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Abstract

We present a unified likelihood ratio-based confidence sequence (CS) for any (self-
concordant) generalized linear models (GLMs) that is guaranteed to be convex
and numerically tight. We show that this is on par or improves upon known CSs
for various GLMs, including Gaussian, Bernoulli, and Poisson. In particular,
for the first time, our CS for Bernoulli has a poly(S)-free radius where S is the
norm of the unknown parameter. Our first technical novelty is its derivation,
which utilizes a time-uniform PAC-Bayesian bound with a uniform prior/posterior,
despite the latter being a rather unpopular choice for deriving CSs. As a direct
application of our new CS, we propose a simple and natural optimistic algorithm
called OFUGLB applicable to any generalized linear bandits (GLB; Filippi et al.
(2010)). Our analysis shows that the celebrated optimistic approach simultaneously
attains state-of-the-art regrets for various self-concordant (not necessarily bounded)
GLBs, and even poly(S)-free for bounded GLBs, including logistic bandits. The
regret analysis, our second technical novelty, follows from combining our new
CS with a new proof technique that completely avoids the previously widely used
self-concordant control lemma (Faury et al., 2020, Lemma 9), which may be of
independent interest. Finally, we verify numerically that OFUGLB significantly
outperforms the prior state-of-the-art (Lee et al., 2024) for logistic bandits.

1 Introduction

One paramount task in statistics and machine learning is to estimate the uncertainty of the underlying
model from (possibly noisy) observations. For example, in interactive machine learning scenarios
such as bandits (Lattimore and Szepesvári, 2020; Robbins, 1952; Thompson, 1933) and recently
reinforcement learning with human feedback (RLHF; Christiano et al. (2017); Ouyang et al. (2022)),
at each time step t, the learner chooses an action xt from an available set of actions Xt and observes
reward or outcome rt that is modeled as a distribution whose mean is an unknown function f∗ of
xt; i.e., rt ∼ p(·|xt; f

∗). One popular choice of such a model is generalized linear model (GLM;
McCullagh and Nelder (1989)) that extends exponential family distributions to have linear structure
in its natural parameter, i.e., ⟨x,θ⋆⟩ where θ⋆ is an unknown parameter, which means that the
mean function is f∗(x) = µ(⟨x,θ⋆⟩) for some inverse link function µ. This encompasses a wide
range of distributions, which in turn makes it ubiquitous in various real-world applications, such as
news recommendations (Bernoulli; Li et al. (2010, 2012)), social network influence maximization
(Poisson; Gisselbrecht et al. (2015); Lage et al. (2013)), and more. In such tasks, the learner must
estimate the uncertainty about θ⋆ at each time step t ≥ 1, given observations {(xs, rs)}t−1

s=1, to
plan his/her course of actions and make wise decisions. One popular and useful way to capture the
uncertainty is via a time-uniform confidence sequence (CS) {Ct(δ)}∞t=1, which takes the form of
P[∃t ≥ 1 : θ⋆ ̸∈ Ct(δ)] ≤ δ. Recently, CS has been described as one of the key components for safe
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anytime-valid inference (SAVI) that can ensure the validity/safeness of sequentially adaptive statistical
inference (Ramdas et al., 2023).

There has been much work on deriving CS for specific families of distributions. Many common
distributions are in a smaller family, called generalized linear models (GLMs). Existing CSs for GLM,
however, are far from ideal. Much of the prior works focus on obtaining CS for specific instantiations
of GLMs, such as Gaussian (Abbasi-Yadkori et al., 2011; Flynn et al., 2023) and Bernoulli (Abeille
et al., 2021; Faury et al., 2020, 2022; Lee et al., 2024). Especially for Bernoulli, all the existing
CSs suffer from poly(S) factor in the radius, where S is the norm of the unknown parameter θ⋆.
Emmenegger et al. (2023); Jun et al. (2017); Li et al. (2017) proposed generic CSs that work for any
convex GLMs, but their radii all suffer from a globally worst-case curvature of µ, which is detrimental
in many cases (e.g., for Bernoulli, it scales as eS).

Contributions. First, we propose a unified construction of likelihood ratio-based CS for any
convex GLMs (Theorem 3.1) and then instantiate it as an ellipsoidal CS for self-concordant GLMs,
including Bernoulli, Gaussian, and Poisson distributions (Theorem 3.2). Notably, we keep track of
all the constants so that any practitioner can directly implement it without trouble. The proof uses
ingredients from time-uniform PAC-Bayesian bounds (Chugg et al., 2023) – martingale + Donsker-
Varadhan representation of KL + Ville’s inequality. The main technical novelty lies in using uniform
prior/posterior for the analysis, inspired by various literature on portfolios (Blum and Kalai, 1999)
and fast rates in statistical/online learning (Foster et al., 2018; Grünwald and Mehta, 2020; Hazan
et al., 2007; van Erven et al., 2015).

Secondly, we apply our novel CSs to contextual generalized linear bandits (GLB; Filippi et al. (2010))
with changing (and adversarial) arm sets, and propose a new algorithm called Optimism in the
Face of Uncertainty for Generalized Linear Bandits (OFUGLB). OFUGLB employs the simple and
standard optimistic approach, choosing an arm that maximizes the upper confidence bound (UCB)
computed by our CS (Abbasi-Yadkori et al., 2011; Auer, 2002). We show that OFUGLB achieves
the state-of-the-art regret bounds for self-concordant (possibly unbounded) GLB (Theorem 4.1).
This is the first time a purely optimistic strategy attains such poly(S)-free regret for logistic bandits
in the sense that OFUGLB does not involve an explicit warmup phase. Our other significant main
technical contribution is the analysis of OFUGLB since naïvely applying existing analysis techniques
for optimistic algorithms (Abeille et al., 2021; Lee et al., 2024) yields a regret bound whose leading
term scales with poly(S). We identify the key reason for such additional dependency as the use of
self-concordance control lemma (Faury et al., 2020, Lemma 9), and provide an alternate analysis that
completely bypasses it, which may be of independent interest in the bandits community and beyond.

2 Problem Setting

We consider the realizable (online) regression with the generalized linear model (GLM; McCullagh
and Nelder (1989)) whose conditional density of r is given as

dp(r|x;θ⋆) = exp

(
r⟨x,θ⋆⟩ −m(⟨x,θ⋆⟩)

g(τ)
+ h(r, τ)

)
dν, (1)

where τ is some known scaling (temperature) parameter and ν is some known base measure (e.g.,
Lebesgue, counting). We assume the following:

Assumption 1. The domain X for arm (context) x satisfies X ⊆ Bd(1).
Assumption 2. θ⋆ ∈ Θ ⊆ Bd(S) := {θ ∈ Rd : ∥θ∥2 ≤ S} for some known S > 0. Also, Θ is
nonempty, compact, and convex with intrinsic dimension1 d.

Assumption 3. m is three times differentiable and convex, i.e., m′′′ exists and µ̇ := m′′ ≥ 0.

In GLB problem, at each time t ∈ [T ], the learner observes a time-varying, arbitrary (often called
adversarial) arm set Xt ⊆ X , chooses a xt ∈ Xt, and receives a reward rt ∼ p(·|xt,θ⋆). Let
X[T ] := ∪Tt=1Xt and Σt+1 := σ(Σt, rt,xt+1) with Σ0 = σ(x1) be the filtration in the canonical
bandit model (Lattimore and Szepesvári, 2020, Chapter 4.6). From well-known properties of GLMs,
we have that E[rt|Σt] = m′(⟨xt,θ⋆⟩) ≜ µ(⟨xt,θ⋆⟩) and Var[rt|Σt] = g(τ)µ̇(⟨xt,θ⋆⟩), where µ is

1the linear-algebraic dimension (minimum number of basis vectors spanning it) of the affine span of Θ in Rd.
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the inverse link function. We also define the following quantities:

Rµ,⋆ := max
x∈X[T ]

|µ(⟨x,θ⋆⟩)|, Rµ̇ := max
x∈X[T ],θ∈Θ

µ̇(⟨x,θ⟩). (2)

Note that many common distributions, such as Gaussian (µ(z) = z), Poisson (µ(z) = ez), and
Bernoulli (µ(z) = (1 + e−z)−1), fall under the umbrella of GLM.

3 Unified Likelihood Ratio-based Confidence Sequence for GLMs

The learner’s goal is to output a time-uniform confidence sequence (CS) for θ⋆, P[∃t ≥ 1 : θ⋆ ̸∈
Ct(δ)] ≤ δ, where P is w.r.t. the randomness of the confidence sets Ct(δ). In this work, we are
particularly interested in the log-likelihood-based confidence set “centered” at the norm-constrained,
batch maximum likelihood estimator (MLE):

Ct(δ) :=
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(δ)

2
}
, (3)

where βt(δ)
2 is the “radius” of the CS that we will define later, andLt(θ) is the negative log-likelihood

of θ w.r.t. data collected up to t− 1, and

Lt(θ) :=

t−1∑
s=1

{
ℓs(θ) ≜

−rs⟨xs,θ⟩+m(⟨xs,θ⟩)
g(τ)

}
, θ̂t := argmin

θ∈Θ
Lt(θ). (4)

Note that h(rs, τ) is omitted as it plays no role in the confidence set nor the MLE.

