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Abstract

This paper proposes X 2-DFD, an eXplainable and eX tendable framework based
on multimodal large-language models (MLLMs) for deepfake detection, consisting
of three key stages (see Figure 1). The first stage, Model Feature Assessment,
systematically evaluates the detectability of forgery-related features for the MLLM,
generating a prioritized ranking of features based on their intrinsic importance to the
model. The second stage, Explainable Dataset Construction, consists of two key
modules: Strong Feature Strengthening, which is designed to enhance the model’s
existing detection and explanation capabilities by reinforcing its well-learned
features, and Weak Feature Supplementing, which addresses gaps by integrating
specific feature detectors (e.g., low-level artifact analyzers) to compensate for the
MLLM’s limitations. The third stage, Fine-tuning and Inference, involves fine-
tuning the MLLM on the constructed dataset and deploying it for final detection
and explanation. By integrating these three stages, our approach enhances the
MLLM’s strengths while supplementing its weaknesses, ultimately improving
both the detectability and explainability. Extensive experiments and ablations,
followed by a comprehensive human study, validate the improved performance
of our approach compared to the original MLLMs. More encouragingly, our
framework is designed to be plug-and-play, allowing it to seamlessly integrate with
future more advanced MLLMs and specific feature detectors, leading to continual
improvement and extension to face the challenges of rapidly evolving deepfakes.
Code can be found on https://github.com/chenyize111/X2DFD.

1 Introduction

Current generative AI technologies have enabled easy manipulation of facial identities, with many
applications such as filmmaking and entertainment [53]. However, these technologies can also be
misused to create deepfakes2 for malicious purposes, including violating personal privacy, spreading
misinformation, and eroding trust in digital media. Therefore, there is a pressing need to establish
a reliable and robust system for detecting deepfakes. In recent years, numerous deepfake detection
methods have been proposed [34, 45, 88, 32, 6, 61, 78, 74], with the majority focusing on addressing
the generalization issue when the manipulation methods between training and testing vary. However,

∗Equal contribution, †Corresponding author.
2The term “deepfake" used here refers explicitly to face forgery images or videos. Full (natural) image

synthesis is not strictly within our scope.
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Figure 1: High-level overview of our framework, consisting of three key stages: (1) Model Feature
Assessment (MFA) evaluates and ranks the forgery-related features (e.g., blending artifacts) to
generate a feature set, (2) Strong Feature Strengthening (SFS) enhances the model’s strong features
for improved detection and explanation, while Weak Feature Supplementing (WFS) leverages Specific
Feature Detector (SFD) to compensate the model’s weak features, and eventually resulting in an
explainable dataset, and (3) The MLLM is fine-tuned using the dataset and then used for inference.

these methods typically only output a probability indicating whether a given input is AI-generated
[8, 83], without providing intuitive and convincing explanations behind the prediction.

Multimodal Large Language Models (MLLMs) have shown remarkable potential in many vision tasks
[71, 77, 53]. Given their strong vision-language reasoning capabilities, MLLMs offer a promising
avenue for addressing the explainability gap in visual forgery detection. Recent studies [28, 60, 31, 84]
have explored this direction by prompting human annotators or LLMs to describe forgery cues from
multiple dimensions, which the MLLMs are then trained to detect. However, these approaches
often overlook a key challenge: the reliability of the generated explanations. Due to MLLMs’
well-documented tendency to hallucinate, especially under uncertain conditions [4], it is crucial to
ensure that the models rely on their “familiar” forgery cues with strong discrimination for
detection. Intuitively, not all forgery features are equally useful—some can be effectively leveraged
for detection, while others are weakly utilized or ignored altogether.
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Figure 2: The diagram shows that pretrained mod-
els (e.g., LLaVa) effectively distinguish real from
fake content using semantic features (e.g., Skin
tone, Contour), but perform poorly with signal
features (e.g., Blending, Lighting).

To investigate this, we conduct a comprehen-
sive analysis of how well pre-trained MLLMs
can utilize various forgery-related cues. As
shown in Figure 2, certain cues exhibit strong de-
tection performance (e.g., facial structures and
skin tone), whereas others offer limited discrimi-
native value (e.g., blending artifacts and lighting
inconsistencies). When a cue is unfamiliar or
ineffective for the model, explanations based on
it become unreliable. In contrast, cues that align
well with the model’s capabilities produce more
robust and trustworthy explanations. Therefore,
to ensure reliable explanations, it is essential to
explicitly identify and promote cues that the MLLM can reliably understand and leverage.

Inspired by the above investigations, we propose X 2-DFD, a novel framework that utilizes MLLMs
for deepfake detection. The key idea of our approach is to enhance the strengths and supplement
the weaknesses of the original MLLMs. Our framework operates through three core stages. First, the
Model Feature Assessment (MFA) assesses the intrinsic capability of the original MLLMs in deepfake
detection. This stage quantifies the discriminative capability of each forgery-related feature, producing
a prioritized ranking based on its importance to the model. Second, the Strong Feature Strengthening
(SFS) and Weak Feature Supplementing (WFS) reinforce strong features and compensate for weak
ones, resulting in a more explainable dataset. Third, we use the created dataset from the second
stage to fine-tune the MLLM and then use it for improved detection and explanation. This integration
enables us to leverage the strengths of both MLLMs and Specific Feature Detectors (SFDs) effectively
and fuse the large and small models adaptively. Encouragingly, the modular-based design of the
proposed X 2-DFD framework enables seamless integration with future MLLMs and SFDs as their
capabilities evolve.

Our main contributions are threefold.

• We systematically assess the intrinsic capabilities of MLLMs for deepfake detection: To our
knowledge, we are the first work to provide an in-depth analysis of MLLMs’ inherent ability in
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deepfake detection. Our findings reveal that MLLMs exhibit varying discrimination capabilities
across different forgery features.

• We enhance MLLMs’ explainability by reinforcing their strong features: Building on their
strengths, we fine-tune MLLMs to generate explanations based on their most “familiar" forgery
features, improving both detection accuracy and explainability.

• We further integrate Specific Feature Detectors to supplement the model’s weakness, For
forgery features where MLLMs struggle, we incorporate SFDs to complement their limitations,
creating a more robust detection system.

2 Related Work

Conventional Deepfake Detection Early detection methods typically focus on performing feature
engineering to mine a manual feature such as eye blinking frequency [36], warping artifacts [34],
headpose [82], and etc. Recent conventional deepfake detectors mainly focus on dealing with the
issue of generalization [79], where the distribution of training and testing data varies. Until now, they
have developed novel solutions from different directions: constructing pseudo-fake samples to capture
the blending clues [34, 32, 62, 89], learning spatial-frequency anomalies [23, 45, 48, 54], focusing
on the ID inconsistency clues between fake and corresponding real [17], performing disentanglement
learning to learn the forgery-related features [78, 81, 22], performing reconstruction learning to learn
the general forgery clues [5, 67], locating the spatial-temporal inconsistency [24, 69, 90, 80, 86], and
etc. However, these methods can only provide real or fake predictions without providing detailed
explanations. The lack of convincing and human-comprehensible explanations might confuse users
about why the predictions are deemed fake.

Deepfake Detection via Multimodal Large Language Model Vision and language are the two
important signals for human perception, and visual-language multimodal learning has thus drawn a
lot of attention in the AI community. Recently, the LLaVA series [44, 43, 42] have explored a simple
and effective approach for visual-language multimodal modeling. In the field of deepfake detection,
[28, 60] have investigated the potential of prompt engineering in face forgery analysis and proposed
that existing MLLMs show better explainability than previous conventional deepfake detectors. In
addition, [35, 21, 31] probed different MLLMs for explainable fake image detection and [35, 70]
by presenting a labeled multimodal database for fine-tuning. In parallel, VIPGuard [40] explores
explainable deepfake detection by leveraging identity information through an MLLM. More recently,
[87] proposed using pairs of human-generated visual questions answering (VQA) to construct the
fine-tuning dataset, but manually creating detailed annotations can be very costly. Addressing this
limitation, [27] recently introduced an automated pipeline using GPT-4o [1] to generate VQA pairs
for dataset construction and MLLM training. However, a new critical question was then raised:
Can MLLMs (e.g., LLaVa) fully comprehend the fake clues identified by GPT-4o? We argue that
there could remain a “capability gap" between different MLLMs, particularly between “annotation
generators" (GPT-4o) and “consumer models" (LLaVA). This gap exposes two unresolved challenges:
(1) systematically analyzing the limitations of MLLM-based detectors in understanding all synthetic
forgery clues (e.g., identifying specific detection capabilities they lack) and (2) developing methods
to enhance their existing strengths (e.g., semantic consistency analysis) while compensating for
weaknesses (e.g., fine-grained artifact recognition). To our knowledge, most existing works fail
to adequately address the two key challenges, leaving a critical void in building more robust and
explainable deepfake detection systems.

