
Under review as a conference paper at ICLR 2021

COLES: CONTRASTIVE LEARNING FOR EVENT SE-
QUENCES WITH SELF-SUPERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of self-supervised learning on discrete event sequences
generated by real-world users. Self-supervised learning incorporates complex in-
formation from the raw data in low-dimensional fixed-length vector representations
that could be easily applied in various downstream machine learning tasks. In this
paper, we propose a new method CoLES, which adopts contrastive learning, previ-
ously used for audio and computer vision domains, to the discrete event sequences
domain in a self-supervised setting. Unlike most previous studies, we theoretically
justify under mild conditions that the augmentation method underlying CoLES
provides representative samples of discrete event sequences. We evaluated CoLES
on several public datasets and showed that CoLES representations consistently
outperform other methods on different downstream tasks.

1 INTRODUCTION

A promising and rapidly growing approach known as self-supervised learning1 is the main choice for
pre-training in situations where the amount of labeled data for the target task of interest is limited.
Most of the research in the area of self-supervised learning has been focused on the core machine
learning domains, including NLP (e.g., ELMO (Peters et al., 2018), BERT (Devlin et al., 2019)),
speech (e.g., CPC (van den Oord et al., 2018)) and computer vision (Doersch et al., 2015; van den
Oord et al., 2018). However, there has been very little research on self-supervised learning in the
domain of discrete event sequences, including user behavior sequences (Ni et al., 2018) such as
credit card transactions at banks, phone calls and messages at telecom, purchase history at retail and
click-stream data of online services. Produced in many business applications, such data is a major key
to the growth of modern companies. User behavior sequence is attributed to a person and captures
regular and routine actions of a certain type. The analysis of these sequences constitutes an important
sub-field of machine learning (Laxman et al., 2008; Wiese and Omlin, 2009; Zhang et al., 2017;
Bigon et al., 2019).

NLP, audio and computer vision domains are similar in the sense that the data of this type is
"continuous": a short term in NLP can be accurately reconstructed from its context (like a pixel from
its neighboring pixels). This fact underlies popular NLP approaches for self-supervision such as
BERT’s Cloze task (Devlin et al., 2019) and approaches for self-supervision in audio and computer
vision, like CPC (van den Oord et al., 2018). In contrast, for many types of event sequence data, a
single token cannot be determined using its nearby tokens, because the mutual information between a
token and its context is small. For this reason, most state-of-the-art self-supervised methods are not
applicable to event sequence data.

In this paper, we propose the COntrastive Learning for Event Sequences (CoLES) method that learns
low-dimensional representations of discrete event sequences. It is based on a novel theoretically
grounded data augmentation strategy, which adapts the ideas of contrastive learning (Xing et al.,
2002; Hadsell et al., 2006) to the discrete event sequences domain in a self-supervised setting. The
aim of contrastive learning is to represent semantically similar objects (positive pairs of images,
video, audio, etc.) closer to each other, while dissimilar ones (negative pairs) further away. Positive
pairs are obtained for training either explicitly, e.g., in a manual labeling process or implicitly
using different data augmentation strategies (Falcon and Cho (2020)). We treat explicit cases as a

1See, e.g., keynote by Yann LeCun at ICLR-20: https://www.iclr.cc/virtual_2020/speaker_7.html

1



Under review as a conference paper at ICLR 2021

supervised approach and implicit cases as a self-supervised one. In most applications, where each
person is represented by one sequence of events, there are no explicit positive pairs, and thus only
self-supervised approaches are applicable. Our CoLES method is self-supervised and based on the
observation that event sequences usually possess periodicity and repeatability of their events. We
propose and theoretically justify a new augmentation algorithm, which generates sub-sequences of an
observed event sequence and uses them as different high-dimensional views of the same (sequence)
object for contrastive learning.

Representations produced by the CoLES model can be used directly as a fixed vector of features in
some supervised downstream task (e. g. classification task) similarly to (Mikolov et al., 2013; Song
et al., 2017; Zhai et al., 2019). Alternatively, the trained CoLES model can be fine-tuned (Devlin
et al., 2019) for the specific downstream task. We applied CoLES to several user behavior sequence
datasets with different downstream classification tasks. When used directly as feature vectors, CoLES
representations achieve strong performance comparable to the hand-crafted features produced by data
scientists. We demonstrate that fine-tuned CoLES representations consistently outperform methods
based on other representations by a significant margin. We provide the full source code for all the
experiments described in the paper2.

This paper makes the following contributions: (1) We present the CoLES method that adapts
contrastive learning in the self-supervised setting to the discrete event sequence domain. (2) We
propose a novel theoretically grounded augmentation method for discrete event sequences. (3) We
demonstrate that CoLES consistently outperforms previously introduced supervised, self-supervised
and semi-supervised learning baselines adapted to the event sequence domain. We also conducted a
pilot study on event sequence data of a large European bank. We tested CoLES against the baselines
and achieved superior performance on downstream tasks which produced significant financial gains,
measured in hundreds of millions of dollars yearly.

The rest of the paper is organized as follows. In the next section, we discuss related studies on
self-supervised and contrastive learning. In Section 3 we introduce our new method CoLES for
discrete event sequences. In Section 4 we demonstrate that CoLES outperforms several strong
baselines including previously proposed contrastive learning methods adapted to event sequence
datasets. Section 5 is dedicated to the discussion of our results and conclusions.

2 RELATED WORK

Contrastive learning has been successfully applied to constructing low-dimensional representa-
tions (embeddings) of various objects, such as images (Chopra et al., 2005; Schroff et al., 2015),
texts (Reimers and Gurevych, 2019), and audio recordings (Wan et al., 2018). The aim of these
studies is to identify the object based on its sample (Schroff et al., 2015; Hu et al., 2014; Wan et al.,
2018). Therefore, their training datasets explicitly contain several independent samples per each
particular object, which form positive pairs as a critical component for learning. These supervised
approaches are not applicable to our setting.

For situations when positive pairs are not available or their amount is limited, augmentation techniques
were proposed in the computer vision domain. One of the first frameworks with augmentation was
proposed by Dosovitskiy et al. (2014). In this work, surrogate classes for model training were
introduced using augmentations of the same image. Several recent works (Bachman et al., 2019; He
et al., 2019; Chen et al., 2020) extended this idea by applying contrastive learning methods, they
are nicely summarised by Falcon and Cho (2020). Although augmentation techniques proposed in
these studies provide good performance empirically, we note that no theoretical background behind
different augmentation approaches has been proposed so far.

Contrastive Predictive Coding (CPC) is a self-supervised learning approach proposed for non-discrete
sequential data (van den Oord et al., 2018). CPC extracts meaningful representations by predicting
latent representations of future observations of the input sequence and using autoregressive methods.
CPC representations demonstrated strong performance on four distinct domains: audio, computer
vision, natural language and reinforcement learning. We adapted the CPC based approach to the
domain of discrete event sequences and compared it with our CoLES approach (see Section 4.2).

