
SHIELD: Defending Textual Neural Networks against Black-Box
Adversarial Attacks with Stochastic Multi-Expert Patcher

Anonymous ACL submission

Abstract

Even though several methods have proposed001

to defend textual neural network (NN) models002

against black-box adversarial attacks, they of-003

ten defend against a specific text perturbation004

strategy and/or require re-training the models005

from scratch. This leads to a lack of general-006

ization in practice and redundant computation.007

In particular, the state-of-the-art transformer008

models (e.g., BERT, RoBERTa) require great009

time and computation resources. By borrow-010

ing an idea from software engineering, in or-011

der to address these limitations, we propose012

a novel algorithm, SHIELD, which modifies013

and re-trains only the last layer of a textual014

NN, and thus it “patches” and “transforms”015

the NN into a stochastic weighted ensemble016

of multi-expert prediction heads. Consider-017

ing that most of current black-box attacks rely018

on iterative search mechanisms to optimize019

their adversarial perturbations, SHIELD con-020

fuses the attackers by automatically utilizing021

different weighted ensembles of predictors de-022

pending on the input. In other words, SHIELD023

breaks a fundamental assumption of the attack,024

which is a victim NN model remains constant025

during an attack. By conducting comprehen-026

sive experiments, we demonstrate that all of027

CNN, RNN, BERT, and RoBERTa-based tex-028

tual NNs, once patched by SHIELD, exhibit029

a relative enhancement of 15%–70% in accu-030

racy on average against 14 different black-box031

attacks, outperforming 6 defensive baselines032

across 3 public datasets. All codes are to be033

released.034

1 Introduction035

Adversarial Text Attack and Defense. After be-036

ing trained to maximize prediction performance,037

textual NN models frequently become vulnerable038

to adversarial attacks (Papernot et al., 2016; Wang039

et al., 2019a). In the NLP domain, in general, ad-040

versaries utilize different strategies to perturb an041

input sentence such that its semantic meaning is042

preserved while successfully letting a target NN 043

model output a desired prediction. Text perturba- 044

tions are typically generated by replacing or insert- 045

ing critical words (e.g., HotFlip (Ebrahimi et al., 046

2018), TextFooler (Jin et al., 2019)), characters 047

(e.g., DeepWordBug (Gao et al.), TextBugger (Li 048

et al., 2018)) in a sentence or by manipulating a 049

whole sentence (e.g., SCPNA (Iyyer et al., 2018), 050

GAN-based(Zhao et al., 2018)). 051

Since many recent NLP models are known to be 052

vulnerable to adversarial black-box attacks (e.g., 053

fake news detection (Le et al., 2020; Zhou et al., 054

2019b), dialog systems (Cheng et al., 2019), and so 055

on), robust defenses for textual NN models are re- 056

quired. Even though several papers have proposed 057

to defend NNs against such attacks, they were de- 058

signed for either a specific type of attack (e.g., 059

word or synonym substitution (Wang et al., 2021; 060

Dong et al., 2021; Mozes et al., 2020; Zhou et al., 061

2021), misspellings (Pruthi et al., 2019), character- 062

level (Pruthi et al., 2019), or word-based (Le et al., 063

2021)). Even though there exist some general de- 064

fensive methods, most of them enrich NN mod- 065

els by re-training them with adversarial data aug- 066

mented via known attack strategies (Miyato et al., 067

2016; Liu et al., 2020; Pang et al., 2020) or with 068

external information such as knowledge graphs (Li 069

and Sethy, 2019). 070

However, these augmentations often induce sub- 071

stantial overhead in training or are still limited to 072

only a small set of predefined attacks (e.g., (Zhou 073

et al., 2019a)). Hence, we are in search of defense 074

algorithms that directly enhance NN models’ struc- 075

tures (e.g., (Li and Sethy, 2019)) while achieving 076

higher generalization capability without the need 077

of acquiring additional data. 078

Motivation (Fig. 1). Different from white-box at- 079

tacks, black-box attacks do not have access to a 080

target model’s parameters, which are crucial for 081

achieving effective attacks. Hence, attackers often 082

query the target model repeatedly to acquire the 083

1

Figure 1: Motivation of SHIELD: An attacker optimizes a step objective function (score) to search for the best
perturbation by iteratively replacing each of the original 5 tokens with a perturbed one. (A) The attacker assumes
the model remains unchanged and (B) gives coherent signal during the iteration search, resulting in the true best
attack: “dirty”!“dirrty”. (C) A model patched with SHIELD utilizes a weighted ensemble of 3 diverse heads
depending on the input. Therefore, the ensemble weights keep changing over time during adversaries’ perturbation
search processes – the line width represents the ensemble weights. (D) SHIELD confuses the attacker with 3
varying distributions of the score, resulting in a sub-optimal attack “people”!“pe0ple”.

necessary information for optimizing their strat-084

egy. From our analyses of 14 black-box attacks085

published during 2018–2020 (Table 1), all of them,086

except for SCPNA (Iyyer et al., 2018), rely on a087

searching algorithm (e.g., greedy, genetic) to iter-088

atively replace each character/word in a sentence089

with a perturbation candidate to optimize the choice090

of characters/words and how they should be crafted091

to attack the target model (Fig. 1A). Even though092

this process is effective in terms of attack perfor-093

mance, they assume that the model’s parameters094

remain “unchanged” and the model outputs “coher-095

ent” signals during the iterative search (Fig. 1A and096

1B). Our key intuition is, however, to obfuscate the097

attackers by breaking this assumption. Specifically,098

we want to develop an algorithm that automati-099

cally utilizes a diverse set of models during infer-100

ence. This can be done by training multiple sub-101

models instead of a single prediction model and102

randomly select one of them during inference to ob-103

fuscate the iterative search mechanism. However,104

this then introduces impractical computational over-105

head during both training and inference, especially106

when one wants to maximize prediction accuracy107

by utilizing complex SOTA sub-models such as108

BERT (Devlin et al., 2019) and RoBERTa (Liu109

et al., 2019b). Moreover, it also does not guarantee110

that trained models are sufficiently diverse to fool111

attackers. Furthermore, applying this strategy to112

existing NN models would also require re-training113

everything from the scratch, rendering the approach114

impractical.115

Proposal. To address these challenges, we borrow116

ideas from software engineering where bugs can be117

readily removed by an external installation patch.118

Specifically, we develop a novel neural patching119

algorithm, named as SHIELD, which patches only120

the last layer of an already deployed textual NN121

Attack Method Search Atk Sem. Natr.
Method Level Presv. Presv.

SCPNA Iyyer et al. TP SN X X
TextBugger(TB) Li et al. GD CR X
DeepWordBug(DW) Gao et al. GD CR X
Kuleshov Kuleshov et al. GD WD X X
TextFooler(TF) Jin et al. GD WD X
IGA Wang et al. GN WD
Pruthi Pruthi et al. GD CR
PWWS(PS) Ren et al. GD WD
Alzantot Alzantot et al. GN WD X
BAE Garg and Ramakrishnan GD WD X
BERT-Atk(BERTK) Li et al. GD WD X
PSO Zang et al. GN WD
Checklist Ribeiro et al. GD WD
Clare Li et al. GD WD X X
TP: Template; GD: Greedy; GN: Genetics
CR: Character; WD: Word; SN: Sentence

Table 1: Different attack methods with i) how they
search for adversarial perturbations, ii) their attack
level, and iii) whether they maintain the original se-
mantics (Sem. Presv.), pursue the naturalness of the
perturbed sentence (Natr. Presv.), or both of them.