The form of the confidence set is the same as Lee et al. (2024) in that it leverages the batched
constrained MLE as opposed to the batch regularized MLE (Abbasi-Yadkori et al., 2011), sequential
(regularized) MLE (Abbasi-Yadkori et al., 2012; Emmenegger et al., 2023; Faury et al., 2022; Jun
et al., 2017; Wasserman et al., 2020), or expected loss over some distribution (e.g., Gaussian) without
committing to an estimator (Flynn et al., 2023). As one can see later, our derivation of the CS also
starts from an expectation of loss over a prior distribution of θ without committing to an estimator,
yet we introduce the estimator to avoid the computational difficulty of evaluating the expectation.

Our first main contribution is the following unified confidence sequence for any GLMs, regardless of
whether it is bounded or not, as long as the corresponding log-likelihood loss is Lipschitz:

Theorem 3.1 (Unified CS for GLMs). Let Lt := maxθ∈Θ

∥∥∇Lt(θ)
∥∥
2

be the Lipschitz
constanta of Lt(·) that may depend on {(xs, rs)}t−1

s=1. Then, we have P[∃t ≥ 1 : θ⋆ ̸∈
Ct(δ)] ≤ δ, where

βt(δ)
2 = log

1

δ
+ inf

c∈(0,1]

{
d log

1

c
+ 2SLtc

}
≤ log

1

δ
+ d log

(
e ∨ 2eSLt

d

)
, (5)

where the last inequality follows from the choice c = 1 ∧ d
2SLt

.

aRademacher’s theorem (Federer, 1996, Theorem 3.1.6): for differentiable function L : Θ → R,
inf

{
L ≥ 0 : |L(θ)− L(θ′)| ≤ L

∥∥θ − θ′∥∥
2
, ∀θ,θ′ ∈ Θ

}
= maxθ∈Θ

∥∥∇L(θ)
∥∥
2
.

Practically, the computation of Lt involves a potentially non-concave maximization over a convex
set, which is NP-hard in general (Murty and Kabadi, 1987). In Table 1, we provide closed-form (up
to absolute constants), high-probability upper bounds for Lt’s for various GLMs:

Comparisons to Prior Works. There have been some works on providing CSs for either generic
GLMs (Emmenegger et al., 2023; Jun et al., 2017; Li et al., 2017) or specific GLMs (linear: Flynn
et al. (2023), logistic: Abeille et al. (2021); Faury et al. (2020); Lee et al. (2024)). The generic CSs are
generally not tight as the “radius” often scales with κ :=

(
minx∈X,θ∈Θ µ̇(⟨x,θ⟩)

)−1
, which scales

exponentially in S for Bernoulli (Faury et al., 2020). For instance, Theorem 1 of Jun et al. (2017)

and Theorem 1 of Li et al. (2017) proved CSs of the form
∥∥∥θ − θ̂t

∥∥∥2
Vt

≤ ζ1(t, δ), with ζ1 always
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Table 1: Instantiations of Lt’s for various GLMs.

GLM Upper bounds for Lt Proof

Boundedb by M (M + 2SRµ̇)(t− 1)/g(τ)
Trivial from

triangle inequality
Bernoulli (1 + S/2)(t− 1) Trivial from above

Gaussiana σ−2

(
St+ σ

√
t log d

δ

)
Appendix C.1

Poissona eSt+ log d
δ Appendix C.2

a Here we omit the absolute constants; these are made explicit in the proofs.
b as in maxx∈X[T ],θ∈Θ |r − µ(⟨x,θ⋆⟩)| ≤ M < ∞.

scaling with κ. Emmenegger et al. (2023) proposed a CS using weighted, sequential likelihood
testing that is empirically shown to be superior to other approaches. However, their Theorem 3, which
rewrites the likelihood-based CS as the form D(θ,θ⋆) ≤ ζ2(t, δ) for some well-defined Bregman
divergence D(·, ·) and ζ2, always scales with κ as well and thus a direct comparison with our CS
is not possible. Refer to Appendix A for further discussions on CSs for exponential family. On
the other hand, the CSs for specific GLMs are inapplicable to GLM models beyond what they are
designed for and may not be tight enough. For the Bernoulli distribution, the prior state-of-the-art
(likelihood ratio-based) CS radius is O

(
S log 1

δ + d log St
d

)
of Lee et al. (2024), while our theorem

gives us O
(
log 1

δ + d log St
d

)
. We completely remove the poly(S)-dependency from the radius,

resolving one of the open problems posited by Lee et al. (2024). Later in Section 4, we show that this
improvement is significant, both theoretically and numerically, for logistic bandits.

3.1 Ellipsoidal Confidence Sequence for Self-Concordant GLMs

Having an ellipsoidal version of CS is often beneficial, as this is easier to implement in practice. In
particular, in the context of bandits, this allows one to equivalently rewrite the optimistic optimization
in the UCB algorithm as a closed-form bonus-based UCB algorithm, even if the MLE requires an
iterative algorithm. This section provides the ellipsoidal version of Theorem 3.1 for the following
class of GLMs whose inverse link function µ satisfies the following:
Assumption 4 (Russac et al. (2021)). µ is (generalized) self-concordant, i.e., the following quantity
is well-defined (finite): Rs := inf

{
R ≥ 0 : |µ̈(⟨x,θ⟩)| ≤ Rµ̇(⟨x,θ⟩), ∀x ∈ X,θ ∈ Θ

}
.

For instance, Bernoulli satisfies this with Rs = 1, and more generally, GLM bounded by R a.s. satisfy
this assumption with Rs = R (Sawarni et al., 2024, Lemma 2.1). Many unbounded GLMs also
satisfy this assumption, such as Gaussian (µ(z) = z ⇒ Rs = 0), Poisson (µ(z) = ez ⇒ Rs = 1),
and Exponential (µ(z) = 1⇒ Rs = 0).

For this class of GLMs, we have the following slightly relaxed ellipsoidal CS, whose proof is deferred
to Appendix C.3:

Theorem 3.2 (Ellipsoidal CS for Self-Concordant GLMs). With the same notations as
Theorem 3.1, we have P[∃t ≥: θ⋆ ̸∈ Et(δ)] ≤ δ, where

Et(δ) :=

{
θ ∈ Θ :

∥∥∥θ − θ̂t

∥∥∥2
∇2Lt(θ̂t)+

1+SRs
2S2 Id

≤ γt(δ)
2 ≜ 2(1 + SRs)(1 + βt(δ)

2)

}
.

(6)

Let us denote A ≲ B if A ≤ cB for some absolute constant c > 0. Note that the relaxation
is “strict” (i.e., Theorem 3.2 is strictly looser than Theorem 3.1) when Rs > 0. For Gaussian
distribution, we have that Rs = 0; thus, the ellipsoidal relaxation is exact! We then have that
∇2Lt(θ̂t) = 1

σ2

∑t−1
s=1 xsx

⊤
s =: 1

σ2Vt, and Lt ≲ St with high probability (Proposition C.1).

Combining everything, we have
∥∥∥θ − θ̂t

∥∥∥2
Vt

≲ σ2
(
log t

δ + d log St
d

)
, which completely matches

the prior state-of-the-art radius as in Lemma D.10 of Flynn et al. (2023) with c = σ2S2.
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3.2 Proof of Theorem 3.1 – PAC-Bayes Approach with Uniform Prior

We consider Mt(θ) := exp
(
Lt(θ⋆)− Lt(θ)

)
, the log-likelihood ratio between the (estimated)

distribution corresponding to θ and the true distribution corresponding to θ⋆. This has been the
subject of study for over 50 years (Darling and Robbins, 1967a,b; Lai, 1976; Robbins and Siegmund,
1972) and recently revisited by statistics and machine learning communities (Emmenegger et al.,
2023; Flynn et al., 2023; Ramdas et al., 2023; Wasserman et al., 2020).

We follow the usual recipes for deriving time-uniform PAC-Bayesian bound (Alquier, 2024; Chugg
et al., 2023). We start with the following time-uniform property:
Lemma 3.1. Let δ ∈ (0, 1). For any data-independent probability measure Q on Θ, we have:

P
(
∃t ≥ 1 : Eθ∼Q[Mt(θ)] ≥

1

δ

)
≤ δ, (7)

where P is over the randomness of the data (and thus randomness of Lt’s).

Proof. First, it is easy to see that Mt(θ) =
∏t

s=1
dp(rs|xs;θ)
dp(rs|xs;θ⋆)

is a nonnegative martingale w.r.t. Σt,
as

E[Mt(θ)|Σt−1] = Mt−1(θ)E

[
dp(rt|xt;θ)

dp(rt|xt;θ⋆)

∣∣∣∣Σt−1

]
= Mt−1(θ)

∫
R

dp(r|xt;θ)

dp(r|xt;θ⋆)
dp(r|xt;θ⋆)︸ ︷︷ ︸

=1

,

whereR is the support of the GLM. (Note that this property is not specific to GLMs and holds for
any distributions over measurable spaces.)

Now consider the random variable Eθ∼Q[Mt(θ)], which is adapted to Σt. This is a martingale, as

E[Eθ∼Q[Mt(θ)]|Σt−1]
(∗)
= Eθ∼Q[E[Mt(θ)|Σt−1]] = Eθ∼Q[Mt−1(θ)]

where (∗) follows from the Tonelli’s theorem. The desired statement then follows from Ville’s
inequality (Ville, 1939).

We recall the variational representation of the KL divergence:
Lemma 3.2 (Theorem 2.1 of Donsker and Varadhan (1983)). For two probability measures P,Q
over Θ, we have the following: DKL(P||Q) = supg:Θ→R Eθ∼P[g(θ)]− logEθ∼Q[e

g(θ)].

