yj|xiaet—l)P(Zi‘yj,gt_l)
>, Pylzi, 0c—1)P(zily, 0:-1)/ 2, 3. P(ylai, 0:-1)P(2]y, 6:-1)

Lo (s
ifu; < PiQiWi) gphep
a(yjlei,zqi)

Enlarge D = DU {y,}.

Average accuracy for different sample sizes of GVM-RAFT++
0.46

o o

> b

NBR
A

Average Accuracy
o
sy
o

0.38
Setting
0.36 N'=8,N=4n
N'=8,N=8n
0.341 N'=16,N=16n
N'=32,N=32n
0 5 10 15 20 25 30
Step

Figure 9: The average accuracy of GVM-RAFT++ with different sample sizes for both stage one and
stage two on Math500, Minerva Math and Olympiad Bench. From the trend, though the number of
sample sizes in both stage one and stage two increases, the convergence rate stays almost the same.

31

gradients mean

embed_tokens

o o
o o ro L L LG CC] F o
— —
L] ® elsee!
L] L] J L]
o oo o mafseer [ee] oo |
o . o
o e Cx
..m- . DY Lnnu.u . ..m-
m L] v4m L vAm
< ° °e<g °eg
o0 oM & ne @ e
L] @ o oseoe L]
N [N
L] L2 g o " o L]
L m L] ® 900 oM L]
o0 o w L] L] @ Woe c L 9€00 © SININ) @] L
0 o % o 1S
=) I e e e a2l -
28 3 28 2 8 8 g o v 2 g38¢8gsg-°
© © o T m ~ ~ — c sjuaipeln c S m S m O mn
sjusipelo © sjuaipel o (] m N N oA A
o : 5 9 sjualpesn
2 g 5
o)}
9] o 2
A4 Ee) °
o © ©
= (]
| [c
ko] < |
Q | | © €
Qo £ =} £
c £
]
3 3 o2
© © o ©
>4 o« -4
. - - -
[oR [oR Q
(0] (O] V]
[} 9] < O
v} "] o 9
< < <
L]
o
oo . vo. °
L] L L ® oo L] L
L] @ e L] L] €@ OO @ L] °€8e © SIvINW! 2 L ® eleeee
o
[o
o o o o o o o o o o o o
o n o o n o o n o o n o
o - - o — — o~ - — o~ - ~
92|15 a|dwes 9z15 9|dwes 9z15 9|dwes 9z1s a|dwes

Accept Rate

32

Accept Rate
Figure 5: Comparison among different choices of the layers for gradient calculation and the methods

of gradients reduction on Qwen2.5-Math-7B.

Qwen2.5-Math-1.5B Qwen2.5-Math-7B

0.46 0.541
§0.44 0.527
e
3
|S)
< 0.42 0.50+
()
o
S 0.40 0.481
g GVM-GRPO ’ GVM-GRPO
< GRPO GRPO

0.38 GVM-RAFT++ | 0-46 GVM-RAFT++

RAFT++ RAFT++
0.36 0.44
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120
Steps Steps

Figure 6: The average accuracy of RAFT++, GVM-RAFT++ and GRPO, GVM-GRPO with N/ =
8, N = 8n respectively on Math500, Minerva Math and Olympiad Bench. Applying the GVM
sample strategy to RL algorithms like GRPO achieves similar results to GVM-RAFT++ compared to
vanilla GRPO. For vanilla RAFT++ and GRPO, the rollout number per prompt is set to 8 as well.

0.80
0.80
0.75
0.75
©0.70 &
@ 7
3 30.70
0.65 —— GVM-RAFT++ 1.5B iter6 pass@n
—— GVM-RAFT++ 1.5B iter 2 pass@n 0.65 GVM-RAFT++ 7B iter 2 pass@n
0.60 GVM-RAFT++ 1.5B iter 6 pass@n —— GVM-RAFT++ 7B iter 6 pass@n
—— GVM-RAFT++ 1.5B iter 10 pass@n 0.60 —— GVM-RAFT++ 7B iter 10 pass@n
055 0 10 20 30 40 50 60 0 10 20 30 40 50 60
n n

Figure 7: The pass@n curve of GVM-RAFT++ on Qwen-2.5-Math-1.5B and 7B. The evaluation
temperature is 1.0.

