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ABSTRACT

Large Reasoning Models (LRMs) have gained increasing attention over the past
few months. Despite being effective, LRMs are criticized for the excessively
lengthy Chain-of-Thought (CoT) to derive the final answer, suffering from high
first-token and overall latency. Typically, the CoT of LRMs mixes multiple thinking
units, some of which are split by markers like “aha”, “wait”, or “alternatively”;
each unit attempts to produce a candidate answer to the original query. Hence,
a natural idea to improve efficiency is to reduce the unit number. Yet, the fact
that the thinking units in vanilla CoT cannot be explicitly managed renders doing
so challenging. This paper introduces Multi-Turn Decomposition (MinD) to
decode conventional CoT into a sequence of explicit, structured, and turn-wise
interactions to bridge the gap. In MinD, the model provides a multi-turn response
to the query, where each turn embraces a thinking unit and yields a corresponding
answer. The subsequent turns can reflect, verify, revise, or explore alternative
approaches to both the thinking and answer parts of earlier ones. This not only
makes the answer delivered more swiftly, but also enables explicit controls over
the iterative reasoning process (i.e., users may halt or continue at any turn). We
follow a supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm
to realize MinD. We first rephrase the outputs of an LRM into multi-turn formats
by prompting another LLLM, and then tune the LRM with such data. Observing
that the tuned model tends to consume even more tokens than the original one
(probably due to that the multi-turn formats introduce additional answer tokens),
we advocate leveraging RL algorithms like GRPO to prioritize correct outputs
with fewer turns. Trained on the MATH dataset using R1-Distill models, MinD
can achieve up to ~ 70% reduction in both output token usage and time to first
token (TTFT), while maintaining competitive performance on benchmarks such as
MATH-500, AIME24, AMC23, GPQA-Diamond, and LiveCodeBench.

1 INTRODUCTION

Large Reasoning Models (LRMs) have recently attracted significant attention due to their advancing
reasoning capabilities, including OpenAl-ol (Jaech et al.,|2024), DeepSeek-R1 (Guo et al.| 2025)),
and Kimi-1.5 (Kimi et al.|[2025)). These models have achieved remarkable performance on complex
tasks, e.g., mathematical competitions, thanks to their ability to engage in a “think-then-answer”
paradigm, where intermediate reasoning chains are generated to induce the final answer. The resultant
Chain-of-Thought (CoT) activates contextually accurate responses through iterative exploration and
verification of potential solutions.

Despite these advantages, LRMs often suffer from inefficiency issues as the CoT can become
excessively lengthy, exhibiting substantially increased computational costs and latency compared
to non-reasoning Large Language Models (LLMs). To mitigate these, several strategies have been
proposed in recent works. For example, some approaches encourage models to generate answers
more directly through strategically designed prompts (Jie et al., 2024), truncate the chain of thought to
avoid unnecessary token generation (Fu et al.| [2025 |Qwen, [2025)), or leverage speculative reasoning
via model collaboration (Pan et al.l [2025} [She et al.l [2025)). Other approaches focus on reducing
token redundancy by refining model reasoning paths through supervised fine-tuning (SFT) (Yang
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( Question: Let f(z) = 2z — 3 and g(z) = x + 1. What is the value of g(f(5) — 1)? j
DeepSeep-R1-Distill-Qwen-7B MinD-7B
<think> - . - .
OKay, so I need to find the value of g(f(5) - 1) .. .1 g(f(5) - 1) is 7. <think> First [...] Therefore, g(f(5) - 1) is 7. </think>
Wait, is there another way to approach this problem? [...] Both " . . .
approaches lead to the sayme arﬁwer, 7. So,Fl)'naybe I was <think> Wait, let me make sure I did that right [...] Yeah, that
overcomplicating it by thinking of composing functions, but it still seems correct. </think>
gives the same result. Hmm, interesting.
Wait, let me verify again [...] So, yes, the answer is 7. <think> et me think if there's another way to approach
Alternatively, if I compute g(f(5) - 1) as follows: [...] Yep, same this [...] So, that method also gives me the same answer, which is
answer. [...] 7. </think>
</think>

Figure 1: An illustration of responses from DeepSeek-R1-Distill-Qwen-7B and the transformed
MinD-7B model on the same math problem. The original LRM follows a think-then-answer format,
where the reasoning process consists of multiple thinking units (the start of each new unit is marked
with an orange highlight). In contrast, MinD-7B adopts a multi-turn reasoning paradigm, where each
turn contains a thinking unit followed by an answer. Also note that MinD-7B tends to use fewer
thinking units due to the GRPO training (see Section [3.3).

et al.l 2025c), or by enhancing decision efficiency with improvements to Group Relative Policy
Optimization (GRPO) algorithms (Yu et al.l 2025} Liu et al., [2025).

The CoT reasoning process in LRMs is typically composed of multiple thinking units—discrete
cognitive steps like initial attempts, follow-up validations, reflections, and strategic shifts. Each unit
can contribute to generating a candidate answer, while current LRMs tend to employ redundant units
to ensure the final answer is close to “perfect” (see an empirical analysis of such redundancy in
Figure 2] (right)). While reducing the number of thinking units could improve reasoning efficiency,
the inability to explicitly manage these units in standard CoT makes this challenging. This highlights
the need for more fine-grained approaches to improve reasoning efficiency.