We then have the following:
Lemma 3.3. For any data-independent prior Q and any sequence of adapted posterior distributions
(possibly learned from the data) {Pt}, the following holds: for any δ ∈ (0, 1),

P
(
∃t ≥ 1 : Lt(θ⋆)− Eθ∼Pt

[Lt(θ)] ≥ log
1

δ
+DKL(Pt||Q)

)
≤ δ. (8)

Proof. Note that

logEθ∼Q[Mt(θ)]− Lt(θ⋆) = logEθ∼Q[exp
(
−Lt(θ)

)
]
(∗)
≥ Eθ∼Pt [−Lt(θ)]−DKL(Pt||Q),

where (∗) follows from Lemma 3.2 with g(·) = −Lt(·). By Lemma 3.1, we have that
P
(
∃t ≥ 1 : log 1

δ ≤ logEθ∼Q[Mt(θ)]
)
≤ δ. Rearranging gives the desired statement.

Remark 1 (Choice of KL). One can replace KL with other divergences with similar variational
formulations (Ohnishi and Honorio, 2021). As we will show later, KL suffices for our purpose.

Up to now is well-known in the PAC-Bayes literature. Our main technical novelty lies in how to
choose Q and Pt, which is as follows: for c ∈ (0, 1] to be determined later,

Q = Unif(Θ), Pt = Unif(Θ̃t ≜ (1− c)θ̂t + cΘ), (9)

where Unif(·) is the (continuous) uniform distribution in the Lebesgue measure and a+Θ = {a+θ :
θ ∈ Θ} for a vector a ∈ Rd.
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Algorithm 1: OFUGLB
1 Initialize C1 = Θ;
2 Pull a random arm x1 ∈ X1 and receive a reward r1;
3 for t = 2, 3, · · · do
4 Compute the norm-constrained MLE: θ̂t ← argmaxθ∈Θ Lt(θ);

5 Update the confidence set: Ct ←
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(δ)

2
}

, where βt(δ)
2 is

defined as in Theorem 3.1;
6 UCB step: (xt,θt)← argmaxx∈Xt,θ∈Ct

⟨x,θ⟩;
7 Pull the arm xt and receive a reward rt;

Then, note that

DKL(Pt||Q) = log
vol(Θ)

vol(Θ̃)
= log

vol(Θ)

vol
(
(1− c)θ̂t + cΘ

) = log
vol(Θ)

vol(cΘ)
= log

vol(Θ)

cdvol(Θ)
= d log

1

c
,

where vol(·) is the volume measured by the Lebesgue measure in Rd.

Remark 2 (Our choice of posterior). The main intuition behind the translated/shrunken posterior is
to show that a sufficiently large volume of Θ is sufficiently near θ̂t. Indeed, in the literature, such
choice has been considered for the first time in proof of Theorem 1 of Blum and Kalai (1999), and
later in fast rates in online learning (Foster et al., 2018; Hazan et al., 2007). To our knowledge, this
is the first time such a translated/shrunken posterior has been used in the PAC-Bayes context.

We also have that

Eθ∼Pt
[Lt(θ)] = Lt(θ̂t) + Eθ∼Pt

[Lt(θ)− Lt(θ̂t)] ≤ Lt(θ̂t) + 2SLtc,

where the last inequality follows from the Lipschitzness of Lt(·) and the observation that for θ =

(1− c)θ̂t + cθ̃ ∈ Θ̃t,
∥∥∥θ − θ̂t

∥∥∥
2
= c

∥∥∥θ̃ − θ̂t

∥∥∥
2
≤ 2Sc. Combining everything and minimizing over

c ∈ (0, 1], the first part of the statement is done.

4 OFUGLB: A Generic, State-of-the-Art UCB Algorithm for Self-Concordant
Generalized Linear Bandits

As a direct application of our CS, we consider self-concordant GLB (Filippi et al., 2010; Janz et al.,
2024), where at each time t, the learner chooses a xt ∈ Xt dependent on the history {(xs, rs)}t−1

s=1
and receives rt ∼ p(·|xt,θ⋆). The learner’s goal is to minimize the (pseudo-)regret:

Reg(T ) :=
T∑

t=1

{
µ(⟨xt,⋆,θ⋆⟩)− µ(⟨xt,θ⋆⟩)

}
, (10)

where xt,⋆ := argmaxx∈Xt
µ(⟨x,θ⋆⟩) is the optimal action at time t.

Inspired by the optimism principle (Abbasi-Yadkori et al., 2011; Auer, 2002), based on our new,
improved confidence sequence (Theorem 3.1), we propose OFUGLB (Algorithm 1), a generic UCB-
type algorithm that applies to any instantiations of GLB. Through a new proof technique that allows
us to circumvent κ- and poly(S)-dependencies in the leading term, our unified algorithm attains
or improves the known state-of-the-art regret bound for the class of self-concordant GLB, which
encompasses a zoo of well-studied stochastic bandits such as linear (Abbasi-Yadkori et al., 2011;
Auer, 2002), Poisson (Gisselbrecht et al., 2015), logistic (Abeille et al., 2021; Faury et al., 2020), etc.

We define the following problem difficulty quantities: denoting X (T ) :=
⋃

t∈[T ] Xt,

κ⋆(T ) :=
1

1
T

∑
t∈[T ] µ̇(⟨xt,⋆,θ⋆⟩)

, κ(T ) := max
x∈X (T ),θ∈Θ

1

µ̇(⟨x,θ⟩)
. (11)
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These may scale exponentially in S, e.g., for logistic bandits (Faury et al., 2020; Filippi et al., 2010),
but we will later show that through our new analysis, the leading term of the regret scales inversely
with κ⋆(T ), and the transient term scales linearly with κ(T ).

We now present the unified & state-of-the-art regret guarantee for self-concordant GLBs:

Theorem 4.1 (OFUGLB for Self-Concordant GLB). OFUGLB attains the following regret
bound for self-concordant GLB with probability at least 1− δ:

Reg(T ) ≲ d

√
g(τ)T

κ⋆(T )
log

SLT

d
log

Rµ̇ST

d
+ d2RsRµ̇

√
g(τ)κ(T ) log

(
1 +

ST

dg(τ)κ(T )

)
,

(12)
where LT is as defined in Theorem 3.1 and we assume that log 1

δ = O
(
d log SLT

d

)
.

Proof Sketch. We first emphasize that even though we have a tight CS (Theorem 3.1), naïvely
combining it with existing regret analyses of logistic bandits (Abeille et al., 2021; Lee et al., 2024)
still results in the leading term of dS

√
T/κ⋆(T ). This is because their proofs rely on a bound

on ∥θ − θ⋆∥∇2Lt(θ⋆)
(Lee et al., 2024, Lemma 6) which in turn relies on the self-concordant

control (Abeille et al., 2021, Lemma 8) that incurs extra factor of S.

Three key technical novelties/ingredients allow us to bypass the issues. First, we derive a novel
self-concordance lemma that bounds the difference of µ̇’s with the difference of µ’s times Rs; see
Lemma D.3. This later leads to an implicit inequality of the form X ≤ A

√
B +RsX +C (similar to

Abeille et al. (2021)) , which can be solved for X to obtain the final regret bound. This does not incur
any dependency on S as it avoids the self-concordance control lemma. Second, we introduce a novel
regret decomposition to show that the UCB implicitly performs warm-up by dividing the regret into
two terms: one corresponding to the timesteps in which the “warmup conditions” are satisfied and
the remaining term. The second term is at most constant w.r.t. T due to the elliptical potential count
lemma (Gales et al., 2022, Lemma 7), which was also the main argument used to avoid S dependency
in Lee et al. (2024). The final ingredient is how we deal with the first term. We further decompose
it by introducing intermediate points θ̄t,νt ∈

⋃
b∈[t,T ] Cb, where [t, T ] := {t, t+ 1, · · · , T}. These

points lying in the union of future confidence sets, combined with the fact that the current summands
satisfy the “warmup conditions” allow for the elliptical potential lemma (Abbasi-Yadkori et al., 2011,
Lemma 11) to be directly applicable; see Lemma D.5. This leads to a poly(S)-free leading term of
the form

√
T/κ⋆(T ). See Appendix D for the full detailed proof.

In Table 2, we instantiate Theorem 4.1 for various self-concordant GLBs. It can be seen that our
OFUGLB attains state-of-the-art regret guarantees in all considered scenarios, either by achieving
(linear) or improving upon (bounded, logistic) the known rates! Note that the instantiation for (sub-
)Gaussian linear bandits is meant to be a sanity check because tighter confidence sets are available in
Flynn et al. (2023) and Chowdhury et al. (2023, Appendix F).

The only works dealing with generic self-concordant GLBs (possibly unbounded) are Jun et al. (2017)
and Janz et al. (2024). The former work incurs a regret bound scaling with κ⋆(T ) in the leading term,
and the latter is interestingly a scalable, randomized exploration-based approach:

Remark 3 (Randomized exploration for GLBs). Janz et al. (2024) proposed EVILL, a randomized
exploration algorithm by linearly perturbing the regularized log-likelihood loss. It attains a regret
bound of Õ(d3/2

√
T/κ⋆(T )) omitting factors of S, for fixed arm-set. Regret-wise, it suffers an extra

factor of
√
d, similar to other Thompson sampling-based approaches to GLBs (Abeille and Lazaric,

2017; Dong et al., 2019; Kim et al., 2023; Kveton et al., 2020). An interesting question is whether
the intuitions from our new CS can be used to improve Thompson sampling for GLBs.

Below, we provide more discussions on bounded GLB and logistic bandits; see Appendix A for some
discussions on Poisson bandits as well.