0.8 0.8 —
0.800 e T
0.775 T 0.80 —

0.750 — - 0.78 A]

< — c -

§0.725 / —— 5

%0.700 / - N f 2076

2o0. —— No clip higher a

g / g
0.675 a -= With clip higher 0.74
0.650 —— RAFT++ 1.5B iter 2 pass@n — lter2 ’ —— GRPO 7B step 20 pass@n

- RAFT++ 1.5B iter 6 pass@n Iter 6 0.72 GRPO 7B step 60 pass@n
0.6251 —— RAFT++ 1.58 iter 10 pass@n —— Iter 10 / —— GRPO 7B step 100 pass@n
060055 10 20 30 40 50 60 20 30 40 50 60 07075 10 20 30 40 50 60

n n n

Figure 8: The pass@n curve of various algorithms. Left: RAFT++ on Qwen-2.5-Math-1.5B. Middle:
RAFT++ on Qwen-2.5-Math-7B, with and without clip higher technique. Right: GRPO on Qwen-
2.5-Math-7B.

33

H Case Study

Here we display several instances from several benchmarks we used respectively. In these cases, the
model trained by vanilla RAFT++ did not generate a correct answer within a fixed budget of attempts,
while models trained by GVM-RAFT++ or GVM-GRPO managed to find the correct answers.

Math500 Example

Problem The expression 2 -3 - 4 -5 4 1 is equal to 121, since multiplication is carried out
before addition. However, we can obtain values other than 121 for this expression if we are
allowed to change it by inserting parentheses. For example, we can obtain 144 by writing

(2-(3-4) - (5+1) =144.

In total, how many values can be obtained from the expression 2 - 3 - 4 - 5 + 1 by inserting
parentheses? (Note that rearranging terms is not allowed, only inserting parentheses).
Answer 4

RAFT++ Output Given the expression 2 - 3 - 4 - 5 + 1, we can get different results by
inserting parentheses in various ways. Let’s denote the expression with parentheses as F.
The expression 2 - 3 - 4 - 5 + 1 without parentheses is evaluated as:

2-3-4-5+1=120+1 =121.

Next, let’s consider the possible ways to insert parentheses:
1.(2-3)-4-(5+1)2.2-3-4)-(5+1)3.(2-3-4)-5+14.2-(3-(4-5)+1)5.
(2-3:4-5)+1

However, not all of the above are valid expressions because we need to evaluate the expression
step by step. For simplicity, let’s evaluate each possible corrected expression:

1. (2:3)-4-5+1)=6-4-6=1442.2-(3-4)-(5+1)=2-12-6 = 144 3.
(2:3-4)-5+1=24-54+1=1204+1=1214.2-(3-(4-5)+1)=2-(3-20+1) =
2-(60+1)=2-61=1225.(2-3-4-5)+1=120+1=121

From the above evaluations, we see that we get the values 144, 144, 121, 122, and 121, which
means the distinct values are 121, 122, and 144.

So the total number of distinct values we can obtain is 3.

The answer is:

GVM-RAFT++ Output Given the expression 2 - 3 -4 - 5 + 1, we need to determine how
many distinct values can be obtained by inserting parentheses in different ways.

First, let’s note that without parentheses, the expression evaluates to 2-3-4-5+1 = 120+1 =
121.

When we insert parentheses, the expression can take different forms based on where the
parentheses are placed. Let’s evaluate all possible ways of inserting parentheses:
1.(2-3-4)-(5+1)=(24)-6=1442.2-(3-4-5)+1=2-60+1=120+1 =121
3.2:3-4:5+1)=2-3-21=1264. (2-3)-(4-5+1) = (6)-21 = 126 5.
2-(3-4-54+1)=2-61=122

By evaluating these different forms, we see that the possible values are 121, 122, 126, and
144.

So the distinct values that can be obtained are 121, 122, 126, and 144.

Therefore, the total number of distinct values is 4.

The final answer is .

34

Minerva Math Example

Problem Preamble: A spectrum is taken of a single star (i.e., one not in a binary). Among
the observed spectral lines is one from oxygen whose rest wavelength is 5007. The Doppler
shifted oxygen line from this star is observed to be at a wavelength of 5012. The star is
also observed to have a proper motion, pu, of 1 arc second per year (which corresponds to
~ 1.5 x 10713 radians per second of time). It is located at a distance of 60pc from the Earth.
Take the speed of light to be 3 x 10® meters per second.

What is the component of the star’s velocity parallel to its vector to the Earth (in kilometers
per second)?

