
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DONE IS BETTER THAN PERFECT:
UNLOCKING EFFICIENT REASONING BY STRUCTURED
MULTI-TURN DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) have gained increasing attention over the past
few months. Despite being effective, LRMs are criticized for the excessively
lengthy Chain-of-Thought (CoT) to derive the final answer, suffering from high
first-token and overall latency. Typically, the CoT of LRMs mixes multiple thinking
units, some of which are split by markers like “aha”, “wait”, or “alternatively”;
each unit attempts to produce a candidate answer to the original query. Hence,
a natural idea to improve efficiency is to reduce the unit number. Yet, the fact
that the thinking units in vanilla CoT cannot be explicitly managed renders doing
so challenging. This paper introduces Multi-Turn Decomposition (MinD) to
decode conventional CoT into a sequence of explicit, structured, and turn-wise
interactions to bridge the gap. In MinD, the model provides a multi-turn response
to the query, where each turn embraces a thinking unit and yields a corresponding
answer. The subsequent turns can reflect, verify, revise, or explore alternative
approaches to both the thinking and answer parts of earlier ones. This not only
makes the answer delivered more swiftly, but also enables explicit controls over
the iterative reasoning process (i.e., users may halt or continue at any turn). We
follow a supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm
to realize MinD. We first rephrase the outputs of an LRM into multi-turn formats
by prompting another LLM, and then tune the LRM with such data. Observing
that the tuned model tends to consume even more tokens than the original one
(probably due to that the multi-turn formats introduce additional answer tokens),
we advocate leveraging RL algorithms like GRPO to prioritize correct outputs
with fewer turns. Trained on the MATH dataset using R1-Distill models, MinD
can achieve up to ∼ 70% reduction in both output token usage and time to first
token (TTFT), while maintaining competitive performance on benchmarks such as
MATH-500, AIME24, AMC23, GPQA-Diamond, and LiveCodeBench.

1 INTRODUCTION

Large Reasoning Models (LRMs) have recently attracted significant attention due to their advancing
reasoning capabilities, including OpenAI-o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025),
and Kimi-1.5 (Kimi et al., 2025). These models have achieved remarkable performance on complex
tasks, e.g., mathematical competitions, thanks to their ability to engage in a “think-then-answer”
paradigm, where intermediate reasoning chains are generated to induce the final answer. The resultant
Chain-of-Thought (CoT) activates contextually accurate responses through iterative exploration and
verification of potential solutions.

Despite these advantages, LRMs often suffer from inefficiency issues as the CoT can become
excessively lengthy, exhibiting substantially increased computational costs and latency compared
to non-reasoning Large Language Models (LLMs). To mitigate these, several strategies have been
proposed in recent works. For example, some approaches encourage models to generate answers
more directly through strategically designed prompts (Jie et al., 2024), truncate the chain of thought to
avoid unnecessary token generation (Fu et al., 2025; Qwen, 2025), or leverage speculative reasoning
via model collaboration (Pan et al., 2025; She et al., 2025). Other approaches focus on reducing
token redundancy by refining model reasoning paths through supervised fine-tuning (SFT) (Yang

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

DeepSeep-R1-Distill-Qwen-7B

<think>
Okay, so I need to find the value of g(f(5) - 1) [...] g(f(5) - 1) is 7.
Wait, is there another way to approach this problem? [...] Both
approaches lead to the same answer, 7. So, maybe I was
overcomplicating it by thinking of composing functions, but it still
gives the same result. Hmm, interesting.
Wait, let me verify again [...] So, yes, the answer is 7.
Alternatively, if I compute g(f(5) - 1) as follows: [...] Yep, same
answer. [...]
</think>
[...] Thus, the answer is .

Question: Let and . What is the value of ?

MinD-7B

<think> First [...] Therefore, g(f(5) - 1) is 7. </think>
[...] **Final Answer:**
<think> Wait, let me make sure I did that right [...] Yeah, that
seems correct. </think>
[...] **Final Answer:**
<think> Let me think if there's another way to approach
this [...] So, that method also gives me the same answer, which is
7. </think>
[...] **Final Answer:**

Figure 1: An illustration of responses from DeepSeek-R1-Distill-Qwen-7B and the transformed
MinD-7B model on the same math problem. The original LRM follows a think-then-answer format,
where the reasoning process consists of multiple thinking units (the start of each new unit is marked
with an orange highlight). In contrast, MinD-7B adopts a multi-turn reasoning paradigm, where each
turn contains a thinking unit followed by an answer. Also note that MinD-7B tends to use fewer
thinking units due to the GRPO training (see Section 3.3).

et al., 2025c), or by enhancing decision efficiency with improvements to Group Relative Policy
Optimization (GRPO) algorithms (Yu et al., 2025; Liu et al., 2025).

The CoT reasoning process in LRMs is typically composed of multiple thinking units—discrete
cognitive steps like initial attempts, follow-up validations, reflections, and strategic shifts. Each unit
can contribute to generating a candidate answer, while current LRMs tend to employ redundant units
to ensure the final answer is close to “perfect” (see an empirical analysis of such redundancy in
Figure 2 (right)). While reducing the number of thinking units could improve reasoning efficiency,
the inability to explicitly manage these units in standard CoT makes this challenging. This highlights
the need for more fine-grained approaches to improve reasoning efficiency.

Building on this insight, we introduce Multi-Turn Decomposition (MinD) to decode the “think-
then-answer” CoT reasoning into a sequence of multi-turn interactions to enable the explicit control
of the number of thinking units, where each turn contains a single thinking unit and an answer
generated based on both the current and all preceding units. Refer to Figure 1 for an illustration of
the paradigm shift. To implement MinD, we adopt a pipeline combining SFT and GRPO. We first
convert conventional CoT traces into structured, multi-turn formats using GPT-4o (OpenAI et al.,
2024) and then fine-tune the target model on such data. To further enhance efficiency, we apply
GRPO to encourage the model to generate accurate responses within fewer reasoning turns, thereby
reducing latency and computational costs.

To evaluate the effectiveness of MinD, we conduct extensive experiments across a range of reasoning
benchmarks. On DeepSeek-R1-Distill-Qwen-1.5B, MinD reduces token usage by up to ∼ 70% and
accelerates time to first token (TTFT) by 4.2× on MATH-500, while maintaining over 95% accuracy.
Furthermore, MinD demonstrates strong out-of-distribution generalization on this model, with token
reductions of 69% on AIME24 and 53% on GPQA-Diamond. These results highlight the efficiency
and broad applicability of MinD in diverse reasoning scenarios.