Bounded GLB. The only work that applies to general bounded GLB is Sawarni et al. (2024),
where the authors propose RS-GLinCB with the regret as in Table 2. Compared to our regret, they are
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Table 2: Regret bounds of OFUGLB for various self-concordant GLBs. Logarithmic factors are
omitted to avoid a cognitive overload. Here, we denote κX (T ) := maxx∈∪T

t=1Xt

1
µ̇(⟨x,θ⋆⟩) .

GLB Our regret bound Prior state-of-the-art

Boundeda d
√

T
κ⋆(T ) + d2RRµ̇κ(T )

d
√

T
κ⋆(T ) + d2R5S2κX (T )

(Sawarni et al., 2024, Theorem 4.2)

Logistic d
√

T
κ⋆(T ) + d2κ(T )

d
√

T
κ⋆(T ) + d2S2κX (T )

(Sawarni et al., 2024, Theorem 4.2)

Linearb σd
√
T σd

√
T

(Flynn et al., 2023, Lemma D.10)

Poisson dS
√

T
κ⋆(T ) + d2e2Sκ(T ) None

a |rt| ≤ R a.s., and g(τ) = O(1).
b We choose c = σ2S2 in Lemma D.10 of Flynn et al. (2023).

slightly better as their transient term scales as κX (T ) while ours scales as κ(T ). Despite this seeming
gap, as RS-GLinCB relies on an explicit warm-up scheme, our OFUGLB is expected to have superior
numerical performance as it avoids excessive exploration in the early phase. We will elaborate more
on this issue in the later paragraph on logistic bandits. Still, RS-GLinCB has its own advantages in
that it only requires Ω(log2 T ) switches while we require Ω(T ) switches; it is an interesting open
problem whether a lazy variant of OFUGLB with same (or better) regret guarantee is possible.

Logistic Bandits. Although the logistic bandit is a special case of the bounded GLB, the number of
prior works and its practical applicability to recommender systems (Li et al., 2010, 2012) deserve sep-
arate discussions. We first review the prior works on (contextual) logistic bandits. Faury et al. (2020)
was the first to obtain a regret bound of Õ(d

√
T + d2κ(T )) (up to some dependencies on S) that is κ-

free in the leading term. Subsequently, a local minimax regret lower bound of Ω
(
(d/S)

√
T/κ⋆(T )

)
was proven (Abeille et al., 2021, Theorem 2)2, suggesting that more nonlinearity helps, and several
works have focused on proposing and analyzing algorithms with matching upper bounds. One line of
works (Abeille et al., 2021; Lee et al., 2024), including this work, focuses on getting a tight convex CS
for logistic losses, which then directly gives an OFUL-type algorithm. Abeille et al. (2021) proposed
a somewhat loose (in S) likelihood ratio-based CS, and their algorithm, OFULog-r, attain a regret
bound of Õ(dS5/2

√
T/κ⋆(T )+RX (T )). Lee et al. (2024) propose a new framework for converting

an achievable online learning algorithm to a CS and use the resulting tighter CS with UCB to obtain
Õ(dS

√
T/κ⋆(T ) + RX (T )). From a computational perspective, Faury et al. (2022) proposed an

online Newton step-based algorithms that attain the regret bound of Õ(dS
√

T/κ⋆(T ) + d2S6κ(T ))
using only O(log t) computational cost and O(1) storage per iteration; the computational cost was
later improved to O(1) in Zhang and Sugiyama (2023). Another line of works (Mason et al., 2022;
Sawarni et al., 2024) proposed optimal design-based algorithms that perform an explicit warm-up in
the early stages of the algorithms. Thanks to the explicit warmup, both attain regret with poly(S)-free
leading term, e.g., Õ(d

√
T/κ⋆(T ) + d2S2κX (T )) by Sawarni et al. (2024). However, the explicit

warmup typically lasts for Ω̃(κ(T )) or Ω̃(κX (T )) steps, and given how both scales as eS (Faury
et al., 2020), it is practically problematic.

It is known in some cases that such κ-scaling transient term can be avoided (Abeille et al., 2021,
Section 4). Indeed, this discrepancy follows from the algorithm design and is shown in the transient
term of the regret bounds. For the prior OFUL-type algorithms (Abeille et al., 2021; Lee et al.,
2024), the transient term RX (T ) is defined as RX (T ) :=

∑T
t=1 µ(⟨xt,⋆,θ⋆⟩)1[xt ∈ X−(t)], where

X−(t) is the set of detrimental arms with a large reward gap and little information (small conditional
variance). RX (T ) is adaptive to the arm-set geometry and can be completely independent of κ for
certain arm geometries (Abeille et al., 2021, Proposition 2). For the warmup-based algorithms (Faury
et al., 2022; Mason et al., 2022; Sawarni et al., 2024), the transient term always scale with κ, which
is not adaptive to the arm-set geometry.

2In their statement, dependency on S is ignored. By tracking their lower bound proof, one can see that it
leads to an extra factor of 1/S.
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(a) S = 5 (b) S = 10 (c) S = 5 (d) S = 10

Figure 1: (a,b) Regret plots for considered algorithms. (c,d) Confidence sets at t = 4000 from a
single run: red is from OFUGLB and green is from OFULog+.

In this context, our OFUGLB is the first purely optimism-based UCB algorithm (no explicit warmup)
that attains a poly(S)-free leading term in the regret for the first time. However, as our regret analysis
utilizes “implicit warmup”, our transient term scales with κ(T ), which is not adaptive to the arm-set
geometry. Thus, the natural question is whether a similar, arm-set geometry adaptive transient term
is attainable for logistic bandits, while keeping the optimal poly(S)-free leading term. Currently, it
seems that the regret decomposition used in our analysis is incompatible with the arm-set geometry-
dependent analysis, and we leave to future work on obtaining both characteristics (poly(S)-free
leading term, arm-set geometry-dependent transient term) for logistic bandits and GLBs in general.

Remark 4 (Detrimental arms for GLBs.). In Abeille et al. (2021), one other key component for
allowing such transient term that is adaptive to arm-set geometry is that there exists a Z ⊆ R such
that supz∈Z µ̈(z) ≤ 0; for logistic case (µ(z) = (1 + e−z)−1), Z = (−∞, 0]. For general Z , we
can define the set of detrimental arms as X−(t) := {x ∈ Xt : ⟨x,θ⋆⟩ ∈ Z}. Of course, the scaling
of RX (T ) depends on various factors, whose precise characterization for µ’s beyond the logistic
function is left for future work.

To complement the improvement in our regret bounds and CS, we perform experiments on logistic
bandits by comparing our OFUGLB to OFULog+ (Lee et al., 2024). Following the setting of Lee
et al. (2024), for OFUGLB and OFULog+, we utilize Sequential Least SQuares Programming (SLSQP)
implemented in SciPy (Virtanen et al., 2020) for precise computation of the norm-constrained MLE
at each time step for a fairer comparison. For the parameters, we set T = 4000, d = 2, |A| = 20,
and δ = 0.05, and we average over 10 independent random trials for the regret comparison. We use
θ⋆ = S−1√

d
1 for S ∈ {5, 10}, and time-varying arm-set by sampling in the unit ball at random at each

t. The regret curves shown in Figure 1(a) and 1(b) clearly show that OFUGLB numerically outperforms
OFULog+. The confidence sets at t = 4000 shown in Figure 1(c) and 1(d) indicates that, indeed, our
confidence set from Theorem 3.1 is much smaller than that of Lee et al. (2024), which shows the
practical benefit of our novel CS.

5 Conclusion

This paper introduces a novel and unified likelihood ratio-based CS for generic (convex) GLMs,
encompassing widely-used models such as Gaussian, Bernoulli, and Poisson. Especially for Bernoulli,
this leads to the first poly(S)-free CS, resolving an open problem posed in Lee et al. (2024). Our
CS is equipped with exact constants for various scenarios, making it suitable for any practitioner
to use. The proof involves leveraging key techniques from PAC-Bayes bounds along with a uni-
form prior/posterior, which may be of independent interest. We then propose OFUGLB, a generic
UCB algorithm applicable to any GLBs, achieving state-of-the-art regret bounds across various
instantiations (linear, logistic, GLM). The proof involves novel regret decomposition and maximally
avoiding the self-concordance control lemma (Faury et al., 2020, Lemma 9), which may also be of
independent interest. Notably, for logistic bandits, OFUGLB is the first pure-optimism-based algorithm
that achieves poly(S)-free leading term in the theoretical regret and is numerically verified to be
the best-performing. This work opens up various fruitful future directions, which we relegate to
Appendix B.
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A Relations to Prior Works

CSs for Exponential Family. Lai (1976) derived the first generic CS for the exponential family
based on a generalized likelihood ratio. Their CS, however, only applies to scalar-valued unknown
parameters, and instantiating it often requires solving an equation with no closed-form solution (e.g.,
fn and gn in Lai (1976)). Recently, Chowdhury et al. (2023) proposed a generic CS for exponential
family expressed in the local Bregman geometry induced by the log-partition function. The proof
relies on the method of mixtures (de la Peña et al., 2004; Kaufmann and Koolen, 2021), which
resembles our PAC-Bayesian approach that utilizes a mixture of log-likelihood functions. One
drawback is that their main result (Chowdhury et al., 2023, Theorem 3) is instantiated for scalar
parameters (e.g., µ ∈ [0, 1] for Bernoulli without observed feature vectors), and not for GLMs. While
one can attempt to instantiate it to GLMs, we speculate that the resulting confidence set may not be
convex since the prior itself is centered at the true parameter, unlike our choice of the prior. While
we believe their second method (Chowdhury et al., 2023, Theorem 7) results in a convex set when
instantiated to GLMs, the authors do not provide any computationally efficient way to evaluate the
integral over the unknown parameter except for the Gaussian GLM. We mention in passing that their
CS for Gaussian (Chowdhury et al., 2023, Appendix F) improves upon Abbasi-Yadkori et al. (2011)
in the same manner (

√
a+ b ≤

√
a+
√
b) that Flynn et al. (2023) and ours do.