model (e.g., CNN, RNN, transformers(Vaswani 122

et al., 2017; Bahdanau et al.)) and transforms it into 123

an ensemble of multi-experts or prediction heads 124

(Fig. 1C). During inference, then SHIELD automat- 125

ically utilizes a stochastic weighted ensemble of ex- 126

perts for prediction depending on inputs. This will 127

obfuscate adversaries’ perturbation search, making 128

black-box attacks much more difficult regardless 129

of attack types, e.g., character or word level at- 130

tacks (Fig. 1C,D). By patching only the last layer 131

of a model, SHIELD also introduces lightweight 132

computational overhead and requires no additional 133

training data. In summary, our contributions are as 134

follows: 135

• We propose SHIELD, a novel neural patching 136

algorithm that transforms a already-trained NN 137

model to a stochastic ensemble of multi-experts 138

2

with little computational overhead.139

• We demonstrate the effectiveness of SHIELD.140

CNN, RNN, BERT, and RoBERTa-based tex-141

tual models patched by SHIELD achieve an in-142

crease of 15%–70% on their robustness across143

14 different black-box attacks, outperforming 6144

defensive baselines on 3 public NLP datasets.145

• To the best of our knowledge, this work by far146

includes the most comprehensive evaluation for147

the defense against black-box attacks.148

2 The Proposed Method: SHIELD149

We introduce Stochastic Multi-Expert Neural150

Patcher (SHIELD) which patches only the last layer151

of an already trained NN model f(x, ✓) and trans-152

forms it into an ensemble of multiple expert predic-153

tors with stochastic weights. These predictors are154

designed to be strategically selected with different155

weights during inference depending on the input.156

This is realized by two complementary modules,157

namely (i) a Stochastic Ensemble (SE) module that158

transforms f(·) into a randomized ensemble of dif-159

ferent heads and (ii) a Multi-Expert (ME) module160

that uses Neural Architecture Search (NAS) to dy-161

namically learn the optimal architecture of each162

head to promote their diversity.163

2.1 A Stochastic Ensemble (SE) Module164

This module extends the last layer of f(·), which165

is typically a fully-connected layer (followed by a166

softmax for classification), to an ensemble of K167

prediction heads, denoted H={h(·)}Kj . Each head168

hj(·), parameterized by ✓hj , is an expert predictor169

that is fed with a feature representation learned by170

up to the second-last layer of f(·) and outputs a171

prediction logit score:172

hj : f(x, ✓
⇤

L�1) 2 RQ 7! ỹj 2 RM , (1)173

where ✓⇤L�1 are fixed parameters of f up to the last174

prediction head layer, Q is the size of the feature175

representation of x generated by the base model176

f(x, ✓⇤L�1), and M is the number of labels. To ag-177

gregate all logit scores returned from all heads,178

then, a classical ensemble method would aver-179

age them as the final prediction: ŷ⇤= 1
K

PK
j ỹj .180

However, this simple aggregation assumes each181

hj(·) 2 H learns from very similar training signals.182

Hence, when ✓⇤L�1 already learns some of the task-183

dependent information, H will eventually converge184

not to a set of experts but very similar predictors.185

To resolve this issue, we introduce stochasticity 186

into the process by assigning prediction heads with 187

stochastic weights during both training and infer- 188

ence. Specifically, we introduce a new aggregation 189

mechanism: 190

ŷ =
1

K

KX

j

↵jwj ỹj , (2) 191

where wj weights ỹj according to head j’s ex- 192

pertise on the current input x, and ↵j 2 [0, 1] is a 193

probabilistic scalar, representing how much of the 194

weight wj should be accounted for. Let us denote 195

w, ↵ 2 RK as vectors containing all scalars wj 196

and ↵j , respectively, and ỹ 2 R(K⇥M) as the con- 197

catenation of all vectors ỹj returned from each of 198

the heads. We calculate w and ↵ as follows: 199

w = WT (ỹ � f(x, ✓⇤L�1)) + b, (3) 200

201↵ = softmax((w + g)/⌧), (4) 202

where W 2 R(K⇥M+Q)⇥K , b 2 RK are train- 203

able parameters, g 2 RK is a noise vector sam- 204

pled from the Standard Gumbel Distribution and 205

therefore, probability vector ↵ is sampled by a tech- 206

nique known as Gumbel-Softmax (Jang et al., 2016) 207

controlled by the noise vector g and the inverse- 208

temperature ⌧ . Unlike the standard Softmax, the 209

Gumbel-Softmax is able to learn a categorical dis- 210

tribution (over K heads) optimized for a down- 211

stream task (Jang et al., 2016). Annealing ⌧!0 212

encourages a pseudo one-hot vector (e.g., [0.94, 213

0.03, 0.01, 0.02] when K=4), which makes Eq. 214

(2) a mixture of experts (Avnimelech and Intrator, 215

1999). Importantly, ↵ is sampled in an inherently 216

stochastic way depending on the gumbel noise g. 217

While W,b is learned to deterministically as- 218

signs more weights w to heads that are experts for 219

each input x (Eq. (3)), ↵ introduces stochasticity 220

into the final logits. The multiplication of ↵jwj 221

in Eq. (2) then enables us to use different sets of 222

weighted ensemble models while still maintaining 223

the ranking of the most important head. Thus, this 224

further diversifies the learning of each expert and 225

confuse attackers when they iteratively try different 226

inputs to find good adversarial perturbations. 227

Finally, to train this module, we use Eq. (2) as 228

the final prediction and train the whole module with 229

Negative Log Likelihood (NLL) loss following the 230

objective: 231

min
W,b,{✓h}Kj

LSE = � 1

N

NX

i

yilog(softmax(ŷi)).

(5) 232

3

Algorithm 1 Training SHIELD Algorithm.
1: Input: pre-trained neural network f(·)
2: Input: O, K, ⌧ , �
3: Initialize W,b, ✓O, {�}Kj
4: repeat
5: Freeze {�}Kj and optimize W,b, ✓O via Eq. (5) in

mini-batch from train set.
6: Freeze W,b, ✓O and optimize {�}Kj via Eq. (8) with

� multiplier in mini-batch from validation set.
7: until convergence

2.2 A Multi-Expert (ME) Module233

While the SE module facilitates stochastic weighted234

ensemble among heads, the ME module searches235

for the optimal architecture for each head that236

maximizes the diversity in how they make predic-237

tions. To do this, we utilize the DARTS algo-238

rithm (Liu et al., 2019a) as follows. Let us denote239

Oj={oj(·)}Tt where T is the number of possible240

architectures to be selected for hj 2 H. We want to241

learn a one-hot encoded selection vector �j 2 RT
242

that assigns hj(·) oj,argmax(�j)(·) during pre-243

diction. Since argmax(·) operation is not differ-244

entiable, during training, we relax the categorical245

assignment of the architecture for hj(·) 2 H to a246

softmax over all possible networks in Oj :247

hj(·) �
1

T

TX

t

exp(�t
j)PT

t exp(�T
j)

oj,t(·). (6)248

However, the original DARTS algorithm only op-249

timizes prediction performance. In our case, we250

also want to promote the diversity among heads.251

To do this, we force each hj(·) to specialize in dif-252

ferent features of an input, i.e., in how it makes253

predictions. This can be achieved by maximizing254

the difference among the gradients of the word-255

embedding ei of input xi w.r.t to the outputs of256

each hj(·) 2 H. Hence, given a fixed set of param-257

eters ✓O of all possible networks for every heads,258

we train all selection vectors {�}Kj by optimizing259

the objective:260

minimize
{�}Kj

Lexperts =

NX

i

KX

n<m

⇣
d(reiJn;reiJm)� ||reiJn�reiJm||22

⌘
,

(7)261

where d(·) is the cosine-similarity function, and Jj262

is the NLL loss as if we only use a single prediction263

head hj . In this module, however, not only do we264

want to maximize the differences among gradients265

vectors, but also we want to ensure the selected ar-266

chitectures eventually converge to good prediction267

#Class #Vocab #Example
MR (Pang and Lee, 2005) 2 19K 11K
CB (Anand et al., 2017) 2 25K 32K
HS (Davidson et al.) 3 35K 25K

Table 2: Statistics of experimental datasets.

performance. Therefore, we train the whole ME 268

module with the following objective: 269

minimize
{�}Kj

LME = LSE + �Lexperts. (8) 270

2.3 Overall Framework 271

To combine the SE and ME modules, we replace Eq. 272

(6) into Eq. (1) and optimize the overall objective: 273

minimize
{�}Kj

Lval
ME + �Lval

experts s.t.