Building on this insight, we introduce Multi-Turn Decomposition (MinD) to decode the “think-
then-answer” CoT reasoning into a sequence of multi-turn interactions to enable the explicit control
of the number of thinking units, where each turn contains a single thinking unit and an answer
generated based on both the current and all preceding units. Refer to Figure[I]for an illustration of
the paradigm shift. To implement MinD, we adopt a pipeline combining SFT and GRPO. We first
convert conventional CoT traces into structured, multi-turn formats using GPT-4o0 (OpenAl et al.,
2024) and then fine-tune the target model on such data. To further enhance efficiency, we apply
GRPO to encourage the model to generate accurate responses within fewer reasoning turns, thereby
reducing latency and computational costs.

To evaluate the effectiveness of MinD, we conduct extensive experiments across a range of reasoning
benchmarks. On DeepSeek-R1-Distill-Qwen-1.5B, MinD reduces token usage by up to ~ 70% and
accelerates time to first token (TTFT) by 4.2x on MATH-500, while maintaining over 95% accuracy.
Furthermore, MinD demonstrates strong out-of-distribution generalization on this model, with token
reductions of 69% on AIME24 and 53% on GPQA-Diamond. These results highlight the efficiency
and broad applicability of MinD in diverse reasoning scenarios.

2 RELATED WORK

Efficient Reasoning Paradigms Since CoT prompting (Wei et al.,[2022)), explicit multi-step traces
have improved LLM reasoning (Guo et al.| 2025) but often at the cost of long outputs, high token usage,
and latency (Chiang & yi Lee}|2024)). To address redundancy, recent work reduces intermediate tokens
while preserving quality: token skipping (Xia et al.,2024)) and length-harmonizing pruning (Luo et al.,
2025a) report sizable savings with competitive accuracy (Fu et al., 2025). Orthogonally, latent/hidden-
thinking methods (e.g., Token-Assorted Mixing (Su et al., [2025), Hidden Thinking (Shen et al.|
2025))) move computation off the visible token stream, yielding multi-fold throughput gains (Hao
et al.|2025). Hybrid systems (e.g., C30T (Kang et al., 2025)) and speculative pipelines (Pan et al.|
2025} [Zhang et al.| |2024; |She et al.| [2025)) further balance accuracy and compute via verification and
adaptive depth.
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( A Thinking Process from DeepSeek-R1 N [ = 1.58)
== 7B

Naturally Contains Multiple

Okay, so I need to 12 =x

So, x equals 12? Let me check my steps to make sure I didn't make any mistakes That

seems to check out.

But wait, let me verify by plugging x = 12 back into the original expressions and see if the

average is indeed 4x - Hmm, so I think that's it. My answer is x = 12

Wait, just to be thorough, let me check again if my initial equation was set up correctly Yes,

that's correct.

Alternatively, maybe I can think of another way to approach the problem, just to confirm So

definitely, x is 12. So, confident now that the answer is 12.

**Final Answer**

qhe value of x is \boxed{12}. Y,

Figure 2: Left: An example of a standard CoT from DeepSeek-R1, naturally containing multiple
discrete thinking units (the start of each new unit is marked with an orange highlight). Right:
Empirical analysis of unit-level redundancy, which is calculated based on Equation (3), in R1-distilled
models on the MATH-500 dataset, showing an average redundancy rate of 69.8% for the 1.5B model
and 35.8% for the 7B model.

Reinforcement Learning for Reasoning Optimization Reinforcement learning (RL) has become
an essential tool for optimizing LLM reasoning, providing precise control over decision-making
processes. Group Relative Policy Optimization (GRPO) (Shao et al., [2024)) is one of the most
influential methods in this domain, aligning reward signals with step-wise reasoning validity rather
than simply final answer correctness. This strategy allows models to prioritize accurate intermediate
steps, enhancing both response precision and computational efficiency. Building on this foundation,
frameworks like DAPO (Yu et al.,2025) and R1-Zero (Liu et al.l 2025) incorporate dynamic reward
shaping and entropy-controlled exploration to further refine model outputs. These methods extend
GRPO by introducing adaptive mechanisms that reduce token redundancy while maintaining high
accuracy, making them particularly effective for complex reasoning tasks. Recent advancements
have also focused on integrating search-based techniques to enhance reasoning efficiency. For
instance, Search-R1 (Jin et al., [2025)) combines Monte Carlo Tree Search with policy gradients
to optimize reasoning path selection, reducing unnecessary token usage. Similarly, length-aware
control frameworks like L1-Controller (Aggarwal & Welleck, 2025) balance correctness and token
efficiency through dual reward signals, achieving substantial latency reductions. Other approaches,
such as R1-Searcher (Song et al.,[2025)), incorporate dynamic halting mechanisms to automatically
terminate unproductive reasoning chains, significantly improving efficiency in open-domain tasks.
ThinkPrune (Hou et al.|[2025)) adopts length clipping to the reward function, pruning outputs to reduce
redundancy. ShorterBetter (Y1 et al.}[2025) uses the “Sample Optimal Length”—the shortest correct
response as a self-supervised reward to guide models toward generating more concise traces without
compromising accuracy. AdaptThink (Zhang et al.,[2025)) empowers models to adaptively choose
thinking mode via a constrained optimization objective and importance sampling. SCoRe (Kumar
et al.| 2024)) trains models via multi-turn RL to self-diagnose and correct errors from self-generated
traces, prioritizing correctness over efficiency.