Fast Rates in Statistical Learning. Our goal is to obtain a tight CS for θ⋆, which is quite different
from that of statistical learning, which is to obtain the optimal decay rate of the ERM. Although it
is not immediately clear, we believe they have a connection. To illustrate our suspicion, we recall
Example 10 of Grünwald and Mehta (2020). By taking a uniform prior over a function space F3 and
taking the posterior to be randomly sampling from ε-ball centered at f̂ , the KL term becomes the
metric entropy of F , logN (F , ε). Combining this with the Bernstein condition with exponent β, the
ERM obtains the minimax rate of Õ(n−1/(2−β)), which interpolates between the slow rate Õ(1/

√
n)

and the fast rate Õ(1/n), where n is the number of samples. This is similar to what we obtain by
considering discrete uniform prior in our proof; see Appendix E for more details. We also remark that
our proof of taking a prior over Lt resembles improper learning and the v-central condition (Foster
et al., 2018; van Erven et al., 2015), which also outputs a mixture of predictors to obtain fast rates.

Poisson Bandits. Despite its potential to model various real-world problems involving count
feedback, Poisson bandits have not been studied often in the literature. Gisselbrecht et al. (2015) was
the first to consider contextual Poisson bandits and proposed UCB and optimistic Bayesian-based
algorithms (May et al., 2012), but without any regret guarantees. To our knowledge, this is the first
regret bound for the (finite-dimensional) contextual Poisson bandits without reward boundedness
assumption. On a slightly related note, Mutný and Krause (2021) consider Poisson bandits with the
intensity function in an RKHS. Their formulation is, however, incomparable to ours, as they consider
Poisson to be a linear model in the RKHS; see their Appendix A.1 for further discussions on why this
is incompatible with the log-linear formulation as in our GLM.

B Further Future Works

Here, we propose some more interesting directions. One is to extend the techniques used here to
kernelized or functional GLM (Cawley et al., 2007; Müller and Stadtmüller, 2005), which would
be an interesting nonlinear generalization of the linear kernel bandits (Chowdhury and Gopalan,
2017; Srinivas et al., 2010). The optimality of our obtained CS radius as well as the leading term in
the regret of GLB, especially with respect to S, is an important question. In the era of LLMs and
RLHFs, it would be interesting to see if there are any improvements in the pure exploration (best arm
identification) of GLBs from our new CS (Jun et al., 2021; Kazerouni and Wein, 2021), which would
have direct implications in sample efficient RLHF (Das et al., 2024).

3satisfying some regularity conditions including Lipschitzness and boundedness
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C Missing Results and Proofs

C.1 Bounding Lt for Gaussian Distribution

We first recall some definitions:
Definition C.1. A random variable X ∈ R is σ-subGaussian, if P(

∣∣X − E[X]
∣∣ ≥ t) ≤

2 exp
(
− t2

2σ2

)
, ∀t ∈ R.

Definition C.2 (Definition 3 of Jin et al. (2019)). A random vector X ∈ Rd is σ-norm-subGaussian,
if P(

∥∥X − E[X]
∥∥
2
≥ t) ≤ 2 exp

(
− t2

2σ2

)
, ∀t ∈ R.

Here is the full statement:
Proposition C.1. Suppose the GLM is σ-subGaussian. Then, for any δ ∈ (0, 1),

P

∃t ≥ 1 : Lt >
2

g(τ)

(
Rµ̇S(t− 1) + 2πσ

√
(t− 1) log

π2dt2

3δ

) ≤ δ. (13)

Proof. Here, as maxx∈X ,θ∈Θ |µ̇(⟨x,θ⟩)| ≤ Rµ̇, we have that

Lt =
1

g(τ)
max
θ∈Θ

∥∥∥∥∥∥
t−1∑
s=1

(rs − µ(⟨xs,θ⟩))xs

∥∥∥∥∥∥
2

≤ 1

g(τ)
max
θ∈Θ

∥∥∥∥∥∥
t−1∑
s=1

(µ(⟨xs,θ⟩)− µ(⟨xs,θ⋆⟩))xs

∥∥∥∥∥∥
2

+
1

g(τ)

∥∥∥∥∥∥∥∥
t−1∑
s=1

(rs − µ(⟨xs,θ⋆⟩))xs︸ ︷︷ ︸
≜ys

∥∥∥∥∥∥∥∥
2

≤ 2Rµ̇S(t− 1)

g(τ)
+

1

g(τ)

∥∥∥∥∥∥
t−1∑
s=1

ys

∥∥∥∥∥∥
2

.

We now utilize subGaussian concentrations from Jin et al. (2019). First note that ys is a martingale
difference sequence adapted to Σs and is norm-subGaussian with (conditional) variance σ2 be given.
Then, by Corollary 7 of Jin et al. (2019), we have that

P


∥∥∥∥∥∥
t−1∑
s=1

ys

∥∥∥∥∥∥
2

≤ 4πσ

√
(t− 1) log

2d

δ

 ≥ 1− δ, ∀t ≥ 1. (14)

The exact constant 4π is not available in Jin et al. (2019), as all the constants are hidden under c. This
is not useful, especially for practitioners wanting to use the concentration directly. Thus, we tracked
the constant from their Corollary 7, the details of which we provide in Lemma C.1.

We then conclude by parametrizing δ as δ/t2, applying union bound over t ≥ 1, and using the Basel
sum.

Lemma C.1 (Lemma 2 of Jin et al. (2019); originally Lemma 5.5 of Vershynin (2010)). For any
σ-norm-subGaussian random vector X , we have that supp∈N p−1/2

(
E[∥X∥p]

)1/p ≤ √πσ.

Proof. This follows from brute-force computation. First, we have that

E[∥X∥p] =
∫ ∞

0

P[∥X∥p ≥ t]dt = p

∫ ∞

0

P[∥X∥ ≥ t]tp−1dt ≤ 2p

∫ ∞

0

tp−1 exp

(
− t2

2σ2

)
dt

= 2
p−1
2 σppΓ

(
p

2

)
.
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Then, for any p ∈ N,

p−1/2(E[∥X∥p])1/p = σ2
p−1
2p p

1
p−

1
2

(√
π
(p− 2)!!

2
p−1
2

)1/p

= σ p
1
p−

1
2
(√

π(p− 2)!!
)1/p︸ ︷︷ ︸

≜f(p)

.

Using WolframAlpha, we can conclude that f(p) is decreasing, and we conclude by noting that
f(1) =

√
π.

C.2 Bounding Lt for Poisson Distribution

We have the following result for Poisson, which may be of independent interest (to our knowledge,
this is the first explicit martingale concentration for Poisson):
Proposition C.2. For the Poisson distribution, we have that for any δ ∈ (0, 1): when S > 1,

P

(
Lt ≤ C(S)(t− 1) +

2

1− 2e−S
log

π2(d+ 1)t2

3δ

)
≥ 1− δ, ∀t ≥ 1, (15)

where C(S) := 1
4 (1− 2e−S)(eS + 2S + 2 log 2(1−2e−S)

e ) + 2SeS . When S ≤ 1,

P

(
Lt ≤ C̃(S)(t− 1) + 4 log

π2(d+ 1)t2

3δ

)
≥ 1− δ, ∀t ≥ 1, (16)

where C̃(S) := 1
16

(
eS + 4S + 4 log(8 + 2eS)

)
+ 2SeS .

Proof. Proceeding similarly as in the previous subsection, we first have that

Lt ≤ 2SeS(t− 1) +

∥∥∥∥∥∥
t−1∑
s=1

ys

∥∥∥∥∥∥
2

, (17)

where ys = (rs − e⟨xs,θ⋆⟩)xs is the martingale difference sequence satisfying E[ys|Σs] = 0 as
rs|Σs ∼ Poi(⟨xs,θ⋆⟩).
We now modify the proof of Corollary 7 of Jin et al. (2019) (which is based upon the celebrated
Chernoff-Cramér method) for the Poisson martingale vectors, details of which we provide here for
completeness.

First, we consider the following MGF bound of the Poisson distribution whose proof is deferred to
the end of this subsection:

Lemma C.2. Suppose that the random vector y is of the form y = (r − λ)x for some fixed
x ∈ Bd(1), r ∼ Poi(λ), and λ > 0. Then, for the Hermitian dilation (Tropp, 2015, Definition 2.1.5)

of y, Y :=

[
0 y⊤

y 0

]
, we have that EeθY ⪯ exp

(
F (θ, λ)

)
Id+1 for |θ| < 1

2 , where F (θ, λ) :=

λ|θ|+ log(2|θ|) + log

(
e−

λ
2

1
2−|θ| + λ

)
.