2https://github.com/***/*** (the link was anonymized for the double-blind peer review purposes)

2



Under review as a conference paper at ICLR 2021

Independently of our study, several papers appeared in the past few months on self-supervision for
user behavior sequences in the recommender systems domain. Zhou et al. (2020a) proposed to use
a CPC-like approach for self-supervised learning on user clicks history. Ma et al. (2020) used an
auxiliary self-supervised loss on click sequences. Zhou et al. (2020b) proposed "Cloze" task from
BERT (Devlin et al., 2019) for self-supervision on purchase sequences. Finally, Yao et al. (2020)
adapts a SimCLR-like approach for text-based tasks and tabular data. Although there has been
significant progress on contrastive learning, augmentation for contrastive learning does not have any
theoretical grounding and is understudied in the domain of discrete event sequences.

3 PROBLEM FORMULATION AND OVERVIEW OF THE COLES METHOD

3.1 PROBLEM FORMULATION

While the method proposed in this paper could be studied in different domains, in this paper we focus
on discrete sequences of events. Assume there are some entities e, and the life activity of each entity e
is observed as a sequence of events xe := {xe(t)}Te

t=1. Entities could be people or organizations or
some other abstractions. Events xe(t) may have any nature and structure (e.g., transactions of a client,
click logs of a user), and their components may contain numerical, categorical, and textual fields (see
datasets description in Section 4).

According to theoretical framework of contrastive learning proposed in Saunshi et al. (2019), each
entity e is a latent class, which is associated with a distribution Pe over its possible samples (event
sequences). However, unlike the problem setting of Saunshi et al. (2019), we have no positive pairs,
i.e. pairs of event sequences representing the same entity e. Instead, we have only one sequence xe
per entity e. Formally, each entity e is associated with a latent stochastic process {Xe(t)}Te

t=1, and
we observe only one realisation {xe(t)}Te

t=1 generated by the process {Xe(t)}. Our goal is to learn
an encoder M that maps event sequences into a feature space Rd in such a way that the obtained
embedding ce = M({xe}) ∈ Rd of sequence {xe(t)}Te

t=1 encodes essential properties of e and
disregards any randomness and noise contained in the sequence. That is, embeddings M({x1}) and
M({x2}) should be close to each other, if x1 and x2 are sequences generated by the same process
{Xe(t)}, and they should be further away, when generated by distinct processes. The quality of
representations can be examined by downstream tasks in the two ways: (1) ce can be used as a feature
vector for a task–specific model, and (2) encoder M can also be (jointly) fine-tuned (Yosinski et al.,
2014).

3.2 SAMPLING OF SURROGATE SEQUENCES AS AN AUGMENTATION PROCEDURE

While we have no access to the latent processes {Xe(t)}, we need to use augmentation. Most
augmentation techniques proposed earlier for continuous domains (such as image jitter, color jitter
or random gray scale in computer vision, see Falcon and Cho (2020)) are not applicable to discrete
events. A possible approach for augmentation is generating sub-sequences of the same event sequence
{xe(t)}. The idea proposed below resembles the bootstrap method (Efron and Tibshirani, 1994),
which enables to generate several bootstrap samples using only one sample of independent datapoints
of a latent distribution. However, our setting is different, since we have no independent observations,
so we should rely on different data assumptions. The key property of event sequences that represent
life activity is periodicity and repeatability of its events (see Figure 4 in the Appendix D for the
empyrical observations of these properties for the considered datasets). This is a motivation for the
Random slices sampling method applied in CoLES, as presented in Algorithm 1. Each sub-sequence
is generated from the initial sequence as its connected segment ("slice") using the following three
steps. First, the length of the slice is chosen uniformly from possible values. Second, its starting
position is uniformly chosen from all possible values. Third, too short (and optionally too long)
sub-sequences are discarded. It could seem that the mean length of obtained sub-sequences are less
than the mean length of sequences in the dataset. However, we show in the next section that the
distribution of sub-sequences is close to the initial distribution in some realistic assumptions. The
overview of the CoLES method is presented in Figure 1.

3



Under review as a conference paper at ICLR 2021

User 1 event sequence

sub-sequence 1
sub-sequence 2

CoLES
Encoder

User 2 event sequence

sub-sequence 3

sub-sequence 4

Minimize
distance

Maximize
distance

Minimize
distance

Embedding vectors

Embedding vectors

CoLES
Encoder

Figure 1: General framework

Algorithm 1: Random slices sub-sequence generation strategy
hyperparameters: m,M : minimal and maximal possible length of a sub-sequence
k: number of trials.
input: A sequence S of length T .
output: S: sub-sequences of S.

for i← 1 to k do
Generate random integer Ti uniformly from [1, T ];
if Ti ∈ [m,M ] then

Generate random integer s from [0, T − Ti − 1];
Add Si := S[s : s+ Ti − 1] to S

end

3.3 THEORETICAL ANALYSIS

Assume that process {Xe(t)}Te
t=1 is a segment of a latent process {X̂e(t)}∞t=1, which generates

sequence of all events in the potentially infinite life of entity e. That is, we assume that Xe(t) =

X̂e(t+ se) for some random starting point se ∈ {0, 1, . . .} and horizon Te. Thus we observe, in our
data, segment [se + 1, se + Te] of the life of e. We also make the following Assumptions:

1. Process {X̂e(t)}∞t=1 is cyclostationary (in the strict sense) (Gardner et al., 2006) with some
period T̂ .

2. Starting se is independent, and the distribution of (se mod T̂ ) is uniform over [0, T̂ − 1].

3. Horizon Te is independent and follows a power–law distribution on [m,∞].

These assumptions correspond to a scenario where some persons become clients of a service at a
random moment and for some random time span and their behaviour obey some periodicity.

Theorem 1. If sequences {xe(t)} in the dataset are generated from latent processes {X̂e(t)} as
described above with a lower bound m for the length of a sequence {xe(t)}, then sub-sequences
obtained by Algorithm 1 from {xe(t)} follow the same distribution as {xe(t)} up to a slight alteration
of the distribution of the length Te. Namely, if Te follows power law with an exponent α < −1, then
the density function for the length T ′e of a sub-sequence satisfy(

m− 1

m

)−α
p(Te = k) ≤ p(T ′e = k) ≤

(
k

k − 1/2

)−α
p(Te = k) for any k ∈ [m,∞]. (1)

This theorem means that a sub-sequence obtained by Algorithm 1 is a representative sample of
entity e and follows its latent distribution Pe. Combining this result with generalization guarantees
proved for setting with explicitly observed positive pairs (Saunshi et al. (2019)), we obtain theoretical
background for our implicit self-supervised setting. See Appendix C for the proof of Theorem 1.

4



Under review as a conference paper at ICLR 2021

3.4 MODEL TRAINING

Batch generation. The following procedure creates a batch during CoLES training. N initial
sequences are randomly taken and K sub-sequences are produced for each of them. Pairs of sub-
sequences of the same sequence are used as positive samples and pairs from different sequences are
used as negative ones.

We consider several baseline empirical strategies for the sub-sequence generation to compare with
Algorithm 1. The simplest strategy is random sampling without replacement. One more strategy is to
produce sub-sequences by the random splitting of the initial sequence to several connected segments
without intersection between them (see Appendix A).

Contrastive loss We consider a classical variant of the contrastive loss, proposed by (Hadsell
et al., 2006): L = (1 − Y ) 12 (D

i
W )2 + Y ∗ 1

2{max(0,m − Di
W )}2, where Di

W is a distance
function between embeddings in i-th labeled sample pair, Y is a binary variable identifying that
the pair is positive. As proposed in (Hadsell et al., 2006), we use euclidean distance function:
Di
W = D(A,B) =

√∑
i(Ai −Bi)2.