2 RELATED WORK

Efficient Reasoning Paradigms Since CoT prompting (Wei et al., 2022), explicit multi-step traces
have improved LLM reasoning (Guo et al., 2025) but often at the cost of long outputs, high token usage,
and latency (Chiang & yi Lee, 2024). To address redundancy, recent work reduces intermediate tokens
while preserving quality: token skipping (Xia et al., 2024) and length-harmonizing pruning (Luo et al.,
2025a) report sizable savings with competitive accuracy (Fu et al., 2025). Orthogonally, latent/hidden-
thinking methods (e.g., Token-Assorted Mixing (Su et al., 2025), Hidden Thinking (Shen et al.,
2025)) move computation off the visible token stream, yielding multi-fold throughput gains (Hao
et al., 2025). Hybrid systems (e.g., C3OT (Kang et al., 2025)) and speculative pipelines (Pan et al.,
2025; Zhang et al., 2024; She et al., 2025) further balance accuracy and compute via verification and
adaptive depth.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

�

�

	���

���	

�"�����
��� ������

��� ���"��
���!�����#��� �����

���
��

�	

	

�	

�	

�
��

�
��

A Thinking Process from DeepSeek-R1

Naturally Contains Multiple Thinking Units

Okay, so I need to [...] 12 = x (Initial Attempt)

So, x equals 12? Let me check my steps to make sure I didn't make any mistakes [...] That
seems to check out. (Checking Steps)

But wait, let me verify by plugging x = 12 back into the original expressions and see if the
average is indeed 4x - 7 [...] Hmm, so I think that's it. My answer is x = 12. (Self-Verification)

Wait, just to be thorough, let me check again if my initial equation was set up correctly [...] Yes,
that's correct. (Checking Again)

Alternatively, maybe I can think of another way to approach the problem, just to confirm [...] So
definitely, x is 12. So, confident now that the answer is 12. (Another Approach)

Final Answer
The value of x is \boxed{12}.

Figure 2: Left: An example of a standard CoT from DeepSeek-R1, naturally containing multiple
discrete thinking units (the start of each new unit is marked with an orange highlight). Right:
Empirical analysis of unit-level redundancy, which is calculated based on Equation (5), in R1-distilled
models on the MATH-500 dataset, showing an average redundancy rate of 69.8% for the 1.5B model
and 35.8% for the 7B model.

Reinforcement Learning for Reasoning Optimization Reinforcement learning (RL) has become
an essential tool for optimizing LLM reasoning, providing precise control over decision-making
processes. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is one of the most
influential methods in this domain, aligning reward signals with step-wise reasoning validity rather
than simply final answer correctness. This strategy allows models to prioritize accurate intermediate
steps, enhancing both response precision and computational efficiency. Building on this foundation,
frameworks like DAPO (Yu et al., 2025) and R1-Zero (Liu et al., 2025) incorporate dynamic reward
shaping and entropy-controlled exploration to further refine model outputs. These methods extend
GRPO by introducing adaptive mechanisms that reduce token redundancy while maintaining high
accuracy, making them particularly effective for complex reasoning tasks. Recent advancements
have also focused on integrating search-based techniques to enhance reasoning efficiency. For
instance, Search-R1 (Jin et al., 2025) combines Monte Carlo Tree Search with policy gradients
to optimize reasoning path selection, reducing unnecessary token usage. Similarly, length-aware
control frameworks like L1-Controller (Aggarwal & Welleck, 2025) balance correctness and token
efficiency through dual reward signals, achieving substantial latency reductions. Other approaches,
such as R1-Searcher (Song et al., 2025), incorporate dynamic halting mechanisms to automatically
terminate unproductive reasoning chains, significantly improving efficiency in open-domain tasks.
ThinkPrune (Hou et al., 2025) adopts length clipping to the reward function, pruning outputs to reduce
redundancy. ShorterBetter (Yi et al., 2025) uses the “Sample Optimal Length”—the shortest correct
response as a self-supervised reward to guide models toward generating more concise traces without
compromising accuracy. AdaptThink (Zhang et al., 2025) empowers models to adaptively choose
thinking mode via a constrained optimization objective and importance sampling. SCoRe (Kumar
et al., 2024) trains models via multi-turn RL to self-diagnose and correct errors from self-generated
traces, prioritizing correctness over efficiency.

Training-Based Efficiency Enhancements Training strategies have also played a critical role
in improving reasoning efficiency. Supervised fine-tuning (SFT) methods like Thinking-Optimal
Scaling (Yang et al., 2025c) align models with optimal solution trajectories, reducing token redun-
dancy without compromising accuracy. This approach effectively reshapes the internal reasoning
paths of models, ensuring more concise outputs. Hybrid training regimes have also gained traction,
combining imitation learning and reinforcement learning to refine reasoning efficiency. For example,
the SpecReason framework (Pan et al., 2025) employs a two-stage process, beginning with teacher-
student distillation for foundational policy approximation, followed by adversarial reward shaping
for fine-grained optimization. This blend of supervised and reinforcement learning techniques has
proven effective in reducing token counts while maintaining response quality.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

In this section, we first introduce the standard Chain-of-Thought (CoT) reasoning of Large reasoning
models (LRMs) and briefly review Group Relative Policy Optimization (GRPO) (DeepSeek-AI,
2025). We then present an empirical study showing how redundant reasoning steps commonly arise
in LRMs. Finally, we outline MinD, which reformulates the standard CoT into a multi-turn structure,
and discuss how to leverage GRPO to encourage concise and effective multi-turn reasoning.

3.1 PRELIMINARY

CoT for LRMs LRMs commonly adopt a “think-then-answer” paradigm for complex problem
solving. Given a query q, an LRM typically produces an output o of the form:

q → o = <think> t </think> a , (1)

where t denotes the internal thinking process, delimited by <think> and </think>, and a is the
final answer. The thinking process t can be viewed as an exploration of the solution space and is
naturally decomposed into multiple thinking units—self-contained logical steps that can induce a
candidate answer to q, with an example from DeepSeek-R1 (Guo et al., 2025) depicted in Figure 2
(left). Formally, letting ui denote a thinking unit, there is t = (u1, u2, . . . , un). These units may
arise from (1) an initial attempt to solve the problem, (2) depth-wise exploration such as validation,
backtracking, or correction along a single line of reasoning, or (3) breadth-wise search involving
alternative methods or perspectives. Each unit can thus be interpreted as a path in the reasoning space,
potentially building on previous steps, and may terminate with a provisional answer to the query.

