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ABSTRACT

Unsupervised Graph Domain Adaptation (UGDA) addresses the challenge of do-
main shift in transferring knowledge from a labeled source graph to an unlabeled
target graph. The existing UGDA methods are based solely on graph neural
networks (GNNs) with limited receptive fields. This characterization of UGDA
methods constrains their ability to capture long-range dependencies between do-
mains and effectively adapt to sparse graph domains. To overcome this limita-
tion, we introduce a novel transformer-based UGDA (TUGDA) framework that
sequentially integrates transformers and asymmetric GCNs to capture both global
and local structural dependencies between source and target graphs. Our frame-
work leverages a transformer backbone, enriched with centrality and spatial po-
sitional encodings to enhance structural information. We further propose a new
cross-attention mechanism that explicitly aligns source and target representations,
along with theoretical analysis for reducing domain divergence through Wasser-
stein distance minimization. Extensive experiments on six cross-domain tasks in
three real-world citation graphs show significant improvements over SOTA UGDA
baselines. Our results validate TUGDA’s ability to learn transferable, domain-
invariant representations. To address practical scenarios where privacy or security
constraints restrict access to real source domains, we demonstrate that TUGDA
maintains strong performance using synthetic source graphs generated by a foun-
dational model, achieving 4-15% improvements over a key SOTA baseline.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown remarkable success in various applications, including
social network analysis Hamilton et al. (2017), traffic analysis Yu et al. (2018); Neshatfar et al.
(2023), biomedical cell analysis Neshatfar & Sekeh (2024), tabular data analysis Farokhi et al.
(2024) and protein-protein interaction modeling Veličković et al. (2018). However, their reliance on
extensive labeled graph data remains a critical bottleneck due to high annotation costs and domain-
specific expertise Wu et al. (2020b).

To mitigate this challenge, Unsupervised Graph Domain Adaptation (UGDA) has emerged as a
promising area of research in graph learning, including node classification problems. UGDA aims
to transfer knowledge from a labeled source graph to an unlabeled target graph with the advantage
of robustness against distributional shift between source and target domains Shen et al. (2020c);
Liu et al. (2024a). Related research can be categorized as follows: Foundational Graph Repre-
sentation Methods, includes self-supervised and unsupervised approaches that learn meaningful
graph representations ( Wu et al. (2020a; 2023a); Liu et al. (2023b; 2024b)). Early Graph Domain
Adaptation Approaches adapt established domain adaptation techniques without fully exploiting
graph-specific structural properties, including adversarial alignment Shen et al. (2020c); Dai et al.
(2022), statistical feature alignment Shen et al. (2020b), and structural adaptations You et al. (2023).
Notably, Advanced Graph-Specific Domain Adaptation Models incorporate graph-specific mech-
anisms to preserve structural and semantic consistency across domains. These models emphasize
structural adaptation, such as smoothing techniques for structural coherence Chen et al. (2025a),
and asymmetric propagation strategies demonstrated by A2GNN Liu et al. (2024a). Recent studies
have also explored more advanced frameworks such as unfolded graph neural networks Zhang &
Fink (2025) and spectral domain adaptation with disentangled representations Yang et al. (2025),
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highlighting the critical role of model architecture and spectral alignment in addressing structural
and feature distribution shifts.

Despite these advances, most existing UGDA approaches suffer from a critical limitation: they rely
heavily on conventional GNN architectures, which may struggle to model long-range dependencies
and global structural contexts. This locality bias is particularly problematic in sparse graphs, such
as citation networks, where distant nodes may have important semantic relationships that traditional
GNNs miss due to their limited receptive fields. For example, distant papers in the same research
area may never be reached by k-layer GNNs, despite having strong semantic relationships.

Attention-based architectures, particularly graph transformers, have emerged as powerful alterna-
tives that enable capturing global contextual relationships and modeling complex long-range de-
pendencies Ying et al. (2021); Zhuo et al. (2025); Liu et al. (2023a). By leveraging self-attention
mechanisms to explicitly model pairwise interactions among nodes, transformers facilitate effective
representation of global structural patterns across distant graph regions while incorporating graph-
specific positional encodings for topological information integration.

Inspired by graph transformers, we propose (TUGDA), a novel transformer-based framework that
addresses limitations of existing GNN-only approaches. Our core novelty lies in: (1) the first
application of cross-attention mechanisms specifically designed for domain alignment in graph
adaptation, (2) a novel sequential transformer-GCN integration that theoretically and empirically
demonstrates superior global-local feature learning for UGDA, and (3) dual-alignment strategies
that jointly optimize feature space alignment and distributional matching. Our framework addresses
fundamental limitations of existing GNN-based UGDA methods while significantly outperform-
ing UGDA baselines across multiple datasets (see Table 1). TUGDA, integrates self-attention and
cross-attention transformer mechanisms to comprehensively capture global contexts and structural
dependencies within and across domains. We enhance the transformer backbone with graph-specific
positional encodings, inspired by Graphormer Ying et al. (2021), to encode centrality and spatial re-
lationships. This significantly enhances structural sensitivity, crucial for domain adaptation tasks.

The transformer backbone of TUGDA leverages SGFormer Wu et al. (2023b) for its efficient global
attention computation with linear complexity, enabling scalability to large graphs. Unlike other
transformers, SGFormer facilitates a more practical cross-attention implementation due to its flex-
ible attention computation ordering, allowing for efficient interaction between source and target
domain representations with different node sizes.