3 Method

In this work, we propose a general explainable and extendable multimodal framework for deepfake
detection, which consists of three key stages: (1) Model Feature Assessment (MFA) evaluates and
ranks the forgery-related features, (2) Strong Feature Strengthening (SFS) enhances the model’s
strong features and Weak Feature Supplementing (WFS) leverages Specific Feature Detector (SFD) to
compensate the model’s weak features, and eventually resulting in an explainable dataset, and (3)
The MLLM is fine-tuned on this dataset and then used for inference for enhanced deepfake detection
and explanations. In the following content, we will introduce the technical details of these stages.
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Figure 3: A comprehensive breakdown of the three-stage methodology for X 2-DFD. In Stage 1, an
automated procedure for forger-related feature generation, evaluation, and ranking is implemented
within the MFA (Model Feature Assessment) module. Stage 2 incorporates the SFS (Strong Feature
Strengthening) module, which automates the generation of explanatory annotations for a fine-tuning
dataset consisting of real and fake images, leveraging strong features, alongside the WFS (Weak
Feature Supplementing) module, which employs a specific feature detector to produce explanations
for weak features. Stage 3 entails model fine-tuning and inference, empowering the model to excel in
detection performance and provide precise explanations, utilizing both its proficient strong features
and less proficient weak features for improved detection and explanation.

3.1 Model Feature Assessment (MFA)

As depicted in the top row of Figure 3, the MFA module consists of three sequential stages: feature-
related question generation, assessment, and ranking. Each stage plays a crucial role in identifying
and prioritizing forgery-related features.

Step 1: Feature-related Question Generation. For each candidate forgery-related feature, a corre-
sponding question is formulated to assess its presence in an image. Given that these features are not
predefined, a Large Language Model (LLM), such as GPT-4o, is leveraged to generate a diverse set
of Nf questions, denoted as Fi. These questions are designed to probe key forgery indicators, in-
cluding facial inconsistencies, unnatural color, and texture mismatches elements critical for deepfake
detection.

Step 2: Model Feature Assessment. Each generated question is paired with an image from the assess-
ment dataset, forming structured prompts for model inference. The Multi-Modal Large Language
Model (MLLM) then responds with binary outputs (yes or no), which are aggregated into a confusion
matrix to quantify the reliability of each feature. Specifically, for an image xj and question Fi, where
i represents the index of forgery feature-related question, and j represents index of an image, the
MLLM produces:

Ri,j = Mbase(Fi, xj), (1)

where Ri,j ∈ {yes, no}, representing the model’s response. This step ensures that the generated
questions effectively capture forgery-related discrepancies.

Step 3: Feature Ranking. To prioritize the most discriminative features, questions are ranked based
on their Balanced Accuracy (BA):

BAi =
1

2

(
TPi

TPi + FNi
+

TNi

TNi + FPi

)
, (2)
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where TPi,TNi,FPi,FNi denote True Positives, True Negatives, False Positives, and False Negatives,
respectively. Due to potential class imbalance between real and fake samples in the dataset, we use
the simple and widely adopted Balanced Accuracy (BA) metric. This fairly evaluates both classes,
aiding effective feature ranking. The ranking identifies the most reliable forgery-related features for
discrimination.

Following the automated ranking, human verification is further conducted to ensure the reliability
of the identified fake features. This step mitigates potential biases or misinterpretations by the LLM,
refining the final selection of discriminative features. Additionally, irrelevant or non-discriminative
features are filtered out, with minimal instances of erroneous or unrelated outputs.

3.2 Strong Feature Strengthening (SFS)

The SFS module constructs datasets by leveraging the strong feature capabilities identified as high-
performing by the MFA module. This process comprises two key steps.

Step 1: Real/Fake Prompts Generation. Leveraging the strong features from the MFA module, we
generate specialized prompts to guide the MLLM’s focus during the fine-tuning phase. Specifically,
we first utilize GPT-4o to summarize these strong features and construct two distinct prompts: one
tailored for real images (Preal) and another for fake images (Pfake). These prompts are formulated as:
Preal = f(Freal), Pfake = f(Ffake), where Freal and Ffake denote the sets of strong features relevant
to real and fake images, respectively. Also, f represents any LLMs. Here, we employ GPT-4o for
implementation.

Step 2: Fine-tuning Dataset Construction. A fine-tuning dataset Dft comprising VQA-style (vi-
sual question answering) pairs, which is constructed by pairing each image with the correspond-
ing (real or fake) prompt. Each image is annotated with the specific features it exhibits, and the
standardized prompt Pfixed is defined as: Pfixed = “Is this image real or fake?" The model’s re-
sponse is structured to begin with a definitive statement—“This image is real/fake"—followed
by an explanation based on the identified features. Formally, the final answer is represented as:
Afinal = “This image is real/fake” +Areal/fake. Consequently, each VQA-style pair of the
fine-tuning dataset Dft is formalized as: VQA = (Image,Pfixed,Afinal).

3.3 Weak Feature Supplementing (WFS)

The WFS module construct datasets by integrating specific feature detectors, which are specialized in
detecting features where the MLLM shows weakness. This module follows two steps:

Step 1: Specific Feature Detector Invocation. For features that the MLLM identifies as weak, we
deploy an specific deepfake detector (e.g., a blending-based detector [41]). This specific feature
detector processes the input image and generates a prediction. Note that we also employ other SFDs
for implementation, and we provide an in-depth analysis for this in the Appendix G. Specifically,
when utilizing a blending detector as an instance of SFD, a blending score s is produced: s =
σ(BlendDetector(x)), where x denotes the input image, and σ denotes the sigmoid function that
transforms the logits output of the BlendDetector into the 0-1 range.

Step 2: Integration of Specific Feature Detection Results into the Fine-tuning Dataset.

The blending score s obtained from the specific detector is incorporated into the fine-tuning dataset
by appending it to the existing prompts. This is done by adding a statement such as: “And the
blending feature score of content is: s" Additionally, based on the score, a correspond-
ing response aligned with the probability is included, specifically in the Fine-tuning Dataset Con-
struction section of the SFS. This integration ensures that the MLLM benefits from both its intrinsic
detection capabilities and the specialized insights provided by the SFD.

3.4 Model Finetune and Inference

After obtaining the constructed dataset, the following steps involve fine-tuning and inference. The
stage following two steps:

Step 1: MLLM Fine-tuning. The initial MLLM is fine-tuned using the dataset Dft. This process
adjusts the projector to accurately link image artifacts with corresponding fake labels. Additionally,
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Low-Rank Adaptation (LoRA) [25] is applied to selectively update a subset of the model’s parameters,
enhancing its focus on deepfake-specific features while preserving overall model integrity. This
fine-tuning can be expressed as:

Mbase
Dft−−→ Mfine-tuned,

where Mfine-tuned represents the enhanced MLLM with superior deepfake detection capabilities.

Step 2: Integration of Specific Feature Detection into Inference Prompts. Generally, during the
inference, the SFD detector’s blending score s is incorporated into the MLLM’s prompt-based
reasoning process. The final output of the model is structured, to begin with a definitive state-
ment: "This image is real/fake", followed by reasoning based on identified visual features.
Based on the blending score s, the model appends a descriptive statement: Afinal = "This image
is real/fake" (binary results) + Areal/fake (explanations) + "And this image contains
obvious/minimal blending artifacts" (clues from SFD). The model acquires this response
pattern through training. This approach ensures that the MLLM effectively leverages SFDs to enhance
its detection performance, particularly for features where it initially demonstrated weakness.

4 Experiment

4.1 Experimental Setup

Datasets. We evaluate our proposed method on a diverse set of widely-used deepfake detection
datasets, including the Deepfake Detection Challenge (DFDC) [16], its preview version (DFDCP) [15],
DeepfakeDetection (DFD) [13], Celeb-DF-v2 (CDF-v2) [37], FaceForensics++ (FF++) [58] (c23
version for training), DFo [29], WildDeepfake (WDF) [95], FFIW [92], and the newly released
DF40 dataset [76], which incorporates state-of-the-art forgery techniques such as Facedancer [57],
FSGAN [51], inSwap [59], e4s [33], Simswap [7], and Uniface [91]. In line with the standard
deepfake benchmark [79], we use the c23 version of FF++ for training and other datasets for testing
in the main table. Additionally, we evaluated a broader range of facial forgery types using the DiFF
[9] dataset, a comprehensive collection of diffusion-generated facial images, which allowed us to test
our method on a wider spectrum of forgery techniques.

Evaluation Metrics. We assess the performance of our model in terms of both detection perfor-
mance and explanation quality. For detection, we adopt the Area Under the Curve (AUC) as the
primary metric to evaluate the model’s ability to distinguish real from fake content across entire
datasets, reporting both frame-level and video-level AUC scores. Additional metrics, including
Accuracy (Acc.), Equal Error Rate (EER), and Average Precision (AP), are also provided for a
comprehensive analysis. For explanation, we follow [87] by using human-annotated data to measure
text similarity between model-generated explanations and human-labeled ground truth, employing
standard metrics such as BLEU [52], CIDEr [66], ROUGE-L [38], METEOR [14], and SPICE [2].
Beyond text similarity, we engage human evaluators and GPT-4o to assess the quality of explanations
regarding forgery content, following prior studies [73, 21]. Evaluators rate the explanations on a
scale from 0 (very poor) to 5 (excellent), ensuring a robust qualitative evaluation.