Pair distance calculation. In order to select negative samples, we need to compute the pairwise
distance between all possible pairs of embedding vectors of a batch. For the purpose of making this
procedure more computationally effective we perform normalization of the embedding vectors, i.e.
project them onto a hyper-sphere of the unit radius (see Appendix B).

Negative sampling is a way to address the following challenge of the contrastive learning approach:
using all pairs of samples can be inefficient: for example, some of the negative pairs are already
distant enough, thus these pairs are not valuable for the training (Simo-Serra et al., 2015; Schroff
et al., 2015). Hence, only a part of possible negative pairs in the batch are used during loss calculation.
We compared the most popular choices for negative sampling applied for CoLES, see Section 4.2 for
details.

3.5 ENCODER ARCHITECTURE

To embed a sequence of events to the fixed-size vector, we use an encoder network, which consists of
two conceptual parts: the event encoder and the sequence encoder subnetworks.

The event encoder e takes the set of attributes of each single event xt and outputs its representation
in the latent space Rd: zt = e(xt). The event encoder consists of several embedding layers and batch
normalization layers. Each categorical attribute is encoded by its corresponding embedding layer.
Batch normalization is applied to numerical attributes of events. Outputs of all embedding and batch
normalization layers are concatenated to produce latent representation zt.

The sequence encoder s takes latent representations of the sequence of events: z1:T = z1, z2, · · · zT
and outputs the representation of the whole sequence ct in the time-step t: ct = s(z1:t). Several
approaches can be used to encode a sequence (Cho et al., 2014; Vaswani et al., 2017) . In our
experiments we use the recurrent network (RNN) similarly to (Sutskever et al., 2014). The output
produced for the last event is used to represent the whole sequence of events. In the case of RNN the
last output ht is a representation of the sequence.

To summarise, the CoLES method consists of three major ingredients: event sequence encoder,
positive and negative pair generation strategy and the loss function for contrastive learning.

4 EXPERIMENTS

We compare our method with existing baselines on several publicly available datasets from various
data science competitions. We chose datasets with sufficient amounts of discrete events per user.

Age group prediction competition3. The dataset of 44M anonymized credit card transactions
representing 50k persons was used to predict the age group of a person. The label is known for
30k persons, other 20k are unlabelled. The group ratio is balanced in the dataset. Each transaction
includes the date, type, and amount being charged.

3https://ods.ai/competitions/sberbank-sirius-lesson

5



Under review as a conference paper at ICLR 2021

Churn prediction competition4. The dataset of 1M anonymized card transactions representing 10K
clients was used to predict a churn probability. Each transaction is characterized by date, type, amount
and Merchant Category Code. 5k clients have labels, 5.2k clients haven’t labels. Target is binary,
almost balanced with proportions 0.55 and 0.45.

Assessment prediction competition5. The task is to predict the in-game assessment results based
on the history of children’s gameplay data. Target is one of 4 grades, with proportions 0.50, 0.24,
0.14, 0.12. The dataset consists of 12M gameplay events combined in 330k gameplays representing
18k children. 17.7k gameplays are labeled, the remaining 312k gameplays are not labeled. Each
gameplay event is characterized by timestamp, event code, the incremental counter of events within a
game session, time since the start of the game session, etc.

Retail purchase history age group prediction6. The task is to predict the age group of a client
based on its retail purchase history. The group ratio is balanced in the dataset. Only labeled data is
used. The dataset consists of 45,8M retail purchases representing 400k clients. Each purchase is
characterized by time, product level, segment, amount, value, loyalty program points received.

As we can see in Figure 3 (Appendix D), these datasets satisfy the power law assumption for the
sequence length distribution of Theorem 1. Also, as shown in Figure 4 (Appendix D) the datasets
satisfy the periodicity and repeatability assumption.

Dataset split. For each dataset, we set apart 10% persons from the labeled part of the data as the
test set that we used for evaluation of different models. The rest 90% of labeled data and unlabeled
data constitute our training set used for learning. For all methods, a random search on 5-fold cross-
validation over the training set is used for hyper-parameter selection. The hyper-parameters with the
best out-of-fold performance are then chosen. For the learning of semi-supervised/self-supervised
techniques (including CoLES), we used all transactions of training sets including unlabeled data. The
unlabelled parts of the datasets were ignored while training supervised models.

Performance. Neural network training was performed on a single Tesla P-100 GPU card. For the
training part of CoLES, the single training batch is processed in 142 milliseconds. For example,
in the age group prediction dataset the single training batch contains 64 unique persons with 5
sub-sequences per person, i.e. 320 training sub-sequences in total, the mean number of transactions
in a sub-sequence is 90, hence each batch contains about 28800 transactions.

Hyperparameters Unless we explicitly specify, we use contrastive loss and random slices pair
generation strategy for CoLES in our experiments (see Section 4.2 for motivation). The final set of
hyper-parameters used for CoLES is shown in the Appendix E, Table 5.

4.1 BASELINES

LightGBM. We consider the Gradient Boosting Machine (GBM) method (Friedman, 2001) on
hand-crafted features. GBM can be considered as a strong baseline in cases of tabular data with
heterogeneous features. (Wu et al., 2009; Vorobev et al., 2019; Zhang and Haghani, 2015; Niu et al.,
2019). GBM based model requires a large number of hand-crafted aggregate features produced from
the raw transactional data. An example of an aggregate feature is an average spending amount in
some categories of merchants, such as hotels of the entire transaction history. We used LightGBM (Ke
et al., 2017) implementation of the GBM algorithm with nearly 1,000 hand-crafted features for the
application. The details of producing hand-crafted features can be found in the Appendix E.1.

Self-supervised baselines.

NSP. We consider a simple baseline inspired by the next sentence prediction task used in BERT (De-
vlin et al., 2019). Specifically, we generate two sub-sequences A and B, in a way that 50% of the
time B is the sub-sequence from the same sequence as A and follows it (positive pair), and 50% of
the time it is a random sub-sequence taken from another sequence (negative pair).

4https://boosters.pro/championship/rosbank1/
5https://www.kaggle.com/c/data-science-bowl-2019
6https://ods.ai/competitions/x5-retailhero-uplift-modeling

6



Under review as a conference paper at ICLR 2021

Table 1: Comparison of batch generation strategies

Dataset Random samples Random disjoint samples Random slices
Age group (Accuracy) 0.613± 0.006 0.619± 0.011 0.639 ±0.006

Churn (AUROC) 0.820± 0.014 0.819± 0.011 0.823 ±0.017
Assessment (Accuracy) 0.563± 0.004 0.563± 0.004 0.618 ±0.009

Retail (Accuracy) 0.523± 0.001 0.505± 0.002 0.542 ±0.002
5-fold cross-validation metric ±95% is shown

SOP. Another simple baseline is the same as sequence order prediction task from ALBERT (Lan et al.,
2020). It uses two consecutive sub-sequences as a positive pair, and two consecutive sub-sequences
with swapped order as a negative pair.