Answer To find this longitudinal velocity component, we use the Doppler shift, finding

Vrz%c:%c:km/s.

RAFT++ Answer To solve this problem, we need to follow these steps:

1. Calculate the radial velocity of the star using the Doppler effect. 2. Use the radial velocity
and the proper motion to find the component of the star’s velocity parallel to its vector to the
Earth.

Step 1: Calculate the radial velocity The radial velocity, v, of the star can be found using the
formula for the Doppler shift of a photon:

D= @ <)\0bs - Arest)
)\rest

where \gps is the observed wavelength and A is the rest wavelength.
Given: - Arest = 5007 A - A\gps = 5012 A - ¢ = 3 x 108 m/s
We first need to convert the wavelengths from to meters:
1A=10"""m
So:
Arest = 5007 x 107%m
Aobs = 5012 x 1071%m

Now we can calculate v:

v:3><108<

5007 x 10—10

5 x 10~10
5007 x 10—10

5012 x 10~1% — 5007 x 1010)

v:3><108<

5
= 108 [——
v=3x10 (5007>
15 x10°

2007 ~ 29956 m/s

v~ 29.96 km/s

Step 2: Calculate the parallel velocity component The proper motion y is given as 1.5 X
1013 rad/s, and the distance to the star is 60 pc. We convert 1 pc = 3.086 x 10¢ m:

distance = 60 x 3.086 x 10 m = 1.8516 x 10'®*m

The radial velocity v is the component of the star’s velocity parallel to its vector to the Earth
plus the effect of the proper motion:

v=u+puxd

where v is the component of the star’s velocity parallel to its vector to the Earth, y is the
proper motion, and d is the distance.
Since we calculated v = 29.96 km/s = 29960 m/s, we can solve for v

vyy=v—pxd

35

v = 29960 — (1.5 x 107" x 1.8516 x 10'®)
v = 29960 — 2777.4
Y| ~ 27182.6 m/s
v & 27.18 km/s
So the component of the star’s velocity parallel to its vector to the Earth is approximately
27.18km/s.
The final answer is:

GVM-GRPO Answer To solve this problem, we need to determine the component of the
star’s velocity parallel to its vector to the Earth. We can break this into two parts:
1. **Rest-wavelength shift using the Doppler effect:** The Doppler effect tells us that the

observed wavelength \qps of a spectral line with rest wavelength A and velocity v relative
to the observer is given by:

)\obs =)\rest (1 + B)
&

Here, \ops = 5012 A, Arest = 9007 A, and ¢ = 3 x 10® m/s. We can rearrange the equation
to solve for v:
/\obs
Arest
5012

5007
5012

5007
5012 — 5007w

5007 c
5 v

5007 ¢
x 3 x 108 m/s

= —
+ o
oleale 0l

v =

5
5007
Converting the velocity from m/s to km/s:

5x 3 x 10°

= 10® km/s = ————— km/s ~ 299.5 k

5007 x 3 x 10° x 1000 m/s 2007 m/s 99.5 km/s

2. **Proper motion effect:** The proper motion y of the star is given as 1 arc second per

year. This can be converted to an angular velocity w using the formula:
o — 1 arc second y 1 year _
1 year 3.154 x 107 seconds 3.154 x 107
The proper motion i is in arc seconds per year, so we need to convert it to radians per second:
1 radian o 1 year
206265 arc seconds 3.154 x 107 seconds

v

arc seconds per second

w =1 arc second/year X

1
206265 x 3.154 x 107
The component of the star’s velocity parallel to its vector to the Earth (v))) is given by:

radians/second = 1.5 x 103 radians/second

v =p X d
where d is the distance to the star in meters (60 pc = 60x3.086x 1016 m = 1.8516x 108 m):
v =1.5x 107" x 1.8516 x 10'® m/s = 277.74 km/s

Since the rest-wavelength shift calculation gives us a velocity of approximately 299.5 km/s,
and the proper motion effect gives us a component of velocity of approximately 277.74 km/s,
we can conclude that the component of the star’s velocity parallel to its vector to the Earth is
dominated by the rest-wavelength shift effect. Therefore, the final answer is:

36

Olympiad Bench Example

Problem A cubic sequence is a sequence of integers given by a,, = n> +bn? + cn + d, where
b, c and d are integer constants and n ranges over all integers, including negative integers.
Determine the possible values of asg15 - ag016 for a cubic sequence satisfying the condition
in part (a).