Implementation Details. We initialize our model with the LLaVA-base weights and fine-tune the
LLaVA model [44] using its official implementation codebase. For the specific feature detectors
(SFD), we adopt a blending-based approach as proposed in [41]. Training is performed on a single
NVIDIA 4090 GPU for 3 epochs, with a learning rate of 2× 10−5 in two layer mlp projector and
2× 10−4 in others, a rank of 16, and an alpha value set conventionally to twice the rank at 32. We use
a batch size of 4, a gradient accumulation step of 1, and a warmup ratio of 0.03 to stabilize training.

4.2 Generalizability Evaluation

Following the common settings of previous works [74, 10], we first compare our method with 33
SOTA detectors (including both conventional and multimodal-based detectors) via cross-dataset
evaluations (see Table 1) The results of other compared baselines are mainly cited from their original
papers. Our approach excels across both frame-level and video-level evaluations, maintaining superior
results when compared to other methods. The table clearly highlights our method’s capability to
generalize and consistently achieve higher detection performance at the frame level and video level,
respectively.
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Table 1: Cross-dataset evaluations with 33 existing detectors. The top two results are highlighted, with the best
in bold and the second-best underlined. ‘*’ indicates our reproductions based on the pre-trained checkpoints
released by the authors, and ‘†’ refers to the MLLM-based detectors, which can also output explanations. ‡: The
LAA-Net is trained on the high-quality FF++ (raw) data, whereas our method is trained on the compressed (c23)
version.

Frame-Level AUC Video-Level AUC

Method CDF DFDCP DFDC DFD Avg. Method CDF DFDCP DFDC DFD Avg.

Xception [12] 73.7 73.7 70.8 81.6 75.0 Xception [12] 81.6 74.2 73.2 89.6 79.7
FWA [34] 66.8 63.7 61.3 74.0 66.5 PCL+I2G [89] 90.0 74.4 67.5 – –
Efficient-b4 [65] 74.9 72.8 69.6 81.5 74.7 LipForensics [24] 82.4 – 73.5 – –
Face X-ray [32] 67.9 69.4 63.3 76.7 69.3 FTCN [90] 86.9 74.0 71.0 94.4 81.6
F3-Net [54] 77.0 77.2 72.8 82.3 77.3 ViT-B (CLIP) [19] 88.4 82.5 76.1 90.0 84.3
SPSL [46] 76.5 74.1 70.1 81.2 75.5 CORE [50] 80.9 72.0 72.1 88.2 78.3
SRM [48] 75.5 74.1 70.0 81.2 75.2 SBI* [61] 90.6 87.7 75.2 88.2 85.4
ViT-B (IN21k) [55] 75.0 75.6 73.4 86.4 77.6 UIA-ViT [94] 82.4 75.8 – 94.7 –
ViT-B (CLIP) [19] 81.7 80.2 73.5 86.6 80.5 SLADD* [6] 79.7 – 77.2 – –
RECCE [5] 73.2 74.2 71.3 81.8 75.1 DCL [64] 88.2 76.9 75.0 92.1 83.1
IID [26] 83.8 81.2 – – – SeeABLE [30] 87.3 86.3 75.9 – –
ICT [18] 85.7 – – 84.1 – CFM [47] 89.7 80.2 70.6 95.2 83.9
LSDA [74] 83.0 81.5 73.6 88.0 81.5 UCF [78] 83.7 74.2 77.0 86.7 80.4
VLFFD† [63] 83.2 83.2 – 94.8 – NACO [86] 89.5 – 76.7 – –
FFAA† [27] – – 74.0 92.0 – AltFreeing [69] 89.5 – – – –
RepDFD† [39] 80.0 90.6 77.3 – – TALL-Swin [72] 90.8 – 76.8 – –
MFCLIP † [39] 83.5 86.1 – – – StyleDFD [11] 89.0 – – 96.1 –
KFD-VLM † [85] 89.9 86.7 – 92.3 – LAA-Net ‡ [49] 95.4 86.9 - 98.4 -

X 2-DFD (7B) 90.4 87.3 83.7 92.3 88.4 X 2-DFD (7B) 95.4 89.3 86.0 95.8 91.6
X 2-DFD (13B) 91.3 90.3 83.4 92.5 89.4 X 2-DFD (13B) 95.7 91.0 85.7 96.1 92.1

4.3 Explainability Evaluation

Annotated Explainability Evaluation. We assess the performance of our model using the DD-
VQA [87] test dataset, which incorporates human-annotated data from FF++ [58]. The evaluation
employs a suite of metrics, including BLEU [52], CIDEr [66], ROUGE-L [38], METEOR [14],
and SPICE [2], to quantify the alignment between our model’s responses and human-annotated
ground truth. The MLLMs assessed for explanation quality include LLaVA [43], Llama3.2V [20],
Qwen2VL [68] and GPT4o [1]. The models use the same prompt to generate explainable outputs. To
ensure a fair comparison, particularly given GPT-4o’s tendency to refuse responses with the same
prompt, we adopt a prompting strategy from [28]. This leads GPT-4o to generate shorter responses,
resulting in lower scores. The evaluation results are summarized in Table 2 (Annotated Explainability
Evaluation). Due to the DD-VQA only annotating the artifact in some specific parts (e.g., nose,
eyes), GPT-4o and human experts are required to evaluate both annotated and unannotated scenarios,
ensuring a thorough assessment of model explainability across different scenarios.

Table 2: Explainability evaluation across annotated and unannotated settings, comparing five scores for annotated
explainability, alongside human and GPT-4o evaluations (scored 0-5) for unannotated explainability. The best
result per metric is highlighted in bold.

Model Annotated Explainability Unannotated Explainability

BLEU CIDEr ROUGE-L METEOR SPICE Avg. Human-Eval GPT4-Eval Avg.

LLaVA-7B [44] 0.183 0.021 0.139 0.110 0.085 0.108 2.368 1.542 1.955
Llama3.2-Vision [20] 0.131 0.009 0.131 0.081 0.116 0.093 2.265 1.667 1.966
Qwen2.5-VL-7B [68] 0.140 0.012 0.143 0.081 0.150 0.105 2.034 1.383 1.709
GPT-4o [1] 0.123 0.011 0.082 0.051 0.072 0.068 2.559 2.055 2.307

Ours 0.203 0.027 0.155 0.148 0.155 0.138 3.572 2.668 3.120

Unannotated Explainability Evaluation. To evaluate unannotated explainability, we build on
insights from prior work [73, 21, 93] and utilize both human evaluators and GPT-4o to assess model
performance across three key dimensions: (1) detection ability, (2) reasonableness of explanations,
and (3) level of detail. Each dimension is scored on a scale from 0 to 5. The evaluation results are
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summarized in Table 2 (Unannotated Explainability Evaluation). The results demonstrate that our
model achieves strong performance in both human-eval and GPT-eval. Additional details include the
experiment of the setting of human study, Graphical User Interface (GUI) of human study, and the
evaluation prompt of GPT4o can be found in Appendix.

4.4 Computational Complexity Evaluation

Table 3: Comparison of average inference
time per image for different models.

Model Seconds

Non-MLLMs - Xception ~0.03
Non-MLLMs - CDFA ~0.05
Llama-3.2-11B ~3.3
Qwen2.5 VL-Instruct 7B ~1.6
LLaVa-7B ~1.2
Ours (X2DFD w/ two SFDs) ~1.3

We performed a simple evaluation of the time complexity.
Compared to other pretrained MLLMs, the model does not
require much additional inference time in the same inference
framework, as seen in Table 3, making the time acceptable.
However, when compared to conventional Non-MLLM meth-
ods, the model, despite gaining interpretability and a richer
feature space, requires more inference time. Nevertheless,
we believe that as MLLM inference frameworks advance,
along with pruning and quantization lightweight methods,
MLLMs will benefit from these improvements when applied
to Deepfake detection.

5 Ablation Study and Analysis
Here, we address several key research questions through ablation studies and in-depth analysis.

Question 1: Why is fine-tuning MLLMs with their strong features more effective than using all?

To enhance the reasoning and detection capabilities of MLLMs, we introduce the Strong Feature
Strengthening (SFS) module. In this module, we focus on selectively amplifying the most discrimi-
native forgery-related features—referred to as strong features. These strong features are identified
through Model Feature Attribution (MFA), which ranks features based on their importance scores
across different modalities and samples. Fine-tuning on these “strong features” is more effective
because it focuses the learning process on highly discriminative, reliable forgery-related cues while
avoiding the disruptive noise introduced by weak features.

Table 4: Comparison of model detection performance and interpretation
between using all features and strong features, both enhanced by the
Strong Feature Strengthening (SFS) module. The evaluation metrics
include AUC and GPT-4o evaluation. Additionally, results for the Top-K
feature selection strategy and the No Feature Explanation are provided
for comparison.

Model Configuration CDF Uniface HPS-Diff Avg GPT4o Eval

No Feature Explanation 80.3 81.9 84.7 82.3 –
X2DFD (Top-K=25) 83.0 84.3 87.1 84.8 2.91
X2DFD (Top-K=50) 83.2 84.5 88.7 85.5 3.02
X2DFD (Top-K=75) 81.9 83.2 84.6 83.2 2.77
X2DFD (Top-K=100) 79.0 82.3 83.6 81.6 2.63

This design leads us to a critical
question: Are these strong fea-
tures truly more effective for im-
proving model performance than
using the full set of features?
To answer this, we compare two
strategies: (1) enhancing all fea-
tures in the LLM-generated fea-
ture list and (2) enhancing only
the strong features selected via
MFA. As shown in Table 4, the
latter consistently outperforms
the former across all datasets.
These results confirm that selectively strengthening the most discriminative features not only improves
the model’s performance but also yields more reliable model explanations.