RTD. We also adapt the replaced token detection approach from ELECTRA (Clark et al., 2020) for
event sequences as a baseline for our research. We replaced 15% of events from the sequence with
random events, taken from other sequences and train a model to predict whether an event is replaced
or not.

CPC. As the last self-supervised baseline, we selected the recently proposed Contrastive Predictive
Coding (CPC) (van den Oord et al., 2018), a self-supervised learning method that produced an
excellent performance on sequential data of such traditional domains as audio, computer vision,
reinforcement learning and recommender systems (Zhou et al., 2020a).

Supervised learning. In addition to the aforementioned baselines, we compare our method with a
supervised learning approach where the encoder network e (see Section 3.5) and the classification
sub-network h are jointly trained on the downstream task target, i. e. the classification sub-network
takes encoder output and produces a prediction: ŷ = h(e(x)). One-layer neural net with softmax
activation is used as h. Note that no pre-training is used in this case.

Note that all neural network baselines use the same architecture of the encoder model as CoLES.

4.2 RESULTS

Features of CoLES. To evaluate the proposed method of sub-sequence generation we compared
it with two alternative strategies described in Section 3.4. The results are presented in Table 1.
The proposed random slices sub-sequence generation strategy significantly outperforms alternative
strategies, what confirm theoretical results (see Section 3.3). Also, note that the random samples
strategy is similar to the augmentation strategy proposed by Yao et al. (2020), and the random disjoint
samples strategy is similar to sub-sequence generation proposed by Ma et al. (2020).

We evaluated several possible loss functions and found that contrastive loss that can be considered
as the basic variant of contrastive learning loss, performs on par or better than other losses on the
downstream tasks (see Appendix F.1, Table 7). This means that improvements obtained by more
recent losses in object recognition tasks does not necessarily lead to gains in other downstream tasks.

We also compared popular negative sampling strategies (distance-weighted sampling (Manmatha
et al., 2017), and hard-negative mining (Schroff et al., 2015)) with random negative sampling strategy.
The results are shown in the Appendix F.1, Table 8. We found that hard negative mining leads to a
significant increase in quality on downstream tasks in comparison to random negative sampling.

Comparison with baselines. We compared CoLES with baselines described in Section 4.1 in two
scenarios. First, we compared embeddings produced by the CoLES encoder with other types of
embeddings and with manually created aggregates by using them as input features of a downstream
task model. The downstream task model is trained by LightGBM (Ke et al., 2017) independently
from the sequence encoder. As Table 2 demonstrates, our method generates sequence embeddings of
sequential data that achieve strong performance results in comparison to the case of manually crafted
features when used on the downstream tasks. In particular, Table 2 shows that even unsupervised
CoLES embeddings perform on par and sometimes even better than hand-crafted features. Also note,
that CoLES embeddings outperform embeddings produced by the other self-supervised baselines on
each dataset.

7



Under review as a conference paper at ICLR 2021

(a) Age group

1.56% 3.12% 6.25% 12.5% 25.0% 50.0% 100.0%
Shares of Labeled Datapoints

0.500

0.525

0.550

0.575

0.600

0.625

0.650
Ac

cu
ra

cy

Setup
lightGBM on hand-crafted features
CPC Fine-tuning
CoLES Fine-tuning
Supervised learning 

(b) Assessment

3.12% 6.26% 12.5% 25.0% 50.0% 100.0%
Shares of Labeled Datapoints

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

Setup
lightGBM on hand-crafted features
CPC Fine-tuning
CoLES Fine-tuning
Supervised learning 

Figure 2: Model quality for different dataset sizes
The rightmost point corresponds to all labels and supervised setup.

Table 2: Accuracy on the downstream tasks: Metric increase against baseline

Method Age group
Accuracy

Churn
AUROC

Assessment
Accuracy

Retail
Accuracy

LightGBM:
Designed features 0.631± 0.004 0.825± 0.005 0.602± 0.006 0.547± 0.001
SOP embeddings −21.9%± 0.6% −5.3%± 0.8% −4.1%± 1.0% −22.8%± 0.2%
NSP embeddings −1.5%± 0.9% +0.6%± 0.7% −3.5%± 1.1% −22.3%± 0.4%
RTD embeddings +0.1%± 0.6% −2.9%± 0.8% −3.6%± 1.1% −5.0%± 0.3%
CPC embeddings −5.9%± 0.6% −2.9%± 0.6% −2.3%± 0.9% −4.0%± 0.3%

CoLES embeddings +1.1%± 1.2% +2.2% ±0.6% −0.1%± 0.9% −1.4%± 0.2%

Supervised learning 0.628± 0.005 0.817± 0.012 0.602± 0.006 0.542± 0.001
RTD fine-tuning +1.2%± 1.2% +0.3%± 1.3% −2.7%± 1.0% +0.5%± 0.4%
CPC fine-tuning −2.1%± 1.6% −0.9%± 1.4% +0.7%± 1.1% +1.2%± 0.3%
CoLES fine-tuning +2.5% ±1.0% +1.1% ±1.3% +2.2% ±1.1% +1.9% ±0.2%

test set quality metric ±95% is shown

In the second scenario, we fine-tune pre-trained models for specific downstream tasks. The models
are pre-trained using CoLES and other self-supervised learning approaches and then are additionally
trained on the labeled data for the specific task in the same way as we trained a neural net for
the supervised learning (see Section 4.1). A neural net without pre-training is also added to the
comparison. As Table 2 shows, fine-tuned representations obtained by our method achieve superior
performance on all the considered datasets, outperforming all other methods by statistically significant
margins.

Semi-supervised setup. To evaluate our method in case of the restricted amount of labeled data, we
performed the series of experiments where only a fraction of available labels are used to train the
downstream task model. As in the case of the supervised setup, we compare the proposed method
with LigthGBM over hand-crafted features, CPC, and supervised learning without pre-training (see
Section 4.1).

The results of this comparison are presented in Figure 2. Note that the difference in performance
between CoLES and supervised-only methods increases as we decrease the number of available
labels. Also note that CoLES consistently outperforms CPC for different volumes of labeled data.

8



Under review as a conference paper at ICLR 2021

Business applications. In addition to the described experiments on public datasets, we have per-
formed extensive testing of our method on the private data in a large European bank. We’ve observed
a significant increase in model performance (+ 2-10% AUROC) after the addition of CoLES embed-
dings to the existing models in many downstream tasks, including credit scoring, marketing campaign
targeting, product recommendations cold start, fraud detection and legal entities connections predic-
tion.

5 CONCLUSIONS

In this paper, we present Contrastive Learning for Event Sequences (CoLES), a novel self-supervised
method for building embeddings of discrete event sequences. In particular, the CoLES method can be
effectively used for pre-training neural networks in semi-supervised settings. It can also be used to
produce embeddings of complex event sequences that can be effectively used in various downstream
tasks.

We also empirically demonstrate that our approach achieves strong performance results on several
downstream tasks and consistently outperforms both classical machine learning baselines on hand-
crafted features, as well as other previously introduced self-supervised and semi-supervised learning
baselines adapted to the event sequence domain. In the semi-supervised setting, where the number of
labeled data is limited, our method demonstrates even stronger results: the lesser is the labeled data
the larger is performance margin between CoLES and supervised-only methods.