Training-Based Efficiency Enhancements Training strategies have also played a critical role
in improving reasoning efficiency. Supervised fine-tuning (SFT) methods like Thinking-Optimal
Scaling (Yang et al., |2025c¢]) align models with optimal solution trajectories, reducing token redun-
dancy without compromising accuracy. This approach effectively reshapes the internal reasoning
paths of models, ensuring more concise outputs. Hybrid training regimes have also gained traction,
combining imitation learning and reinforcement learning to refine reasoning efficiency. For example,
the SpecReason framework (Pan et al., [2025) employs a two-stage process, beginning with teacher-
student distillation for foundational policy approximation, followed by adversarial reward shaping
for fine-grained optimization. This blend of supervised and reinforcement learning techniques has
proven effective in reducing token counts while maintaining response quality.
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3 METHOD

In this section, we first introduce the standard Chain-of-Thought (CoT) reasoning of Large reasoning
models (LRMs) and briefly review Group Relative Policy Optimization (GRPO) (DeepSeek-Al,
2025)). We then present an empirical study showing how redundant reasoning steps commonly arise
in LRMs. Finally, we outline MinD, which reformulates the standard CoT into a multi-turn structure,
and discuss how to leverage GRPO to encourage concise and effective multi-turn reasoning.

3.1 PRELIMINARY

CoT for LRMs LRMs commonly adopt a “think-then-answer” paradigm for complex problem
solving. Given a query ¢, an LRM typically produces an output o of the form:

q — o= <think>t </think>a, @))

where ¢ denotes the internal thinking process, delimited by <think> and </think>, and a is the
final answer. The thinking process ¢ can be viewed as an exploration of the solution space and is
naturally decomposed into multiple thinking units—self-contained logical steps that can induce a
candidate answer to ¢, with an example from DeepSeek-R1 (Guo et al.,[2025) depicted in Figure@]
(left). Formally, letting u; denote a thinking unit, there is ¢ = (u1, us, ..., uy). These units may
arise from (1) an initial attempt to solve the problem, (2) depth-wise exploration such as validation,
backtracking, or correction along a single line of reasoning, or (3) breadth-wise search involving
alternative methods or perspectives. Each unit can thus be interpreted as a path in the reasoning space,
potentially building on previous steps, and may terminate with a provisional answer to the query.

However, current LRMs tend to employ numerous thinking units before gaining the final answer to
solve the problem as ‘perfectly’ as possible, causing significant inefficiency issues.

GRPO Let 7y denote the current policy and mg_,, the reference policy from the previous iteration.

Given a query ¢, GRPO samples G completions o1, . .., og and optimizes the objective:
1 G los]
Eq {o3e, el Z Zmin (pi,jAs, clip(pij, 1 —e,1+€A;)]|, 2)
i=1 j=1
where p; ; = —70(0:.519:00.<1) _ g the ratio between the new and old policies for token j in sequence

T6o1d (Oi,j |q7oi,<j)
o; and |o,| is the sequence length. A; is the group-standardized advantage:

o R(0;) — mean({R(01),...,R(og)})
’ std({R(01),...,R(0og)}) ’

where R denotes the reward function, and mean({r1,...,rg}) and std({r1,...,rg}) represent the
mean and standard deviation of group rewards, respectively. For clarity, we omit the KL regularization
term, as it is not the focus of our analysis.

3)

3.2 UNIT-LEVEL REDUNDANCY IN LRMsS

Before devoting to reducing the number of thinking units of LRMs, we first systematically investigate
the unit-level redundancy, which is intuitively high considering the repeated depth-wise validations
or breadth-wise explorations of alternative solution paths, even after repeatedly arriving at essentially
the same valid answer, in long CoTs.

Concretley, we conducted a detailed analysis using DeepSeek-R1-Distill-Qwen-1.5B/7B (DeepSeek-
AlLL2025). We extracted their CoT traces from the MATH (Lightman et al.,2023)) and GSMS8K (Cobbe
et al.| [2021) training sets (restricted to correctly answered examples), and segmented each trace into
discrete thinking units using GPT-40 (OpenAl et al.| [2024) (see Appendix E] for details).

For each segmented trace t = (u1, ug, . . ., Uy, ), We constructed prefix sub-traces t<y = (u1, ..., ux)
for 1 < k < n. We then prompted the model to generate an intermediate answer a;, by appending a
special stop token </think> after {<j, given the current partial reasoning:

q — o = <think>t< </think>ay, k=1,---,n. 4)
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Figure 3: Transforming think-then-answer LRMs into a multi-turn reasoning paradigm, consisting
of four steps: (1) Rejection sampling to filter out responses with correct final answers; (2) Unit
segmentation using GPT-4o to divide CoTs into discrete reasoning units; (3) Intermediate answer
completion to extract answers (ay,) for each prefix sub-trace (t<); and (4) SFT to align LRMs with
the multi-turn format.

To quantify unit-level redundancy, we define the minimal sufficient prefix t<,,« as the shortest prefix
that leads to a correct final answer. The unit-level redundancy rate is then defined as:

URR =+~ "

- 1an is correct » (5)

where n is the total number of thinking units and n* is the minimal number required for correctness.
A higher URR indicates a greater proportion of unnecessary reasoning steps.

Our empirical results, summarized in Figure [2] (right), show that the average unit-level redundancy
rates are 69.8% for the 1.5B model and 35.8% for the 7B model. This reveals that a significant
portion of the reasoning process in current LRMs is redundant for solving the problem, underscoring
the potential for substantial efficiency gains by explicitly mitigating unit-level redundancy.

3.3 MULTI-TURN DECOMPOSITION (MIND)

Our basic notion is that the model should not be that cautious. Given that “done is better than perfect”,
we aim to let the model yield a candidate answer as soon as possible. Besides, we would also like to
penalize the unit-level redundancy. MinD realizes these through two key innovations.