We also recall the Lieb’s trace inequality:

Theorem C.3 (Theorem 6 of Lieb (1973)). Let A be a fixed symmetric matrix, and let Y be a
random symmetric matrix. Then,

E tr(exp(A+ Y )) ≤ tr exp(A+ logEeY ) (18)

Now let 0 < θ < 1
2 be fixed, and let us denote λs := e⟨xs,θ⋆⟩ and Es[·] := E[·|Σs] for s ≤ t− 1. We

start by noting that

E tr exp

−θ2Id+1

t−1∑
s=1

F (θ, λs) + θ

t−1∑
s=1

Ys


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= E

Et−1

tr exp
−θ2Id+1

t−1∑
s=1

F (θ, λs) + θ

t−1∑
s=1

Ys





≤ E

tr exp
−θ2Id+1

t−1∑
s=1

F (θ, λs) + θ

t−2∑
s=1

Ys + logEt−1

[
eθYt−1

]
 (Theorem C.3)

≤ E

tr exp
−θ2Id+1

t−1∑
s=1

F (θ, λs) + θ

t−2∑
s=1

Ys + F (θ, λt−1)Id+1




(Lemma C.2, A ⪯ B ⇒ eC+A ⪯ eC+B)

≤ E

tr exp
−θ2Id+1

t−2∑
s=1

F (θ, λs) + θ

t−2∑
s=1

Ys




≤ · · · ≤ tr exp(0Id+1) = d+ 1.

Thus, for any ρ ≥ 0,

P


∥∥∥∥∥∥
t−1∑
s=1

ys

∥∥∥∥∥∥ ≥ θ

t−1∑
s=1

F (θ, λs) +
ρ

θ


= P


∥∥∥∥∥∥
t−1∑
s=1

Ys

∥∥∥∥∥∥ ≥ θ

t−1∑
s=1

F (θ, λs) +
ρ

θ


(
∑

s Ys is a rank-2 matrix with eigenvalues ±
∥∥∑

s ys

∥∥
2
)

= 2P

λmax

t−1∑
s=1

Ys

 ≥ θ

t−1∑
s=1

F (θ, λs) +
ρ

θ

 (Ys’s are symmetric)

= 2P

λmax

exp

θ

t−1∑
s=1

Ys


 ≥ exp

θ2
t−1∑
s=1

F (θ, λs) + ρ




≤ 2P

tr exp

θ

t−1∑
s=1

Ys

 ≥ exp

θ2
t−1∑
s=1

F (θ, λs) + ρ




≤ 2e−ρE tr exp

−θ2 t−1∑
s=1

F (θ, λs) + θ

t−1∑
s=1

Ys

 (Markov’s inequality)

≤ 2(d+ 1)e−ρ. (Lemma C.2)

Finally, by reparametrizing, we have that for any δ ∈ (0, 1),

P


∥∥∥∥∥∥
t−1∑
s=1

ys

∥∥∥∥∥∥ ≥ inf
θ∈(0,1/2)

θ

t−1∑
s=1

F (θ, λs) +
1

θ
log

2d

δ


 ≤ δ, (19)

where we recall that F (θ, λ) = λθ + log(2θ) + log

(
e−

λ
2

1
2−θ

+ λ

)
for θ > 0.
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First, when S > 1, let us choose θ = 1
2 − e−S , which is guaranteed to be positive. Noting that

λs = e⟨xs,θ⋆⟩ ≤ eS , we have

F

(
1

2
− e−S , λs

)
≤ eS

(
1

2
− e−S

)
+log(1−2e−S)+ log(2eS) =

1

2
eS +S+log

2(1− 2e−S)

e
.

Thus, the RHS of Eqn. (19)

(1− 2e−S)(eS + 2S + 2 log 2(1−2e−S)
e )

4
(t− 1) +

2

1− 2e−S
log

2(d+ 1)

δ
. (20)

For the case S ≤ 1, choosing θ = 1
4 , the RHS becomes

eS + 4S + 4 log(8 + 2eS)

16
(t− 1) + 4 log

2(d+ 1)

δ
. (21)

Finally, we conclude by parametrizing δ as δ/t2, applying union bound over t ≥ 1, and using the
Basel sum.

Proof of Lemma C.2. We first have that

EeθY (∗)
= Id+1+

∞∑
p=1

θpEY 2p

(2p)!
⪯ Id+1+

∞∑
p=1

θ2pE ∥y∥2p

(2p)!
Id+1 = E

[
eθ∥y∥ + e−θ∥y∥

2

]
Id+1 ⪯ E

[
e|θ||r−λ|

]
Id+1,

where (∗) follows from the observation that EY 2p+1 = 0. We now recall a well-known concentration
for Poisson distribution (taken from a note by C. Canonne):

Lemma C.3. P(|r − y| ≥ x) ≤ 2e−
x2

2(λ+x) .

Then, we have that

E[e|θ||r−λ|] =

∫ ∞

0

P(e|θ||r−λ| ≥ k)dk (dk is the Lebesgue measure)

≤ 1 +

∫ ∞

1

P(e|θ||r−λ| ≥ k)dk

≤ 2

∫ ∞

1

e−
(log k/|θ|)2

2(λ+log k/|θ|) dk (Lemma C.3)

= 2|θ|
∫ ∞

0

e−
u2

2(λ+u)
+|θ|udu

= 2|θ|

{∫ ∞

λ

e−
u2

2(λ+u)
+|θ|udu+

∫ λ

0

e−
u2

2(λ+u)
+|θ|udu

}

≤ 2|θ|
{∫ ∞

λ

e−( 1
2−|θ|)udu+ λe|θ|λ

}
( u2

2(λ+u) ≥
1
2u for u ≥ λ)

≤ 2|θ|

(
1

1
2 − |θ|

e−( 1
2−|θ|)λ + λe|θ|λ

)

= exp

F (θ, λ) ≜ λ|θ|+ log(2|θ|) + log

(
e−

λ
2

1
2 − |θ|

+ λ

) .

C.3 Proof of Theorem 3.2 – Ellipsoidal Confidence Sequence

First, similarly to prior works on logistic bandits (Abeille et al., 2021; Lee et al., 2024), let us define
the following quantities:

G̃t(θ,ν) :=
1

g(τ)

t−1∑
s=1

α̃s(θ,ν)xsx
⊤
s , α̃s(θ,ν) :=

∫ 1

0

(1− v)µ̇
(
⟨xs,θ + v(ν − θ)⟩

)
dv.
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(We will later come back to these quantities in the regret analysis.)

Then, by Taylor’s theorem with integral remainder, we have that for any λ ≥ 0 to be chosen later,

βt(δ)
2 ≥ Lt(θ)− Lt(θ̂t) = ⟨∇Lt(θ̂t),θ − θ̂t⟩︸ ︷︷ ︸

=0

+
∥∥∥θ − θ̂t

∥∥∥2
G̃t(θ̂t,θ)

=
∥∥∥θ − θ̂t

∥∥∥2
G̃t(θ̂t,θ)+λId

− λ
∥∥∥θ − θ̂t

∥∥∥2
2

≥
∥∥∥θ − θ̂t

∥∥∥2
G̃t(θ̂t,θ)+λId

− 4S2λ.

We conclude by choosing λ = 1
4S2 and the self-concordance control for G̃ (Abeille et al., 2021,

Lemma 8), which we recall here:
Lemma C.4 (A slight extension of Lemma 8 of Abeille et al. (2021)). Let µ be increasing (µ̇ ≥ 0,
which is basically Assumption 3) and self-concordant with constant Rs (as in Assumption 4). Let
Z ⊂ R be bounded. Then, the following holds for any z1, z2 ∈ Z:∫ 1

0

(1− v)µ̇(z1 + v(z2 − z1))dv ≥
µ̇(z1)

2 +Rs|z1 − z2|
.

This then implies that G̃t(θ,ν) ⪰ 1
2+2SRs

∇2Lt(θ).
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D Proof of Theorem 4.1 – Regret Bound of OFUGLB

D.1 Supporting Lemmas

Before diving into the proof, we recall or prove some important supporting lemmas that we will be
using throughout the proof.

First, we recall the elliptical potential arguments:
Lemma D.1 (Elliptical Potential Count Lemma; EPCL4). For X,L > 0, let x1, · · · ,xT ∈ Bd(X)

be a sequence of vectors, Vt := λI +
∑t−1

s=1 xsx
⊺
s , and let us define the following: HT :={

t ∈ [T ] : ∥xt∥2V −1
t

> L

}
. Then, we have that

|HT | ≤
2d

log(1 + L2)
log

(
1 +

X2

λ log(1 + L2)

)
. (22)

Lemma D.2 (Elliptical Potential Lemma; EPL5). Let x1, · · · ,xT ∈ Bd(X) be a sequence of vectors
and Vt := λI +

∑t−1
s=1 xsx

⊺
s . Then, we have that

T∑
t=1

min
{
1, ∥xt∥2V −1

t

}
≤ 2d log

(
1 +

X2T

dλ

)
. (23)

We have the following self-concordance lemma that will be frequently used throughout the proof:
Lemma D.3. For θ,ν ∈ Rd, |µ̇t(θ)− µ̇t(ν)| ≤ Rs|µt(θ)− µt(ν)|

Proof. This follows from direct computation:

|µ̇t(θ)− µ̇t(ν)| =

∣∣∣∣∣⟨xt,θ − ν⟩
∫ 1

0

µ̈t(ν + v(θ − ν)dv

∣∣∣∣∣
≤
∣∣⟨xt,θ − ν⟩

∣∣ ∫ 1

0

∣∣µ̈t(ν + v(θ − ν)
∣∣ dv

≤ Rs

∣∣⟨xt,θ − ν⟩
∣∣ ∫ 1

0

∣∣µ̇t(ν + v(θ − ν)
∣∣ dv (Assumption 4)

= Rs

∣∣∣∣∣⟨xt,θ − ν⟩
∫ 1

0

µ̇t(ν + v(θ − ν)dv

∣∣∣∣∣
(m is convex, and thus µ̇ = m′′ ≥ 0)

= Rs

∣∣µt(θ)− µt(ν)
∣∣ .