Question 2: How to ensure SFS module works when it should, and stays silent when it shouldn’t?

Table 5: Effect of excluding supplementary features
during training (WFS) and including them at inference
(SFD infer) on model performance.

Varient CDF DFD DFDC DFDCP Avg.

WFS ✗ SFD infer ✗ 83.2 91.4 79.2 82.0 84.0
WFS ✗ SFD infer ✓ 81.7 90.6 79.1 81.3 83.2
WFS ✓ SFD infer ✓ 90.4 92.3 83.7 87.3 88.4

To further improve model generalization and in-
terpretability, we extend our framework with two
new components: the Specific Feature Detection
(SFD) module and the Weak Feature Supplement-
ing (WFS) module. While the earlier SFS module
focuses on enhancing strong, highly discrimina-
tive features, it may overlook subtle patterns crit-
ical for certain forgery types. To address this,
WFS is designed to teach the model how to lever-
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age weak features provided by SFD—features
that are otherwise hard for MLLMs to interpret directly.

To investigate whether this combination yields synergistic benefits, we compare three variants: (1)
baseline without WFS and SFD at inference, (2) enabling SFD only during inference (without WFS),
and (3) enabling both WFS and SFD. As shown in Table 5, the model achieves the best performance
when WFS is present, demonstrating that SFD’s weak signals become more useful once the model
has learned how to utilize them through WFS. Without WFS, simply adding SFD at inference may
not help—and can even lead to degradation—indicating that "1+1" only becomes greater than 2 when
weak features are integrated structurally during training.

Table 6: Comparison of AUC performance for models trained on FF++
alone versus FF++ with SRI, evaluated on other datasets.

Train Data CDF DFDCP DFDC DFD Uniface Fsgan Inswap Simswap Avg.

FF++ ✓ SRI ✗ 90.4 87.3 83.7 92.3 85.5 91.1 81.2 85.1 87.1
FF++ ✓ SRI ✓ 91.5 89.3 83.9 92.7 87.4 89.9 81.0 86.1 87.7

Beyond synergy, it is crucial to
ensure that the introduction of
SFD does not interfere in sce-
narios where its cues are irrel-
evant. For example, blending-
based detectors may provide lim-
ited value on datasets like SRI,
which contain no blending traces. We test this by introducing SRI as a training set and comparing
performance. As shown in Table 6, the model not only maintains its effectiveness but even improves,
suggesting that when SFD signals are weak or absent, the model naturally downplays them. This
demonstrates that our design is adaptive—SFD helps when it can, and steps aside when it should.

Overall, our framework achieves both synergistic improvement and non-intrusive integration:
WFS enables the model to benefit from weak features without forcing reliance, and SFD contributes
only when its signals are relevant.

Question 3: How can we generate the most suitable set of N forgery-related questions in MFA?

The Model Feature Assessment (MFA) module evaluates the model’s discriminative ability by asking
it to answer a curated set of N forgery-related questions. A key challenge here is: how to generate the
most suitable questions that effectively probe the model’s understanding of diverse forgery cues. To
explore this, we compare different question-generation strategies: (1) human-written features based
on expert knowledge [87], (2) features automatically generated by large language models (LLMs),
including Claude3.5-Sonnet [3] and GPT-4o [1].

Table 7: Comparison between LLMs and human annotators for generating
N forgery-related questions for MFA.

Variant CDF DFDCP DFDC DFD Uniface Fsgan Simswap Avg

Human Writing [87] 89.1 89.7 83.6 92.5 82.3 89.1 87.0 87.6
Claude3.5-Sonnet [3] 90.1 88.5 83.5 93.0 84.9 90.0 85.6 87.9
GPT4o [1] 90.3 89.7 83.5 92.5 85.2 89.9 84.9 87.8

As shown in Table 7, questions
generated by LLMs slightly out-
perform those crafted by hu-
mans in terms of detection perfor-
mance across multiple datasets.
This suggests that LLMs can cap-
ture a broader and potentially
more nuanced range of forgery-
related features, possibly including cues overlooked by human experts. However, LLM-generated
questions are not always ideal—they may sometimes be generic, redundant, or irrelevant (e.g.,
mistakenly treating "Photoshop traces" as core deepfake features). On the other hand, although
human-designed features may be narrower in scope, they offer higher precision and domain relevance,
leading to robust results. To balance these strengths and weaknesses, we adopt a hybrid strategy:
(1) Use an LLM to generate a diverse pool of forgery-related questions. (2) Rank them by relevance
scores. (3) Apply human verification to filter out irrelevant or low-quality questions.

Question 4: Can framework benefit from extending multiple SFDs?

With the continuous development of generative technologies, diffusion-based generative methods
and techniques have been emerging rapidly. To test the scalability of our framework, we extended it
to another SFD, AlignedForensics [56], and incorporated a new training dataset, consisting of fake
faces generated through diffusion techniques from 1000 external images, which form a subset of
the face-swapping data in DiFF [9]. We then tested not only the face-swapping scope, which was
previously the focus of this work (e.g., CDF and Simswap), but also expanded the evaluation to
include face editing, image-to-image editing, and text-to-image generation using the DiFF dataset,
which also focuses on faces.
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Table 8: AUC Performance Evaluation for SFD Integra-
tion X2DFD-Sig (CDFA only) vs. X2DFD-Mul (CDFA
& AlignedForensics)

Model CDF Simswap Diff-FE Diff-I2I Diff-T2I

CDFA 87.9 76.1 74.6 81.7 87.3
X2DFD-Sig 90.4 85.1 82.1 81.7 88.3
X2DFD-Mul 90.3 88.5 92.1 88.6 92.2

As shown in Table 8, we found that the X2DFD
framework not only effectively extended the
CDFA’s blending-based SFD but also enhanced
the performance when extending both the CDFA
and AlignedForensics (diffusion-based SFD).
This extension allowed the framework to achieve
strong results across various forgery types and
methods.

6 Conclusion

In this paper, we propose X 2-DFD, a unified multimodal framework for explainable and extend-
able deepfake detection. For the first time, we systematically evaluate the intrinsic capabilities of
the pre-trained MLLMs, revealing their varying effectiveness across different forgery-related features.
Inspired by this, we implement a targeted fine-tuning strategy, which has largely improved the
explainability of the MLLMs, specifically capitalizing on their strengths. Furthermore, by integrating
specific feature detectors (SFD), we design an adaptive fusion module to combine the complementary
advantages of both MLLMs and conventional detectors for improved detection.

Limitations and Future Work. While our framework demonstrates strong performance in detecting
identity-specific facial forgeries, it has certain limitations. First, multimodal large language models
(MLLMs) operate in a much larger parameter space, which leads to a richer visual feature space
related to Deepfake detection. However, this comes at the cost of slower inference speeds. Future
advancements in the field could help accelerate inference, benefiting from the rapid development of
the domain. Second, our current implementation focuses solely on static image detection. However,
real-world applications increasingly involve multimodal forgeries across video and audio streams.
Extending our method to handle videos and audio-visual deepfakes is a critical next step for building
a comprehensive and practical detection system. Third, As forgery technologies advance and realistic
deepfakes exhibit fewer detectable artifacts that can be captured by natural language descriptions, our
MLLM-based method may become less effective in interpreting semantic artifacts, thereby requiring
the SFD module to play a more crucial role in the framework.

Broader Impacts. This research advances machine learning with a new framework to detect and
explain Deepfake images, effectively identifying deepfakes and reducing misuse of generative models
for significant societal benefit. However, it risks being used to improve deepfake realism. To counter
this, following previous works [75, 76] implement access controls. We will urge researchers to
minimize harms while maximizing the positive impact of this work.

Ethics & Reproducibility statements. All facial images used are from publicly available datasets
with proper citations, ensuring no violation of personal privacy. And the human study has received
the IRB approval.