Multi-Turn CoT Reformulation MinD first employs supervised fine-tuning (SFT) to shift the
reasoning paradigm from “think-then-answer” (i.e., Equation (I))) to a structured multi-turn format:

<think>uy </think>a; <think> us </think>as ---<think>u, </think>a, , (6)

where the thinking units (u1,us, ..., u,) in the original CoT t are distributed into a sequence of
reasoning turns. Each turn also includes an intermediate answer ay.

To construct the training data for multi-turn SFT, we first segment the original thinking process ¢
into (u1,us, ..., un), and then generate an intermediate answer a;, after each uy, as described in
Section[3.2] The overall pipeline is illustrated in Figure [3]

After training, the learned multi-turn LRM enables flexible management of the thinking units (e.g.,
an external controller can choose to continue or abort from the reasoning by manipulating the token
</think>), but we empirically observe that when applying no control, the model tends to generate
even more output tokens than the original one (see Tabled). This is because SFT primarily reshapes
the reasoning format without directly addressing unit-level redundancy, and aj, incurs further token
usage. To bridge the gap, we suggest leveraging GRPO to prioritize efficient reasoning traces.

Reducing Reasoning Turns via GRPO We define a reward function R comprises three components
for GRPO:

R = Rtormat + 7?faccuracy + Rounit - @)
In detail, they are: (1) Format Consistency Reward Rormat, Which ensures that the generated output
adheres to the multi-turn structure described in Equation (@) (2) Answer Accuracy Reward Raccuracys
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which rewards the model for producing a correct final answer, as determined by matching a,, to the
ground truth. (3) Unit Compactness Reward R nit, which penalizes cases where a single reasoning unit
contains multiple exploratory trajectories and thus encourages a clear separation between reasoning
turns. Concretely, we treat a unit as “overloaded” when it contains linguistic cues that typically signal
a restart or alternative line of thought (e.g., phrases like “double-check”™, “wait”, or “alternatively”
appearing multiple times within the same unit). This detection is implemented as a simple pattern-
based heuristic over the generated text, without invoking any external LLM, and therefore adds
negligible cost beyond standard GRPO. The specific weights for each reward component are detailed
in Tablem and we analyze the empirical effect of Rypi in Section@

Note that we do not introduce an explicit reward term regarding the number of turns, because GRPO
inherently introduces an implicit bias toward generating shorter CoTs that yield correct answers. As
shown in Equation , for a fixed advantage A;, the per-token normalization 1/|o;| results in larger
per-token updates for shorter outputs (Lin et al., 2025 |Yu et al., 2025} [Liu et al., 2025)), thereby
encouraging the model to produce more concise and efficient completions. This effect is particularly
pronounced in LRMs, which typically possess strong reasoning capabilities and can generate multiple
correct yet diverse completions per group during training. Thus, the GRPO framework naturally
incentivizes the model to favor responses with fewer reasoning turns. This behavior is empirically
validated in Figure [5] where we observe a substantial reduction in the number of reasoning turns
following GRPO training.

4 EXPERIMENTS

In this section, we evaluate the efficiency of MinD across several benchmarks. Section 4.1|describes
the experimental setup. More detailed settings can be found in Appendix [B] Section% presents
the main results, focusing on token reduction, accuracy, and latency. Ablation studies and additional
discussion are provided in Section[4.3]

4.1 SETUP
Table 1: Reward function value settings. Table 2: Training data sizes.
R format Raccuracy Runit 1.5B 7B
Compliance +1 +2 0 SFT 3610 3532
Non-Compliance -1 -2 -0.3 GRPO 7500 7500

Training Details The training process for MinD consists of two key phases, as described in
Section [3.3] The first SFT phase is conducted using the LLaMA-Factory repository (Zheng et al.|
2024). We perform full-parameter fine-tuning for 2 epochs with a learning rate of 5e-5. The second
GRPO phase leverages the veRL repository (Sheng et al., 2024)). During this phase, we train for 1
epoch with an actor learning rate of 1e-6. For each training step, 10 roll-out completions are generated
for each sample, with all other hyperparameters set to the default values provided by veRL. The
reward function described in Section [3.3]is adopted with the weight configurations listed in Table [T}

Models & Datasets We conduct our experiments using DeepSeek-RI1-Distill-Qwen-
1.5B/7B (DeepSeek-Al, [2025). For SFT, the training data consists of questions from the
GSMSK (Cobbe et al.l [2021)) and MATH (Lightman et al., |2023) training sets. Model-generated
responses are filtered via rejection sampling to retain only correct answers, then pre-processed
as shown in Figure 3] For GRPO, we use the MATH training set exclusively, with sample sizes
detailed in Table |Z[ We evaluate on both in-distribution (MATH-500 (Lightman et al.| 2023))) and
out-of-distribution benchmarks, including AIME24 (of Americal 2024), AMC23 (of Science} |2023),
GPQA-Diamond (Rein et al., 2023)), and LiveCodeBench (24.10-25.01) (Jain et al., [2024)), to assess
generalization. Additional results on more models and benchmarks are provided in Tables [5]and [

Baselines To assess the efficiency of our method, we compare against the following baselines:
Original LRM: The base models used in this work, DeepSeek-R1-Distill-Qwen-1.5B and 7B.
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Table 3: Performance comparison of various baselines and our proposed method, MinD, across
five reasoning benchmarks: MATH-500, AIME24, AMC23, GPQA-Diamond, and LiveCodeBench
(2024.10-2025.01). We report accuracy (Acc.; higher is better) and average output token usage
(Tokens; lower is better) for both 1.5B and 7B configurations. Methods include the original LRM

(DeepSeek-R1-Distill-Qwen-1.5B/7B), ThmkPrune (Hou et al| [2025)), Dynasor (Fu et al] [2025),

DEER (Yang et al] [2025b), ShorterBetter (Yi et al 2025)), AdaptThlnk (Zhang et al | [2025)), and our
method, MinD. MinD is trained only on the MATH training set, making MATH-500 in-domain

and the other benchmarks out-of-domain. As shown, MinD delivers competitive or superior accuracy
while substantially reducing token usage, demonstrating efficient and generalizable reasoning. Some
entries are omitted because the original papers did not report the corresponding results and reliable
reproduction was not feasible.