However, current LRMs tend to employ numerous thinking units before gaining the final answer to
solve the problem as ‘perfectly’ as possible, causing significant inefficiency issues.

GRPO Let πθ denote the current policy and πθold the reference policy from the previous iteration.
Given a query q, GRPO samples G completions o1, . . . , oG and optimizes the objective:

Eq, {oi}G
i=1

 1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

min (ρi,jAi, clip(ρi,j , 1− ϵ, 1 + ϵ)Ai)

 , (2)

where ρi,j =
πθ(oi,j |q,oi,<j)

πθold
(oi,j |q,oi,<j)

is the ratio between the new and old policies for token j in sequence
oi and |oi| is the sequence length. Ai is the group-standardized advantage:

Ai =
R(oi)−mean({R(o1), . . . , R(oG)})

std({R(o1), . . . , R(oG)})
, (3)

where R denotes the reward function, and mean({r1, . . . , rG}) and std({r1, . . . , rG}) represent the
mean and standard deviation of group rewards, respectively. For clarity, we omit the KL regularization
term, as it is not the focus of our analysis.

3.2 UNIT-LEVEL REDUNDANCY IN LRMS

Before devoting to reducing the number of thinking units of LRMs, we first systematically investigate
the unit-level redundancy, which is intuitively high considering the repeated depth-wise validations
or breadth-wise explorations of alternative solution paths, even after repeatedly arriving at essentially
the same valid answer, in long CoTs.

Concretley, we conducted a detailed analysis using DeepSeek-R1-Distill-Qwen-1.5B/7B (DeepSeek-
AI, 2025). We extracted their CoT traces from the MATH (Lightman et al., 2023) and GSM8K (Cobbe
et al., 2021) training sets (restricted to correctly answered examples), and segmented each trace into
discrete thinking units using GPT-4o (OpenAI et al., 2024) (see Appendix C for details).

For each segmented trace t = (u1, u2, . . . , un), we constructed prefix sub-traces t≤k = (u1, . . . , uk)
for 1 ≤ k ≤ n. We then prompted the model to generate an intermediate answer ak by appending a
special stop token </think> after t≤k given the current partial reasoning:

q → ok = <think> t≤k </think> ak , k = 1, · · · , n . (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 (,)
Decompose into Thinking Units

A Vanilla LRM

GPT-4o

Think-Then-Answer

Intermediate Answer
Generation

Transition to Multi-Turn Reasoning

Figure 3: Transforming think-then-answer LRMs into a multi-turn reasoning paradigm, consisting
of four steps: (1) Rejection sampling to filter out responses with correct final answers; (2) Unit
segmentation using GPT-4o to divide CoTs into discrete reasoning units; (3) Intermediate answer
completion to extract answers (ak) for each prefix sub-trace (t≤k); and (4) SFT to align LRMs with
the multi-turn format.

To quantify unit-level redundancy, we define the minimal sufficient prefix t≤n∗ as the shortest prefix
that leads to a correct final answer. The unit-level redundancy rate is then defined as:

URR =
n− n∗

n
· 1an is correct , (5)

where n is the total number of thinking units and n∗ is the minimal number required for correctness.
A higher URR indicates a greater proportion of unnecessary reasoning steps.

Our empirical results, summarized in Figure 2 (right), show that the average unit-level redundancy
rates are 69.8% for the 1.5B model and 35.8% for the 7B model. This reveals that a significant
portion of the reasoning process in current LRMs is redundant for solving the problem, underscoring
the potential for substantial efficiency gains by explicitly mitigating unit-level redundancy.

3.3 MULTI-TURN DECOMPOSITION (MIND)

Our basic notion is that the model should not be that cautious. Given that “done is better than perfect”,
we aim to let the model yield a candidate answer as soon as possible. Besides, we would also like to
penalize the unit-level redundancy. MinD realizes these through two key innovations.

Multi-Turn CoT Reformulation MinD first employs supervised fine-tuning (SFT) to shift the
reasoning paradigm from “think-then-answer” (i.e., Equation (1)) to a structured multi-turn format:

<think> u1 </think> a1 <think> u2 </think> a2 · · ·<think> un </think> an , (6)

where the thinking units (u1, u2, . . . , un) in the original CoT t are distributed into a sequence of
reasoning turns. Each turn also includes an intermediate answer ak.

To construct the training data for multi-turn SFT, we first segment the original thinking process t
into (u1, u2, . . . , un), and then generate an intermediate answer ak after each uk, as described in
Section 3.2. The overall pipeline is illustrated in Figure 3.

After training, the learned multi-turn LRM enables flexible management of the thinking units (e.g.,
an external controller can choose to continue or abort from the reasoning by manipulating the token
</think>), but we empirically observe that when applying no control, the model tends to generate
even more output tokens than the original one (see Table 4). This is because SFT primarily reshapes
the reasoning format without directly addressing unit-level redundancy, and ak incurs further token
usage. To bridge the gap, we suggest leveraging GRPO to prioritize efficient reasoning traces.

Reducing Reasoning Turns via GRPO We define a reward function R comprises three components
for GRPO:

R = Rformat +Raccuracy +Runit . (7)

In detail, they are: (1) Format Consistency Reward Rformat, which ensures that the generated output
adheres to the multi-turn structure described in Equation (6). (2) Answer Accuracy Reward Raccuracy,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which rewards the model for producing a correct final answer, as determined by matching an to the
ground truth. (3) Unit Compactness Reward Runit, which penalizes cases where a single reasoning unit
contains multiple exploratory trajectories and thus encourages a clear separation between reasoning
turns. Concretely, we treat a unit as “overloaded” when it contains linguistic cues that typically signal
a restart or alternative line of thought (e.g., phrases like “double-check”, “wait”, or “alternatively”
appearing multiple times within the same unit). This detection is implemented as a simple pattern-
based heuristic over the generated text, without invoking any external LLM, and therefore adds
negligible cost beyond standard GRPO. The specific weights for each reward component are detailed
in Table 1, and we analyze the empirical effect of Runit in Section 4.3.