Our architecture takes a sequential approach: The transformers first derive global attention-based
representations, which are then refined by asymmetric GCN propagation strategies similar to the
A2GNN model. Our theoretical analysis reveals that the cross-attention mechanism inherently min-
imizes domain discrepancies by explicitly aligning source and target feature spaces, significantly
reducing the Wasserstein divergence between domains. The subsequent GCN propagation enforces
local smoothness, acting as a low-pass filter that reduces domain-specific noise and promotes the
learning of transferable representations.

Extensive experiments against leading UGDA baselines demonstrate that TUGDA consistently out-
performs existing methods, achieving substantial improvements in node classification across diverse
graph adaptation scenarios.

In practice, UGDA faces an additional challenge: access to source domain data may be restricted
due to privacy regulations, security concerns, or proprietary constraints. Healthcare networks, fi-
nancial transaction graphs, and corporate communication networks often cannot be shared directly,
necessitating synthetic alternatives that preserve statistical properties while protecting sensitive in-
formation. This scenario demands domain adaptation methods that can effectively transfer knowl-
edge from synthetically generated source graphs to real target domains. Using synthetic graphs from
GraphMaker Li et al. (2023), we show that TUGDA significantly outperforms A2GNN, demonstrat-
ing strong generalizability to privacy- and security-constrained settings.

Our main contributions are as follows:

• We introduce TUGDA, a sequential transformer-GCN framework that effectively captures
both global and local structural dependencies for unsupervised graph domain adaptation.
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• We propose a dual-alignment mechanism combining cross-attention for feature alignment
and regularization loss for distributional matching.

• We demonstrate superior performance over state-of-the-art UGDA methods and show ro-
bust generalization to synthetic source domains generated by a foundational model.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Given two graph domains source (s) and target (t), a labeled source graph Gs = (Vs, Es, Xs, Y s)
with node size Ns and an unlabeled target graph Gt = (Vt, Et, Xt) with node size N t, UGDA
learns the model f : Gt → Y t that predict node labels accurately on the target domain. In this work,
X ∈ RN×F represents node features with F dimensions. UGDA typically assumes a covariate
shift scenario. This means that the conditional distributions of node labels given the graph remain
consistent across domains, P (Y |G) = P (Y |G), while the marginal distributions of node features
and graph structures differ, P (G) ̸= P (G). The goal is thus to transfer the learned knowledge from
the source domain to the target domain effectively despite these distribution discrepancies.

3 METHODOLOGY

We propose a novel UGDA framework that sequentially integrates transformer architectures with
graph convolutional networks (GCNs). Our approach uses dual attention mechanisms, self-attention
and cross-attention, in the transformers to effectively capture both intra- and inter-domain dependen-
cies. Our TUGDA framework builds on positional encodings (PEs) inspired by Graphormer Ying
et al. (2021) and an efficient transformer backbone adapted from SGFormer Wu et al. (2023b). Our
overall objective function aligns with A2GNN Liu et al. (2024a), which comprises source and target
encoders that are optimized using classification and domain alignment losses. Figure 1 demonstrates
the architecture of the TUGDA method. Additionally, the algorithm of this model is available in the
Appendix.

Figure 1: TUGDA Architecture: The source and target encoders share parameters and process their
respective graphs, GS and GT . The transformer modules generate query, key, and value representa-
tions, denoted as Q, K, V , and then applies the normalizations and matrix multiplications. Zs

Trans
represents the transformer-encoded output from the source encoder. Zs

GCN and Zt
GCN are the final

representations produced by the GCNs for the source and target domains, respectively.

3.1 POSITIONAL ENCODING IN PREPROCESSING

Positional encodings are essential in transformers to inject structural information into input se-
quences. Irani & Metsis (2025). To inject graph topology, we employ two key structural encodings
from Graphormer Ying et al. (2021).

Centrality Encoding: Inspired by Graphormer, each node receives learnable embeddings based on
its degree centrality, added into initial node features: z

(0)
i = xi + ξi(D). Here, z(0)i is the model

input vector corresponding to node i, and ξi(.) is a learnable embedding function applied on the
node degree vector D, where Di =

∑
j Aij .
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3.2 GRAPH TRANSFORMER BACKBONE

Given node embeddings z(0) ∈ RN×F , the transformer computes query Q, key K, and value V
matrices as Q = fQ(z

(0)), K = fK(z(0)), V = fV (z
(0)), where fQ, fK , fV are linear projec-

tions.

Spatial Positional Encoding: To encode spatial relations, we adapt Graphormer’s spatial encoding
strategy to our transformer backbone. We add it to the normalized query, Q̃ = Q

∥Q∥F
, instead of

the attention logits, to consider the structure and nodes’ distances in attention computation: ˆ̃Q =
Q̃ + bϕ(i,j). Here, ϕ(i, j) denotes the shortest path distance (SPD) between nodes i and j, and
bϕ(i,j) ∈ RN×k is a learnable presentation with k being the transformer hidden dimension and N
is total number of nodes. The centrality and spatial positional encodings allow the Transformer to
incorporate the graph-specific structure in the encoders.

Global Attention: The global attention output ZTrans is computed as:

ZTrans = βD−1

[
1

N
ˆ̃Q(K̃⊤V )

]
+ (1− β)h(0), (1)

where β is linear combination multiplier for the residual link and is treated as a hyperparame-
ter in our experiments. Further, K̃ = K

∥K∥F
, ∥ · ∥F denotes the Frobenius norm, and D =

diag
(
1 + 1

N Q̃(K̃⊤1)
)

. This formulation enables efficient computation of attention-based message
passing with linear complexity O(N) relative to the number of nodes (Wu et al. (2023b)).