MATH-500 AIME24 AMC23 GPQA-Diamond  LiveCodeBench
Acc.t Tokens] Acc.T Tokens| Acc.T Tokens] Acc.T Tokens] Acc.t Tokens]
1.5B
Original LRM 85.4 5389 26.7 15177 67.5 9956 323 9842 12.0 21960
ThinkPrune  81.6 4ux 2427 550 31.6415u0 7700 4o 69.2 1550 4074 50 313 50 6474 5 102 450 18463 e
DEER 732 quse 1118 200 20.0 5510 3302 50 47.5 s960 2384 260 5.6 070 4128 s
ShorterBetter  74.8 240 1008 51 21.3 2020 3705 760 65.3 530 2206 550 33.3 510 4362 560 11.6 530 9284 554
AdaptThink  82.0 400 1884 su  29.0.560 7171 530 T1.3 4560 3706 630 35.8 11050 8083 s 12.3 1550 15240 500
MinD 82.8 50n 1719 0 30.8 11549 4676 o 75.6 11200 2432 560 31.3 510 4690 520 12.7 1550 17728 100
7B
Original LRM 93.0 3928 50.0 14107 90.0 6076 50.5 8390 343 13690
Dynasor 88.5 45w 2591 50 477 4gw 8760 550 87.1 500 4913 4o - - - -
DEER 90.2 500 2391 300 49.2 160 10046 20r  87.5 550 4877 200 30.6 5040 5682 500 - -

ShorterBetter  90.0 520 1272 60 53.3 s60 5288 3 83.6 710 1946 630 49.6 170 4257 sor 30.1 n2g 9067 40
AdaptThink  91.8 30 2547 550 55.1 1020 8623 30 90.3 1030 3457 s 503 s 7527 Lo 31.4 550 9586 0
MinD 91.6 s 2859 20 45.4 020 7588 e 92.0 1220 3729 o 53.0.500 6845 50 34.0 400 10113 4

ThinkPrune : Adds length clipping to the GRPO reward and is trained on the
AIME-AMC subset, progressively pruning outputs at the token level to reduce response length.
DEER (Yang et al.,|2025b): A training-free approach that detects “action transition points™ (e.g.,
“Wait,” “Alternatively, m”) to trigger answer generation, and halts decoding when the mean
token probability surpasses a confidence threshold. Dynasor m 02 ): Periodically inserts
probes (e.g., every 32, 64, or 128 tokens) to extract 1ntermed1ate answers an assess their consistency,
enabling early termination of generation. ShorterBetter : Determines the shortest
correct CoT across multiple samples as a dynamic rerrd to gule moels toward generating more
concise traces. AdaptThink (Zhang et al}[2025): An RL-based post-training method that combines a
constrained objective with importance-sampled training to empower models to adaptively choose
between thinking and non-thinking modes. Both ShorterBetter and AdaptThink are trained on the

DeepScaleR BO3E)

Evaluation Metrics We evaluate MinD using three primary metrics: accuracy, average output token
usage, and time-to-first-token (TTFT). TTFT measures the time it takes for the model to generate
the first answer token of the response, from when the prompt was sent—a key determinant of user
experience. The evaluations are conducted using the Open-R1 evaluation scripts 2025), with a
maximum sequence length of 32,768 tokens, a temperature setting of 0.6, and a top-p value of 0.95,
running on four NVIDIA A100 GPUs.

4.2 MAIN RESULTS

Reducing Output Tokens for Efficient Reasoning After training the 1.5B and 7B multi-turn
reasoning models as described in Section[d.1] we evaluated their token efficiency across a range of
reasoning benchmarks. The results, summarized in Table 3] show that MinD consistently reduces
output token usage while maintaining strong performance. On in-domain MATH-500, MinD lowers
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Figure 4: TTFT (time to first Figure 5: The distribution of reasoning turns for MinD at
token) and total latency of two different training stages (1.5B model) on the MATH-500
DeepSeek-R1-distilled models on dataset. Each bar represents a model checkpoint, including
MATH-500. MinD achieves up the SFT model and successive GRPO training steps. As
to 42x (1.5B) and 2.1x (7B) GRPO training progresses, the number of reasoning turns per
speedups over the original LRMs output decreases and becomes increasingly concentrated at 1
in TTFT, and 3.2x (1.5B) and or 2 turns (highlighted in red and orange), demonstrating the
1.6x (7B) in total latency. effectiveness of GRPO in mitigating reasoning redundancy.

the average token usage to 1719 for the 1.5B model—a 68% reduction from the Original LRM (5389
tokens)—while achieving 82.8% accuracy. Although ThinkPrune attains similar accuracy (83.2%), it
requires more tokens (1938). DEER achieves the lowest token usage (1118), but with a substantial
accuracy drop to 73.2%. For the 7B model, MinD reduces average token usage by 27% compared to
the Original LRM (2859 vs. 3928), with a high accuracy of 91.6%, outperforming both Dynasor and
DEER in the balance of accuracy and efficiency. MinD’s efficiency generalizes well to out-of-domain
benchmarks. For example, on AMC23 (1.5B), MinD reaches 77.5% accuracy with 2384 tokens,
substantially outperforming ThinkPrune and DEER in both accuracy and token reduction. Similar
trends are observed on AIME24, GPQA-Diamond, and LiveCodeBench. These results demonstrate
that MinD effectively eliminates unnecessary reasoning steps, producing concise, efficient outputs
without compromising performance.