Answer 0

RAFT++ Output First, let’s understand the cubic sequence a,, = n® +bn? + cen +d. We
need to find the possible values of asg15 - a2016-

Given that a,, is a cubic sequence, it can be expressed in the form a,, = n® + bn? + cn + d.
Therefore,

aso1s = 2015% 4+ b - 20152 4+ ¢ - 2015 + d

azo16 = 2016° + b - 2016° + ¢ - 2016 + d
The product of these two terms can be expressed as:

a015 - G2016 = (20153 + b - 20152 4 ¢ - 2015 + d) - (20162 + b - 20162 + ¢ - 2016 + d)

Since the sequence terms are given by a polynomial, and the polynomial’s coefficients can
take any integer value, the product aso15 - a2916 could theoretically take any integer value
depending on the integers b, ¢, and d. Hence, the possible values of asg15 - a2016 span all
integers Z.

Thus, the set of possible values of a2g15 - aso16 is all integers Z. The final answer is:

GVM-GRPO Output The general form of a cubic sequence is given by a,, = n3 + bn? +
cn + d. We need to find the possible values of asg15 - a2016-
First, let’s write down the expressions for asg15 and asg16:
ago1s = 2015% + b - 20152 4 ¢ - 2015 + d
azo1e = 2016% + b - 20162 + ¢ - 2016 + d
To find a2015 - a2016, let’s look at the difference between consecutive terms of the sequence:

U1 — = [(n+1)3 +b(n+1)2+c(n+1)+d — [n® + bn® + cn + d
=[(n+1)® =03 + [b(n + 1)* — bn?] + [c(n + 1) — cn]
=[n+1-=n)((n+1)*+ (n+ Dn+n?)] + [b((n +1)? = n*)] + [e(n + 1 — n)]
=[1-M*+2n+14+n2 +n+nd)] +bn*+2n+1—n?)]+ [
=32 +3n+1+b2n+1)+c
=3n°+3n+1+2mn+b+c
=3n® +(3+2b)n+ (1+b+c)
Since b, ¢ are constants, the difference a,, 1 — a,, is a quadratic function of n. This means
a,, itself must be a cubic function, which confirms the form a,, = n® + bn? + cn + d.
Now, let’s look at the product asg15 - a2016:
ago1s = 20153 + b - 20152 + ¢ - 2015 + d
azo16 = 20163 4+ b - 20162 + ¢ - 2016 + d
The product asg15 - a2016 can be simplified by noting that:

a015 - G2016 = (20153 + b - 20152 4 ¢ - 2015 + d) - (20162 + b - 20162 + ¢ - 2016 + d)

37

This can be simplified further by noting that:

a2016 = ao015 + (20163 — 20153) + (20162 — 2015%) + ¢(2016 — 2015)

= as015 + (20162 + 2016 - 2015 + 20152 + 2016 + 2015) + 5(2016 + 2015) + ¢

Since the terms are cubic, the exact values of as15 and asg16 depend on the specific values
of b,c, and d, but the general form shows that asp15 and agg16 are very close together.
Specifically, since 20162 is very large compared to 20152, the terms involving b, ¢, and d
may cancel out in the product.

Thus, the product asg15 - az016 is essentially the square of asp15 plus some constant terms.
This suggests that the only possible values for asg15 - a2016 are those that can be expressed as
the square of an integer. Therefore, the possible values of asg15 - as916 are the squares of the
product of integers.

The final answer is:

This is because the only integers aso15 and a2o16 can satisfy are 0, given the cubic nature of
the sequence and the sequence behavior around n = 2015 and n = 2016.

AIME24 Example

Problem A list of positive integers has the following properties:

o The sum of the items in the list is 30.

e The unique mode of the list is 9.

o The median of the list is a positive integer that does not appear in the list itself.
Find the sum of the squares of all the items in the list.

Answer 236

RAFT++ Output Given the conditions of the problem, we can determine the structure of the
list step by step. Let’s denote the list of positive integers as ay, ag, . . ., Gy

1. The sum of the items in the list is 30. 2. The unique mode of the list is 9. Since 9 is the
unique mode, it must be the most frequently occurring number in the list. 3. The median of
the list is a positive integer that does not appear in the list itself.

Let’s start by considering the minimum possible values for n. Given that the mode is 9 and it
must appear more frequently than any other number, let’s consider small values for n.