W,b, ✓O = minimizeW,b,✓OL
train
SE .

(9) 274

We employ an iterative training strategy (Liu 275

et al., 2019a) with the Adam optimization algo- 276

rithm (Kingma and Ba, 2013) as in Alg. 1. By al- 277

ternately freezing and training W,b, ✓O and {�}Kj 278

using a training set Dtrain and a validation set Dval, 279

we want to (i) achieve high quality prediction per- 280

formance through Eq. (5) and (ii) select the optimal 281

architecture for each expert to maximize their spe- 282

cialization through Eq. (7). 283

3 Experimental Evaluation 284

3.1 Set-up 285

Datasets & Metric. Table 2 shows the statistics of 286

all experimental datasets: Clickbait detection (CB) 287

(Anand et al., 2017), Hate Speech detection (HS) 288

(Davidson et al.) and Movie Reviews classification 289

(MR) (Pang and Lee, 2005). We split each dataset 290

into train, validation and test set with the ratio of 291

8:1:1 whenever standard public splits are not avail- 292

able. To report prediction performance on clean 293

examples, we use the weighted F1 score to take the 294

distribution of prediction labels into consideration. 295

To report the robustness, we report prediction accu- 296

racy under adversarial attacks (Morris et al., 2020), 297

i.e., # of failed attacks over total # of examples. A 298

failed attack is only counted when the attacker fails 299

to perturb (i.e., fail to flip the label of a correctly 300

predicted clean example). 301

Defense Baselines. We want to defend four tex- 302

tual NN models (base models) of different architec- 303

tures, namely RNN with GRU cells (Chung et al.), 304

transformer-based BERT (Devlin et al., 2019) and 305

4

RoBERTa (Liu et al., 2019b). We compare SHIELD306

with the following six defensive baselines:307

• Ensemble (Ens.) is the classical ensemble of 5308

different base models. We use the average of309

all NLL losses from the base models as the final310

training loss.311

• Diversity Training (DT) (Kariyappa and Qureshi,312

2019) is a variant of the Ensemble baseline where313

a regularization term is added to maximize the314

coherency of gradient vectors of the input text315

w.r.t each sub-model. DT diversifies the feature-316

level expertise among heads.317

• Adaptive Diversity Promoting (ADP) (Pang et al.,318

2019) is a variant of Ensemble baseline where319

a regularization term is added to maximize the320

diversity among non-maximal predictions of in-321

dividual sub-models. ADP diversifies the class-322

level expertise among heads.323

• Mixup Training (Mixup) (Zhang et al., 2018; Si324

et al.) trains a base model with data constructed325

by linear interpolation of two random training326

samples. In this work, we use Mixup to regularize327

a NN to adapt linear transformation in-between328

the continuous embeddings of training samples.329

• Adversarial Training (AdvT) (Miyato et al., 2016)330

is a semi-supervised algorithm that optimizes the331

NLL loss on the original training samples plus332

adversarial inputs.333

• Robust Word Recognizer (ScRNN) (Pruthi et al.,334

2019) detects and corrects potential adversarial335

perturbations or misspellings in a text before336

feeding it to the base model for prediction.337

Note that due to the insufficient memory of GPU338

Titian Xp to simultaneously train several BERT339

and RoBERTa sub-models, we exclude Ensemble,340

DT, and ADP baseline for them.341

Attacks. We comprehensively evaluate SHIELD342

under 14 different black-box attacks (Table 1).343

These attacks differ in their attack levels (e.g.,344

character, word, sentence-based), optimization al-345

gorithms for searching adversarial perturbations346

(e.g., through fixed templates, greedy, genetic-347

based search). Apart from lexical constraints such348

as limiting # or % of words to manipulate in a349

sentence, ignoring stop-words, etc., many of them350

also preserve the semantic meanings of a generated351

adversarial text via constraining the l2 distance352

between its representation vector and that of the353

Model/Dataset MR HS CB AVG
RNN 0.73 0.88 0.97 0.86
+Ensemble 0.80 0.90 0.97 0.89
+DT 0.80 0.86 0.97 0.88
+ADP 0.80 0.88 0.97 0.88
+Mixup 0.77 0.87 0.97 0.87
+AdvT 0.76 0.89 0.98 0.88
+ScRNN 0.79 0.85 0.96 0.87
+SHIELD 0.78 0.86 0.97 0.87 ("1.3%)

BERT 0.84 0.90 1.00 0.91
+Mixup 0.81 0.89 0.99 0.90
+AdvT 0.85 0.91 0.99 0.92
+ScRNN 0.83 0.90 0.99 0.91
+SHIELD 0.86 0.90 0.99 0.91 (0%)

RoBERTa 0.88 0.89 1.00 0.92
+Mixup 0.88 0.91 0.99 0.93
+AdvT 0.87 0.89 0.99 0.92
+ScRNN 0.88 0.90 0.99 0.92
+SHIELD 0.88 0.89 0.99 0.92 (0%)

Table 3: Prediction F1 on clean examples. On average,
SHIELD is still able to maintain the original fidelity.

original text produced by either Universal Sentence 354

Encoder (USE) (Cer et al., 2018) or GloVe em- 355

beddings (Pennington et al., 2014). Moreover, to 356

ensure that the perturbed texts still look natural, a 357

few of the attack methods employ an external pre- 358

trained language model (e.g., BERT(Devlin et al., 359

2019), L2W (Holtzman et al., 2018)) to optimize 360

the log-likelihood of the adversarial texts. Due 361

to computational limit, we only compare SHIELD 362

with other baselines in 3 representative attacks, 363

namely TextFooler (Jin et al., 2019), DeepWord- 364

Bug (Gao et al.) and PWWS (Ren et al., 2019). 365

They are among the most effective attacks. To 366

ensure fairness and reproducibility, we use the ex- 367

ternal TextAttack (Morris et al., 2020) and OpenAt- 368

tack (Zeng et al., 2021). framework for adversarial 369

text generation and evaluation. 370

Implementation. We train SHIELD of 5 experts 371

(K=5) with �=0.5. For each expert, we set 372

Oj to 3 (T=3) possible networks: FCN with 1, 373

2 and 3 hidden layer(s). For each dataset, we 374

use grid-search to search for the best ⌧ value 375

from {1.0, 0.1, 0.01, 0.001} based on the averaged 376

defense performance on the validation set un- 377

der TextFooler (Jin et al., 2019) and DeepWord- 378

Bug (Gao et al.). We use 10% of the training set 379

as a separate development set during training with 380

early-stop to prevent overfitting. We report the 381

performance of the best single model across all 382

attacks on the test set. The Appendix includes all 383

details on all models’ parameters and implementa- 384

tion. We will release the code of SHIELD. 385

5

Dataset Movie Reviews Hate Speech Clickbait
RNN BERT RoBERTa RNN BERT RoBERTa RNN BERT RoBERTa