Reducing TTFT and Total Latency The TTFT and total response latency for the original R1-
distilled LRMs and our MinD models are summarized in Figure[d] As shown, MinD significantly
reduces both TTFT and total latency across both model sizes. For the 1.5B configuration, the original
1.5B model requires 35.4s TTFT, which drops to 21.8s after SFT and further to 8.4s with MinD,
resulting in a 4.2x speedup. The total latency is similarly reduced from 35.8s (original) to 25.8s
(SFT) and 11.3s (MinD), a 2.1x improvement. For the 7B model, TTFT decreases from 27.8s
(original) to 21.6s (SFT) and 13.2s (MinD), achieving a 2.1 x speedup. The total latency is reduced
from 30.5s to 25.3s and 18.9s, for a 1.6 speedup. These results show that MinD shortens both the
time to first answer token and the overall response latency, making the models more responsive.

4.3 DISCUSSION & ABLATION

The Importance of Multi-Turn Structure To evaluate the impact of the multi-turn design, we
performed SFT using responses from the original distilled-1.5B model, without applying any multi-
turn segmentation (i.e., using the same question set as in step (1) of Figure[3), followed by GRPO
with only the format and outcome rewards. As shown in Table[d] the Non-Multi-Turn model achieves
comparable results to MinD on in-distribution MATH-500, but exhibits a notable drop in accuracy
and only marginal reductions in token usage on out-of-distribution benchmarks. We hypothesize that,
under the conventional CoT format, models lack the flexibility to adjust the number of thinking units,
making it difficult to learn a reasoning process that is both controllable and generalizable.

GRPO is Crucial for Efficient Reasoning As discussed in Section [3.3] SFT alone does not
guarantee efficient reasoning. To demonstrate this, we compare the performance of models after
SFT and after the full MinD pipeline, as shown in Table 4] The results reveal that SFT-only training
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Table 4: Comparison of different training strategies on DeepSeek-R1-Distill-Qwen-1.5B. Original
LRM refers to the pretrained baseline. SFT-Only applies only the supervised fine-tuning step from
MinD. Non-Multi-Turn applies GRPO without explicit multi-turn segmentation. MinD denotes our
full method with both multi-turn segmentation and GRPO. Acc.? indicates accuracy (higher is better),
and Tokens| indicates average output length (lower is better).

Original LRM SFT-Only Non-Multi-Turn MinD
Acc.? Tokens| Acc.t Tokens| Acc.t Tokens| Acc.t Tokens]
MATH-500 85.4 5389 82.8 5655 82.0 1866 82.8 1719
AIME24 26.7 15177 26.7 20675 20.0 7654 30.8 4676
AMC23 67.5 9956 77.5 8409 65.0 3415 75.6 2432

GPQA-Diamond  32.3 9842 28.3 12501 28.8 3397 31.3 4690

3250 —— W/0 Runit ( Question: In right triangle ABC with /B = 90°, we have sin A = 2 cos A. What is tan A? )
W/ Runit
GRPO-100, w/0 R it GRPO-400, W/0 Ryt

v 3000 .
§ <think> <think> .
< Okay, so I have this problem [...] So, the answer Okayiso'l have this prol?lem_[...].t‘an A would be
= (2 cos A) over cos A, which simplifies to 2.
5 2750 should be 2 Wait, that traightforward. But let K
S </think> ait, that seems straightforward. But let me make
5 sure I'm not missing anything [...] So, tan A is 2.
o . Wait, but let me double-check using the identity
2 2500 <think> o ) sinA2 A + cos~2 A = 1 [...] So, both methods
© Let m'e Ju_st visualize the trl_angle to make sure [...]| |confirm that tan A is 2 [...1
g I don't think I made any mistakes here. </think>
< </think>

2250 . <think>

/ <think> . o But let me just visualize the triangle to make sure
So, I think I'm confident that tan A is indeed 2 [...] I think I'm confident that tan A is 2
2000 </think> </think>
A00 200 00 a0
GR?O G\;,\po GVLVO 9\90

Figure 6: Left: Comparison of GRPO training with and without R,;; on MATH-500 for different
1.5B model checkpoints, showing Average Output Tokens for each. Removing Ry leads to instability
and collapse in output length. Right: An illustrative case comparing the outputs of GRPO-100-step
and GRPO-400-step checkpoints trained without R ;. While the earlier checkpoint (GRPO-100)
maintains clear multi-turn reasoning, the later checkpoint (GRPO-400) exhibits several thinking units
within a single turn (the start of each new unit is marked with an orange highlight), demonstrating
that omitting Ry, results in blurred step boundaries and loss of controllable, structured reasoning.

often increases average output token usage relative to the original LRM. In contrast, applying GRPO
further leads to substantial reductions in token usage while preserving accuracy, underscoring the
essential role of GRPO in enabling concise and effective reasoning.

Role of Ryt in Maintaining Multi-Turn Reasoning As discussed in Section and detailed in
Table|1} our GRPO framework introduces a Unit Compactness Reward, R, to enforce that each
reasoning turn contains only a single, coherent exploratory trajectory. This mechanism is essential
for preventing the model from degenerating into the original monolithic think-then-answer style—a
common outcome under GRPO’s token-level averaging (Section [3.3)), which tends to favor shorter
correct outputs. Without a specific penalty for multi-trajectory turns, the model may skip intermediate
answers, collapsing the multi-turn reasoning structure into a single-block CoT. Fe-counteract-this;
R penalizes reasoning turns that contain-multiple exploratory trajectories, detected by linguistic
eues-such-as-phrases-like “double-cheelk”- This strategy encourages each turn to contain only one
exploratory trajectory—especially in the critical first turn—without requiring external supervision,
and thus maintains the multi-turn paradigm throughout training. The impact of Ry is demonstrated
in Figure[6] which shows how its absence leads to a collapse in output structure and length.