Beyond efficiency, this formulation has another advantage over transformers like Graphormer:
the order of matrix multiplications enables cross-attention computation where Q ∈ RNt×k and
V,K ∈ RNs×k are computed from the output of the source transformer. However, unlike SG-
Former, which showed that a single-layer global attention can perform well without any positional
encodings on large graphs, we reintroduce structural encodings here because UGDA demands sensi-
tivity to structural shifts between domains. We also depart from SGFormer by sequentially cascad-
ing the multi-layer Transformer and GCN (instead of linearly combining them in parallel Wu et al.
(2023b)).

3.3 CROSS-ATTENTION FOR SOURCE-TARGET ALIGNMENT

To bridge the domain gap in the TUGDA architecture, we introduce a cross-attention module that
explicitly aligns source and target node representations. The intuition is to allow information
flow between the two graphs so that target nodes can directly attend to relevant labeled source
nodes and learn domain-invariant features. We implement cross-domain alignment as an addi-
tional transformer-style attention layer operating across the output of source transformer, and the
target domain. We compute the output of cross-attention output Zt

XTrans with Qt = fQ(z
t(0)),

Ks = fK(Zs
Trans), and V s = fV (Z

s
Trans), where Zs

Trans represents the source transformer output. Un-
like this cross-attention mechanism, the source encoder uses only self-attention layers with uniform
input hs(0) across all projections.

This mechanism effectively learns a soft alignment between source and target node distributions.
Like the source encoder, Zt

XTrans is then concatenated with the original self-attended features and
passed to the GCN layer for neighborhood aggregation. By exchanging representations across do-
mains, cross-attention encourages the model to find common latent factors and align source-target
feature distributions. This design is similar to optimal transport-based alignment: the attention ma-
trix acts as a learnable transport plan mapping target nodes to similar source nodes, minimizing
inter-domain feature distances. In practice, this lightweight module can be applied once (or a few
times) before the GCN layer and requires no domain-adversarial losses, achieving alignment through
integrated architectural bias.

3.4 SEQUENTIAL INTEGRATION OF GCN AND TRANSFORMER

The final stage of our model is a Graph Convolutional Network (GCN) layer that operates on each
graph’s adjacency structure to inject local neighborhood information and further smooth the learned
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representations. Unlike previous approaches Wu et al. (2023b), dealing with the trade-off between
the GCN and transformer, we feed the transformer output, after self-attention and cross-attention of
source and target respectively, directly into a GCN.

The sequential flow is: global context→ local propagation for the source encoder, and global context
→ aligned features → local propagation for the target encoder. Concretely, for each domain of
source (s) and target (t), d = {s, t}, and each node i ∈ V d, we form an augmented feature vector
x̃i

d = [xd
i ∥Zd

Trans,i], concatenating the transformer’s output for node i with its original input features
xd
i . This preserves the raw feature signal and low-level information that might have been diminished

during attention, providing the subsequent GCN more to work with. A single GCN layer is then
applied:

Zd
GCN = σ

(
Ãd · X̃d ·WGCN

)
, d = s, t, (2)

where Ãd is the normalized adjacency matrix and X̃d is the augmented feature matrix of domain d,
and WGCN is the learnable GCN weight matrix shared between source and target encoders. Equa-
tion 2, implements a standard first-order GCN convolution with asymmetric propagations between
the source and target encoders Liu et al. (2024a).

By applying the GCN after the global attention, we let the model refine the globally aligned features
with domain-specific local context, which is crucial for classification on each graph. The output of
the source encoder, Zs

GCN , is then fed to a classifier (i.e. a GCN layer followed by softmax) to
predict source node labels.

3.5 OPTIMIZATION OBJECTIVE

To transfer knowledge from a labeled source to an unlabeled target, we train the model using the
source graph’s labels with a standard cross-entropy loss term Lcls between true and predicted label
(Y s and Ŷ s). To prevent overfitting to source-specific features and encourage domain-invariance,
we incorporate an alignment regularizer: we minimize the discrepancy between source and target
feature distributions in the shared latent space. In practice, one can use an MMD (maximum mean
discrepancy) loss, Lalign, or similar on the GCN outputs to penalize differences Liu et al. (2024a):

L = Lcls(Y
s, Ŷ s) + α Lalign(Z

s
GCN, Z

t
GCN), (3)

with a trade-off parameter α. Zd
GCN , d = s, t is defined in equation 2. Specifically, align-

ment loss encourages closer source and target mean embeddings, further aligning the domains,

Lalign =
∣∣∣ 1
Ns

∑
i∈V s ϕ(zsGCN,i)− 1

Nt

∑
j∈V t ϕ(ztGCN,j)

∣∣∣2. Here, ϕ(·) is an implicit feature map of

a reproducing kernel (e.g., RBF) and Ns, N t are source and target graph sizes.