Note that we do not introduce an explicit reward term regarding the number of turns, because GRPO
inherently introduces an implicit bias toward generating shorter CoTs that yield correct answers. As
shown in Equation (2), for a fixed advantage Ai, the per-token normalization 1/|oi| results in larger
per-token updates for shorter outputs (Lin et al., 2025; Yu et al., 2025; Liu et al., 2025), thereby
encouraging the model to produce more concise and efficient completions. This effect is particularly
pronounced in LRMs, which typically possess strong reasoning capabilities and can generate multiple
correct yet diverse completions per group during training. Thus, the GRPO framework naturally
incentivizes the model to favor responses with fewer reasoning turns. This behavior is empirically
validated in Figure 5, where we observe a substantial reduction in the number of reasoning turns
following GRPO training.

4 EXPERIMENTS

In this section, we evaluate the efficiency of MinD across several benchmarks. Section 4.1 describes
the experimental setup. More detailed settings can be found in Appendix B. Section 4.2 presents
the main results, focusing on token reduction, accuracy, and latency. Ablation studies and additional
discussion are provided in Section 4.3.

4.1 SETUP

Table 1: Reward function value settings.

Rformat Raccuracy Runit

Compliance +1 +2 0
Non-Compliance -1 -2 -0.3

Table 2: Training data sizes.

1.5B 7B

SFT 3610 3532
GRPO 7500 7500

Training Details The training process for MinD consists of two key phases, as described in
Section 3.3. The first SFT phase is conducted using the LLaMA-Factory repository (Zheng et al.,
2024). We perform full-parameter fine-tuning for 2 epochs with a learning rate of 5e-5. The second
GRPO phase leverages the veRL repository (Sheng et al., 2024). During this phase, we train for 1
epoch with an actor learning rate of 1e-6. For each training step, 10 roll-out completions are generated
for each sample, with all other hyperparameters set to the default values provided by veRL. The
reward function described in Section 3.3 is adopted with the weight configurations listed in Table 1.

Models & Datasets We conduct our experiments using DeepSeek-R1-Distill-Qwen-
1.5B/7B (DeepSeek-AI, 2025). For SFT, the training data consists of questions from the
GSM8K (Cobbe et al., 2021) and MATH (Lightman et al., 2023) training sets. Model-generated
responses are filtered via rejection sampling to retain only correct answers, then pre-processed
as shown in Figure 3. For GRPO, we use the MATH training set exclusively, with sample sizes
detailed in Table 2. We evaluate on both in-distribution (MATH-500 (Lightman et al., 2023)) and
out-of-distribution benchmarks, including AIME24 (of America, 2024), AMC23 (of Science, 2023),
GPQA-Diamond (Rein et al., 2023), and LiveCodeBench (24.10–25.01) (Jain et al., 2024), to assess
generalization. Additional results on more models and benchmarks are provided in Tables 5 and 6.

Baselines To assess the efficiency of our method, we compare against the following baselines:
Original LRM: The base models used in this work, DeepSeek-R1-Distill-Qwen-1.5B and 7B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of various baselines and our proposed method, MinD, across
five reasoning benchmarks: MATH-500, AIME24, AMC23, GPQA-Diamond, and LiveCodeBench
(2024.10–2025.01). We report accuracy (Acc.; higher is better) and average output token usage
(Tokens; lower is better) for both 1.5B and 7B configurations. Methods include the original LRM
(DeepSeek-R1-Distill-Qwen-1.5B/7B), ThinkPrune (Hou et al., 2025), Dynasor (Fu et al., 2025),
DEER (Yang et al., 2025b), ShorterBetter (Yi et al., 2025), AdaptThink (Zhang et al., 2025), and our
method, MinD. MinD is trained only on the MATH training set, making MATH-500 in-domain
and the other benchmarks out-of-domain. As shown, MinD delivers competitive or superior accuracy
while substantially reducing token usage, demonstrating efficient and generalizable reasoning. Some
entries are omitted because the original papers did not report the corresponding results and reliable
reproduction was not feasible.

MATH-500 AIME24 AMC23 GPQA-Diamond LiveCodeBench

Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓
1.5B

Original LRM 85.4 5389 26.7 15177 67.5 9956 32.3 9842 12.0 21960
ThinkPrune 81.6 -4.4% 2427 -55% 31.6 +18.4% 7700 -49% 69.2 +2.5% 4074 -59% 31.3 -3% 6474 -34% 10.2 -15% 18463 -16%

DEER 73.2 -14.3% 1118 -79% 20.0 -25.1% 3302 -78% 47.5 -29.6% 2384 -76% 5.6 -82.7% 4128 -58% - -
ShorterBetter 74.8 -12.4% 1008 -81% 21.3 -20.2% 3705 -76% 65.3 -3.3% 2206 -78% 33.3 +3.1% 4362 -56% 11.6 -3.3% 9284 -58%

AdaptThink 82.0 -4.0% 1884 -65% 29.0 +8.6% 7171 -53% 71.3 +5.6% 3706 -63% 35.8 +10.8% 8083 -18% 12.3 +2.5% 15240 -31%

MinD 82.8 -3.0% 1719 -68% 30.8 +15.4% 4676 -69% 75.6 +12.0% 2432 -76% 31.3 -3.1% 4690 -52% 12.7 +5.8% 17728 -19%

7B

Original LRM 93.0 3928 50.0 14107 90.0 6076 50.5 8390 34.3 13690
Dynasor 88.5 -4.8% 2591 -34% 47.7 -4.6% 8760 -38% 87.1 -3.2% 4913 -19% - - - -
DEER 90.2 -3.0% 2391 -39% 49.2 -1.6% 10046 -29% 87.5 -2.8% 4877 -20% 30.6 -39.4% 5682 -32% - -
ShorterBetter 90.0 -3.2% 1272 -67.6% 53.3 +6.6% 5288 -63% 83.6 -7.1% 1946 -68% 49.6 -1.7% 4257 -49% 30.1 -12.2% 9067 -34%

AdaptThink 91.8 -1.3% 2547 -35% 55.1 +10.2% 8623 -39% 90.3 +0.3% 3457 -43% 50.3 -0.5% 7527 -10% 31.4 -8.5% 9586 -30%