MinD Effectively Alleviates Redundancy To demonstrate the effectiveness of GRPO in reducing
redundancy, we plotted the distribution of reasoning turns for SFT and GRPO models on the MATH-
500 dataset, as shown in Figure[5] The figure clearly illustrates that GRPO significantly reduces the
number of reasoning turns, indicating a more compact and efficient reasoning process compared to
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the purely SFT-trained models. Additionally, from the data in Table[3] GRPO reduces the average
output tokens on MATH-500 by 68.1% for the 1.5B model and 27.2% for the 7B model, compared
to their respective original LRMs. This aligns well, though not directly, with the redundancy rates
of 69.8% and 35.8% for these models, as reported in Figure 2] (Right). While these figures cannot
be directly equated, they collectively indicate that MinD, through GRPO, substantially alleviates
redundancy, resulting in more concise and efficient outputs.

Additional discussion can be found in Appendix [A]

5 CONCLUSION

In this paper, we introduced Multi-Turn Decomposition (MinD), an efficient method for improving
the reasoning efficiency of large language models. By structuring the reasoning process into multi-
turn steps, MinD significantly reduces token usage and response latency while maintaining strong
performance across various reasoning tasks. Our results demonstrate that structured reasoning
provides a practical solution to challenges such as slow response times and high computational costs
in large language models. A promising direction is adaptive multi-turn strategies that dynamically
allocate reasoning turns according to task difficulty and user preferences.
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A MORE RESULTS

Generalization across model families and tasks To further test whether MinD is tied to a specific
backbone or domain, we apply it to two additional LRMs on MATH-500: DeepSeek-R1-Distill-
Llama3.1-8B (DeepSeek-Al| [2025) and Qwen3-1.7B (Yang et al] 2025a)), summarized in Table[3]
On R1-Distill-Llama3.1-8B, MinD reduces the average output length from 4792.37 to 3107.89 tokens
(about 35% fewer tokens) while maintaining almost the same accuracy (77.4% vs. 78.0%). On
Qwen3-1.7B, MinD achieves 89.2% accuracy compared to 91.0% for the original model, but uses
only 3866.69 tokens on average instead of 5216.44 (around 26% reduction).

We further evaluate MinD on the non-mathematical OpenBookQA (Mihaylov et al} 2018) benchmark
using DeepSeek-R1-Distill-1.5B (Table [§). In this setting, MinD improves accuracy from 27.4%
to 34.8% while reducing token usage from 4986.47 to 3840.93 (about 23% fewer tokens). These
results suggest that the unit-level multi-turn reformulation and RL training in MinD generalize across
different model families and extend beyond purely mathematical reasoning tasks.

Table 5: Performance of MinD on additional LRMs on MATH-500.

Model Accuracy (%)  Tokens
R1-Llama3.1-8B 78.0 4792.37
R1-Llama3.1-8B-SFT 75.2 5068.48
R1-Llama3.1-8B-MinD 77.4 3107.89
Qwen3-1.7B 91.0 5216.44
Qwen3-1.7B-SFT 88.6 5433.30
Qwen3-1.7B-MinD 89.2 3866.69

Table 6: Results of MinD on OpenBookQA with DeepSeek-R1-Distill-1.5B.

Model Accuracy  Tokens
R1-1.5B 27.4 4986.47
R1-1.5B-SFT 31.0 5433.30

R1-1.5B-MinD 34.8 3840.93

Ablation on the Unit-Compactness Reward Weight R, We study how the weight on the R ;¢
affects MinD’s accuracy—efficiency trade-off. Specifically, we vary the non-compliance penalty for
Runit as specified in Tablem Unless otherwise noted, all runs in this ablation use the MinD variant
fine-tuned for multi-turn patterns and trained with 100 GRPO steps on the MATH training set.

Table [7]reports a sensitivity sweep on MATH-500, varying the Rnic weight while keeping all other
settings unchanged. A modest penalty improves efficiency with negligible or positive effects on

14


https://aclanthology.org/2024.acl-long.607/
http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

accuracy; an overly large penalty degrades both. In particular, a small negative weight achieves the
best efficiency, whereas a slightly stronger penalty yields the best accuracy, indicating a smooth
trade-off rather than a brittle optimum.

Table 7: Sensitivity of MinD to the R, weight on MATH-500. Accuracy (higher is better) and
average output token usage (lower is better). All runs use the multi-turn pattern fine-tuned model
with 100-step GRPO on MATH.

Weight for Ryni¢ Accuracy Token

0 80.0 3258.0
-0.3 82.0 3171.2
-0.5 83.6 3325.1
-1.0 80.4 3498.1

Accuracy-Efficiency Balance under Compact Reasoning As shown in Table[3] MinD-1.5B de-
livers substantial efficiency on MATH-500—about 68% fewer output tokens (1719 vs. 5389)—while
maintaining competitive accuracy (82.8% vs. 85.4% for the original LRM). The small gap mainly
reflects the size and composition of the GRPO set (the MATH training set), which skews toward
easier items and nudges the model toward very concise reasoning on harder cases. To narrow this gap
without sacrificing compactness, we scale GRPO with harder chain-of-thought data. In a preliminary
continuation, training MinD-1.5B for one additional GRPO epoch on a small mixed set (50 MATH +
50 DeepScaleR 2025b), randomly sampled) reached 84.2% with 1804 average tokens,
indicating clear headroom from data scaling.