This later leads to an implicit inequality of the form X ≤ A
√
B +RsX+C, leading to the final regret

bound. We also remark that this self-concordant result is distinct from the original self-concordance
control lemma (Faury et al., 2020, Lemma 9) and does not incur any dependency on S.

Throughout the proof, we denote µt(·) := µ(⟨xt, ·⟩) and [a, b] := {a, a+ 1, · · · , b} for two integers
a ≤ b. We recall the following quantities:

Rµ,⋆ := max
x∈X
|µ(⟨x,θ⋆⟩)|, Rµ̇ := max

x∈X,θ∈Θ
µ̇(⟨x,θ⟩). (24)

We now define the following crucial quantities: for λ > 0 to be chosen later,

θ̄t := argmin
θ∈

⋃
b∈[t,T ] Cb

µ̇t(θ), (b(t),νt) := argmax
b∈[t,T ],θ∈Cb

∣∣∣µt(θ)− µt(θ̂b)
∣∣∣, (25)

4This is a generalization of Exercise 19.3 of Lattimore and Szepesvári (2020), presented (in parallel) at
Lemma 7 of Gales et al. (2022) and Lemma 4 of Kim et al. (2022).

5Lemma 11 of Abbasi-Yadkori et al. (2011).

23



H̄t := 2g(τ)λI +

t−1∑
s=1

µ̇s(θ̄s)xsx
⊤
s , Vt := 2g(τ)κ(T )λI +

t−1∑
s=1

xsx
⊤
s , (26)

and

α̃t(θ,ν) :=

∫ 1

0

(1−v)µ̇t

(
θ + v(ν − θ)

)
dv, G̃t(θ,ν) := λI+

1

g(τ)

t−1∑
s=1

α̃s(θ,ν)xsx
⊤
s . (27)

These points in the union of future confidence sets, combined with the “warmup conditions” allow
for the elliptical potential lemma (Lemma D.2) to be directly applicable, avoiding dependencies on
poly(S) and κ in the leading term. Also, note that θ̄s bears some resemblance to additional linear
constraints introduced in Logistic-UCB-2 of Faury et al. (2020).

This is formalized in the following set of properties:

Lemma D.4. For any θ,ν ∈ Rd, 1
2g(τ)κ(T ) ≤ α̃t(θ,ν) ≤ Rµ̇

2 , and thus, 1
2g(τ)κ(T )Vt ⪯ G̃t(θ,ν).

Proof. Follows from straightforward computation.

In the following two lemmas, b(t) is as defined in Eqn. (25).

Lemma D.5. G̃b(t)(θ̂b(t),νt) ⪰ 1
2g(τ)H̄t.

Proof. For each s ≤ b(t),

α̃s(θ̂b(t),νt) =

∫ 1

0

(1− v)µ̇s

(
θ̂b(t) + v(νt − θ̂b(t))

)
dv

(∗)
≥ µ̇s(θ̄s)

∫ 1

0

(1− v)dv =
1

2
µ̇s(θ̄s),

where (∗) follows from the observations that νt, θ̂b(t) ∈ Cb(t) and Cb(t) is convex. We then conclude
by noting that b(t) ≥ t, and thus H̄b(t) ⪰ H̄t.

Lemma D.6. For any t ≥ 1 and θ,ν ∈ Cb(t), we have the following:

(i)
∥∥∥ν − θ̂b(t)

∥∥∥
G̃b(t)(θ̂b(t),ν)

≤
√

4λS2 + βT (δ)2,

(ii)
∣∣µt(ν)− µt(θ)

∣∣ ≤ 2Rµ̇

√
2
(
4λS2 + βT (δ)2

)
κ(T ) ∥xt∥V −1

t
.

Proof. (i) follows from Taylor’s theorem with integral remainder and our definition of Cb(t):

βT (δ)
2 ≥ Lb(t)(ν)− Lb(t)(θ̂t) = ⟨∇Lb(t)(θ̂b(t)),ν − θ̂b(t)⟩︸ ︷︷ ︸

=0

+
∥∥∥ν − θ̂b(t)

∥∥∥2
G̃b(t)(θ̂b(t),ν)−λI

≥
∥∥∥ν − θ̂b(t)

∥∥∥2
G̃b(t)(θ̂b(t),ν)

− 4λS2.

(ii) follows from (i) and similar arguments:∣∣µt(ν)− µt(θ)
∣∣ = ∣∣∣∣∣⟨xt,ν − θ⟩

∫ 1

0

µ̇t(θ + v(ν − θ))dv

∣∣∣∣∣
≤ Rµ̇

{∥∥∥ν − θ̂b(t)

∥∥∥
G̃b(t)(θ̂b(t),θ)

+
∥∥∥θ − θ̂b(t)

∥∥∥
G̃b(t)(θ̂b(t),θ)

}
∥xt∥G̃b(t)(θ̂b(t),θ)−1

(Cauchy-Schwartz & triangle inequalities)

≤ 2Rµ̇

√
2
(
4λS2 + βT (δ)2

)
κ(T ) ∥xt∥V −1

b(t)
((i), Lemma D.4)

≤ 2Rµ̇

√
2
(
4λS2 + βT (δ)2

)
κ(T ) ∥xt∥V −1

t
. (b(t) ≥ t)
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D.2 Proof of Theorem 4.1

Throughout, let us assume that the event {∀t ≥ 1, θ⋆ ∈ Ct} holds, which is with probability at least
1− δ by Theorem 3.1.

Define the set of timesteps satisfying the “warmup conditions”:

IT :=

t ∈ [T ] :

(∥∥∥∥√µ̇t(θ̄t)xt

∥∥∥∥
H̄−1

t

≥ 1

)
∨
(
∥xt∥V −1

t
≥ 1
) ⊆ [T ]. (28)

First, we have

Reg(T )

=
∑
t∈IT

{
µ(⟨xt,⋆,θ⋆⟩)− µ(⟨xt,θ⋆⟩)

}
+
∑
t ̸∈IT

{
µ(⟨xt,⋆,θ⋆⟩)− µ(⟨xt,θ⋆⟩)

}
︸ ︷︷ ︸

≜ RegI(T )

≤ 2Rµ,⋆|IT |+ RegI(T )

≤ 2Rµ,⋆

∑
t∈[T ]

1

[∥∥∥∥√µ̇t(θ̄t)xt

∥∥∥∥
H̄−1

t

≥ 1

]
+ 2Rµ,⋆

∑
t∈[T ]

1
[
∥xt∥V −1

t
≥ 1
]
+ RegI(T )

(definition of IT )

≤ 4dRµ,⋆

log 2

{
log

(
1 +

Rµ̇

2λg(τ) log 2

)
+ log

(
1 +

1

2κ(T )λg(τ) log 2

)}
+ RegI(T ).

(EPCL and Lemma D.4)

We now focus on bounding the last term:

RegI(T ) =
∑
t ̸∈IT

{
µt,⋆(θ⋆)− µt(θ̂t)

}
+
∑
t̸∈IT

{
µt(θ̂t)− µt(θ⋆)

}
(µt(·) := µ(⟨xt, ·⟩), µt,⋆(·) := µ(⟨xt,⋆, ·⟩))

≤
∑
t ̸∈IT

{
µt(θt)− µt(θ̂t)

}
+
∑
t ̸∈IT

{
µt(θ̂t)− µt(θ⋆)

}
(optimism – line 7 of Algorithm 1)

≤ 2
∑
t ̸∈IT

max
b∈[t,T ]

max
θ∈Cb

∣∣∣µt(θ)− µt(θ̂b)
∣∣∣

= 2
∑
t̸∈IT

∣∣∣µt(νt)− µt(θ̂b(t))
∣∣∣. (Eqn. (25))

Using Taylor’s theorem with integral remainder form, we have that for t ̸∈ IT ,∣∣∣µt(νt)− µt(θ̂b(t))
∣∣∣

=

∣∣∣∣∣µ̇t(θ̂b(t))⟨xt,νt − θ̂b(t)⟩+
∫ µt(νt)

µt(θ̂b(t))

(µt(νt)− z)µ̈t(z)dz

∣∣∣∣∣
≤ µ̇t(θ̂b(t))

∣∣∣⟨xt,νt − θ̂b(t)⟩
∣∣∣+ ⟨xt,νt − θ̂b(t)⟩2

∫ 1

0

(1− v)

∣∣∣∣µ̈t

(
θ̂b(t) + v(νt − θ̂b(t))

)∣∣∣∣ dv
(triangle inequality, reparametrization)

≤ µ̇t(θ̂b(t))
∣∣∣⟨xt,νt − θ̂b(t)⟩

∣∣∣+Rs⟨xt,νt − θ̂b(t)⟩2
∫ 1

0

(1− v)µ̇t

(
θ̂b(t) + v(νt − θ̂b(t))

)
dv︸ ︷︷ ︸

=α̃b(t)(θ̂b(t),νt)

(Assumption 4)
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≤ µ̇t(θ̄t)
∣∣∣⟨xt,νt − θ̂b(t)⟩

∣∣∣+ ∣∣∣µ̇t(θ̄t)− µ̇t(θ̂b(t))
∣∣∣ ∣∣∣⟨xt,νt − θ̂b(t)⟩

∣∣∣
+Rs⟨xt,νt − θ̂b(t)⟩2α̃b(t)(θ̂b(t),νt)

≤ µ̇t(θ̄t) ∥xt∥G̃b(t)(θ̂b(t),νt)−1

∥∥∥νt − θ̂b(t)

∥∥∥
G̃b(t)(θ̂b(t),νt)︸ ︷︷ ︸

≜At

+
∣∣∣µ̇t(θ̄t)− µ̇t(θ̂b(t))

∣∣∣ ∥xt∥G̃b(t)(θ̂b(t),νt)−1

∥∥∥νt − θ̂b(t)

∥∥∥
G̃b(t)(θ̂b(t),νt)︸ ︷︷ ︸

≜Bt

+Rs

∥∥∥νt − θ̂b(t)

∥∥∥2
G̃b(t)(θ̂b(t),νt)

α̃b(t)(θ̂b(t),νt) ∥xt∥2G̃b(t)(θ̂b(t),νt)−1︸ ︷︷ ︸
≜Ct

,

(Cauchy-Schwartz inequality)

where G̃ is as defined in Eqn. (27).