Content Structure of the Appendix. Due to page constraints, we include additional analyses and
experiments in the Appendix. Specifically, the Appendix contains the following sections: Overview
of Appendix, Experiment Setting Details, Additional Experimental Results, Human Study and GPT4
Evaluation, Additional Analysis of Model Feature Assessment, Additional Analysis of Strong Feature
Strengthening, Additional Analysis of Weak Feature Supplementing, Additional Analysis of Ablation
Study, Sample Showing. For further details, please refer to the Appendix.
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A Overview

Due to space constraints, we have included additional important content in the supplementary
materials. Below is a brief outline of the supplementary content to facilitate readers easily locate the
relevant sections:

• Appendix B: Experiment Setting Details
– Appendix B.1: Details of Datasets
– Appendix B.2: Implementation Details

• Appendix C: Additional Experimental Results
– Appendix C.1: Results of Robustness Against Unseen Perturbations
– Appendix C.2: Results of Training and In-domain Testing on FF++
– Appendix C.3: Results of Cross-manipulation Evaluation on DF40
– Appendix C.4: Results of Experiments on Different LLMs/MLLMs
– Appendix C.5: Results of Experiments on GenAI Images

• Appendix D: Human Study and GPT4 Evaluation
– Appendix D.1: Human Study Details
– Appendix D.2: GPT-4 Evaluation Details

• Appendix E: Additional Analysis of Model Feature Assessment
– Appendix E.1: Evaluation Setup of MFA
– Appendix E.2: Evaluation of the Overall Detection Performance Details
– Appendix E.3: Deeply Investigation of Individual Feature’s Discrimination

• Appendix F: Additional Analysis of Strong Feature Strengthening
• Appendix G: Additional Analysis of Weak Feature Supplementing
• Appendix H: Additional Analysis of Ablation Study
• Appendix I: Sample Showing

B Experiment Setting Details

B.1 Details of Datasets

VQA Datasets Construction Details In this part, we detail the data construction process for our
deepfake detection framework, X 2-DFD, which integrates multiple stages: Multi-Feature Analysis
(MFA), Strong Feature Selection (SFS), Weak Feature Selection (WFS), and Model Inference (MI).
The process, illustrated in Figure 4, leverages multimodal large language models (MLLMs) and
specific feature detectors (SFD) to construct a robust dataset for training and fine-tuning.

The data construction pipeline begins with the MFA stage, where an MLLM generates yes-or-no
questions (e.g., "Is the image blurry?" or "Are there blending artifacts?") to identify deepfake
characteristics in a given dataset. These questions are evaluated by the MLLM, producing a feature
score list that ranks features by their relevance to deepfake detection. In the SFS stage, the top-K
features are selected to generate real and fake prompts, such as providing reasoning for why an
image might be deepfake or real. These prompts are paired with the deepfake dataset to construct a
fine-tuning dataset, where the MLLM answers questions like "Is this image real or fake?" to generate
labeled data. The WFS stage further refines this dataset by incorporating an External Dedicated
Detector (SFD), which assigns confidence scores (e.g., SFD score = 0.901 for fake samples) to filter
out unreliable samples, ensuring the dataset’s quality for fine-tuning. Finally, in the MI stage, the
fine-tuned MLLM, now strengthened as X 2-DFD, performs inference on new samples, producing
accurate deepfake detection results (e.g., "This image is fake" with detailed reasoning about blending
artifacts and omitted features). This multi-stage pipeline ensures that the constructed dataset is both
comprehensive and reliable, enabling the X 2-DFD model to achieve robust performance across
various deepfake detection scenarios.

Training and Testing Image Datasets We trained our model using the FF++ dataset [58]. For
preprocessing and cropping, we adopted the methods from DeepfakeBench [79]. We utilized 8 frames
per video for training and 32 frames per video for testing.
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Figure 4: Overview of the data construction pipeline for the X 2-DFD framework. The pipeline
consists of four stages: (1) Multi-Feature Analysis (MFA) for generating yes-or-no questions to
identify deepfake characteristics, resulting in a feature list; (2) Strong Feature Selection (SFS) for
creating real and fake prompts based on top-K features, followed by dataset construction using
MLLM-generated answers; (3) Weak Feature Selection (WFS) for fine-tuning the dataset with SFD
scores, filtering samples based on reliability; and (4) Model Inference (MI) for final evaluation.

B.2 Implementation Details

The data splits and propossing follow the DeepfakeBench [79],the with a learning rate of 2× 10−5 in
two layer mlp projector and 2× 10−4 in others which is borrow from the official implementation of
LLava [43], a rank of 16, and an alpha value set conventionally to twice the rank at 32. We training
for three epochs, for each epoch on NVIDIA 4090 (Driver Version: 535.247.01; CUDA Version:
12.2), AMD 32-Corecost for 4 hours by training on FF++ [58], each video we take 8 frames for
training. AUC is calculated by directly obtaining the token probabilities. Previous AUC calculations
for large models mostly relied on averaging methods, such as in [28], but this approach is not very
accurate because: (1) multiple samplings are needed to approximate the true probability distribution,
and (2) large models inherently perform inference with a default temperature, which itself involves
sampling over probabilities. Averaging over multiple samples effectively results in a second layer of
sampling, making the evaluation less accurate. Therefore, in this paper, we calculate AUC by directly
obtaining token probabilities.
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C Additional Experimental Results

C.1 Results of Robustness Against Unseen Perturbations

To evaluate the robustness of our model to random perturbations, we follow the methodology outlined
in previous studies [24, 90], which examines four types of degradation: Gaussian blur, block-wise
distortion, contrast changes, and JPEG compression. Each perturbation is applied at five different
levels to assess the model’s performance under varying degrees of distortion.

To highlight the advantages of our approach over conventional detectors like FWA [34], SBI [61],
and X-ray [32], we conducted multiple evaluations. As illustrated in Figure 5, which shows the
video-level AUC results for these unseen perturbations using a model trained on FF++ c23, our
method consistently demonstrates superior robustness compared to other RGB-based methods.
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Figure 5: Robustness evaluation. We adopt four types of degradation for examining the robustness
of our model: Gaussian blur, block-wise distortion, contrast changes, and JPEG compression. Our
model shows superior robustness over other compared models.

C.2 Results of Training and In-domain Testing on FF++

In our manuscript, we mainly focus on the cross-domain evaluation to assess the generalization
performance of different models. Here, we conduct the in-domain evaluation on the FF++ dataset
and compare our approach with the other four SOTA methods: FWA, Face X-ray, SRM, and CDFA.
Following DeepfakeBench [79], we train all models on FF++ (c23) and test them on FF++ (c23), FF++
(c40), FF-DF, FF-F2F, FF-FS, and FF-NT. As shown in Table 9, the in-domain results demonstrate
that our framework achieves the best performance, outperforming all other methods.

Table 9: In-domain results in the FF++ dataset (AUC)

Detector FF++c23 FF++c40 FF-DF FF-F2F FF-FS FF-NT AVG

FWA [34] 87.7 73.6 92.1 90.0 88.4 81.2 85.5
Face X-ray [32] 95.9 79.3 97.9 98.7 98.7 92.9 93.9
SRM [48] 95.8 81.1 97.3 97.0 97.4 93.0 93.6
CDFA [41] 90.2 69.0 99.9 86.9 93.3 80.7 90.2

Ours 96.6 82.6 99.9 97.2 98.1 91.0 94.2

C.3 Results of Cross-manipulation Evaluation on DF40

Evaluating our model’s performance on cross-manipulation tasks helps assess whether it can handle
previously unseen fake types. We use the recently released DF40 dataset [76] for evaluation. Our
method generally outperforms other models on average, particularly the e4s, Inswap, and SimSwap
methods (see Table 10). This shows that our method effectively learns more generalizable features
for detection, even against the latest techniques.

C.4 Results of Experiments on Different LLMs/MLLMs

We conducted experiments using various models, including GPT4o [1], Claude3.5-Sonnet [3], and
LLaVa [44], to evaluate the adaptability and robustness of our framework.
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Table 10: Cross-manipulation evaluations within the FF++ domain (frame-level AUC only). We
leverage the DF40 dataset [76] and select six representative face-swapping methods generated within
the FF++ domain, keeping the data domain unchanged. The top two results are highlighted, with the
best result in bold and the second-best underlined.

Method Venues uniface e4s facedancer fsgan inswap simswap Avg.
RECCE [5] CVPR 2022 84.2 65.2 78.3 88.4 79.5 73.0 78.1

SBI [61] CVPR 2022 64.4 69.0 66.7 87.9 63.3 56.8 68.0
CORE [50] CVPRW 2022 81.7 63.4 71.7 91.1 79.4 69.3 76.1

IID [26] CVPR 2023 79.5 71.0 79.0 86.4 74.4 64.0 75.7
UCF [78] ICCV 2023 78.7 69.2 80.0 88.1 76.8 64.9 77.5

LSDA [74] CVPR 2024 85.4 68.4 75.9 83.2 81.0 72.7 77.8
CDFA [41] ECCV 2024 76.5 67.4 75.4 84.8 72.0 76.1 75.9
ProDet [10] NIPS 2024 84.5 71.0 73.6 86.5 78.8 77.8 78.7

Ours – 85.5 90.3 82.6 91.1 81.2 85.1 85.9

Different LLMs to Generate Questions in MFA. In the MFA stage, we employed different LLMs,
such as GPT4o and Claude 3.5-Sonnet, to generate forgery-related questions and test the adaptability
of our framework. The results, shown in GPT4o + LLaVa-7B and Claude 3.5-Sonnet + LLaVa-7B,
demonstrate consistent performance regardless of the LLM used. Questions from Claude 3.5-Sonnet
were also effective (see Table 21 and 22).