MinD 91.6 -1.5% 2859 -27% 45.4 -9.2% 7588 -46% 92.0 +2.2% 3729 -39% 53.0 +5.0% 6845 -18% 34.0 -0.9% 10113 -26%

ThinkPrune (Hou et al., 2025): Adds length clipping to the GRPO reward and is trained on the
AIME-AMC subset, progressively pruning outputs at the token level to reduce response length.
DEER (Yang et al., 2025b): A training-free approach that detects “action transition points” (e.g.,
“Wait,” “Alternatively,” “Hmm”) to trigger answer generation, and halts decoding when the mean
token probability surpasses a confidence threshold. Dynasor (Fu et al., 2025): Periodically inserts
probes (e.g., every 32, 64, or 128 tokens) to extract intermediate answers and assess their consistency,
enabling early termination of generation. ShorterBetter (Yi et al., 2025): Determines the shortest
correct CoT across multiple samples as a dynamic reward to guide models toward generating more
concise traces. AdaptThink (Zhang et al., 2025): An RL-based post-training method that combines a
constrained objective with importance-sampled training to empower models to adaptively choose
between thinking and non-thinking modes. Both ShorterBetter and AdaptThink are trained on the
DeepScaleR (Luo et al., 2025b).

Evaluation Metrics We evaluate MinD using three primary metrics: accuracy, average output token
usage, and time-to-first-token (TTFT). TTFT measures the time it takes for the model to generate
the first answer token of the response, from when the prompt was sent—a key determinant of user
experience. The evaluations are conducted using the Open-R1 evaluation scripts (Face, 2025), with a
maximum sequence length of 32,768 tokens, a temperature setting of 0.6, and a top-p value of 0.95,
running on four NVIDIA A100 GPUs.

4.2 MAIN RESULTS

Reducing Output Tokens for Efficient Reasoning After training the 1.5B and 7B multi-turn
reasoning models as described in Section 4.1, we evaluated their token efficiency across a range of
reasoning benchmarks. The results, summarized in Table 3, show that MinD consistently reduces
output token usage while maintaining strong performance. On in-domain MATH-500, MinD lowers

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

��

�

��

��
��
��
 �
��
�

�
�	

���

�	

�
�

�
�

����

��
������� ����
�����

������������ ��� ���� ���

��

	�

�

��

��
��
��
 �
��
�

���

����

����

���

�
��

�
��

�������� ����
�����

4.2×
1.6×

1.3×
2.1×

1.2×
1.6×

1.4×
3.2×

Figure 4: TTFT (time to first
token) and total latency of two
DeepSeek-R1-distilled models on
MATH-500. MinD achieves up
to 4.2× (1.5B) and 2.1× (7B)
speedups over the original LRMs
in TTFT, and 3.2× (1.5B) and
1.6× (7B) in total latency.

0 20 40 60 80 100
Percentage (%)

SFT

GRPO-100

GRPO-200

GRPO-300

GRPO-400

GRPO-468

Number of Reasoning Turns
1 2 3 4 5 6 7 8+

Figure 5: The distribution of reasoning turns for MinD at
different training stages (1.5B model) on the MATH-500
dataset. Each bar represents a model checkpoint, including
the SFT model and successive GRPO training steps. As
GRPO training progresses, the number of reasoning turns per
output decreases and becomes increasingly concentrated at 1
or 2 turns (highlighted in red and orange), demonstrating the
effectiveness of GRPO in mitigating reasoning redundancy.

the average token usage to 1719 for the 1.5B model—a 68% reduction from the Original LRM (5389
tokens)—while achieving 82.8% accuracy. Although ThinkPrune attains similar accuracy (83.2%), it
requires more tokens (1938). DEER achieves the lowest token usage (1118), but with a substantial
accuracy drop to 73.2%. For the 7B model, MinD reduces average token usage by 27% compared to
the Original LRM (2859 vs. 3928), with a high accuracy of 91.6%, outperforming both Dynasor and
DEER in the balance of accuracy and efficiency. MinD’s efficiency generalizes well to out-of-domain
benchmarks. For example, on AMC23 (1.5B), MinD reaches 77.5% accuracy with 2384 tokens,
substantially outperforming ThinkPrune and DEER in both accuracy and token reduction. Similar
trends are observed on AIME24, GPQA-Diamond, and LiveCodeBench. These results demonstrate
that MinD effectively eliminates unnecessary reasoning steps, producing concise, efficient outputs
without compromising performance.

Reducing TTFT and Total Latency The TTFT and total response latency for the original R1-
distilled LRMs and our MinD models are summarized in Figure 4. As shown, MinD significantly
reduces both TTFT and total latency across both model sizes. For the 1.5B configuration, the original
1.5B model requires 35.4s TTFT, which drops to 21.8s after SFT and further to 8.4s with MinD,
resulting in a 4.2× speedup. The total latency is similarly reduced from 35.8s (original) to 25.8s
(SFT) and 11.3s (MinD), a 2.1× improvement. For the 7B model, TTFT decreases from 27.8s
(original) to 21.6s (SFT) and 13.2s (MinD), achieving a 2.1× speedup. The total latency is reduced
from 30.5s to 25.3s and 18.9s, for a 1.6× speedup. These results show that MinD shortens both the
time to first answer token and the overall response latency, making the models more responsive.

4.3 DISCUSSION & ABLATION

The Importance of Multi-Turn Structure To evaluate the impact of the multi-turn design, we
performed SFT using responses from the original distilled-1.5B model, without applying any multi-
turn segmentation (i.e., using the same question set as in step (1) of Figure 3), followed by GRPO
with only the format and outcome rewards. As shown in Table 4, the Non-Multi-Turn model achieves
comparable results to MinD on in-distribution MATH-500, but exhibits a notable drop in accuracy
and only marginal reductions in token usage on out-of-distribution benchmarks. We hypothesize that,
under the conventional CoT format, models lack the flexibility to adjust the number of thinking units,
making it difficult to learn a reasoning process that is both controllable and generalizable.