Attack Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft.
SCPNA 0.37 0.32 0.27 0.24 0.27 0.28 0.51 0.72 0.25 0.29 0.23 0.3 0.51 0.5 0.44 0.49 0.4 0.4
TB 0.2 0.32 0.28 0.37 0.28 0.5 0.35 0.61 0.48 0.59 0.51 0.6 0.79 0.86 0.87 0.93 0.89 0.94
DW 0.2 0.44 0.27 0.42 0.16 0.55 0.27 0.47 0.27 0.55 0.41 0.55 0.67 0.9 0.58 0.95 0.68 0.96
Kuleshov 0.01 0.12 0.07 0.22 0.05 0.28 0.04 0.18 0.09 0.28 0.03 0.25 0.37 0.71 0.52 0.88 0.63 0.9
TF 0.03 0.18 0.08 0.26 0.05 0.39 0.08 0.24 0.25 0.42 0.12 0.37 0.31 0.78 0.44 0.92 0.5 0.93
IGA 0.05 0.29 0.16 0.32 0.13 0.5 0.16 0.34 0.27 0.35 0.24 0.33 0.6 0.8 0.79 0.95 0.77 0.96
Pruthi 0.53 0.56 0.48 0.49 0.54 0.54 0.59 0.71 0.45 0.59 0.53 0.59 0.94 0.92 0.96 0.95 0.96 0.96
PS 0.09 0.3 0.14 0.35 0.15 0.45 0.3 0.54 0.32 0.43 0.32 0.44 0.46 0.85 0.64 0.94 0.66 0.94
Alzantot 0.21 0.36 0.42 0.47 0.46 0.64 0.27 0.54 0.51 0.57 0.56 0.55 0.73 0.83 0.92 0.97 0.9 0.98
BAE 0.44 0.54 0.38 0.46 0.43 0.57 0.6 0.72 0.38 0.52 0.43 0.51 0.83 0.92 0.4 0.81 0.39 0.92
BERTK 0.01 0.18 0.04 0.17 0.03 0.23 0.1 0.21 0.36 0.48 0.22 0.36 0.18 0.65 0.25 0.86 0.41 0.86
PSO 0.05 0.07 0.14 0.12 0.07 0.15 0.35 0.54 0.38 0.4 0.35 0.4 0.6 0.64 0.75 0.87 0.71 0.87
Checklist 0.7 0.76 0.84 0.85 0.88 0.88 0.86 0.81 0.89 0.89 0.88 0.88 0.98 0.98 0.99 1.0 1.0 1.0
Clare 0.16 0.35 0.23 0.28 0.27 0.54 0.76 0.72 0.79 0.78 0.72 0.76 0.7 0.87 0.48 0.86 0.68 0.94
Average 0.27 0.36 0.27 0.46 0.37 0.52 0.41 0.51 0.4 0.49 0.65 0.75 0.62 0.8 0.65 0.88 0.68 0.9
Relative "% "54.55% "33.33% "70.37% "40.54% "24.39% "22.5% "29.03% "35.38% "32.35%
Bold, Red: no worse and decreased results from the base models

Table 4: Accuracy under adversarial attacks before (Bef.) and after (Aft.) patched with SHIELD.

3.2 Results386

Due to space limitation, the results of CNN-based387

models are presented in the Appendix.388

Fidelity We first evaluate SHIELD’s prediction389

performance without adversarial attacks. Table 3390

shows that all base models patched by SHIELD391

still maintain similar F1 scores on average across392

all datasets. Although SHIELD with RNN has a393

slightly decrease in fidelity on Hate Speech dataset,394

this is negligible compared to the adversarial ro-395

bustness benefits that SHIELD will provide (More396

below).397

Computational Complexity Regarding the space398

complexity, SHIELD can extend a NN into an en-399

semble model with a marginal increase of # of pa-400

rameters. Specifically, with B denoting # of param-401

eters of the base model, SHIELD has a space com-402

plexity of O(B+KU) while both Ensemble, DT403

and ADP have a complexity of O(KB) and U⌧B.404

In case of BERT with K=5, SHIELD only requires405

an additional 8.3%. While traditional ensemble406

methods require as many as 4 times additional407

parameters. During training, SHIELD only trains408

O(KU) parameters, while other defense methods,409

including ones using data augmentation, update all410

of them. Specifically, with K=5, SHIELD only411

trains 8% of the parameters of the base model and412

1.6% of the parameters of other BERT-based en-413

semble baselines. During inference, SHIELD is414

also 3 times faster than ensemble-based DT and415

ADP on average.416

Robustness Table 4 shows the performance of 417

SHIELD compared to the base models. Over- 418

all, SHIELD consistently improves the robustness 419

of base models in 154/168 (92%) cases across 420

14 adversarial attacks regardless of their attack 421

strategies. Particularly, all CNN, RNN, BERT and 422

RoBERTa-based textual models that are patched 423

by SHIELD witness relative improvements in the 424

average prediction accuracy from 15% to as much 425

as 70%. Especially in the case of detecting click- 426

bait, SHIELD can recover up to 5% margin within 427

the performance on clean examples in many cases. 428

This demonstrates that SHIELD provides a versa- 429

tile neural patching mechanism that can quickly 430

and effectively defends against black-box adver- 431

saries without making any assumptions on the at- 432

tack strategies. 433

We then compare SHIELD with all defense base- 434

lines under TextFooler (TF), DeepWordBug (DW), 435

and PWWS (PS) attacks. These attacks are selected 436

as (i) they are among the strongest attacks and (ii) 437

they provide foundation mechanisms upon which 438

other attacks are built. Table 5 shows that SHIELD 439

achieves the best robustness across all attacks and 440

datasets. On average, SHIELD observes an absolute 441

improvement from +9% to +18% in accuracy over 442

the second-best defense algorithms (DT in case 443

of RNN, and AdvT in case of BERT, RoBERTa). 444

Moreover, SHIELD outperforms other ensemble- 445

based baselines (DT, ADP), and can be applied on 446

top of a pre-trained BERT or RoBERTa model with 447

only around 8% additional parameters. However, 448

that # would increase to 500% (K 5) in the case 449

6

Dataset MR HS CB AVG
Attack TF DW PS TF DW PS TF DW PS

RNN 0.02 0.2 0.09 0.09 0.26 0.32 0.31 0.67 0.46 0.27
+Ens. 0.01 0.16 0.06 0.08 0.12 0.29 0.32 0.66 0.48 0.24
+DT 0.03 0.24 0.1 0.32 0.53 0.53 0.35 0.66 0.5 0.36
+ADP 0.02 0.18 0.09 0.18 0.27 0.35 0.33 0.66 0.47 0.28
+Mixup 0.01 0.14 0.04 0.07 0.42 0.29 0.27 0.64 0.44 0.26
+AdvT 0.01 0.3 0.09 0.17 0.18 0.35 0.33 0.69 0.51 0.29
+ScRNN 0.03 0.17 0.08 0.15 0.16 0.32 0.33 0.68 0.47 0.27
+SHIELD 0.18 0.44 0.3 0.26 0.61 0.54 0.78 0.9 0.85 0.54

BERT 0.09 0.2 0.19 0.26 0.16 0.38 0.49 0.5 0.49 0.31
+Mixup 0.11 0.3 0.22 0.15 0.19 0.22 0.39 0.48 0.57 0.29
+AdvT 0.11 0.25 0.19 0.37 0.47 0.47 0.69 0.73 0.81 0.45
+ScRNN 0.03 0.11 0.13 0.34 0.33 0.34 0.41 0.51 0.6 0.31
+SHIELD 0.26 0.42 0.35 0.42 0.55 0.43 0.92 0.95 0.94 0.58

RoBERTa 0.06 0.18 0.16 0.1 0.12 0.12 0.37 0.34 0.45 0.21
+Mixup 0.05 0.16 0.15 0.17 0.43 0.32 0.52 0.69 0.66 0.35
+AdvT 0.1 0.21 0.21 0.34 0.43 0.42 0.67 0.79 0.77 0.44
+ScRNN 0.04 0.18 0.15 0.19 0.38 0.32 0.57 0.74 0.7 0.36
+SHIELD 0.39 0.55 0.45 0.37 0.55 0.44 0.93 0.96 0.94 0.62
Underline: the second best result

Table 5: Accuracy of all defense baselines under TF,
DW and PS attack.