Table 11: Experiments on different LLMs/MLLMs were conducted to evaluate their performance
under various conditions. The evaluation metric used for these experiments is the Area Under the
Curve (AUC)

Variant CDF DFDCP DFDC DFD Uniface e4s Facedancer FSGAN Inswap Simswap Avg

Human Writing + LLaVa-7B [43] 89.1 89.7 83.5 92.5 83.3 86.1 82.5 89.1 78.7 87.0 86.2
GPT4o[1] + LLaVa-7B [43] 90.3 89.7 83.5 92.5 85.2 91.2 83.8 89.9 78.5 84.9 87.0
GPT4o[1] + Qwen2VL-7B [68] 89.8 90.3 82.9 93.3 84.9 91.2 81.6 90.1 79.9 84.0 86.8
Claude3.5-Sonnet[3] + LLaVa-7B [43] 90.1 88.5 83.5 93.0 84.9 90.6 83.8 90.0 80.0 85.6 87.0
GPT4o[1] + LLaVa-13B [43] 91.3 90.3 83.4 92.5 86.0 92.5 84.5 91.0 80.6 85.4 87.8

Different MLLMs for Fine-tuning in SFS and WFS. In the SFS and WFS stages, we investigate the
impact of using different sizes of MLLMs with the same architecture during fine-tuning. For instance,
we compare GPT4o + LLaVa-7B and GPT4o + LLaVa-13B. The results indicate that as the size of the
model increases, the performance of the framework in Table 11 improves proportionally, benefiting
from the enhanced capabilities of the larger MLLMs. Additionally, we tested Qwen2VL-7B, which
yielded performance comparable to LLaVa-7B.

Comparison of Human-generated and Model-generated questions.

We also compared the effectiveness of human-written questions with those generated by advanced
LLMs, such as GPT4o and Claude 3.5-Sonnet, in the MFA stage. The results on Table 11, exemplified
by Human Writing + LLaVa-7B (Avg AUC 86.2) versus GPT4o + LLaVa-7B (Avg AUC 87.0) and
Claude 3.5-Sonnet + LLaVa-7B (Avg AUC 87.0), reveal that human-generated questions perform
comparably to model-generated ones. Notably, questions produced by LLMs often exhibit greater
competitiveness, leveraging their ability to generate diverse and nuanced forgery-related prompts,
which further enhances the framework’s adaptability and performance.

Summary of Findings. These experiments collectively highlight the robustness of our framework. It
is not dependent on specific LLMs or MLLMs, making it adaptable to a wide range of models. Fur-
thermore, as the performance and size of the underlying models improve, our framework effectively
leverages these advancements to achieve enhanced results.

C.5 Results of Experiments on GenAI Images

In addition to face swap forgery, we further explored the effectiveness of our framework on GenAI
Image. Please refer to the supplementary material for more details and examples.
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D Human Study and GPT4 Evaluation

D.1 Human Study Details

The human study was designed to evaluate the explainability of our deepfake detection model by
involving human evaluators in assessing three key dimensions: detection ability, reasonableness of
explanations, and level of detail. Below are the key details of the experimental setup:

Participant Recruitment. We recruited 15 well-educated participants and provided them with a
detailed guideline to ensure a clear understanding of the experimental task. Participants were aged
between 20 and 40.

Task Description. Participants were presented with a set of 100 samples, each consisting of a
deepfake image, the model’s detection output (X 2-DFD), and an associated explanation generated
by a Multimodal Large Language Model (MLLM). They were tasked with scoring the model’s
performance across three dimensions on a scale from 0 to 5:

• Detection Ability: How accurately does the model identify the deepfake? (0 = completely incorrect,
5 = perfectly accurate)

• Reasonableness of Explanations: How logical and understandable is the explanation? (0 =
completely unreasonable, 5 = highly reasonable)

• Level of Detail: How detailed and specific is the explanation? (0 = no detail, 5 = very detailed)

Study Procedure. The study was conducted using a custom-built GUI. Participants completed
an initial 10-minute training session to familiarize themselves with the task and scoring criteria.
Each participant evaluated random 50 samples, ensuring diverse coverage of the dataset. The study
took approximately 20 minutes per participant, and participants volunteered their time without
compensation.

Dataset. All samples were sourced from the testing datasets of DD-VQA. Each sample included
both the raw image and the model-generated explanation, with a focus on unannotated regions.

Evaluation Metrics. Scores for each dimension were averaged across all participants. Additionally,
participants provided a final overall score for each sample on a scale from 0 to 5, categorized as
follows: 0 (very poor), 1 (poor), 2 (fair), 3 (good), 4 (very good), and 5 (excellent).

GUI of Human Study. he human study was conducted using a custom-designed Graphical User
Interface (GUI) to facilitate efficient and user-friendly evaluation. The GUI was developed using
Python with the flask library and hosted on a server. Below are the details of the GUI design: The
GUI consisted of three main panels (see Figures 6 to 9 for screenshots):

• Image Panel: Displayed the deepfake image on the left side of the screen, with zoom and pan
functionality for detailed inspection.

• Explanation Panel: Presented the model’s detection output (X 2-DFD) and other tested MLLLM’s
explanations on the right side.

• Scoring Panel: Provided sliders for each answer allowing participants to select a score from 0 to 5.

User Interaction. Participants could navigate between samples using “Next” and “Previous”
buttons. A progress bar indicated the number of samples completed. The GUI automatically saved
scores to a database after each submission.

D.2 GPT-4 Evaluation Details

In addition to the human study, we conducted evaluations using GPT-4o to comprehensively assess
the unannotated explainability of our deepfake detection model. This subsection provides the
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Figure 6: Human evaluation

Figure 7: Human evaluation

implementation details of the automated evaluation process using GPT-4o, including the code
structure, prompt formatting, and result processing.

The evaluation process was implemented in Python, leveraging the OpenAI API to interact with
GPT-4o. The script performs the following key steps:

Data Loading. The script loads a JSON file containing metadata for the evaluation samples,
including image IDs, ground truth labels (e.g., “real” or “fake”), and model-generated descriptions.
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Figure 8: Human evaluation

Figure 9: Human evaluation

Prompt Formatting. For each sample, the script formats an evaluation prompt that includes the
ground truth label and the model’s description (the blue guideline as shown in Figure 6). The prompt
instructs GPT-4o to evaluate the model’s response across three dimensions—detection accuracy,
reasonableness of explanations, and level of detail—and to provide scores on a 0–5 scale (0 = Very
Poor, 5 = Excellent). Additionally, a final overall score is requested.

Image Encoding. The script encodes each image into Base64 format to enable GPT-4o to process
both the textual prompt and the visual content. Images are sourced from the directory

Result Processing and Storage. The script processes all 100 samples, storing the results in a list.
Each result entry includes the image ID, image path, ground truth, prompt, and GPT-4o’s response.
The final output JSON file provides a comprehensive record of GPT-4o’s evaluations, which are later
aggregated and compared with human scores.
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Figure 10: Answer from different model

Figure 11: Answer from different model
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Figure 12: Answer from different model

Figure 13: Answer from different model
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Figure 14: Human study material part1

Figure 15: Human study material part2

Figure 16: Human study material part3
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E Additional Analysis of Model Feature Assessment

E.1 Evaluation Setup of MFA

Model. We choose the mainstream MLLM, i.e., LLaVA [44] as the implementation instance of
the pre-trained MLLMs. Additionally, we choose one classical detector, Xception [12], as a baseline
model for comparison.
Dataset. We evaluate the models on several widely-used deepfake datasets, including the Deepfake
Detection Challenge (DFDC) [16], the preview version of DFDC (DFDCP) [15], DeepfakeDetection
(DFD) [13], Celeb-DF-v2 (CDF-v2) [37], DF40 dataset [76], which incorporates state-of-the-art
forgery techniques such as Facedancer [57], Fsgan [51], Inswap [59], e4s [33], Simswap [7], and
Uniface [91]. providing a comprehensive foundation for evaluating overall detection performance.

Evaluation Metrics. We use the Area Under the Curve (AUC) as the primary evaluation metric,
enabling us to assess the model’s ability to distinguish between real and fake images across the
whole dataset. In this section, we use the frame-level AUC for evaluation. For individual feature
discrimination, we focus on forgery-related features such as “Is the face layout unnatural?” with
responses of either “yes” or “no.” The proportions of “yes” and “no” answers for real and fake images
are calculated as follows, with the ranking score S(q) defined based on the balanced accuracy of the
responses:

S(q) =
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Here, Y (q)
real and Y

(q)
fake denote the number of “yes" answers, while N (q)

real and N
(q)
fake represent the number

of “no" answers for real and fake, respectively. This formulation ensures that both true positive and
true negative rates are considered, providing a balanced measure of feature discrimination.

E.2 Evaluation of the Overall Detection Performance

The comparison between LLaVA [44] and Xception [12] highlights a notable performance gap.
Results in Figure 17 (left) indicate that the average AUC for LLaVA is 63.7%, while Xception
achieves 75.8%, showing a notable gap of 12.1% points. This suggests that, while the LLaVA has
certain zero-shot capabilities in other tasks such as (general) image classification, it is still not as
strong as the traditional detector in detecting deepfakes.

However, LLaVA shows strong detection abilities in specific methods (eg., e4s), sometimes even
surpassing Xception (see Figure 17 (left)). This motivates us to further investigate its intrinsic
detection capabilities, and understand the model’s “strengths and weaknesses" in deepfake detection.
Below, we provide a detailed investigation of the discrimination of each forgery-related feature.
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Figure 17: (Left) AUC comparison between (zero-shot) LLaVA (blue) and Xception (red) for
deepfake detection across different datasets; (Right) Balance accuracy score for individual feature
discrimination, with Strong features in the top-left corner and Weak features in the bottom-right
corner based on discrimination scores. Full questions/features are provided in the Table.