In summary, our Transformer-GCN hybrid produces domain-aligned node representations by captur-
ing global relational patterns (with Graphormer-like encodings, self-attention, and cross-attention)
and then reinforcing local smoothness via GCN. The sequential design contrasts with parallel com-
binations like SGFormer, motivated by the intuition (later mathematically justified in the Theoretical
Analysis Section) that applying GCN after obtaining a shared latent space yields a smoother, more
transferable model.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

We evaluate our method, TUGDA, on three real-world citation graph datasets commonly used for
cross-domain node classification: ACMv9 (A), Citationv1 (C), and DBLPv7 (D). Statistics of these
datasets are summarized in Appendix. Following established practice in the literature, we conduct
experiments across six cross-domain adaptation tasks: D→ A, A→ D, A→ C, C→ A, C→ D,
and D→ C. We maintained consistent hyperparameter optimization across all methods. Results are
reported as averages over five independent runs, using macro-F1 (Ma-F1) and micro-F1 (Mi-F1)
scores.
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4.2 BASELINES

To demonstrate the superiority of our method, we compare it against several SOTA methods in mul-
tiple categories: Foundational Graph Representation Methods: UDAGCN Wu et al. (2020a),
GRADE Wu et al. (2023a), StruRW Liu et al. (2023b), PairAlign Liu et al. (2024b); Early
Graph Domain Adaptation Approaches: CDNE Shen et al. (2020b), AdaGCN Dai et al. (2022),
SpecReg You et al. (2023), ACDNE Shen et al. (2020c); Advanced Graph-Specific Domain Adap-
tation Models: A2GNN Liu et al. (2024a), TDSS Chen et al. (2025b), DGSDA Yang et al. (2025),
DAUGNN Zhang & Fink (2025).

Table 1: Node classification performance (%) across six cross-domain adaptation tasks. Best results
are bolded.

Method D→A A→D A→C C→A C→D D→C Avg
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Foundational Graph Representation Methods
UDAGCN 55.89 58.16 64.83 66.95 60.33 72.15 55.89 58.16 69.46 71.77 61.12 73.28 61.25 66.75
GRADE 59.35 63.72 63.03 68.22 72.52 76.04 59.35 63.72 70.02 73.95 69.32 74.32 65.60 70.00
StruRW 53.82 63.27 62.51 69.10 72.07 77.35 59.77 67.81 66.89 73.81 62.94 72.41 63.00 70.63
PairAlign 58.77 59.34 62.35 65.91 67.88 70.88 65.09 65.85 67.56 71.04 64.61 67.07 64.38 66.68

Early Graph Domain Adaptation Approaches
CDNE 70.45 69.62 69.24 71.58 76.83 78.76 70.45 69.62 71.34 74.36 77.36 78.88 72.61 73.80
AdaGCN 69.47 69.67 71.39 75.04 76.51 79.32 69.47 69.67 72.34 75.59 74.22 78.20 72.23 74.58
SpecReg 72.34 71.01 73.98 75.93 78.83 80.55 72.34 71.01 73.64 75.74 77.78 79.04 74.82 75.55
ACDNE 72.64 71.29 73.59 76.24 80.09 81.75 72.64 71.29 75.74 77.21 78.83 80.14 75.59 76.32

Advanced Graph-Specific Domain Adap- tation Models
A2GNN 74.69 73.62 74.80 77.33 80.86 82.34 76.31 74.93 74.70 78.23 77.64 80.42 76.50 77.65
TDSS 75.37 73.88 75.39 78.36 81.03 82.66 76.04 74.72 74.76 78.11 78.71 80.93 76.88 78.11
DGSDA 74.67 72.87 73.91 76.33 81.28 82.65 76.47 75.08 75.73 77.67 80.72 82.09 77.13 77.78
DAUGNN 73.28 73.30 75.71 77.80 81.06 82.82 75.11 74.48 75.91 77.77 78.29 80.53 76.56 77.78
TUGDA (Ours) 76.26 75.10 76.65 78.41 81.84 83.17 76.85 75.57 76.63 78.3 80.27 82.21 78.08 78.80

4.3 IMPLEMENTATION DETAILS

Following previous baseline settings Wu et al. (2020a); Shen et al. (2020a), we use 80% of the
labeled source domain nodes for training, 20% for validation, with target domain nodes used for
testing. All experiments are conducted on NVIDIA A100 GPUs, using PyTorchPaszke et al. (2017)
and PyTorch Geometric libraryFey & Lenssen (2019).

We fine-tuned key hyperparameters within specific ranges: hidden dimensions for both GCN and
transformer within {32, 64, 128, 256, 512}, learning rate within {0.01, 0.001, 0.005}, and propaga-
tion layer count for both source and target GCNS within {0, 5, 10, 20, 30, 40, 50}. The sensitivity of
our model to the change of these hyperparameters is illustrated in Figure 4. Additionally, we assign
β = 0.5 in equation 1 for all experiments. Large Language Models were used to improve the clarity
and grammar of the manuscript.

4.4 RESULTS AND ANALYSIS

Table 1 presents a comprehensive comparison of performances averaged over five trials for all eval-
uated methods across six standard cross-domain adaptation tasks for node classification. Highest
performances are highlighted in bold and the second best ones are underlined. Standard deviation
of results are available in Appendix. It is notable here that Advanced Graph-Specific Domain
Adaptation Models deliver remarkable gains of up to 20% on multiple tasks compared to Foun-
dational Graph Representation Methods, suggesting insufficiency of simplistic pretext tasks or
shallow encoders. Similarly, the traditional Early Graph Domain Adaptation Approaches, based
on alignment with lack of structural awareness, are outperformed. This gap suggests that leveraging
cross-domain relational information in a unified, end-to-end deep architecture is critical.