of DT and ADP, requiring over half a billion # of450

parameters.451

4 Discussion452

Performance under Budgeted Attacks. SHIELD453

not only improves the overall robustness of the454

patched NN model under a variety of black-box455

attacks, but also induces computational cost that456

can greatly discourage malicious actors to exercise457

adversarial attacks in practice. We define compu-458

tational cost as # of queries on a target NN model459

that is required for a successful attack. Since ad-460

versaries usually have an attack budget on # of461

model queries (e.g. a monetary budget, limited462

API access to the black-box model), the higher463

of queries required, the less vulnerable a target464

model is to adversarial threats. A larger budget is465

crucial for genetic-based attacks because they usu-466

ally require larger # of queries than greedy-based467

strategies. We have demonstrated in Sec. 3.2 that468

SHIELD is robust even when the attack budget is469

unlimited. Fig. 2 shows that the performance of470

RoBERTa after patched by SHIELD also reduces471

at a slower rate compared to the base RoBERTa472

model when the attack budget increases, especially473

under greedy-based attacks.474

Parameter Sensitivity Analyses. Training475

SHIELD requires hyper-parameter K,T, � and ⌧ .476

We observe that arbitrary value �=0.5,K=5, T=3477

Figure 2: Average accuracy of RoBERTa before and
after patched with SHIELD under greedy-based and
genetic-based attacks with different percentages of #
model queries up to 100% budget limit.

works well across all experiments. Although we 478

did not observe any patterns on the effects of K on 479

the robustness, a K�3 performs well across all at- 480

tacks. On the contrary, different pairs of the inverse- 481

temperature ⌧ during training and inference witness 482

varied performance w.r.t to different datasets. ⌧ 483

gives us the flexibility to control the sharpness of 484

the probability vector ↵. When ⌧!1, ↵ to get 485

closer to one-hot encoded vector, i.e., use only one 486

head at a time. By decreasing ⌧ : 0.1!0.001, we 487

involve more experts in final predictions. Table 488

A.5 (Appendix) shows the best ⌧ found using the 489

validation set as explained in Sec. 3.1. 490

Ablation Tests. This section tests SHIELD with 491

only either the SE or ME module. Table 6 shows 492

that SE and ME performs differently across differ- 493

ent datasets and models. Specifically, we observe 494

that ME performs better than the SE module in case 495

of Clickbait dataset, SE is better than the ME mod- 496

ule in case of Movie Reviews dataset and we have 497

mixed results in Hate Speech dataset. Nevertheless, 498

the final SHIELD model which comprises both the 499

SE and ME modules consistently performs the best 500

across all cases. This shows that both the ME and 501

SE modules are complementary to each other and 502

are crucial for SHIELD’s robustness. 503

5 Limitations and Future Work 504

In this paper, we limit the architecture of each ex- 505

pert to be an FCN with a maximum of 3 hidden 506

layers (except the base model). If we include more 507

options for this architecture (e.g., attention (Luong 508

et al., 2015)), sub-models’ diversity will signifi- 509

cantly increase. The design of SHIELD is model- 510

agnostic and is also applicable to other complex 511

and large-scale NNs such as transformers-based 512

models. Especially with the recent adoption of 513

transformer architecture in both NLP and com- 514

puter vision (Carion et al., 2020; Chen et al., 2020), 515

potential future work includes extending SHIELD 516

7

Dataset Movie Reviews Hate Speech Clickbait
Attack TF DW PS TF DW PS TF DW PS
RNN 0.02 0.2 0.09 0.09 0.26 0.32 0.31 0.67 0.46
+SE Only 0.02 0.17 0.08 0.09 0.2 0.32 0.52 0.72 0.61
+ME Only 0.02 0.14 0.07 0.13 0.03 0.01 0.57 0.79 0.61
+SHIELD 0.18 0.44 0.3 0.26 0.61 0.54 0.78 0.9 0.85
BERT 0.09 0.2 0.19 0.26 0.16 0.38 0.49 0.5 0.49
+SE Only 0.07 0.18 0.16 0.26 0.28 0.32 0.45 0.49 0.62
+ME Only 0.06 0.2 0.15 0.21 0.28 0.27 0.74 0.81 0.82
+SHIELD 0.26 0.42 0.35 0.37 0.55 0.44 0.92 0.95 0.94
RoBERTa 0.06 0.18 0.16 0.1 0.12 0.12 0.37 0.34 0.45
+SE Only 0.13 0.22 0.19 0.13 0.26 0.29 0.57 0.70 0.71
+ME Only 0.07 0.17 0.15 0.22 0.4 0.31 0.8 0.87 0.85
+SHIELD 0.39 0.55 0.45 0.37 0.55 0.44 0.93 0.96 0.94

Table 6: Complementary role of SE and ME.