The method is especially adapted for event sequence data which is extensively used by the core
businesses of many large companies, including financial institutions, internet companies, retail and
telecom.

REFERENCES

Bachman, P., R. D. Hjelm, and W. Buchwalter
2019. Learning representations by maximizing mutual information across views. ArXiv,
abs/1906.00910.

Bigon, L., G. Cassani, C. Greco, L. Lacasa, M. Pavoni, A. Polonioli, and J. Tagliabue
2019. Prediction is very hard, especially about conversion. predicting user purchases from
clickstream data in fashion e-commerce. ArXiv, abs/1907.00400.

Chen, T., S. Kornblith, M. Norouzi, and G. E. Hinton
2020. A simple framework for contrastive learning of visual representations. ArXiv,
abs/2002.05709.

Cho, K., B. van Merrienboer, Çaglar Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio
2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation.
ArXiv, abs/1406.1078.

Chopra, S., R. Hadsell, and Y. LeCun
2005. Learning a similarity metric discriminatively, with application to face verification. 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
1:539–546 vol. 1.

Clark, K., M.-T. Luong, Q. V. Le, and C. D. Manning
2020. Electra: Pre-training text encoders as discriminators rather than generators. ArXiv,
abs/2003.10555.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova
2019. Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv,
abs/1810.04805.

Doersch, C., A. Gupta, and A. A. Efros
2015. Unsupervised visual representation learning by context prediction. 2015 IEEE International
Conference on Computer Vision (ICCV), Pp. 1422–1430.

9



Under review as a conference paper at ICLR 2021

Dosovitskiy, A., J. T. Springenberg, M. A. Riedmiller, and T. Brox
2014. Discriminative unsupervised feature learning with convolutional neural networks. In NIPS.

Efron, B. and R. J. Tibshirani
1994. An introduction to the bootstrap. CRC press.

Falcon, W. and K. Cho
2020. A framework for contrastive self-supervised learning and designing a new approach. ArXiv,
abs/2009.00104.

Friedman, J. H.
2001. Greedy function approximation: A gradient boosting machine. The Annals of Statistics.

Gardner, W. A., A. Napolitano, and L. Paura
2006. Cyclostationarity: Half a century of research. Signal processing, 86.4:639–697.

Hadsell, R., S. Chopra, and Y. LeCun
2006. Dimensionality reduction by learning an invariant mapping. 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), 2:1735–1742.

He, K., H. Fan, Y. Wu, S. Xie, and R. B. Girshick
2019. Momentum contrast for unsupervised visual representation learning. ArXiv, abs/1911.05722.

Hoffer, E. and N. Ailon
2015. Deep metric learning using triplet network. In SIMBAD.

Hu, J., J. Lu, and Y.-P. Tan
2014. Discriminative deep metric learning for face verification in the wild. 2014 IEEE Conference
on Computer Vision and Pattern Recognition, Pp. 1875–1882.

Kaya, M. and H. Şakir Bilge
2019. Deep metric learning: A survey. Symmetry, 11:1066.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu
2017. Lightgbm: A highly efficient gradient boosting decision tree. In NIPS.

Lan, Z., M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut
2020. Albert: A lite bert for self-supervised learning of language representations. ArXiv,
abs/1909.11942.

Laxman, S., V. Tankasali, and R. W. White
2008. Stream prediction using a generative model based on frequent episodes in event sequences.
In KDD.

Ma, J., C. Zhou, H. Yang, P. Cui, X. Wang, and W. Zhu
2020. Disentangled self-supervision in sequential recommenders. Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.

Manmatha, R., C.-Y. Wu, A. J. Smola, and P. Krähenbühl
2017. Sampling matters in deep embedding learning. 2017 IEEE International Conference on
Computer Vision (ICCV), Pp. 2859–2867.

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean
2013. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781.

Ni, Y., D. Ou, S. Liu, X. Li, W. Ou, A. Zeng, and L. Si
2018. Perceive your users in depth: Learning universal user representations from multiple e-
commerce tasks. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining.

Niu, X., L. Wang, and X. Yang
2019. A comparison study of credit card fraud detection: Supervised versus unsupervised. ArXiv,
abs/1904.10604.

10



Under review as a conference paper at ICLR 2021

Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer
2018. Deep contextualized word representations. ArXiv, abs/1802.05365.

Reimers, N. and I. Gurevych
2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In EMNLP/IJCNLP.

Saunshi, N., O. Plevrakis, S. Arora, M. Khodak, and H. Khandeparkar
2019. A theoretical analysis of contrastive unsupervised representation learning. In In International
Conference on Machine Learning, Pp. 5628–5637.

Schroff, F., D. Kalenichenko, and J. Philbin
2015. Facenet: A unified embedding for face recognition and clustering. 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Pp. 815–823.

Simo-Serra, E., E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer
2015. Discriminative learning of deep convolutional feature point descriptors. 2015 IEEE
International Conference on Computer Vision (ICCV), Pp. 118–126.

Song, Y., Y. Li, B. Wu, C.-Y. Chen, X. Zhang, and H. Adam
2017. Learning unified embedding for apparel recognition. 2017 IEEE International Conference
on Computer Vision Workshops (ICCVW), Pp. 2243–2246.

Sutskever, I., O. Vinyals, and Q. V. Le
2014. Sequence to sequence learning with neural networks. ArXiv, abs/1409.3215.

Ustinova, E. and V. S. Lempitsky
2016. Learning deep embeddings with histogram loss. In NIPS.

van den Oord, A., Y. Li, and O. Vinyals
2018. Representation learning with contrastive predictive coding. ArXiv, abs/1807.03748.

van der Maaten, L. and G. E. Hinton
2008. Visualizing data using t-sne. Journal of machine learning research.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin
2017. Attention is all you need. ArXiv, abs/1706.03762.

Vorobev, A., A. Ustimenko, G. Gusev, and P. Serdyukov
2019. Learning to select for a predefined ranking. In ICML.

Wan, L., Q. shan Wang, A. Papir, and I. Lopez-Moreno
2018. Generalized end-to-end loss for speaker verification. 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Pp. 4879–4883.

Wiese, B. and C. W. Omlin
2009. Credit card transactions, fraud detection, and machine learning: Modelling time with lstm
recurrent neural networks. In Innovations in Neural Information Paradigms and Applications.

Wu, Q., C. J. C. Burges, K. M. Svore, and J. Gao
2009. Adapting boosting for information retrieval measures. Information Retrieval, 13:254–270.

Xing, E. P., A. Y. Ng, M. I. Jordan, and S. J. Russell
2002. Distance metric learning with application to clustering with side-information. In NIPS.

Yao, T., X. Yi, D. Cheng, F. Yu, A. Menon, L. Hong, E. H. hsin Chi, S. Tjoa, J. Kang, and E. Ettinger
2020. Self-supervised learning for deep models in recommendations. ArXiv, abs/2007.12865.

Yi, D., Z. Lei, and S. Z. Li
2014. Deep metric learning for practical person re-identification. ArXiv, abs/1407.4979.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson
2014. How transferable are features in deep neural networks? ArXiv, abs/1411.1792.

11



Under review as a conference paper at ICLR 2021

Zhai, A., H.-Y. Wu, E. Tzeng, D. H. Park, and C. Rosenberg
2019. Learning a unified embedding for visual search at pinterest. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.