Our method, TUGDA, consistently outperforms SOTA domain adaptation baselines in 11 out of
12 evaluations, demonstrating its superior effectiveness. Notably, it surpasses strong recent base-
lines—particularly A2GNN—by a clear margin, highlighting its ability to capture both local and
global structural dependencies. TUGDA excels in challenging transfer scenarios, such as adapting
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from denser to sparser citation domains (e.g., D→ A), outperforming the next-best method (TDSS)
by +0.89%, and shows symmetric strength in the reverse direction. It also achieves up to +0.52%
improvement over DGSDA in the A → C task, underlining its effectiveness in aligning semantic
and structural patterns across heterophilic graphs. While DGSDA slightly outperforms TUGDA in
Macro-F1 for the D→ C task, TUGDA achieves the best Micro-F1, indicating more reliable predic-
tions overall. TUGDA shows robustness across domain shifts. Its strong Micro-F1 and Macro-F1
indicate well-calibrated representations without bias toward dominant classes, unlike baselines that
drop sharply in Macro-F1 on tasks like A→ D and C→ D—a key concern in imbalanced citation
networks.

4.4.1 TUGDA OUTPERFORMS A2GNN ON GENERATIVE GRAPHS

To address security and privacy constraints that preclude access to the original real-world source
domain data, we introduce a novel evaluation framework using generative model-derived synthetic
source graphs that preserve the statistical properties and feature distributions of the original data. We
utilize the pretrained generative model of GraphMaker Li et al. (2023) and fine-tune it to generate
the synthetic source domains (SynA, SynC, and SynD) with a subset of original A, C, and D source
features, respectively. Significant outperformance of our method, TUGDA, over A2GNN in Table 2

Table 2: Performances (%) of A2GNN and TUGDA across synthetic sources to real-world target
adaptations.

Method SynD→ A SynA→ C SynC→ D SynD→ C SynA→ D SynC→ A
Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

A2GNN 57.86 61.84 58.52 62.92 56.33 59.77 62.22 63.28 64.87 66.41 54.73 54.70
TUGDA 62.37 63.12 73.11 74.74 69.63 72.10 66.76 68.58 66.44 68.76 60.98 62.50

provides valuable insights into our method’s superiority under controlled conditions and suggests
the generalizability of our method to privacy-preserving synthetic data generation scenarios. This
can serve as a viable proxy for evaluating domain adaptation techniques when access to sensitive
real-world source domains is restricted.

4.5 ABLATION STUDY

We perform an extensive ablation study to investigate the contributions of key components of our
framework and evaluate it in different scenarios.

Modules Effectiveness Study
Figure 4 (a) demonstrates the impact of removing individual components from our transformer
framework. We compare our full method against versions without centrality positional encoding
(w/o CPE), without spatial positional encoding (w/o SPE), without all positional encodings (w/o
PE), and without cross-attention across domains (w/o XAttn). The Macro-F1 scores are normalized
over A2GNN.

Beyond the superiority of our method, the pronounced drops in C→D and A→D when positional
encodings, especially CPE, are removed highlight their critical role. This underscores that DBLPv7
performance is particularly sensitive to structural cues in attention. The consistent gains with all
components included confirm the necessity of both positional encodings and cross-attention across
domains.

Parameter Sensitivity
We analyze the sensitivity of our model to key hyperparameters, specifically hidden dimensions of
GCN and transformer, and propagation layer count for both source and target domain in Figures 4
(b) and (c) in the A→ C scenario.

The best performance occurs with 128 GCN hidden dimensions (Figure 4 (b)). Additionally, con-
sistent with A2GNN, Figure 4 (c) demonstrates that the best performance happens with the smallest
number of propagation layers for the source domain. However, the optimal number of propagation
layers for the target domain is scenario-specific (Illustrated in the Appendix).
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(a) Normalized Macro-F1 comparison of different
versions of our method.

(b) A → C Dimensions (c) A → C Propagation

Figure 2: Component contributions and parameter sensitivity analysis

5 THEORETICAL ANALYSIS

In this section, we analyze the proposed Transformer-GCN framework through domain adaptation,
providing formal insight into why our sequential architecture with cross-attention and smoothing
should yield a low target error. We ground our discussion in the classic unsupervised domain adap-
tation setting and assume the standard graph covariate shift condition:
Assumption 1 (Covariate Shift). PS(G) ̸= PT (G) while PS(Y | G) = PT (Y | G).

This assumption guarantees the existence of a hypothesis that can perform well on both domains.

5.0.1 DOMAIN ADAPTATION RISK DECOMPOSITION

Let h ∈ H denote a hypothesis mapping graphs to labels. The probability that a hypothesis h
disagrees with a predictive labeling function like fT on the target graph is the target risk, denoted
by ϵT (h) := ϵT (h, fT ). We seek to bound the target risk ϵT (h) of a hypothesis (classifier) in terms
of the source risk and a measure of domain divergence:
Theorem 1 (Domain Adaptation Bound Ben-David et al. (2010)). Under standard assumptions, for
any h ∈ H,

ϵT (h) ≤ ϵS(h) + ∆
(
PS(Z), PT (Z)

)
+ λ∗, (4)

where ϵS(h) is the empirical source risk, ∆ is a domain divergence measure (e.g., Wasserstein-1)
between the distributions of source and target representations, PS(Z) and PT (Z), respectively, and
λ∗ is the error of the ideal joint hypothesis.