to patch other complex NN models (e.g., T5 (Raf-517

fel et al., 2020)) or other tasks and domains such518

as Q&A and language generation. Although our519

work focus is not in robust transferability, it can520

accommodate so simply by unfreezing the base lay-521

ers f(x, ✓⇤L�1) in Eq. (1 during training with some522

sacrifice on running time.523

6 Related Work524

Defending against Black-Box Attacks. Most of525

previous works (e.g., (Le et al., 2021; Zhou et al.,526

2021; Keller et al., 2021; Pruthi et al., 2019; Dong527

et al., 2021; Mozes et al., 2020; Wang et al., 2021;528

Jia et al., 2019) in adversarial defense are designed529

either for a specific type (e.g., word, synonym-530

substitution as in certified training (Jia et al., 2019),531

misspellings (Pruthi et al., 2019)) or level (e.g.,532

character or word-based) of attack. Thus, they are533

usually evaluated against a small subset of (4)534

attack methods. Despite there are works that pro-535

pose general defense methods, they are often built536

upon adversarial training (Goodfellow et al., 2015)537

which requires training everything from scratch538

(e.g., (Si et al.; Miyato et al., 2016; Zhang et al.,539

2018) or limited to a set of predefined attacks (e.g.,540

(Zhou et al., 2019a)). Although adversarial training-541

based defense works well against several attacks542

on BERT and RoBERTa, its performance is far543

out-weighted by SHIELD (Table 5).544

Contrast to previous approaches, SHIELD ad-545

dresses not the characteristics of the resulted per-546

turbations from the attackers but their fundamental547

attack mechanism, which is most of the time an548

iterative perturbation optimization process (Fig. 1).549

This allows SHIELD to effectively defend against550

14 different black-box attacks (Table 1), showing551

its effectiveness in practice. To the best of our552

knowledge, by far, this works also evaluate with 553

the most comprehensive set of attack methods in 554

the adversarial text defense literature. 555

Ensemble-based Defenses. SHIELD is distin- 556

guishable from previous ensemble-based defenses 557

on two aspects. First, previous approaches such 558

as DT (Kariyappa and Qureshi, 2019), ADP (Pang 559

et al., 2019) are mainly designed for computer vi- 560

sion. Applying these models to the NLP domain 561

faces a practical challenge where training multi- 562

ple memory-intensive SOTA sub-models such as 563

BERT or RoBERTa can be very costly in terms of 564

space and time complexities. 565

In contrast, SHIELD enables to “hot-fix” a com- 566

plex NN by replacing and training only the last 567

layer, removing the necessity of re-training the en- 568

tire model from scratch. Second, previous meth- 569

ods (e.g., DT and ADP) mainly aim to reduce the 570

dimensionality of adversarial subspace, i.e., the 571

subspace that contains all adversarial examples, 572

by forcing the adversaries to attack a single fixed 573

ensemble of diverse sub-models at the same time. 574

This then helps improve the transferability of ro- 575

bustness on different tasks. However, our approach 576

mainly aims to dilute not transfer but direct attacks 577

by forcing the adversaries to attack stochastic, i.e., 578

different, ensemble variations of sub-models at ev- 579

ery inference passes. This helps SHIELD achieve a 580

much better defense performance compared to DT 581

and ADP across several attacks (Table 5). 582

7 Conclusion 583

This paper presents a novel algorithm, SHIELD, 584

which consistently improves the robustness of tex- 585

tual NN models under black-box adversarial at- 586

tacks by modifying and re-training only their last 587

layers. By extending a textual NN model of 588

varying architectures (e.g., CNN, RNN, BERT, 589

RoBERTa) into a stochastic ensemble of multi- 590

ple experts, SHIELD utilizes differently-weighted 591

sets of prediction heads depending on the input. 592

This helps SHIELD defend against black-box ad- 593

versarial attacks by breaking their most fundamen- 594

tal assumption–i.e., target NN models remain un- 595

changed during an attack. SHIELD achieves aver- 596

age relative improvements of 15%–70% in predic- 597

tion accuracy under 14 attacks on 3 public NLP 598

datasets, while still maintaining similar perfor- 599

mance on clean examples. Thanks to its model- 600

and domain-agnostic design, we expect SHIELD to 601

work properly in other NLP domains. 602

8

References603

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,604

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.605

2018. Generating natural language adversarial ex-606

amples. arXiv preprint arXiv:1804.07998.607

Ankesh Anand, Tanmoy Chakraborty, and Noseong608

Park. 2017. We used neural networks to detect click-609

baits: You won’t believe what happened next! In610

ECIR’17, pages 541–547. Springer.611

Ran Avnimelech and Nathan Intrator. 1999. Boosted612

mixture of experts: An ensemble learning scheme.613

Neural computation, 11(2).614

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-615

gio. Neural machine translation by jointly learning616

to align and translate. ICLR’15.617

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,618

Nicolas Usunier, Alexander Kirillov, and Sergey619

Zagoruyko. 2020. End-to-end object detection with620

transformers. ECCV’20.621

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,622

Nicole Limtiaco, Rhomni St John, Noah Constant,623

Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,624

et al. 2018. Universal sentence encoder. arXiv625

preprint arXiv:1803.11175.626

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, and627

Heewoo Jun. 2020. Generative pretraining from pix-628

els. In ICML’20.629

Minhao Cheng, Wei Wei, and Cho-Jui Hsieh. 2019.630

Evaluating and enhancing the robustness of dia-631

logue systems: A case study on a negotiation agent.632

ACL’19.633

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,634

and Yoshua Bengio. Empirical evaluation of gated635

recurrent neural networks on sequence modeling.636

NIPS’14 Workshop.637

Thomas Davidson, Dana Warmsley, Michael Macy,638

and Ingmar Weber. Automated hate speech detec-639

tion and the problem of offensive language. In640

ICWSM’17.641

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and642

Kristina Toutanova. 2019. Bert: Pre-training of deep643

bidirectional transformers for language understand-644

ing. In NAACL-HLT’19, pages 4171–4186.645

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and646

Hong Liu. 2021. Towards robustness against nat-647

ural language word substitutions. arXiv preprint648

arXiv:2107.13541.649

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing650

Dou. 2018. Hotflip: White-box adversarial exam-651

ples for text classification. In ACL’18. ACL.652

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-653

jun Qi. Black-box generation of adversarial text654

sequences to evade deep learning classifiers. In655

SPW’18. IEEE.656

Siddhant Garg and Goutham Ramakrishnan. 2020. 657

Bae: Bert-based adversarial examples for text clas- 658

sification. EMNLP’20. 659

Ian Goodfellow, Jonathon Shlens, and Christian 660

Szegedy. 2015. Explaining and harnessing adversar- 661

ial examples. In ICLR’15. 662

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine 663

Bosselut, David Golub, and Yejin Choi. 2018. 664

Learning to write with cooperative discriminators. 665

arXiv preprint arXiv:1805.06087. 666

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke 667

Zettlemoyer. 2018. Adversarial example generation 668

with syntactically controlled paraphrase networks. 669

In ACL’18, pages 1875–1885. 670

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat- 671

egorical reparameterization with gumbel-softmax. 672

ICLR’17. 673

Robin Jia, Aditi Raghunathan, Kerem Göksel, and 674

Percy Liang. 2019. Certified robustness to adversar- 675

ial word substitutions. EMNLP-IJCNLP’19. 676

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter 677

Szolovits. 2019. Is bert really robust? natural lan- 678

guage attack on text classification and entailment. 679

arXiv preprint arXiv:1907.11932. 680

Sanjay Kariyappa and Moinuddin K Qureshi. 2019. 681

Improving adversarial robustness of ensembles with 682

diversity training. arXiv preprint arXiv:1901.09981. 683

Yannik Keller, Jan Mackensen, and Steffen Eger. 2021. 684

Bert-defense: A probabilistic model based on bert 685

to combat cognitively inspired orthographic adver- 686

sarial attacks. arXiv preprint arXiv:2106.01452. 687

Yoon Kim. 2014. Convolutional neural networks for 688

sentence classification. In EMNLP’14. 689

Diederik P Kingma and Jimmy Ba. 2013. Adam: A 690

method for stochastic optimization. In ICLR’13. 691

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung 692

Lau, and Stefano Ermon. 2018. Adversarial ex- 693

amples for natural language classification problems, 694

2018. In URL https://openreview.net/forum. 695

Thai Le, Noseong Park, and Dongwon Lee. 2021. A 696