We bound each sum separately:

Bounding
∑

t At∑
t ̸∈IT

At ≤
√

4λS2 + βT (δ)2
∑
t̸∈IT

µ̇t(θ̄t) ∥xt∥G̃b(t)(θ̂b(t),νt)−1 (νt ∈ Cb(t), Lemma D.6 (i))

≤
√
4λS2 + βT (δ)2

√∑
t̸∈IT

µ̇t(θ̄t)

√∑
t̸∈IT

µ̇t(θ̄t) ∥xt∥2G̃b(t)(θ̂b(t),νt)−1

(Cauchy-Schwartz inequality)

≤
√
4λS2 + βT (δ)2

√∑
t̸∈IT

µ̇t(θ̄t)

√
2g(τ)

∑
t̸∈IT

µ̇t(θ̄t) ∥xt∥2H̄−1
t

(Lemma D.5)

≤
√

2g(τ)
(
4λS2 + βT (δ)2

)√∑
t ̸∈IT

µ̇t(θ̄t)

√∑
t∈[T ]

min
{
1, µ̇t(θ̄t) ∥xt∥2H̄−1

t

}
(Definition of IT )

≤ 2

√
dg(τ)(4λS2 + βT (δ)2) log

(
1 +

Rµ̇T

dλ

)√∑
t ̸∈IT

µ̇t(θ̄t). (EPL (Lemma D.2))

≤ 2

√
dg(τ)(4λS2 + βT (δ)2) log

(
1 +

Rµ̇T

dλ

)√∑
t∈[T ]

µ̇t,⋆(θ⋆) +
∑
t̸∈IT

{
µ̇t(θ̄t)− µ̇t,⋆(θ⋆)

}
(µt,⋆(·) := µ(⟨xt,⋆, ·⟩))

= 2

√
dg(τ)(4λS2 + βT (δ)2) log

(
1 +

Rµ̇T

dλ

)√
T

κ⋆(T )
+
∑
t ̸∈IT

{
µ̇t(θ̄t)− µ̇t,⋆(θ⋆)

}
.

Thus,∑
t̸∈IT

{
µ̇t(θ̄t)− µ̇t,⋆(θ⋆)

}
=
∑
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{
µ̇t(θ̄t)− µ̇t(θ⋆)

}
+
∑
t ̸∈IT

{
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}

≤ Rs

∑
t ̸∈IT
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(Lemma D.3)
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∣∣∣. (Definition of (νt, b(t))
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√
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∑
t̸∈IT

∣∣∣µ̇t(θ̄t)− µ̇t(θ̂b(t))
∣∣∣ ∥xt∥G̃−1

b(t)
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(νt ∈ Cb(t), Lemma D.6 (i))
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(Lemma D.3)
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t

(Lemma D.4, b(t) ≥ t)
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∣∣∣µt(νt)− µt(θ̂b(t))
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t

(Definition of νt (Eqn. (25)))

≤ 4RsRµ̇κ(T )(4λS
2 + βT (δ)

2)
√

g(τ)
∑
t ̸∈IT

∥xt∥2V −1
t

(νt, θ̂b(t) ∈ Cb(t), Lemma D.6 (ii))

≤ 4RsRµ̇κ(T )(4λS
2 + βT (δ)

2)
√
g(τ)

∑
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min
{
1, ∥xt∥2V −1

t

}
(Definition of IT )
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g(τ) log

(
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T

2dg(τ)κ(T )λ
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(EPL (Lemma D.2))

Bounding
∑

t Ct∑
t̸∈IT

Ct ≤ Rs

√
4λS2 + βT (δ)2

∑
t̸∈IT

α̃b(t)(θ̂b(t),νt) ∥xt∥2G̃b(t)(θ̂b(t),νt)−1

(νt ∈ Cb(t), Lemma D.6 (i))

≤ RsRµ̇g(τ)κ(T )
√
4λS2 + βT (δ)2

∑
t̸∈IT

∥xt∥2V −1
t

(Lemma D.4, b(t) ≥ t)

≤ RsRµ̇g(τ)κ(T )
√
4λS2 + βT (δ)2

∑
t∈[T ]

min
{
1, ∥xt∥2V −1

t

}
(Definition of IT )

≤ 2dRsRµ̇g(τ)κ(T )
√

4λS2 + βT (δ)2 log

(
1 +

T

2dg(τ)κ(T )λ

)
(EPL (Lemma D.2))

Let us choose λ = 1
4S2 . Then, combining everything, we have:∑

t̸∈IT

∣∣∣µt(νt)− µt(θ̂b(t))
∣∣∣
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≤
∑
t ̸∈IT

At +
∑
t ̸∈IT

Bt +
∑
t̸∈IT

Ct

≲ βT (δ)

√
dg(τ) log

(
1 +

Rµ̇ST

d

)√
T

κ⋆(T )
+Rs

∑
t ̸∈IT

∣∣∣µt(νt)− µt(θ̂b(t))
∣∣∣

+ dRsRµ̇κ(T )βT (δ)
2
√

g(τ) log

(
1 +

ST

dg(τ)κ(T )

)
.

where we denote A ≲ B if A ≤ cB for some absolute constant c > 0, and we note that the upper
bound for

∑
t Ct is asymptotically negligible compared to

∑
t Bt.

This is of the form X ≲ A
√
B +RsX + C, which implies the bound of X ≲ A

√
B +A

√
Rs + C

up to absolute constants via an elementary polynomial inequality (Abeille et al., 2021, Proposition 7).
Combining everything gives us the desired statement.
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E Alternate CS via Discrete Uniform Prior and ε-net Argument

In this Appendix, instead of the PAC-Bayes with a continuous uniform prior/posterior as in the main
text, we explore an alternate derivation of CS using a discrete uniform prior. This is a supplementary
discussion for the “Fast Rates in Statistical Learning” paragraph in Section ?? in the main text.

We present the alternate CS, which is strictly looser than our Theorem 3.1:

Theorem E.1 (Slightly Looser, Unified CS for GLMs). Let Lt := maxθ∈Θ

∥∥∇Lt(θ)
∥∥
2

be
the Lipschitz constant of Lt(·) that may depend on {(xs, rs)}t−1

s=1. Then, we have P[∃t ≥ 1 :
θ⋆ ̸∈ Ct(δ)] ≤ δ, where

βt(δ)
2 = log

π2t2

6δ
+ inf

c∈(0,5S]

{
d log

5S

c
+ cLt

}
≤ 1 + log

π2t2

6δ
+ d log(5SLt), (29)

where the last inequality follows from the choice c = 1 ∨ 1
Lt

.

Proof. Consider p ∼ U({θi}i∈[N ]), where the θi’s will be determined later. In that case, we have:

logEθ[Mt(θ)] = Lt(θ⋆) + logEθ[exp
(
−Lt(θ)

)
]

= Lt(θ) + log

 1

N

N∑
i=1

exp
(
−Lt(θi)

)
≥ Lt(θ⋆) + log

{
1

N
max
i∈[N ]

exp
(
−Lt(θi)

)}

= Lt(θ⋆)− max
i∈[N ]

Lt(θi) + log
1

N
.

By the Markov’s inequality, we have

P

(
Lt(θ⋆)− max

i∈[N ]
Lt(θi) ≤ log

N

δ

)
≥ 1− δ, ∀t ≥ 1.

By taking the union bound over t ≥ 1 and i ∈ [N ], we have that

P

[
∃t ≥ 1 : max

i∈[N ]
Mt(θi) ≥ N

π2t2

6δ

]
≤ δ.

Here, we reparametrize δ as δ
t2 and use the Basel sum.

Taking the log and recalling that Mt(θ) = exp(Lt(θ⋆)− Lt(θ)), above is equivalent to

P

[
∃t ≥ 1 : Lt(θ⋆)− min

i∈[N ]
Lt(θi) ≥ logN + log

π2t2

6δ

]
≤ δ.

With the above, we have that with probability at least 1− δ: for all t ≥ 1,

Lt(θ⋆)−min
θ∈Θ
Lt(θ) ≤ log

π2t2

6δ
+ logN + min

i∈[N ]
Lt(θi)−min

θ∈Θ
Lt(θ)

≤ log
π2t2

6δ
+ logN + Lt min

i∈[N ]

∥∥∥θi − θ̂t

∥∥∥
2
,

where we recall that Lt is the Lipschitz constant of Lt(·).

We now choose {θi} to be the c-net (as in the ε-net) of Θ for c ∈ (0, 5S]. As Θ ⊆ Bd(S), we have

that N ≤
(

5S
c

)d
(Vershynin, 2018, Corollary 4.2.13).
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Then, with probability at least 1− δ, for all t ≥ 1,

Lt(θ⋆)−min
θ∈Θ
Lt(θ) ≤ log

π2t2

6δ
+ d log

5S

c
+ cLt,

We then conclude by optimizing over c.
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