Intuitively, inequality 4 shows that the target error is bounded by the source error plus a penalty for
how “far apart” the domains are in the representation space on which H operates. In this paper,
we minimize the divergence term by aligning feature distributions and minimize ϵS(h) by learning
source domain, all while keeping λ∗ small (i.e., assuming the same hypothesis is being applied on
source and target tasks).

Assuming h = c ◦ f with a C-Lipschitz feature extractor f and classifier c, and using Wasserstein-1
distance Villani et al. (2008), inspired by Theorem 1 You et al. (2023) we conjecture that the bound
(4) becomes:

ϵT (h) ≤ ϵS(h) + 2CW1(PS(Z), PT (Z)) + λ∗. (5)

5.0.2 ARCHITECTURE WITH TRANSFORMER AND GCN

We define a model consisting of a Transformer followed by a GCN, where fs
Trans(X

s) = Zs is the
source Transformer, and f t

Trans(X
t, Zs) = Zt is the target Transformer using cross-attention from

Zs.

Cross-Attention Reduces Divergence Between Domains: The practical implication of equation 5
is that when the Wasserstein distance between learned feature representations of source and target is
smaller, the target error is closer to the source error. Our model promotes exactly this closeness: the
cross-attention mechanism effectively learns to reduce the distance between PS(Z) and PT (Z) by
aligning target features with source feature representations.
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Lemma 1 (Domain Alignment through Cross-Attention). Let αij be the cross-attention weight from
target node i to source node j. Zt

i and Zt
j are transformer representations of node i in Target and

node j in Source, respectively. Then

W1(PS(Z
s), PT (Z

t)) ≤ EZt∼PT

∑
j

αij ∥Zt − Zs
j ∥

+ ϵcoupling, (6)

where ∥.∥ represents L1 norm and ϵcoupling = maxj
∣∣ 1
Nt

∑
i αij − 1

Ns

∣∣ is the source and target
coupling violation. When Zt

i = Zs
j for some j with αij = 1, this distance is minimized.

In an ideal scenario where for every target node i, the attention αij places weight on a source
neighbor j of the same class, feature distributions would align perfectly (resulting in W1 = 0 in
the latent space). While perfect alignment isn’t achievable without labels, cross-attention provides a
learnable transport that can significantly reduce distribution discrepancy in feature space, especially
when combined with a loss like MMD that explicitly encourages overlap. We expect the second term
in equation 5 to be small for our learned f and the third term is typically small with the attentions
distributed reasonably across source nodes, limiting the penalty on ϵT (h). This alignment is learned
jointly with label prediction on source, so features are optimized to be both discriminative (low
ϵS(h)) and shared across domains (low divergence) – a balance that is suggested by classic DA
theory to be necessary for low ϵT (h). You et al. (2023) Proof of Lemma 1 is available in Appendix.

GCN Promotes Smoothness: The GCN layer acts as a low-pass filter, enforcing local smoothness.
We hypothesize that it reduces the model’s sensitivity to high-frequency (noisy or domain-specific)
components and enforces a Lipschitz constraint on h. Its Lipschitz constant Cf can be bounded by
the spectral norms of the propagation operator. Smoothness helps to control the divergence term in
the adaptation bound.
Theorem 2 (Transferability of Transformer+GCN). Let hs = fGCN ◦ fs

Trans and ht = fGCN ◦
f t
Trans. Suppose fGCN is Cf -Lipschitz and the Transformer achieves alignment such that
W1(PS(Z

s), PT (Z
t)) = δ. Then

ϵT (h
t) ≤ ϵS(h

s) + 2Cf (δ + ϵcoupling) +O
(√

1
NS

)
. (7)

This bound is tighter than that of standard GCNs due to improved alignment (lower δ) and regular-
ized propagation (smaller Cf ).

Due to the cross-domain attention alignment with reasonable distribution, δ + ϵcoupling is small;
thanks to the GCN smoothing, Cf is also small; and we train to minimize ϵS(h

s) on the source.
Therefore, all terms on the right side of inequality 7 are controlled, leading to a low target risk. In
qualitative terms, our model learns a function that (1) fits the source data well, (2) doesn’t change
too abruptly with input perturbations or structural variations (Lipschitz/smooth), and (3) yields very
similar feature distributions for source and target (aligned latent spaces). According to DA the-
ory You et al. (2023); Chen et al. (2025a), such a function would be transferred effectively. Proof of
Theorem 2 is available in Appendix.

6 CONCLUSION

In this work, we introduce a novel transformer-based framework for UGDA that unifies global struc-
tural modeling through transformers with local topology refinement utilizing asymmetric GCNs
in both source and target domains. Our theoretical analysis investigates that the proposed cross-
attention mechanism explicitly reduces source and target domain divergence. Our extensive ex-
periments showcase consistent and substantial performance gains over SOTA baselines across both
standard benchmarks and synthetic graphs generated by a foundational model. Critically, our frame-
work’s robust performance on synthetic source domains addresses practical deployment constraints
where data privacy limits access to real source graphs, enabling TUGDA application in sensitive
domains like healthcare, finance, and corporate networks, establishing it as a generalizable solution
for graph domain adaptation challenges. Going ahead, we will extend our domain adaptation studies
to non-citation graphs, including biological networks and vision graphs. Further, we intend to de-
velop analytical bounds on target error when distribution shifts between domains are covariate and
semantic shifts.
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7 APPENDIX

7.1 ALGORITHM DESCRIPTION

In this section, the algorithm of the proposed method, TUGDA, is presented in Algorithm 1.