Zhang, Y. and A. Haghani
2015. A gradient boosting method to improve travel time prediction. Transportation Research
Part C-emerging Technologies, 58:308–324.

Zhang, Y., D. Wang, Y. Chen, H. Shang, and Q. Tian
2017. Credit risk assessment based on long short-term memory model. In ICIC.

Zhou, C., J. Ma, J. Zhang, J. Zhou, and H. Yang
2020a. Contrastive learning for debiased candidate generation in large-scale recommender systems.
ArXiv.

Zhou, K., H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. yuan Wang, and J. Wen
2020b. S3̂-rec: Self-supervised learning for sequential recommendation with mutual information
maximization. ArXiv, abs/2008.07873.

A BATCH GENERATION

We consider several empirical strategies for the sub-sequence generation to compare with the random
slices algorithm described in section "Sampling of surrogate sequences" of the main paper. The
simplest strategy is random sampling without replacement. One more strategy is to produce sub-
sequences by the random splitting of the initial sequence to several connected segments without an
intersection between them. To generate k sub-sequences, the following procedure should be repeated
k times: take a random number of elements from the sequence without replacement.

Algorithm 2: Disjointed sub-sequences generation strategy
hyperparameters: k: number of sub-sequences to be produced.
input: A sequence S of length l.
output: S1, ..., Sk: sub-sequences of S.

Generate vector inds of length l with random integers from [1,k].
for i← 1 to k do

Si = S[inds == i]
end

B PERFORMANCE OPTIMIZATIONS

Here we describe several performance optimizations that can be used for model training and inference.

Pair distance calculation. In order to select negative samples, we need to compute pair-wise
distance between all possible pairs of embedding vectors of a batch. For the purpose of making
this procedure more computationally effective we perform normalization of the embedding vec-
tors, i.e. project them on a hyper-sphere of unit radius. Since D(A,B) =

√∑
i(Ai −Bi)2 =√∑

iA
2
i +

∑
iB

2
i − 2

∑
iAiBi and ||A|| = ||B|| = 1, to compute the euclidean distance we only

need to compute:
√

2− 2(A ·B).

To compute the dot product between all pairs in a batch we just need to multiply the matrix of
all embedding vectors of a batch by itself transposed, which is a highly optimized computational
procedure in most modern deep learning frameworks. Hence, the computational complexity of the
negative pair selection is O(n2h) where h is the size of the output embeddings and n is the size of
the batch.

Embedding update calculation. Encoder, based on RNN-type architecture like GRU (Cho et al.,
2014), allows to calculate embedding ct+k by updating embedding ct instead of calculating em-
bedding ct+k from the whole sequence of past events z1:t: ck = rnn(ct, zt+1:k). We use this

12



Under review as a conference paper at ICLR 2021

optimization to reduce inference time to update already existing person embeddings with new events,
occurred after the calculation of embeddings. This is possible due to the recurrent nature of RNN-like
networks.

C PROOF OF THEOREM 1

In this section, we provide proof of Theorem 1 (Section 3.3) that justifies the Random Slices sub-
sequence generation strategy proposed in the paper.

Proof. First, we state the following straightforward lemma:

Lemma 1. Let a stochastic process {Y (t)}∞t=1 be a shift of another stochastic process {Ŷ (t)}∞t=1

by independent random time s, i.e. Y (t) = Ŷ (t + s) with integer s ≥ 0. If process {Ŷ (t)}∞t=1 is
cyclostationary with period T̂ and (se mod T̂ ) is uniform over [0, T̂ − 1], then process {Y (t)}∞t=1
is stationary.

Lemma 1 implies that process {Xe(t)}Te
t=1 is stationary, and all its segments {Xe(t)}

T ′
e+s

′

t=s′+1 of a

given length T ′e define the same distribution over sequences as its starting segment {Xe(t)}
T ′
e
t=1 does.

Furthermore, integrating over s′, we conclude that the conditional distribution of a sub-sequence
obtained via Random Slices generation strategy given its length T ′e follows the process {Xe(t)}

T ′
e
t=1.

To finish the proof, it remains to prove Equation 1.

Assume P(Te = k) ∝ kα for k ∈ [m,∞]. By the law of total probability, we have P(T ′e = k0) =∑
k P(Te = k)P(T ′e = k0 | Te = k), that is,

P(T ′e = k0) = C

∞∑
k=k0

kα−1,

where C is the normalization constant. To estimate the sum of the series, notice that∫ ∞
k0− 1

2

xα−1dx >

∞∑
k=k0

kα−1 >

∫ ∞
k0

xα−1dx, (2)

where the former inequality follows from the fact that
∫ k+1/2

k−1/2 x
α−1 > kα−1 as long as function

f(x) = xα−1 is convex. After integration, we rewrite Equation 2 as follows:

−1
α

(
k0 −

1

2

)α
>

∞∑
k=k0

kα−1 >
−1
α
kα0 . (3)

Using these inequalities, we obtain the upper bound for P(T ′e = k) in the following way:

P(T ′e = k0) =

∞∑
k=k0

kα−1/

∞∑
l=m

∞∑
k=l

kα−1 <
−1
α

(
k0 −

1

2

)α
/

∞∑
l=m

−1
α
lα =

=

(
k0

k0 − 1/2

)−α
kα0 /

∞∑
l=m

lα =

(
k0

k0 − 1/2

)−α
P(Te = k0).

At last, the lower bound for P(T ′e = k) can be obtained using Equation 3 as follows:

P(T ′e = k0) =

∞∑
k=k0

kα−1/

∞∑
l=m

∞∑
k=l

kα−1 > kα0 /

∞∑
l=m

(
l − 1

2

)α
>

>

(
m− 1/2

m

)−α
kα0 /

∞∑
l=m

lα =

(
m− 1/2

m

)−α
P(Te = k0).

The latter inequality in these calculations follows from the fact that
(
l− 1

2

l

)α
<
(
m− 1

2

m

)α
for l > m.

13



Under review as a conference paper at ICLR 2021

Table 3: Data structure for a single credit card

Date Time Amount Currency Country Merchant Type
Jun 21 16:40 230 EUR France Restaurant
Jun 21 20:15 5 USD US Transportation
Jun 22 09:30 40 USD US Household Appliance

Table 4: Click-stream structure for a single user

Time Date Domain Referrer Domain
17:40 Jun 21 amazon.com google.com
17:41 Jun 21 amazon.com amazon.com
17:45 Jun 21 en.wikipedia.org google.com

D DATASETS

We designed the method specially for the user behavior sequences (Ni et al., 2018). These sequences
consist of discrete events per person in continuous time, for example, behavior on websites, credit
card transactions, etc.

Considering credit card transactions, each transaction has a set of attributes, either categorical
or numerical including the timestamp of the transaction. An example of the sequence of three
transactions with their attributes is presented in Table 3. The merchant type field represents the
category of a merchant, such as "airline", "hotel", "restaurant", etc.

Another example of user behavior data is click-stream: the log of internet page visits. The example
of a click-stream log of a single user is presented in Table 4.

In our research we chose several publicly available datasets from data science competitions.