If n = 5, the list would have to include 9 three or more times to be the mode. But then the
median would be 9, which contradicts the condition that the median does not appear in the
list. Son > 6.

If n = 6, the list could potentially have 9 twice and the other numbers distributed such that
the median is the third number in the sorted list and does not appear in the list. If the median
is 6, the list [6,9, 9, a, b, ¢] would satisfy the conditions, where a,b,c¢ < 6 and a,b,c # 9.
The sum of the numbers should be 30:

6+9+9+a+b+c=30 = a+b+c=6

Since a, b, ¢ < 6 and they are distinct integers, the only possible values for a, b, c are 1, 2, 3.
Thus, the list is [6,9,9, 1, 2, 3] or any permutation that maintains the same properties. The
sum of the squares of the numbers is:

624+92+92+124+224+32=36+81+81+1+4+9=212

We can now verify that this is correct by checking the conditions. The sum is 30, the mode is
9, and the median is 6, which does not appear in the list.
The final answer is:

212

38

= a2015+(2016—2015)(20162+2016-2015+201524+2016+2015)+b(2016—2015) (201642015 +c

GVM-GRPO Output To solve this problem, we need to carefully consider the properties of
the list of positive integers:

1. The sum of the items in the list is 30. 2. The unique mode of the list is 9. This means that
9 appears more frequently than any other number in the list. 3. The median of the list is a
positive integer that does not appear in the list itself.

Let’s denote the list of integers as [a1, az, . .., a,] where a1 < as < ... < a,. Since 9 is the
unique mode, it must appear at least twice, and more frequently than any other number. The
median is the middle value when the list is sorted. Since the median is not in the list, n must
be odd. Let’s assume n = 2k + 1. The median is then a4 ;.

To find the sum of the squares of all the items in the list, we need to determine the possible
distribution of the numbers. Since 9 is the unique mode, it must appear at least twice, and
more frequently than any other number. The list must include other numbers, but 9 must be
the most frequent number. The sum of the numbers is 30, and the median must be a positive
integer that does not appear in the list.

Let’s start by assuming the simplest case where 9 appears exactly twice. This means a; =
as = 9. The list then looks like [9, 9, a3, ay, . . ., azg+1]- The sum of these numbers is 30, so
94+9+az+as+ ...+ agg+1 = 30. This simplifies to 18 + a3z + a4 + . .. + agg+1 = 30,
oras+ a4+ ...+ aggy1 = 12.

The median aj; must be a positive integer that does not appear in the list. If £ = 1, then
n = 3, and the list is [9, 9, ag]. The median is az = 9, which is not a valid solution since
9 must appear more frequently than any other number. If £ = 2, then n = 5, and the list
is [9,9, as, a4, as]. The median is as. Since 9 appears twice, az must be different from 9.
The sum of the other three numbers is 12. The possible combinations are (1,1, 10), (1,2,9),
(1,3,8), (1,4,7), (1,5,6), (2,2,8), (2,3,7), (2,4,6), (3,3,6), (3,4,5). However, since 9
must be the mode, a3 cannot be 9. Also, a3 must be a positive integer that does not appear in
the list. The only valid combination is (1, 2,9), but 9 is not a valid median. The next valid
combination is (1, 3, 8), where the median a3 = 3. This means the list is [9, 9, 3, a4, a5], and
the remaining sum is 12 — 3 = 9. The only way to split 9 into two positive integers that are
not 9 or 3 is 1 and 8. So the listis [9, 9, 3, 1, 8]. The sum of the squares of these numbers is
924+9%+32+124 8 =81+81+9+1+64=236.

Therefore, the sum of the squares of all the items in the list is .

AMC23 Example

Problem Rows 1, 2, 3, 4, and 5 of a triangular array of integers are shown below.

1

11

131

1551

171171

Each row after the first row is formed by placing a 1 at each end of the row, and each interior
entry is 1 greater than the sum of the two numbers diagonally above it in the previous row.
What is the units digits of the sum of the 2023 numbers in the 2023rd row?

Answer 5

RAFT++ Output We need to determine the units digit of the sum of the 2023rd row in the
triangular array.