Algorithm 1 TUGDA: Transformer-based Unsupervised Graph Domain Adaptation

Require: Source graph Gs = (V s, Es, Xs, Y s), Target graph Gt = (V t, Et, Xt)

Ensure: Target predictions Ŷ t

1: Initialize: Transformer parameters fQ, fK , fV ; GCN parameters WGCN ; Classifier Wcls

2: for each training epoch do
3: // Positional Encoding
4: for domain d ∈ {s, t} do
5: Apply centrality encoding using Eq. (1)
6: Compute spatial positional encodings for Eq. (2)
7: end for
8: // Self-Attention for Both Domains
9: for domain d ∈ {s, t} do

10: Compute Qd,Kd, V d using Eq. (3)
11: Apply transformer attention using Eq. (4)→ Zd

Trans
12: end for
13: // Cross-Attention (Target← Source)
14: Qt = fQ(Z

t
Trans), K

s, V s = fK(Zs
Trans), fV (Z

s
Trans)

15: Apply cross-attention mechanism→ Zt
XTrans

16: // Sequential GCN Integration
17: Concatenate features: X̃s = [Xs∥Zs

Trans], X̃
t = [Xt∥Zt

XTrans]
18: Apply GCN using Eq. (5) with shared weights→ Zs

GCN , Zt
GCN

19: // Loss Computation and Optimization
20: Ŷ s = softmax(Zs

GCN ·Wcls)
21: Compute classification and alignment losses using Eq. (6)
22: Update parameters: θ ← θ − η∇θLtotal

23: end for
24: // Inference
25: return Ŷ t = softmax(Zt

GCN ·Wcls)

7.2 ADDITIONAL EXPERIMENTAL DETAILS

Table 3 presents the statistics of the real-world datasets used in our framework evaluation. The
datasets are available at https://github.com/Meihan-Liu/24AAAI-A2GNN.

Table 3: Statistics of the three real-world citation graphs.

Graph #Nodes #Edges #Attr. #Labels Density

ACMv9 (A) 9,360 15,556 6,775 5 0.00036
Citationv1 (C) 8,935 15,098 6,775 5 0.00038
DBLPv7 (D) 5,484 8,117 6,775 5 0.00054

The results of evaluation experiments on the above datasets compared to other DA baselines are
presented in Table 4 with the standard deviations included.

Figure 3 compares our framework in different scenarios, excluding different components of the
method.

We analyze the sensitivity of our model to key hyperparameters, specifically hidden dimensions of
GCN and transformer, and propagation layer count for both source and target domain in Figure 4
for D→ A and A→ C scenarios.
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Table 4: Node classification performance (%) across six cross-domain adaptation tasks. Best results
are bolded.

Method D→A A→D A→C C→A C→D D→C
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Domain Adaptation Methods
A2GNN 74.69 ± 0.3 73.62 ± 0.2 74.80 ± 0.5 77.33 ± 0.5 80.86 ± 0.2 82.34 ± 0.2 76.31 ±0.2 74.93 ± 0.3 74.70 ± 0.7 78.23±0.4 77.64±0.5 80.42 ±0.4
TDSS 75.37 ± 0.01 73.88 ± 0.06 75.39 ± 0.6 78.36 ± 0.2 81.03 ± 0.2 82.66 ± 0.2 76.04 ± 0.09 74.72 ± 0.09 74.76 ± 0.2 78.11 ± 0.4 78.71 ± 0.5 80.93 ± 0.1
DGSDA 74.67 ± 0.3 72.87± 0.2 73.91 ± 0.4 76.33 ± 0.4 81.28± 0.3 82.65± 0.3 76.47± 0.2 75.08 ± 0.2 75.73 ± 0.3 77.67 ± 0.4 80.72 ± 0.3 82.09 ± 0.3
TUGDA (Ours) 76.26 ± 0.2 75.10 ± 0.1 76.65 ± 0.3 78.41 ± 0.1 81.84 ± 0.2 83.17 ± 0.2 76.85 ± 0.3 75.57 ± 0.3 76.63 ± 0.6 78.3 ± 0.3 80.27 ± 0.4 82.21 ± 0.4

Figure 3: Effectiveness of different components of TUGDA (measured by Micro-F1).

In both scenarios, the best performances occur with 128 GCN hidden dimensions, but the optimal
transformer hidden dimension varies by scenario. (Figure 4 (a) and (c)) Additionally, consistent
with A2GNN, Figures 4 (b) and (d) demonstrate that the best performances happen with the smallest
number of propagation layers for the source domain. However, the optimal number of propagation
layers for the target domain is scenario-specific.

7.3 RELATED WORK

UGDA tackles distribution shifts across graph domains. General-purpose encoders such as
UDAGCN, GRADE, StruRW, and PairAlign use self-supervised pretraining and structural matching.
Transfer Learning methods like CDNE, AdaGCN, SpecReg, and ACDNE align domains through ad-
versarial training, discrepancy minimization, or spectral regularization, but often overlook topology
preservation. Recent UGDA models exploit direct structural adaptation: A2GNN aligns distribu-
tions via asymmetric propagation layers for source and target domains; TDSS reduces structural
noise and stabilizes representation learning via Laplacian smoothing and neighborhood sampling;
DGSDA incorporates Bernstein polynomial approximation for aligning graph spectral filters to avoid
expensive eigen-decompositions; and DAUGNN adapts structure-aware message passing through it-
erative propagation and integrates alignment into the unfolding process.