1. Age group prediction competition7 - the task is to predict the age group of a person.
The group ratio is balanced in the dataset. The dataset consists of 44M anonymized
transactions representing 50k persons with a target labeled for only 30k of them (27M
out of 44M transactions), for the other 20k persons (17M out of 44M transactions) label
is unknown. Each transaction includes date, type (for example, grocery store, clothes,
gas station, children’s goods, etc.) and amount. We use all available 44M transactions
for contrastive learning, excluding 10% - for the test part of the dataset, and 5% for the
contrastive learning validation.

2. Churn prediction competition8. The dataset of 1M anonymized card transactions repre-
senting 10K clients was used to predict a churn probability. 5k clients have labels (0.49M
out of 1M transactions), 5.2k clients haven’t labels (0.52M out of 1M transactions). Target
is binary, almost balanced with proportions 0.55 and 0.45. Transactions of the same type
and month are grouped and represented as a single pseudo-transaction, which amount is the
sum of grouped transactions. Each transaction is characterized by date, type, amount and
Merchant Category Code.

3. Assessment prediction competition9 - the task is to predict the results of the in-game
assessment based on the history of children gameplay data. Target is one of 4 grades, with
proportions 0.50, 0.24, 0.14, 0.12. The dataset consists of 12M gameplay events combined
in 330k gameplays representing 18k children. 17.7k gameplays (0.9M out of 12M gameplay
events) are labeled, the remaining 312k gameplays (11.6M out of 12M gameplay events) are
not labeled. Each gameplay event is characterized by timestamp, event code, the incremental
counter of events within a game session, time since the start of the game session, etc.

7https://onti.ai-academy.ru/competition
8https://boosters.pro/championship/rosbank1/
9https://www.kaggle.com/c/data-science-bowl-2019

14



Under review as a conference paper at ICLR 2021

Figure 3: Event sequence length distribution

16 64 256 1024 4096
Events per client

0.0

0.2

0.4

0.6

0.8

1.0
Fr

eq
ue

nc
y

Age group
Churn
Assessment
Retail

4. Retail purchase history age group prediction10 - the task is to predict the age group of a
client based on its retail purchase history. The group ratio is balanced in the dataset. The
dataset consists of 45,8M retail purchases representing 400k clients. Only labeled data is
used. Each purchase is characterized by time, product level, segment, amount, value, points
received.

To check that sequence lengths of the considered datasets follow the power-low distribution we
measured their distribution of lengths. As Figure 3 shows, the event sequence length distribution is
close to the power-law distribution for every considered dataset.

To check that considered datasets follow our repeatability and periodicity assumption made in
Section 3.2 and used for theoretical analysis in Section 3.3 we performed the following experiments.
We measure the KL-divergence two kinds of samples: (1) between random sub-samples of the same
sequence, generated using a modified version of Algorithm 1 where overlapping events are dropped
and (2) between random sub-samples taken from different sequences. The results are shown in
Figure 4. As Figure 4 shows, the KL-divergence between sub-sequences of the same sequence of
events is relatively small compared to the typical KL-divergence between sub-samples of different
sequences of events. This observation supports our repeatability and periodicity assumption. Also
note that additional plot (e) is provided as an example for data without any repeatable structure.

E EXPERIMENT SETUP

For all methods, a random search on 5-fold cross-validation over the train set is used for hyper-
parameter selection. The hyper-parameters with the best out-of-fold performance on the train set are
then chosen. The final set of hyper-parameters used for CoLES is shown in Table 5. The number of
sub-sequences generated for each sequence was always 5 for each dataset.

E.1 HAND-CRAFTED FEATURES

Here we describe the details of producing hand-crafted features. All attributes of each transaction are
either numerical (e. g. amount) or categorical (e.g. merchant type (MCC code), transaction type, etc.).
For the numerical type of attribute we apply aggregation functions, such as ’sum’, ’mean’, ’std’, ’min’,
’max’, over all transactions per user. For example, if we apply ’sum’ for the numerical field ’amount’

10https://ods.ai/competitions/x5-retailhero-uplift-modeling

15



Under review as a conference paper at ICLR 2021

(a) Age group

0 5 10 15 20 25
KL

0

1000

2000

3000

4000

5000

6000

7000
Co

un
t

type
Same client sample
Random client sample

(b) Churn

0 5 10 15 20 25
KL

0

100

200

300

400

500

Co
un

t

type
Same client sample
Random client sample

(c) Assessment

0 5 10 15 20 25
KL

0

2500

5000

7500

10000

12500

15000

17500

20000

Co
un

t

type
Same client sample
Random client sample

(d) Retail

0 5 10 15 20 25
KL

0

2500

5000

7500

10000

12500

15000

17500

Co
un

t
type

Same client sample
Random client sample

(e) Texts

0 5 10 15 20 25
KL

0

5000

10000

15000

20000

25000

30000

Co
un

t

type
Same post sample
Random post sample

Figure 4: Periodicity and repeatbility of the data. KL-divergence between event types of two random
sub-sequences from the same sequence is compared with KL-divergence between sub-sequences of
different sequences.

16



Under review as a conference paper at ICLR 2021

Table 5: Hyper-parameters for CoLES training

Dataset Output
size

Learning
rate

N samples
in batch

N
epochs

Min seq
length

Max seq
length Encoder

Age group 800 0.001 64 150 25 200 GRU
Churn 1024 0.004 128 60 15 150 LSTM
Assessment 100 0.002 256 100 100 500 GRU
Retail 800 0.002 256 30 30 180 GRU

Table 6: Comparison of encoder types

Dataset LSTM GRU Transformer
Age group (Accuracy) 0.621 ±0.008 0.638 ±0.007 0.622± 0.006
Churn (AUROC) 0.823 ±0.017 0.812± 0.010 0.780± 0.012
Assessment (Accuracy) 0.620 ±0.007 0.618 ±0.009 0.542± 0.007
Retail (Accuracy) 0.535± 0.003 0.542 ±0.002 0.499± 0.002

5-fold cross-validation metric ±95% is shown

we obtain a feature ’sum of all transaction amounts per user’. For the categorical type of attribute
we apply aggregation functions in a slightly different way. For each unique value of categorical
attribute we apply aggregation functions, such as ’count’, ’mean’, ’std’ over all transactions per user’
numerical attribute. For example, if we apply ’mean’ for the numerical attribute ’amount’ grouped
by categorical attribute ’MCC code’ we obtain a feature ’mean amount of all transactions for each
MCC code per user’. For example, for age prediction task we have one categorical attribute (small
group) with 200 unique values, combining it with amount we can produce 200 ∗ 3 features (’group0
x amount x count’, ’group1 x amount x count’, ..., ’group199 x amount x count’, ’group0 x amount x
mean’, ...). In total we use approx 605 features for this task. Note, that hand-crafted features contain
information about user spending profile but omit information about transactions temporal order.

F RESULTS

F.1 DESIGN CHOICES OBSERVATIONS

We consider several contrastive learning losses that showed promising performance on differ-
ent datasets (Kaya and Şakir Bilge, 2019) and some classical variants: contrastive loss (Hadsell
et al., 2006), binomial deviance loss (Yi et al., 2014), triplet loss (Hoffer and Ailon, 2015), his-
togram loss (Ustinova and Lempitsky, 2016), and margin loss (Manmatha et al., 2017). The results of
comparison are shown in the Table 7.