sweet rabbit hole by darcy: Using honeypots to 697

detect universal trigger’s adversarial attacks. In 698

ACL’21. 699

Thai Le, Suhang Wang, and Dongwon Lee. 2020. Mal- 700

com: Generating malicious comments to attack neu- 701

ral fake news detection models. In ICDM’20. IEEE. 702

Alexander Hanbo Li and Abhinav Sethy. 2019. Knowl- 703

edge enhanced attention for robust natural language 704

inference. arXiv preprint arXiv:1909.00102. 705

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris 706

Brockett, Ming-Ting Sun, and Bill Dolan. 2020a. 707

Contextualized perturbation for textual adversarial 708

attack. arXiv preprint arXiv:2009.07502. 709

9

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting710

Wang. 2018. TextBugger: Generating Adversarial711

Text Against Real-world Applications. NDSS’18.712

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,713

and Xipeng Qiu. 2020b. Bert-attack: Adversarial714

attack against bert using bert. EMNLP’20.715

Hanxiao Liu, Karen Simonyan, and Yiming Yang.716

2019a. DARTS: Differentiable architecture search.717

In ICLR’19.718

Kai Liu, Xin Liu, An Yang, Jing Liu, Jinsong Su, Su-719

jian Li, and Qiaoqiao She. 2020. A robust adversar-720

ial training approach to machine reading comprehen-721

sion. In AAAI’20, pages 8392–8400.722

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-723

dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,724

Luke Zettlemoyer, and Veselin Stoyanov. 2019b.725

Roberta: A robustly optimized bert pretraining ap-726

proach. arXiv preprint arXiv:1907.11692.727

Minh-Thang Luong, Hieu Pham, and Christopher D728

Manning. 2015. Effective approaches to attention-729

based neural machine translation. In EMNLP’15.730

Andrew Maas, Raymond E Daly, Peter T Pham, Dan731

Huang, Andrew Y Ng, and Christopher Potts. 2011.732

Learning word vectors for sentiment analysis. In733

Proceedings of the 49th annual meeting of the as-734

sociation for computational linguistics: Human lan-735

guage technologies, pages 142–150.736

Takeru Miyato, Andrew M Dai, and Ian Goodfellow.737

2016. Training methods for semi-supervised text738

classification. In ICLR’16.739

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,740

Di Jin, and Yanjun Qi. 2020. Textattack: A frame-741

work for adversarial attacks, data augmentation, and742

adversarial training in nlp. In EMNLP’19.743

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-744

berg, and Lewis D Griffin. 2020. Frequency-guided745

word substitutions for detecting textual adversarial746

examples. arXiv preprint arXiv:2004.05887.747

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-748

ing class relationships for sentiment categorization749

with respect to rating scales. In ACL’05.750

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun751

Zhu. 2019. Improving adversarial robustness via752

promoting ensemble diversity. In ICML’19.753

Tianyu Pang, Kun Xu, and Jun Zhu. 2020. Mixup infer-754

ence: Better exploiting mixup to defend adversarial755

attacks. In ICLR’20.756

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt757

Fredrikson, Z Berkay Celik, and Ananthram Swami.758

2016. The limitations of deep learning in adversarial759

settings. In EuroS&P’16, pages 372–387. IEEE.760

Jeffrey Pennington, Richard Socher, and Christopher D 761

Manning. 2014. Glove: Global vectors for word rep- 762

resentation. In EMNLP’14, pages 1532–1543. 763

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lip- 764

ton. 2019. Combating adversarial misspellings with 765

robust word recognition. In ACL’19. 766

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 767

Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 768

Wei Li, and Peter J Liu. 2020. Exploring the limits 769

of transfer learning with a unified text-to-text trans- 770

former. JMLR’20, 21. 771

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 772

2019. Generating natural language adversarial ex- 773

amples through probability weighted word saliency. 774

In ACL’19, pages 1085–1097. 775

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, 776

and Sameer Singh. 2020. Beyond accuracy: Behav- 777

ioral testing of nlp models with checklist. ACL’20. 778

Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan 779

Liu, Yasheng Wang, Qun Liu, and Maosong Sun. 780

Better robustness by more coverage: Adversarial 781

and mixup data augmentation for robust finetuning. 782

ACL’21 (Findings). 783

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 784

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 785

Kaiser, and Illia Polosukhin. 2017. Attention is all 786

you need. In NIPS’17, pages 5998–6008. 787

Wenqi Wang, Lina Wang, Run Wang, Zhibo Wang, 788

and Aoshuang Ye. 2019a. Towards a robust deep 789

neural network in texts: A survey. arXiv preprint 790

arXiv:1902.07285. 791

Xiaosen Wang, Hao Jin, and Kun He. 2019b. Natural 792

language adversarial attacks and defenses in word 793

level. arXiv preprint arXiv:1909.06723. 794

Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He. 795

2021. Adversarial training with fast gradient projec- 796

tion method against synonym substitution based text 797

attacks. In AAAI. 798

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, 799

Meng Zhang, Qun Liu, and Maosong Sun. 2020. 800

Word-level textual adversarial attacking as combina- 801

torial optimization. In ACL’20, pages 6066–6080. 802

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji 803

Zhang, Bairu Hou, Yuan Zang, Zhiyuan Liu, and 804

Maosong Sun. 2021. Openattack: An open-source 805

textual adversarial attack toolkit. In Proceedings of 806

the 59th Annual Meeting of the Association for Com- 807

putational Linguistics and the 11th International 808

Joint Conference on Natural Language Processing: 809

System Demonstrations, pages 363–371. 810

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, 811

and David Lopez-Paz. 2018. mixup: Beyond em- 812

pirical risk minimization. In ICLR’18. 813

10

https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43

Zhengli Zhao, Dheeru Dua, and Sameer Singh.814

2018. Generating natural adversarial examples. In815

ICLR’18.816

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei817

Chang, and Xuanjing Huang. 2021. Defense against818

synonym substitution-based adversarial attacks via819

dirichlet neighborhood ensemble. ACL’21.820

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei821

Wang. 2019a. Learning to discriminate perturba-822

tions for blocking adversarial attacks in text classi-823

fication. arXiv preprint arXiv:1909.03084.824

Zhixuan Zhou, Huankang Guan, Meghana Moorthy825

Bhat, and Justin Hsu. 2019b. Fake news detection826

via nlp is vulnerable to adversarial attacks. arXiv827

preprint arXiv:1901.09657.828

11

Model/Dataset MR HS CB AVG
CNN 0.719 0.900 0.966 0.862
+Ens. 0.770 0.881 0.975 0.875
+DT 0.767 0.890 0.972 0.876
+ADP 0.764 0.885 0.977 0.875
+Mixup 0.711 0.867 0.965 0.848
+AdvT 0.772 0.884 0.977 0.878
+ScRNN 0.758 0.854 0.972 0.861
+SHIELD 0.787 0.893 0.974 0.885

Table A.1: Prediction performance in F1 on clean ex-
amples of CNN-based NN models.

Dataset MR HS CB
Attack Bef. Aft. Bef. Aft. Bef. Aft.
SCPNA 0.35 0.41 0.27 0.4 0.58 0.53
TB 0.15 0.35 0.23 0.48 0.79 0.82
DW 0.13 0.38 0.1 0.32 0.71 0.86
Kuleshov 0.01 0.13 0.01 0.11 0.43 0.63
TF 0.01 0.19 0.03 0.19 0.44 0.74
IGA 0.05 0.23 0.1 0.2 0.6 0.71
Pruthi 0.49 0.54 0.47 0.59 0.94 0.9
PS 0.05 0.28 0.13 0.34 0.56 0.81
Alzantot 0.22 0.3 0.29 0.36 0.82 0.75
BAE 0.45 0.5 0.43 0.55 0.77 0.85
BERTK 0.0 0.2 0.01 0.18 0.32 0.61
PSO 0.03 0.03 0.23 0.34 0.58 0.56
Checklist 0.7 0.77 0.87 0.88 0.98 0.98
Clare 0.11 0.3 0.48 0.67 0.6 0.81
Average 0.2 0.33 0.26 0.4 0.65 0.75
Relative "% "65.0% "53.85% "15.38%

Table A.2: Accuracy of CNN-based NN models under
adversarial attacks before (Bef.) and after (Aft.) being
patched with SHIELD.

Dataset MR HS CB AVG
Attack TF DW PS TF DW PS TF DW PS

CNN 0.01 0.13 0.06 0.03 0.1 0.14 0.45 0.7 0.57 0.24
+Ens. 0.02 0.16 0.07 0.08 0.2 0.26 0.72 0.87 0.78 0.35
+DT 0.03 0.16 0.07 0.08 0.25 0.28 0.75 0.87 0.8 0.37
+ADP 0.0 0.11 0.04 0.08 0.19 0.21 0.19 0.67 0.44 0.21
+Mixup 0.03 0.18 0.1 0.07 0.32 0.24 0.13 0.6 0.37 0.23
+AdvT 0.02 0.17 0.07 0.1 0.18 0.27 0.33 0.73 0.55 0.27
+ScRNN 0.03 0.24 0.11 0.06 0.14 0.22 0.36 0.69 0.54 0.27
+SHIELD 0.19 0.38 0.28 0.19 0.32 0.34 0.74 0.86 0.81 0.46
Underline: the second best result

Table A.3: Accuracy of all defense baselines under TF,
DW and PS attack on CNN-based NN models.

A ADDITIONAL RESULTS829

• Table A.1 shows the performance on clean ex-830

amples of all defense methods on CNN-based831

NN models.832

• Table A.2 shows the performance of SHIELD833

against all 14 black-box attacks on CNN-based834

NN models.835

Dataset MR HS CB
Attack TF DW PS TF DW PS TF DW PS
CNN 0.01 0.13 0.06 0.03 0.1 0.14 0.45 0.7 0.57
+SE Only 0.02 0.15 0.07 0.24 0.42 0.42 0.46 0.64 0.61
+ME Only 0.18 0.19 0.07 0.1 0.25 0.29 0.60 0.80 0.69
+SHIELD 0.19 0.38 0.28 0.19 0.32 0.34 0.74 0.86 0.81

Table A.4: Ablation test of the SE and ME modules on
CNN-based model.