While effective, these models remain limited by GNNs’ local receptive fields. Transformer-based
graph models capture global interactions: Graphormer encodes structural information into atten-
tion scores via shortest paths and centrality, while SGFormer provides scalable global attention
without positional encodings. Our framework, TUGDA, combines SGFormer’s efficient attention
with Graphormer’s structural encodings, then refines representations through an A2GNN-inspired
asymmetric GCN. This hybrid design achieves joint global-local adaptation, surpassing prior UGDA
baselines.
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(a) D → A Dimensions (b) D → A Propagation

(c) A → C Dimensions (d) A → C Propagation

Figure 4: Dimensions and propagation layers’ sensitivity.

7.4 THEORETICAL ANALYSIS PROOFS

In this section, the proofs of the theoretical analysis from the main paper are elaborated.
Lemma 2 (Domain Alignment via Cross-Attention). Let αij be the cross-attention weight from
target node i to source node j. Then:

W1(PS(Z
s), PT (Z

t)) ≤ δalign + ϵcoupling (8)

where:

δalign = Ei∼PT

∑
j

αij ∥Zt
i − Zs

j ∥

 (9)

ϵcoupling = max
j

∣∣∣∣∣ 1

N t

∑
i

αij −
1

Ns

∣∣∣∣∣ (10)

Proof. The Wasserstein-1 distance is defined as:

W1(PS , PT ) = inf
γ∈Π(PS ,PT )

E(x,y)∼γ [∥x− y∥] (11)

where Π(PS , PT ) is the set of all joint distributions with marginals PS and PT .

We define a pseudo-coupling γ̂ using cross-attention weights:

γ̂(Zs
j , Z

t
i ) = PT (Z

t
i ) · αij (12)

We verify marginal constraints for this pseudo-coupling:
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For the target marginal:∑
j

γ̂(Zs
j , Z

t
i ) =

∑
j

PT (Z
t
i )αij = PT (Z

t
i )
∑
j

αij

= PT (Z
t
i )

(13)

(since softmax attention satisfies
∑

j αij = 1)

For the source marginal, PS(Z
s
j ):∑

i

γ̂(Zs
j , Z

t
i ) =

∑
i

PT (Z
t
i )αij (14)

If we assume uniform target distribution for simplicity: PT (Z
t
i ) = 1/N t, then:∑

i

γ̂(Zs
j , Z

t
i ) =

1

N t

∑
i

αij (15)

This should equal PS(Z
s
j ) = 1/Ns if the attentions are normalized across source nodes, but in

general, we have a coupling violation:∣∣∣∣∣ 1

N t

∑
i

αij −
1

Ns

∣∣∣∣∣ ≤ ϵcoupling (16)

We bound Wasserstein distance using the pseudo-coupling:

W1(PS , PT ) ≤ E(Zs,Zt)∼γ̂ [∥Zs − Zt∥] + coupling correction (17)

=
∑
i,j

γ̂(Zs
j , Z

t
i )∥Zs

j − Zt
i∥+ ϵcoupling (18)

=
∑
i,j

PT (Z
t
i )αij∥Zt

i − Zs
j ∥+ ϵcoupling (19)

=
∑
i

PT (Z
t
i )

∑
j

αij∥Zt
i − Zs

j ∥

+ ϵcoupling (20)

= EZt∼PT

∑
j

αij∥Zt − Zs
j ∥

+ ϵcoupling (21)

= δalign + ϵcoupling (22)

Theorem 3 (Transferability of Transformer+GCN). Let hs = fGCN ◦ fs
Trans and ht = fGCN ◦

f t
Trans. Suppose fGCN is Cf -Lipschitz and the Transformer achieves alignment such that
W1(PS(Z

s), PT (Z
t)) = δalign + ϵcoupling. Then:

ϵT (h
t) ≤ ϵS(h

s) + 2Cf (δalign + ϵcoupling) +O
(√

1

NS

)
(23)

Proof. Starting with the given domain adaptation bound using the Wasserstein distance:

ϵT (h) ≤ ϵS(h) + 2CW1(PS(Z), PT (Z)) + λ∗ (24)

For our architecture, the representations fed to the final classifier are:

• Source: Zs = fs
Trans(X

s)

• Target: Zt = f t
Trans(X

t, Zs) (with cross-attention)
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And the final hypotheses are:

• hs = fGCN(Z
s, As)

• ht = fGCN(Z
t, At)

By applying the GCN Lipschitz bound, The Wasserstein distance between final outputs is bounded
by:

W1(PS(h
s), PT (h

t)) ≤ Cf ·W1(PS(Z
s), PT (Z

t))

= Cf (δalign + ϵcoupling)
(25)

This uses the fact that Lipschitz functions can only increase Wasserstein distance by at most the
Lipschitz constant, and applies our refined cross-attention bound.

Under the covariate shift assumption PS(Y |G) = PT (Y |G), we have λ∗ = 0 in the ideal case.

The finite sample term comes from empirical risk estimation:

|ϵS(hs)− ϵ̂S(h
s)| = O

(√
1

NS

)
(26)

Combining all terms:

ϵT (h
t) ≤ ϵS(h

s) + 2Cf (δalign + ϵcoupling) +O
(√

1

NS

)
(27)
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