E.3 Deeply Investigation of Individual Feature’s Discrimination

Step 1: Question Generation. For each candidate forgery-related feature, we formulate a corre-
sponding interrogative statement. For instance, the feature “blurry" is transformed into the question
“Is the image blurry?". Recognizing that the candidate features are not pre-specified by developers,
we employ a Large Language Model (LLM), i.e., GPT-4o, to automatically generate a comprehensive
list of Fi questions. These questions target key forgery indicators, including but not limited to lighting
anomalies, unnatural facial expressions, and mismatched textures, which are critical for identifying
deepfakes.
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Step 2: Question Evaluation. Each generated question is paired with an image from the assessment
dataset to form a prompt for constructing the fine-tuning dataset. The model responds with a binary
output (“yes" or “no") based on its interpretation of the image in relation to the question. These
responses are aggregated into a confusion matrix for each question, thereby quantifying the detection
capability of the associated forgery-related features. Mathematically, for each question Fi and image
xj , the MLLM produces:

Ri,j = Mbase(Fi, xj), (4)
where Ri,j ∈ {yes, no}, representing the model’s response for each image-question pair.

Step 3: Question Ranking. According to the accuracy of all candidate questions, we obtain a
descending ranking of questions, i.e., the ranking of forgery-related features. This ranking allows
us to quantify how well each feature contributes to distinguishing between real and fake images.
Specifically, the accuracy of each question is computed by evaluating the proportion of correct
responses across the dataset. Specifically, for each question Qk

i , We calculate the true positive rate
(TPR) and true negative rate (TNR), then take their average to obtain the Balanced Accuracy, as
follows:

Balanced Accuracyi =
1

2

(
TPi

TPi + FNi
+

TNi

TNi + FPi

)
, (5)

where: TPi denotes True Positives for question Fi, TNi the True Negatives for question Fi, FPi the
False Positives for question Fi, and FNi the False Negatives for question Fi.

Subsequently, questions are ranked in descending order based on their balance accuracy scores,
thereby prioritizing forgery features that effectively discriminate between real and fake images.

Strong Features. Strong features typically involve semantic-level facial structural or appearance
anomalies. As shown in the strong feature section of Fig. 17 (right), which primarily includes facial
irregularities such as unusual facial layouts (eg., Rank 9, 11, 17) or distorted facial features (eg.,
Rank 3, 4, 14), eg., the nose, eyes, or mouth. Since the pre-trained MLLM is good at extracting and
utilizing these features for detection, it can provide a more reliable and accurate explanation.

Weak Features. Weak features typically involve fine-grained, low-level textures, such as blending
anomalies. As shown in Fig. 17 (right), these weak features are primarily subtle details related to
texture, reflection, shadow, and blending. Examples of texture issues include rough or overly smooth
surfaces (eg., Rank 68, 77, 83). Furthermore, inconsistencies in lighting and shadows (eg., Rank 85,
86, 90, 96) and blending artifacts on the face (eg., Rank 54, 84, 88) are also prominent. Since these
signal-level anomalies are challenging for pre-trained MLLMs to detect, the pre-trained MLLM is
likely to struggle in reliably distinguishing between real and manipulated content when relying on
these weak features for detection and explanation.

Feature Score. The scores for different forgery-related features are presented, where Table 19
highlights the top 50 strong features, and Table 20 shows the 50 weakest features based on their
scores.

Does the model know these features are related to deepfake?

We used a series of questions to query the model, applying simple prompt augmentation with the
feature-related questions mentioned above. A “yes" indicates the model knows these features are
related to deepfake detection, while a "no" indicates the model does not. Detailed results are shown
in Table 17 and Table 18.

F Additional analysis of Strong Feature Strengthening

Following the Model Feature Assessment (MFA) module, we observed significant performance
improvements in forgery detection after applying the Strong Feature Strengthening (SFS) module,
The generalization performance is improved by 20% AUC (see Table 14) on average compared to the
pretrain model.

we conducted a detailed analysis by re-evaluating the model using the Model Feature Assessment
(MFA) module to compare the discriminative capability of forgery-related features before and after
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applying the SFS module. As illustrated in Figure 18, over 60% of the features exhibited enhanced
discriminative power post-SFS, with particularly notable improvements in strong features.

Figure 18: Comparison of feature capability before and after SFS. After adding the external detector
to supplement the MLLM, the model’s feature capabilities (almost all) can be further improved.

G Additional Analysis of Weak Feature Supplementing

In addition to the used blending model [41], we also try other instances to implement the SFDs in the
WFS module of our framework, each targeting specific types of artifacts, where SRI focusing on the
generative artifacts by deep nets, F3-Net focusing on the frequency-level anomalies, and SBI and
CFDA focusing on the blending boundaries. Based on these empirical attempts, We summarize the
general criteria under which conditions the selected SFD instance can be used in our framework.
Specifically, the integrated SFD instance should meet the following criteria:

• Criteria-1: Each SFD instance should focus on only one type of feature that is positively correlated
with fake;

• Criteria-2: The score given by the SFD instance can accurately reflect the characteristics of the
corresponding feature;

• Criteria-3: The data distribution of this feature in the dataset is relatively uniform.

Below, we show a detailed illustration of using other SFD instances for implementation one by one.

AIGC Expert Integration. We first consider implementing an AIGC expert to learn the deep genera-
tive artifacts. For implementation, we introduce the SRI model, based on self-reconstruction images
generated by Simswap [7] and train on the Xception model, designed to capture self-reconstruction
generative features. However, from Figure 19, integrating this model into our framework results
in only a minor performance improvement of 0.3%. Further analysis reveals a negative correlation
between the model’s features and fake labels in the training set (do NOT meet the Criteria-1),
indicating that these artifacts are poorly represented in the training data. Consequently, the model
struggles to leverage the expert-provided features effectively, offering limited benefits over not using
the expert model.
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Figure 19: The probability distributions of different expert models on the FF++ training dataset.
From left to right, the models are SRI, F3-Net, SBI, and CFDA, corresponding to experts in capturing
self-reconstruction, frequency anomalies, and self-blending artifacts, respectively. The blending here
directly uses the trained weights.

Frequency Expert Integration. We then integrate a frequency-based model F3-Net and train it on
the FF++ dataset [58] to capture frequency anomalies. However, from Figure 19, the overall model’s
performance is identical to that of the expert, with no improvement. Although the expert features are
positively correlated with fake labels, the frequency-based scores are overfitted to the training set and
do not accurately reflect the true feature quantity, with only near-1 (1 for fake) and near-0 (0 for real)
predictions (Not satisfy the Criteria-2) This leads to a shortcut, where the model relies solely on the
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expert’s output without learning from the feature information, thus limiting the extendability of the
integrated model.

Table 12: Comparison of methods across datasets with values rounded to two decimal places, where
the evaluation metric is AUC, The “Diff” column shows the difference from the mllms average.

.
Variant CDF DFDCP DFDC DFD Uniface e4s Facedancer FSGAN Inswap Simswap Avg Diff

MLLM 83.3 82.0 79.2 91.4 84.5 94.1 79.9 88.0 77.2 83.3 84.3 0.0
SRI 42.9 49.3 52.9 50.9 97.3 65.7 71.3 80.1 80.5 99.9 69.1 -15.2
SRI+MLLM 83.2 82.5 77.6 88.8 85.6 95.8 81.9 88.5 77.9 84.6 84.6 +0.3
F3Net 77.0 77.2 72.8 82.3 87.5 71.6 75.4 89.2 83.9 77.2 79.4 -4.9
F3Net+MLLM 76.8 77.8 73.1 83.3 88.4 75.5 76.6 89.8 84.6 78.4 80.4 -3.9
SBI 82.1 82.3 70.5 85.5 83.4 76.8 68.5 83.2 77.4 87.7 79.7 -4.6
SBI+MLLM 88.6 85.5 75.6 90.8 88.7 93.7 77.6 88.2 81.6 91.1 86.2 +1.9
CDFA 87.9 86.6 83.5 90.9 76.5 67.4 75.4 84.8 72.0 76.1 80.1 -4.2
CFDA+MLLM 90.3 89.7 83.5 92.5 85.2 91.2 83.8 89.9 78.5 84.9 87.0 +2.7

SBI and CFDA Models Integration. We also integrate another blending-based expert model, SBI
[61], which specializes in detecting blending artifacts. From Figure 19, we can see that trained using
self-blending techniques on real images to prevent overfitting, the SBI model’s expert features show
a strong correlation with fake labels, and its scoring effectively quantifies the extent of blending
artifacts. Similarly, the incorporation of the CFDA model [41], an enhanced version of the SBI model,
results in an additional performance boost, indicating that as the expert model’s ability to capture
blending features improved, the overall model’s generalization capability also increases.