GRPO is Crucial for Efficient Reasoning As discussed in Section 3.3, SFT alone does not
guarantee efficient reasoning. To demonstrate this, we compare the performance of models after
SFT and after the full MinD pipeline, as shown in Table 4. The results reveal that SFT-only training

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison of different training strategies on DeepSeek-R1-Distill-Qwen-1.5B. Original
LRM refers to the pretrained baseline. SFT-Only applies only the supervised fine-tuning step from
MinD. Non-Multi-Turn applies GRPO without explicit multi-turn segmentation. MinD denotes our
full method with both multi-turn segmentation and GRPO. Acc.↑ indicates accuracy (higher is better),
and Tokens↓ indicates average output length (lower is better).

Original LRM SFT-Only Non-Multi-Turn MinD

Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓ Acc.↑ Tokens↓
MATH-500 85.4 5389 82.8 5655 82.0 1866 82.8 1719
AIME24 26.7 15177 26.7 20675 20.0 7654 30.8 4676
AMC23 67.5 9956 77.5 8409 65.0 3415 75.6 2432
GPQA-Diamond 32.3 9842 28.3 12501 28.8 3397 31.3 4690

���
����

�
���
����

�
���
��	�

�
���
��
�

�
����

����

����

����

	���

	���

��
��
��
��
��
��
��
��
��
��

���������
��������

GRPO-100, w/o

<think>
Okay, so I have this problem [...] So, the answer
should be 2
</think>
[...] Answer:
<think>
Let me just visualize the triangle to make sure [...]
I don't think I made any mistakes here.
</think>
[...] Answer:
<think>
So, I think I'm confident that tan A is indeed 2
</think>
[...] Answer:

Question: In right triangle with , we have . What is ?

GRPO-400, w/o

<think>
Okay, so I have this problem [...] tan A would be
(2 cos A) over cos A, which simplifies to 2.
Wait, that seems straightforward. But let me make
sure I'm not missing anything [...] So, tan A is 2.
Wait, but let me double-check using the identity
sin^2 A + cos^2 A = 1 [...] So, both methods
confirm that tan A is 2 [...]
</think>
[...]
<think>
But let me just visualize the triangle to make sure
[...] I think I'm confident that tan A is 2
</think>
The value of is .

Figure 6: Left: Comparison of GRPO training with and without Runit on MATH-500 for different
1.5B model checkpoints, showing Average Output Tokens for each. Removing Runit leads to instability
and collapse in output length. Right: An illustrative case comparing the outputs of GRPO-100-step
and GRPO-400-step checkpoints trained without Runit. While the earlier checkpoint (GRPO-100)
maintains clear multi-turn reasoning, the later checkpoint (GRPO-400) exhibits several thinking units
within a single turn (the start of each new unit is marked with an orange highlight), demonstrating
that omitting Runit results in blurred step boundaries and loss of controllable, structured reasoning.

often increases average output token usage relative to the original LRM. In contrast, applying GRPO
further leads to substantial reductions in token usage while preserving accuracy, underscoring the
essential role of GRPO in enabling concise and effective reasoning.

Role of Runit in Maintaining Multi-Turn Reasoning As discussed in Section 3.3 and detailed in
Table 1, our GRPO framework introduces a Unit Compactness Reward, Runit, to enforce that each
reasoning turn contains only a single, coherent exploratory trajectory. This mechanism is essential
for preventing the model from degenerating into the original monolithic think-then-answer style—a
common outcome under GRPO’s token-level averaging (Section 3.3), which tends to favor shorter
correct outputs. Without a specific penalty for multi-trajectory turns, the model may skip intermediate
answers, collapsing the multi-turn reasoning structure into a single-block CoT. To counteract this,
Runit penalizes reasoning turns that contain multiple exploratory trajectories, detected by linguistic
cues such as phrases like “double-check.” This strategy encourages each turn to contain only one
exploratory trajectory—especially in the critical first turn—without requiring external supervision,
and thus maintains the multi-turn paradigm throughout training. The impact of Runit is demonstrated
in Figure 6, which shows how its absence leads to a collapse in output structure and length.

MinD Effectively Alleviates Redundancy To demonstrate the effectiveness of GRPO in reducing
redundancy, we plotted the distribution of reasoning turns for SFT and GRPO models on the MATH-
500 dataset, as shown in Figure 5. The figure clearly illustrates that GRPO significantly reduces the
number of reasoning turns, indicating a more compact and efficient reasoning process compared to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the purely SFT-trained models. Additionally, from the data in Table 3, GRPO reduces the average
output tokens on MATH-500 by 68.1% for the 1.5B model and 27.2% for the 7B model, compared
to their respective original LRMs. This aligns well, though not directly, with the redundancy rates
of 69.8% and 35.8% for these models, as reported in Figure 2 (Right). While these figures cannot
be directly equated, they collectively indicate that MinD, through GRPO, substantially alleviates
redundancy, resulting in more concise and efficient outputs.

Additional discussion can be found in Appendix A.

5 CONCLUSION

In this paper, we introduced Multi-Turn Decomposition (MinD), an efficient method for improving
the reasoning efficiency of large language models. By structuring the reasoning process into multi-
turn steps, MinD significantly reduces token usage and response latency while maintaining strong
performance across various reasoning tasks. Our results demonstrate that structured reasoning
provides a practical solution to challenges such as slow response times and high computational costs
in large language models. A promising direction is adaptive multi-turn strategies that dynamically
allocate reasoning turns according to task difficulty and user preferences.

ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics for the entirety of this work. This study
does not involve human subjects or sensitive personal data. All experiments use public benchmarks
under their respective terms, with proper attribution. Our contribution aims to improve the accu-
racy–efficiency balance of reasoning models; nonetheless, deployment should follow standard safety
safeguards (e.g., usage policies and filtering). No confidential or proprietary information was shared
with third-party services. We disclose limited LLM assistance strictly for language editing, with
human verification of all scientific content (Appendix D). The authors are solely responsible for the
content of this paper.

REPRODUCIBILITY STATEMENT

We aim to make all results reproducible. Model, training, and decoding details—including the
MinD design, GRPO settings—are documented in the Method and Experiments sections; sensitivity
analyses (e.g., the unit-compactness reward Runit) appear in Table 7. We will release a complete,
reproducible codebase and configuration files upon acceptance.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Cheng-Han Chiang and Hung yi Lee. Over-reasoning and redundant calculation of large language
models, 2024. URL https://arxiv.org/abs/2401.11467.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop

10

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2401.11467
https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

on Foundation Models in the Wild, 2025. URL https://openreview.net/forum?id=
wpK4IMJfdX.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason E Weston, and Yuandong
Tian. Training large language model to reason in a continuous latent space, 2025. URL https:
//openreview.net/forum?id=tG4SgayTtk.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2504.01296.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Renlong Jie, Xiaojun Meng, Lifeng Shang, Xin Jiang, and Qun Liu. Prompt-based length con-
trolled generation with multiple control types, 2024. URL https://arxiv.org/abs/2406.
10278.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.09516.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought with-
out compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 24312–24320, 2025. doi: 10.1609/aaai.v39i23.34608.