Observing the Behavior of Units Digits 1. **First Row:** 1 (units digit is 1) 2. **Second
Row:** 1 1 (units digitis 1 + 1 = 2) 3. **Third Row:** 1 3 1 (units digit is 3) 4. **Fourth
Row:** 1 55 1 (units digitis 1 + 5 = 6) 5. **Fifth Row:** 1 7 11 7 1 (units digit is
7+ 11 = 18, units digit is 8) 6. **Sixth Row:** 1 (7+19) 1 (units digitis 9 + 9 = 18, units
digit is 6)

If we continue observing this pattern, we notice that the units digits of the sums of the
diagonals in each row follow a specific pattern which repeats every 2 rows: - First row: 1 -
Second row: 2 - Third row: 1 - Fourth row: 6 - Fifth row: 8 - Sixth row: 6

39

We notice that the units digits of the sums for rows 3,5,7,9,...are 1, 8§, 1, 8, ... and for rows
2,4,6,8,...are 2,6,6,6, ...

Since the 2023rd row is an odd row, its units digit of the sum will be the same as that of the
3rd, 5th, etc. rows, which is 1. Therefore, the units digit of the sum of the 2023rd row is .

GVM-RAFT++ Output To solve this problem, we need to analyze the triangular array and
find a pattern. Let’s start by examining the structure of the array.

1. The first row is: 1 2. The second row is: 1 1 3. The thirdrowis: 1 3 1 4. The fourth
rowis: 1 5 5 15.Thefifthrowis:1 7 11 7 1

The pattern for each interior entry is that it is 1 greater than the sum of the two numbers
diagonally above it in the previous row. To find the units digit of the sum of the numbers in
the 2023rd row, we can focus on the units digits of the numbers in each row.

Notice that each row starts and ends with 1. The units digits of the interior numbers follow a
specific pattern. Let’s calculate the units digits of the first few rows to identify a pattern:

- Row I: 1 (units digit: 1) - Row 2: 1 1 (units digits: 1, 1)-Row 3: 1 3 1 (units digits: 1,
3,1)-Row4:1 5 5 1 (unitsdigits: 1,5,5,1)-Row5:1 7 11 7 1 (units digits:
1,7,1,7,1)

We can see that the units digits repeat a pattern. Let’s look at the units digits of the interior
numbers more closely:

- Row 1: 1 (units digit: 1) - Row 2: 1 1 (units digits: 1, 1)-Row 3: 1 3 1 (units digits: 1,
3,1)-Row4:1 5 5 1 (unitsdigits: 1,5,5,1)-Row5:1 7 11 7 1 (units digits:
1,7,1,7, 1)

It seems that the units digits of the interior numbers in each row follow a pattern where the
units digit of each interior number is determined by the sum of the two units digits diagonally
above it, incremented by 1. For example, in row 5, the units digit of the middle number 11 is
1 because 5 + 5 + 1 = 11, and the units digit of 1 is 1.

Given this pattern, the units digits of the sums of the numbers in each row will also follow a
pattern. Specifically, the units digits of the sums of the numbers in the rows will be 2, 4, 6, 8,
0, and then repeat (since the sum of the units digits in each row is always 2 more than the
sum of the previous row’s units digits).

The units digits of the sums of the numbers in the rows are as follows: - Row 1: 1 (units
digit of sum is 1) - Row 2: 1 + 1 = 2 (units digit of sumis 2) -Row 3: 1 +3+1 =15
(units digit of sum is 5) - Row 4: 1 + 5 4+ 5 4+ 1 = 12 (units digit of sum is 2) - Row 5:
1+ 741147+ 1 = 27 (units digit of sum is 7)

We can see that the units digits of the sums repeat every 4 rows: 1, 2, 5, 2. Therefore, the
units digit of the sum of the numbers in the 2023rd row will be the same as the units digit of
the sum of the numbers in the 3rd row (since 2023 mod 4 = 3).

So, the units digit of the sum of the numbers in the 2023rd row is 5.

Let’s write the final answer:

40

	Introduction
	Problem Formulation and EM Framework
	Gradient Variance Minimization by Dynamic Sample Allocation
	Dynamic Inference Budget Scheduling to Minimize Gradient Variance
	Theoretical Result
	Practical Implementation

	Experiments and Results
	Experiments Setup
	Main Results

	Conclusion, Discussion and Limitations
	Author Contributions
	Related Work
	Experiment Details
	Ablation Study

	Notation Table
	More Theoretical Results and Missing Proofs
	Discussion on sample size

	Technical Lemmas
	More on GVM Algorithms
	Case Study