It is interesting to observe that even contrastive loss that can be considered as the basic variant of
contrastive learning loss allows to get strong results on the downstream tasks (see Table 7). Our
hypothesis is that an increase in the model performance on contrastive learning task does not always
lead to an increase in performance on downstream tasks.

As shown in Table 6, different choices of encoder architectures show comparable performance on the
downstream tasks.

F.2 EMBEDDING SIZE

Figure 5 shows that the performance quality on the downstream task increases with the dimensionality
of an embedding. After the best quality is achieved, a further increase in the dimensionality of
an embedding dramatically reduces quality. These results can be interpreted as the bias-variance
trade-off. When the embedding dimensionality is too small, too much information can be discarded
(high bias). On the other hand, when embedding dimensionality is too large, too much noise is added
(high variance). Note, that increasing the embedding size will also linearly increase the training time
and the volume of consumed memory on the GPU.

17



Under review as a conference paper at ICLR 2021

Figure 5: Embedding dimensionality vs. quality

(a) Age group

32 64 96 160224 480 8001200 2400
Embedding size

0.59

0.60

0.61

0.62

0.63

0.64

Ac
cu

ra
cy

(b) Churn

32 64 128 256 512 1024 3072
Embedding size

0.78

0.79

0.80

0.81

0.82

0.83

AU
RO

C

(c) Assessment

32 64 100 200 400
Embedding size

0.590

0.595

0.600

0.605

0.610

0.615

0.620

0.625

Ac
cu

ra
cy

(d) Retail

64 160 480 800 1600
Embedding size

0.520

0.525

0.530

0.535

0.540

Ac
cu

ra
cy

18



Under review as a conference paper at ICLR 2021

Table 7: Comparison of contrastive learning losses

Dataset Contrastive
(margin=0.5)

Binomial
deviance Histogram Margin Triplet

Age group
(Accuracy)

0.639
±0.006

0.621
±0.005

0.632
±0.008

0.638
±0.007

0.636
±0.004

Churn
(AUROC)

0.823
±0.017

0.769
±0.018

0.815
±0.018

0.823
±0.012

0.781
±0.021

Assessment
(Accuracy)

0.618
±0.009

0.589
±0.004

0.615
±0.007

0.612
±0.005

0.600
±0.004

Retail
(Accuracy)

0.542
±0.002

0.535
±0.004

0.533
±0.002

0.541
±0.001

0.541
±0.001

5-fold cross-validation metric ±95% is shown

Table 8: Comparison of negative sampling strategies

Dataset Hard negative
mining

Random negative
sampling

Distance weighted
sampling

Age group (Accuracy) 0.639 ±0.006 0.626± 0.008 0.629± 0.004
Churn (AUROC) 0.823 ±0.017 0.815± 0.013 0.821± 0.014

Assessment (Accuracy) 0.618 ±0.009 0.593± 0.002 0.603± 0.010
Retail (Accuracy) 0.542 ±0.002 0.530± 0.002 0.536± 0.002

5-fold cross-validation metric ±95% is shown

F.3 SEMI-SUPERVISED SETUP

To evaluate our method in case of the restricted amount of labeled data, we use only part of the
available target labels for the semi-supervised experiment, see Section 4.2 for details. As in the case
of the supervised setup, we compare the proposed method with LigthGBM over hand-crafted features,
CPC, and supervised learning without pre-training. In figure 6 we provide learning curves for all
considered datasets.

F.4 EMBEDDING VISUALIZATION

In order to visualize CoLES embeddings in 2-dimensional space, we applied tSNE transforma-
tion (van der Maaten and Hinton, 2008) on them. tSNE transforms high-dimensional space to low-
dimensional based on local relationships between points, so neighbor vectors in high-dimensional
embedding space are pushed to be close in 2-dimensional space. We colorized 2-dimensional vectors
using the target values of the datasets.

Note, that embeddings was learned in a fully self-supervised way from raw user transactions without
any target information. The sequence of transactions represent user’ behavior, thus the CoLES model
captures behavioral patterns and outputs embeddings of users with similar patterns nearby. As shown
below, local clusters in embedding space correspond to the distribution of user’s attributes either age
or churn fact.

tSNE vectors from the age prediction dataset are presented in Figure 7a. We can observe 4 clusters:
clusters for group ’1’ and ’2’ are on the opposite side of the cloud, clusters for groups ’2’ and ’3’ are
in the middle.

Taking into account that age is an ordinal attribute, we can make an assumption about the ordering of
age groups: age(1) < age(3) < age(0) < age(2) or vice versa. (age(bin) returns age of user for
specific group).

tSNE points from the churn prediction dataset are presented in Figure 7b. There are areas where one
type of label dominates over the other.

19



Under review as a conference paper at ICLR 2021

(a) Age group

1.56% 3.12% 6.25% 12.5% 25.0% 50.0% 100.0%
Shares of Labeled Datapoints

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Ac
cu

ra
cy

Setup
lightGBM on hand-crafted features
CPC Fine-tuning
CoLES Fine-tuning
Supervised learning 

(b) Churn

6.25% 12.5% 25.0% 50.0% 100.0%
Shares of Labeled Datapoints

0.74

0.76

0.78

0.80

0.82

AU
RO

C
Setup

lightGBM on hand-crafted features
CPC Fine-tuning
CoLES Fine-tuning
Supervised learning 

(c) Assessment

3.12% 6.26% 12.5% 25.0% 50.0% 100.0%
Shares of Labeled Datapoints

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

Setup
lightGBM on hand-crafted features
CPC Fine-tuning
CoLES Fine-tuning
Supervised learning 

(d) Retail

0.17%0.39% 1.56% 6.25% 25.0% 100.0%
Shares of Labeled Datapoints

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

Setup
lightGBM on hand-crafted features
CPC Fine-tuning
CoLES Fine-tuning
Supervised learning 

Figure 6: Model quality for different dataset sizes
The rightmost point corresponds to all labels and supervised setup.

20



Under review as a conference paper at ICLR 2021

Figure 7: 2D tSNE mapping of CoLES embeddings colored by target labels

(a) Age group

20 10 0 10 20
tSNE[0]

20

15

10

5

0

5

10

15

20

tS
NE

[1
]

Bins
0
1
2
3

(b) Churn

6 4 2 0 2 4 6
tSNE[0]

6

4

2

0

2

4

6

tS
NE

[1
]

is churn
0
1

(c) Assessment

6 4 2 0 2 4 6
tSNE[0]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

tS
NE

[1
]

Accuracy group
0
1
2
3

(d) Retail

6 4 2 0 2 4 6
tSNE[0]

6

4

2

0

2

4

6

tS
NE

[1
]

Age group
2
0
1
3

21


	Introduction
	Related work
	Problem formulation and overview of the CoLES method
	Problem formulation
	Sampling of surrogate sequences as an augmentation procedure
	Theoretical analysis
	Model training
	Encoder architecture

	Experiments
	Baselines
	Results

	Conclusions
	Batch generation
	Performance optimizations
	Proof of Theorem 1
	Datasets
	Experiment setup
	Hand-crafted features

	Results
	Design choices observations
	Embedding size
	Semi-supervised setup
	Embedding visualization