Kimi, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599, 2025.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
relative policy optimization-based reasoning models. arXiv preprint arXiv:2503.22342, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https:
//arxiv.org/abs/2503.20783.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
2025a. URL https://arxiv.org/abs/2501.12570.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025b. Notion Blog.

11

https://openreview.net/forum?id=wpK4IMJfdX
https://openreview.net/forum?id=wpK4IMJfdX
https://openreview.net/forum?id=tG4SgayTtk
https://openreview.net/forum?id=tG4SgayTtk
https://arxiv.org/abs/2504.01296
https://arxiv.org/abs/2406.10278
https://arxiv.org/abs/2406.10278
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2501.12570
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Mathematical Association of America. American invitational mathematics exami-
nation - aime 2024, 2024. URL https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime.

Australian Academy of Science. Australian mathematics competition - amc 2023, 2023. URL
https://www.amt.edu.au/news/amc-2023.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specreason: Fast
and accurate inference-time compute via speculative reasoning. arXiv preprint arXiv:2504.07891,
2025.

12

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://www.amt.edu.au/news/amc-2023
https://arxiv.org/abs/2303.08774

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qwen. Qwen3, April 2025. URL https://qwenlm.github.io/blog/qwen3/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Jianshu She, Zhuohao Li, Zhemin Huang, Qi Li, Peiran Xu, Haonan Li, and Qirong Ho. Hawk-
eye:efficient reasoning with model collaboration, 2025. URL https://arxiv.org/abs/
2504.00424.

Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang, Pu Zhao, and Jiuxiang Gu. Efficient reasoning
with hidden thinking, 2025. URL https://arxiv.org/abs/2501.19201.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592, 2025.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning, 2025. URL
https://arxiv.org/abs/2502.03275.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022.

Heming Xia, Weilin Wang, Han Yu, Xin Wang, Xiangning Lin, and Ming Zhou. Tokenskip:
Controllable chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models, 2025b. URL https://arxiv.org/abs/
2504.15895.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning, 2025c. URL https://arxiv.org/abs/2502.18080.

Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find optimal in-
ference length for efficient reasoning, 2025. URL https://arxiv.org/abs/2504.21370.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
llm reinforcement learning system at scale, 2025. URL https://arxiv.org/abs/2503.
14476.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think, 2025. URL https://arxiv.org/abs/2505.13417.

13

https://qwenlm.github.io/blog/qwen3/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2504.00424
https://arxiv.org/abs/2504.00424
https://arxiv.org/abs/2501.19201
https://arxiv.org/abs/2502.03275
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2502.18080
https://arxiv.org/abs/2504.21370
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2505.13417

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft
& verify: Lossless large language model acceleration via self-speculative decoding. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11263–11282,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.607. URL https://aclanthology.org/2024.acl-long.607/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

A MORE RESULTS

Generalization across model families and tasks To further test whether MinD is tied to a specific
backbone or domain, we apply it to two additional LRMs on MATH-500: DeepSeek-R1-Distill-
Llama3.1-8B (DeepSeek-AI, 2025) and Qwen3-1.7B (Yang et al., 2025a), summarized in Table 5.
On R1-Distill-Llama3.1-8B, MinD reduces the average output length from 4792.37 to 3107.89 tokens
(about 35% fewer tokens) while maintaining almost the same accuracy (77.4% vs. 78.0%). On
Qwen3-1.7B, MinD achieves 89.2% accuracy compared to 91.0% for the original model, but uses
only 3866.69 tokens on average instead of 5216.44 (around 26% reduction).

We further evaluate MinD on the non-mathematical OpenBookQA (Mihaylov et al., 2018) benchmark
using DeepSeek-R1-Distill-1.5B (Table 6). In this setting, MinD improves accuracy from 27.4%
to 34.8% while reducing token usage from 4986.47 to 3840.93 (about 23% fewer tokens). These
results suggest that the unit-level multi-turn reformulation and RL training in MinD generalize across
different model families and extend beyond purely mathematical reasoning tasks.

Table 5: Performance of MinD on additional LRMs on MATH-500.

Model Accuracy (%) Tokens

R1-Llama3.1-8B 78.0 4792.37
R1-Llama3.1-8B-SFT 75.2 5068.48
R1-Llama3.1-8B-MinD 77.4 3107.89

Qwen3-1.7B 91.0 5216.44
Qwen3-1.7B-SFT 88.6 5433.30
Qwen3-1.7B-MinD 89.2 3866.69

Table 6: Results of MinD on OpenBookQA with DeepSeek-R1-Distill-1.5B.

Model Accuracy Tokens

R1-1.5B 27.4 4986.47
R1-1.5B-SFT 31.0 5433.30
R1-1.5B-MinD 34.8 3840.93

Ablation on the Unit-Compactness Reward Weight Runit We study how the weight on the Runit
affects MinD’s accuracy–efficiency trade-off. Specifically, we vary the non-compliance penalty for
Runit as specified in Table 1. Unless otherwise noted, all runs in this ablation use the MinD variant
fine-tuned for multi-turn patterns and trained with 100 GRPO steps on the MATH training set.

Table 7 reports a sensitivity sweep on MATH-500, varying the Runit weight while keeping all other
settings unchanged. A modest penalty improves efficiency with negligible or positive effects on

14

https://aclanthology.org/2024.acl-long.607/
http://arxiv.org/abs/2403.13372

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

accuracy; an overly large penalty degrades both. In particular, a small negative weight achieves the
best efficiency, whereas a slightly stronger penalty yields the best accuracy, indicating a smooth
trade-off rather than a brittle optimum.

Table 7: Sensitivity of MinD to the Runit weight on MATH-500. Accuracy (higher is better) and
average output token usage (lower is better). All runs use the multi-turn pattern fine-tuned model
with 100-step GRPO on MATH.