Model Train Test
MR HS CB MR HS CB

CNN+SHIELD 1e-2 1 1 1e-1 1e-1 1e-1

RNN+SHIELD 1 1e-2 1e-3 1e-3 1e-3 1

BERT+SHIELD 1e-2 1e-1 1 1e-1 1e-2 1e-3

RoBERTa+SHIELD 1 1 1e-3 1e-3 1e-3 1e-3

Table A.5: Inverse of the final hyper-parameter ⌧ ’ val-
ues for the selected best SHIELD model for all datasets.

• Table A.3 compares the performance of SHIELD 836

with all defense baselines on CNN-based NN 837

models. SHIELD outperforms all baselines on 838

average. 839

• Table A.4 shows the ablation test of SHIELD on 840

CNN-based NN models. 841

• Table A.5 shows the final ⌧ parameters found 842

using brute-force search on the validation set 843

as described in Sec. 3.1. We use this set of 844

parameters to evaluate all the performance under 845

adversarial attacks throughout the paper. 846

B REPRODUCIBILITY 847

B.1 Infrastructure and Source Code 848

• Software: All the implementations are written 849

in Python (v3.7) with Pytorch (v1.5.1), Numpy 850

(v1.19.1), Scikit-learn (v0.21.3). We rely on 851

Transformers (v3.0.2) library for loading and 852

training transformers-based models (e.g., BERT, 853

RoBERTa). 854

• Hardware: We run all of the experiments on 855

standard server machines installed with Ubuntu 856

OS (v18.04), 20-Core Intel(R) Xeon(R) Silver 857

4114 CPU @ 2.20GHz, 93GB of RAM, and a 858

Titan Xp GPU. 859

• Dataset: We use the python library datasets 860

(v.1.2.0) 1 by Hugginface to load all the 861

1 https://huggingface.co/docs/datasets/#

12

benchmark datasets used in the paper. They862

are also available to download at the fol-863

lowing links: Movie Reviews (http://864

www.eraserbenchmark.com/zipped/865

movies.tar.gz), Clickbait (https:866

//github.com/saurabhmathur96/867

clickbait-detector), Hate Speech868

(https://github.com/t-davidson/869

hate-speech-and-offensive-language/870

raw/master/data/labeled_data.871

csv).872

• Random Seed: To ensure reproducibility,873

we set a consistent random seed using874

torch.manual_seed and np.random.seed func-875

tion for all experiments.876

• Source Code: We will also release the source877

code of SHIELD upon acceptance of this paper.878

B.2 Experimental Settings for Base Models879

B.2.1 Architectures and Parameters880

• CNN: We implement the CNN sentence classifi-881

cation model (Kim, 2014) with three 2D CNN882

layers, each of which is followed by a Max-883

Pooling layer. Concatenation of outputs of all884

Max-Pooling layers is fed into a Dropout layer885

with 0.5 probability, then an FCN + Softmax for886

prediction. We use an Embedding layer of size887

300 with pre-trained GloVe embedding-matrix888

to transform each discrete text tokens into con-889

tinuous input features before feeding them into890

the CNN network. Each of CNN layers uses 150891

kernels with a size of 2, 3, 4, respectively.892

• RNN: Because the original PyTorch implemen-893

tation of RNN does not support double back-894

propagation on CuDNN, which is required by895

DT and SHIELD to run the model on GPU, we896

use a publicly available Just-in-Time (JIT) ver-897

sion of GRU of one hidden layer as RNN cell.898

We use an Embedding layer of size 300 with899

pre-trained GloVe embedding-matrix to trans-900

form each discrete text tokens into continuous901

input features before inputting them into the902

RNN layer. We flatten out all outputs of the903

RNN layer, followed by a Dropout layer with904

0.5 probability, then an FCN + Softmax for pre-905

diction.906

• BERT & RoBERTa: We use the transformers907

library from HuggingFace to fine-tune BERT908

and RoBERTa model. We use the bert-base- 909

uncased version of BERT and the RoBERTa- 910

base version of RoBERTa. 911

B.2.2 Vocabulary and Input Length 912

Due to limited GPU memory, we set the maxi- 913

mum length of inputs for transformer-based mod- 914

els, i.e., BERT and RoBERTa, to 128 during train- 915

ing. For CNN and RNN-based models, we use all 916

the vocabulary tokens that can be extracted from 917

the training set, and we use all of the vocabulary 918

tokens provided by pre-trained models for BERT 919

and RoBERTa-based models. 920

B.3 Experimental Settings for Defense 921

Methods 922

1. SHIELD: For hyper-parameter �, K and T , we 923

arbitrarily set � 0.5, K 5 and T 3 and they 924

work well across all datasets. For ⌧ , we already 925

described how to choose the best pair of ⌧ during 926

training and testing in Sec. 3.1. 927

2. Ensemble: We train an ensemble model of 5 sub- 928

models, all of which have the same architecture 929

as the base model. We use the average loss of all 930

sub-models as the final loss to train the model. 931

3. DT: We follow the implementation described 932

in Section 3 of the original paper (Kariyappa 933

and Qureshi, 2019) and train an ensemble DT 934

model with 5 sub-models, all of which have the 935

same architecture as the base model. We set the 936

hyper-parameter � 0.5 as suggested by the 937

original paper. 938

4. ADP: We follow the implementation described 939

in Section 3 of the original paper (Pang et al., 940

2019) and train an ensemble ADP model with 941

5 sub-models, all of which have the same ar- 942

chitecture as the base model. We set the hyper- 943

parameters required by ADP to default values 944

(↵ 1.0 and � 0.5) as suggested by the 945

original implementation. 946

5. Mix-up Training (Mix): We sample � 2 947

Beta(1.0, 1.0) as suggested by the implementa- 948

tion provided by the original paper (Zhang et al., 949

2018). 950

6. Adversarial Training: We use a 1:1 ratio be- 951

tween original training samples and adversarial 952

training samples as suggested by (Miyato et al., 953

13

http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv

2016). We specifically use the AT method as de-954

scribed in Sec. 3 of the original paper (Miyato955

et al., 2016).956

7. ScRNN: We use the implementation and pre-957

trained model provided by the original paper958

(Pruthi et al., 2019) that is available at https:959

//github.com/danishpruthi/960

Adversarial-Misspellings.961

B.4 Experimental Settings for Attack962

Methods963

Since we use external open-source TextAttack (Mor-964

ris et al., 2020) 2 and OpenAttack (Zeng et al.,965

2021) framework for evaluating the performance966

of SHIELD and all defense baselines under adver-967

sarial attacks, implementation of all the attacks are968

publicly available. Specifically, we use the TextAt-969

tack framework for evaluating all the word- and970

character-level attacks, and use the OpenAttack for971

evaluating the sentence-level attack SCPNA.972

B.5 Experimental Settings for Training and973

Evaluation974

For every dataset, we train a single SHIELD model975

with the best ⌧ parameters and evaluate this model976

with all of the adversarial attacks. In other words,977

since we have a total of 3 datasets (Movie Reviews,978

Hate Speech, Clickbait) and 4 base architectures979

(CNN, RNN, BERT, RoBERTa), we train a total980

of 12 SHIELD models for evaluation. This is done981

to ensure that we can evaluate the versatility of982

SHIELD’s robustness against different types of at-983

tacks without making any assumptions on their984

strategies. During training, we use a batch size985

of 32, learning rate of 0.005, gradient clipping of986

10.0.987

For every attack evaluation, we generate a new988

set of adversarial examples for every pair of attack989

method and target model. In other words, since990

we have a total of 14 different attack methods, 3991

datasets, and 4 possible architectures for the base992

models, this results in a total of 168 different sets993

of adversarial examples to evaluate in Table 4.994

2 https://github.com/QData/TextAttack

14

https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/QData/TextAttack