Early-exit behavior under forced truncation To better understand how MinD enables early exit at
the unit level, we perform an additional analysis on MATH-500 with MinD-1.5B. For each generated
multi-turn trajectory, we manually truncate the reasoning at a chosen turn k by detecting the next
<think> marker and forcing decoding to stop before it, treating the answer from the previous unit as
the final output. As shown in Table[8] compared to the original LRM (85.4% accuracy, 5389 tokens)
and the full MinD model after GRPO (82.8%, 1719 tokens), forcing exit at turn 1 already reaches
80.4% accuracy with only 1436 tokens, while forcing exit at turns 2—4 yields 82.6—82.8% accuracy
with 1623—-1710 tokens. This indicates that (i) intermediate units already contain high-quality answers,
and (ii) after GRPO the turn distribution is already concentrated (most samples naturally use only
1-2 turns, cf. Figure 5), so additional forced early exits bring limited further gains and only small
accuracy differences across “turn 2/3/4” settings.

Table 8: Effect of forced early exit at different turns on MATH-500 with MinD-1.5B.

Accuracy Tokens

Original LRM 85.4 5389
MinD 82.8 1719
Forced exit at turn 1 80.4 1436
Forced exit at turn 2 82.6 1623
Forced exit at turn 3 82.8 1689
Forced exit at turn 4 82.8 1710

Word Frequency Analysis of Thinking Units We collect and compare the number of distinct
words representing thinking units in DeepSeek-R1-Distill-1.5B, including the Original LRM, Non-
Multi-Turn (GRPO applied without explicit multi-turn segmentation) , and MinD. Although these
words do not precisely correspond to the number of actual thinking units, they serve as a meaningful
proxy and offer indicative insights into their distribution(see Table 9] for details).
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Table 9: The frequency of words representing thinking units in outputs generated by Original LRM,
Non-Multi-Turn and MinD across MATH-500, AIME24 and AMC23.

Wait  Alternatively  double-check check verify

MATH-500
Original LRM 13993 2206 368 1272 124
Non-Multi-Turn 1822 333 41 347 193
MinD 1651 237 10 434 249
AIME24
Original LRM 3742 415 20 215 17
Non-Multi-Turn 317 67 0 45 19
MinD 211 45 0 34 8
AMC23
Original LRM 2302 385 35 205 45
Non-Multi-Turn 246 38 3 42 17
MinD 215 30 0 50 22

B EXPERIMENT SETTING

We use DeepSeek-R1-Distill-Qwen-1.5B/7B (DeepSeek-All [2025)) as base reasoning models. For the
initial supervised fine-tuning (SFT) phase, full-parameter tuning is employed over 2 epochs, with
a learning rate of 5e-5, a batch size of 4, and fp16 precision. During the GRPO phase, training is
performed for 1 epoch, where the actor learning rate is set to 1e-6. The model generates 10 rollout
completions per sample via a vLLM-based rollout backend. All GRPO training is conducted on the

MATH (Cightman et al.} [2023) training set.

For the evaluation in Table 3] we utilised Open-R1 as the core framework. All decoding
hyper-parameters are held constant across tasks: maximum response length of 32,768 tokens, tem-
perature = 0.6, and top-p = 0.95. For the larger benchmarks (namely MATH-500, GPQA-Diamond
and LiveCodeBench) we report metrics averaged over four independent runs; for the smaller datasets
(AIME24 and AMC23), owing to the reduced sample size, we increased the number of independent
trials to sixteen to enhance statistical reliability. When publicly available checkpoints existed (e.g.,
ShorterBetter, AdaptThink, ThinkPrune) we applied the same decoding settings; for other baselines
we adhered to the values reported in their original publications.

C PROMPTING FOR MIND

In this section, we present the complete prompt formats used in the MinD process (see Figure 3] for
details).

Q&A Template

{Question}
Please reason step by step, and put your final answer within
\\boxed{}.
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Decomposing into Thinking Units

You will be provided with a math problem and a solution
generated by a reasoning model. The model’s response may
contain multiple Reasoning Rounds. One Reasoning Round
is a part of the full model generation and is defined as
a complete reasoning process or verification process that
explicitly contains the final answer. Your task is to
carefully analyze the response and segment it into individual
Reasoning Rounds. Specifically, insert “[split]” between
every two consecutive Reasoning Rounds.

Problem: {question}

Solution: {prediction}

Please give the solution with “[split]” tags without any
redundant words.

D STATEMENT ON THE USE OF LLM ASSISTANCE

Consistent with community guidelines on responsible use of large language models (LLMs), we
disclose that LLM tools were used only to assist with language editing (grammar, wording, and
minor style) of this manuscript. All ideas, claims, methods, experiments, analyses, figures, and
tables were conceived, implemented, and verified by the authors. The authors reviewed and edited all
LLM-suggested text for accuracy and clarity; no passages were accepted without human verification.
LLMs were not used to generate data, code, results, reviews, or citations, and no confidential or
proprietary information was provided to LLM services.

17



	Introduction
	Related Work
	Method
	Preliminary
	Unit-Level Redundancy in LRMs
	Multi-Turn Decomposition (MinD)

	Experiments
	Setup
	Main Results
	Discussion & Ablation

	Conclusion
	More Results
	Experiment Setting
	Prompting for MinD
	Statement on the Use of LLM Assistance