Weight for Runit Accuracy Token
0 80.0 3258.0

−0.3 82.0 3171.2
−0.5 83.6 3325.1
−1.0 80.4 3498.1

Accuracy–Efficiency Balance under Compact Reasoning As shown in Table 3, MinD-1.5B de-
livers substantial efficiency on MATH-500—about 68% fewer output tokens (1719 vs. 5389)—while
maintaining competitive accuracy (82.8% vs. 85.4% for the original LRM). The small gap mainly
reflects the size and composition of the GRPO set (the MATH training set), which skews toward
easier items and nudges the model toward very concise reasoning on harder cases. To narrow this gap
without sacrificing compactness, we scale GRPO with harder chain-of-thought data. In a preliminary
continuation, training MinD-1.5B for one additional GRPO epoch on a small mixed set (50 MATH +
50 DeepScaleR (Luo et al., 2025b), randomly sampled) reached 84.2% with 1804 average tokens,
indicating clear headroom from data scaling.

Early-exit behavior under forced truncation To better understand how MinD enables early exit at
the unit level, we perform an additional analysis on MATH-500 with MinD-1.5B. For each generated
multi-turn trajectory, we manually truncate the reasoning at a chosen turn k by detecting the next
<think> marker and forcing decoding to stop before it, treating the answer from the previous unit as
the final output. As shown in Table 8, compared to the original LRM (85.4% accuracy, 5389 tokens)
and the full MinD model after GRPO (82.8%, 1719 tokens), forcing exit at turn 1 already reaches
80.4% accuracy with only 1436 tokens, while forcing exit at turns 2–4 yields 82.6–82.8% accuracy
with 1623–1710 tokens. This indicates that (i) intermediate units already contain high-quality answers,
and (ii) after GRPO the turn distribution is already concentrated (most samples naturally use only
1–2 turns, cf. Figure 5), so additional forced early exits bring limited further gains and only small
accuracy differences across “turn 2/3/4” settings.

Table 8: Effect of forced early exit at different turns on MATH-500 with MinD-1.5B.

Accuracy Tokens

Original LRM 85.4 5389
MinD 82.8 1719
Forced exit at turn 1 80.4 1436
Forced exit at turn 2 82.6 1623
Forced exit at turn 3 82.8 1689
Forced exit at turn 4 82.8 1710

Word Frequency Analysis of Thinking Units We collect and compare the number of distinct
words representing thinking units in DeepSeek-R1-Distill-1.5B, including the Original LRM, Non-
Multi-Turn (GRPO applied without explicit multi-turn segmentation) , and MinD. Although these
words do not precisely correspond to the number of actual thinking units, they serve as a meaningful
proxy and offer indicative insights into their distribution(see Table 9 for details).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: The frequency of words representing thinking units in outputs generated by Original LRM,
Non-Multi-Turn and MinD across MATH-500, AIME24 and AMC23.

Wait Alternatively double-check check verify

MATH-500

Original LRM 13993 2206 368 1272 124
Non-Multi-Turn 1822 333 41 347 193
MinD 1651 237 10 434 249

AIME24

Original LRM 3742 415 20 215 17
Non-Multi-Turn 317 67 0 45 19
MinD 211 45 0 34 8

AMC23

Original LRM 2302 385 35 205 45
Non-Multi-Turn 246 38 3 42 17
MinD 215 30 0 50 22

B EXPERIMENT SETTING

We use DeepSeek-R1-Distill-Qwen-1.5B/7B (DeepSeek-AI, 2025) as base reasoning models. For the
initial supervised fine-tuning (SFT) phase, full-parameter tuning is employed over 2 epochs, with
a learning rate of 5e-5, a batch size of 4, and fp16 precision. During the GRPO phase, training is
performed for 1 epoch, where the actor learning rate is set to 1e-6. The model generates 10 rollout
completions per sample via a vLLM-based rollout backend. All GRPO training is conducted on the
MATH (Lightman et al., 2023) training set.

For the evaluation in Table 3, we utilised Open-R1 (Face, 2025) as the core framework. All decoding
hyper-parameters are held constant across tasks: maximum response length of 32,768 tokens, tem-
perature = 0.6, and top-p = 0.95. For the larger benchmarks (namely MATH-500, GPQA-Diamond
and LiveCodeBench) we report metrics averaged over four independent runs; for the smaller datasets
(AIME24 and AMC23), owing to the reduced sample size, we increased the number of independent
trials to sixteen to enhance statistical reliability. When publicly available checkpoints existed (e.g.,
ShorterBetter, AdaptThink, ThinkPrune) we applied the same decoding settings; for other baselines
we adhered to the values reported in their original publications.

C PROMPTING FOR MIND

In this section, we present the complete prompt formats used in the MinD process (see Figure 3 for
details).

Q&A Template

{Question}
Please reason step by step, and put your final answer within
\\boxed{}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Decomposing into Thinking Units

You will be provided with a math problem and a solution
generated by a reasoning model. The model’s response may
contain multiple Reasoning Rounds. One Reasoning Round
is a part of the full model generation and is defined as
a complete reasoning process or verification process that
explicitly contains the final answer. Your task is to
carefully analyze the response and segment it into individual
Reasoning Rounds. Specifically, insert “[split]” between
every two consecutive Reasoning Rounds.
--
Problem: {question}
Solution: {prediction}
--
Please give the solution with “[split]” tags without any
redundant words.

D STATEMENT ON THE USE OF LLM ASSISTANCE

Consistent with community guidelines on responsible use of large language models (LLMs), we
disclose that LLM tools were used only to assist with language editing (grammar, wording, and
minor style) of this manuscript. All ideas, claims, methods, experiments, analyses, figures, and
tables were conceived, implemented, and verified by the authors. The authors reviewed and edited all
LLM-suggested text for accuracy and clarity; no passages were accepted without human verification.
LLMs were not used to generate data, code, results, reviews, or citations, and no confidential or
proprietary information was provided to LLM services.

17

	Introduction
	Related Work
	Method
	Preliminary
	Unit-Level Redundancy in LRMs
	Multi-Turn Decomposition (MinD)

	Experiments
	Setup
	Main Results
	Discussion & Ablation

	Conclusion
	More Results
	Experiment Setting
	Prompting for MinD
	Statement on the Use of LLM Assistance