To explain criteria-3, we conducted additional experiments using non-uniform data distribution.
Specifically, we created an extremely imbalanced dataset by removing a large portion of fake samples
that do not contain the blending feature. As the imbalance increased, the model’s performance
degraded, and in extreme cases, it began to rely on shortcut solutions. In the remove 95 and remove
99.5 cases, we removed 95% and 99.5% of samples close to the real distribution, respectively,
resulting in highly imbalanced datasets with mostly fake samples remaining.

Table 13: Performance Comparison of Different Models on Various Datasets. The remove 95 and
remove 99.5 scenarios represent extreme cases of data imbalance by removing 95% and 99.5% of
the samples near the real distribution, respectively.

Varient Celeb-DF-v2 DFDCP E4S Facedancer Fsgan Inswap Simswap Average

remove 99.5 75.6 79.0 63.6 67.2 80.2 63.0 65.4 70.6
remove 95 79.3 81.4 68.9 69.7 82.1 65.7 70.3 73.9
CDFA+MLLM 90.3 89.6 91.2 83.8 89.9 78.5 84.9 86.9

H Additional Analysis of Ablation Study

Effects of Strong Feature Strengthening Module. We observed a substantial performance boost
in the model after fine-tuning it with a dataset constructed using strong features, as evidenced by the
leap from Variant-1 to Variant-5. Remarkably, this significant improvement occurred even without
the aid of specific feature detectors (WFS), underscoring the potency of strong feature utilization.
This finding prompted us to investigate the underlying causes. We reexamined the feature capabilities
of the pre-trained model (Variant-1) and compared them to those of the model enhanced with strong
features (Variant-5). As illustrated in Figure 18, the majority of feature capabilities exhibited marked
enhancement following the application of strong feature strengthening. Intriguingly, even some
initially weaker features demonstrated noticeable improvement post-enhancement.

Effect of Model Feature Assessment Module. Without Model Feature Assessment (MFA), identi-
fying the model’s strong features becomes impossible, and relying on weaker features undermines
both the reliability of the model’s explanations and its overall performance. To explore this, we
allowed the model to construct the dataset using the entire list of forgery-related features rather
than prioritizing strong ones. In Variant-3, which adopts this approach without enforcing strong
feature use, performance lags significantly behind Variant-5, where MFA pinpoints and leverages
strong features for fine-tuning, as evidenced in Table 14. To further investigate the absence of
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Table 14: Ablation study regarding the effectiveness of each proposed module via cross-dataset
evaluations. All models are trained on the FF++ c23 dataset and evaluated with metrics in the order
of AUC ∥ AP ∥ EER (frame-level). The results show an incremental benefit in each module. We use
✓ to indicate the presence of a module and ✗ to indicate its absence.

Ours CDF DFD DFDC Simswap Uniface Avg.

# MFA SFS WFS AUC | AP | EER AUC | AP | EER AUC | AP | EER AUC | AP | EER AUC | AP | EER AUC | AP | EER

1 ✗ ✗ ✗ 52.1 | 68.2 | 48.7 69.8 | 95.2 | 36.4 57.8 | 59.9 | 44.6 64.0 | 64.1 | 40.4 65.5 | 65.6 | 39.0 61.8 | 70.6 | 41.8
2 ✓ ✗ ✗ 52.3 | 67.4 | 49.4 75.0 | 96.0 | 31.5 63.3 | 66.0 | 39.9 59.3 | 59.6 | 43.7 57.8 | 58.5 | 44.1 61.5 | 69.5 | 41.8
3 ✗ ✓ ✗ 79.0 | 88.3 | 28.9 88.9 | 98.7 | 18.0 77.8 | 81.9 | 28.9 82.0 | 84.0 | 25.9 82.3 | 84.8 | 25.2 82.0 | 87.3 | 25.6
4 ✗ ✗ ✓ 87.9 | 93.6 | 20.5 90.9 | 98.9 | 17.6 83.5 | 86.1 | 24.8 76.0 | 74.2 | 29.8 76.5 | 75.1 | 29.8 83.0 | 85.6 | 24.5
5 ✓ ✓ ✗ 83.2 | 90.5 | 24.6 91.4 | 99.0 | 15.8 79.2 | 82.1 | 27.6 83.3 | 85.0 | 24.8 84.5 | 86.2 | 22.4 84.9 | 88.5 | 23.0
6 ✗ ✓ ✓ 88.1 | 93.6 | 20.4 91.1 | 98.6 | 16.8 82.0 | 84.5 | 26.1 78.0 | 76.5 | 28.8 78.7 | 77.1 | 28.6 83.6 | 86.1 | 24.1
7 ✓ ✗ ✓ 87.3 | 93.2 | 21.0 90.2 | 98.7 | 18.0 82.0 | 82.1 | 26.6 76.7 | 75.0 | 29.5 77.2 | 75.8 | 29.0 82.6 | 84.9 | 24.8
8 ✓ ✓ ✓ 90.4 | 94.9 | 17.7 92.3 | 99.1 | 15.5 83.7 | 86.1 | 24.8 85.1 | 85.7 | 23.2 85.5 | 86.4 | 22.4 87.4 | 90.4 | 20.7

MFA, we introduced Variant-6, which integrates specific feature detectors (WFS) without MFA,
and compared it to Variant-8, the full model with MFA, SFS, and WFS. The results clearly show
Variant-6 underperforming Variant-8, highlighting a notable disadvantage when model assessment is
omitted. These experiments Variant-3 versus Variant-5 and Variant-6 versus Variant-8 collectively
demonstrate that assessing and utilizing strong features via MFA is critical for optimizing model
effectiveness in deepfake detection. Strikingly, despite the pre-trained Variant-1’s limited detection
ability, Variant-2 reveals the model’s feature capability by using a single MFA-identified strong
feature (e.g., distortion—present for fake, absent for real) for direct judgment without training. This
underscores the model’s strong feature-identification capability and the potential of tapping these
features, which combinations in Variants 5 and 8 further amplify.
We evaluate the generalization performance of our model in cross-dataset evaluation scenarios through
an ablation study involving several variants to systematically assess the contributions of different
components. The variants include: Variant-1, a pre-trained MLLM LlaVa-1.5-7B[44] as baseline,
without any feature strengthening or supplementation; Variant-2, which utilizes the single strongest
feature identified by Model Feature Assessment (MFA) for deepfake detection; Variant-3, Assumes
all features are strong and uses them to construct the dataset without prior evaluation or ranking,
followed by fine-tuning the model; Variant-4, a simple test of the specific feature detectors ability,
for this model can only output a single probability, as proposed in [41]; Variant-5, only use strong
features to construct datasets after feature assessment, and use this dataset to fine-tune; Variant-6,
Uses all strong features without feature assessment, integrating the specific feature detectors (SFD)
to construct datasets, followed by fine-tuning the model.; and Variant-7, Constructs datasets solely
using the specific feature detectors (SFD), masking visual information to prevent strong feature
leakage, followed by fine-tuning the model. Variant-8, Full model, integrating MFA, SFS, and
WFS. The results, presented in Table 14, demonstrate incremental improvements across various
datasets. For instance, Variant-8 achieves the highest average AUC (87.4%), AP (90.3%), and lowest
EER (20.7%), highlighting the synergy of MFA, SFS, and WFS in optimizing deepfake detection
performance.

Feature Capability. We also conduct a comparative study of feature capabilities before and after
feature strengthening.

Effect of inconsistent use of supplementary features in training and inference. The model
performs best when supplementary features are used consistently during both training and inference
(average auc: 87.8), indicating that these features significantly enhance performance. When supple-
mentary features are omitted entirely from both stages, the performance drops (average auc: 0.83.3),
though it remains better than when features are used inconsistently. Specifically, when features are
used during training but not inference, the performance suffers greatly (average auc: 76.6), suggesting
the model relies on these features and struggles without them at inference time. On the other hand,
when features are introduced at inference but not used during training, the model achieves slightly
better results (average auc: 82.5), but it cannot fully leverage unseen features, showing the importance
of using supplementary features consistently across both phases.

Extension in new datasets. Our model, trained on a mixture of datasets including FF++, showed
improved overall performance when we added a new dataset without blending artifacts to the training
process. This demonstrates that incorporating diverse datasets with supplementary features, even
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Table 15: Impact of omitting supplementary features during Training and Adding Them During
Inference, on Model Performance

Variant Celeb-DF-v2 DFD DFDC DFDCP DFR WDF FFIW Avg.

no train + no infer 83.2 91.4 79.2 82.0 93.7 76.8 76.6 83.3
train + no infer 76.5 84.7 71.0 72.0 89.5 71.3 71.3 76.6
no train + infer 81.7 90.6 79.1 81.3 92.6 74.7 77.3 82.5
train + infer 90.4 92.3 83.7 87.3 97.6 81.4 81.7 87.8

from different domains, as shown in Table 16 enhances the model’s generalization and comprehensive
performance.

Table 16: Comparison of Model Performance When Trained on FF++ Alone vs. FF++ and SRI
Across Different Datasets

Variant CDF DFDCP DFDC DFD Uniface e4s Facedancer Fsgan Inswap Simswap

Train FF++ 90.4 87.3 83.7 92.3 85.5 91.2 83.8 91.1 81.2 85.1
Train FF++ and SRI 91.5 89.3 83.9 92.7 87.4 93.0 84.6 89.9 81.0 86.1

I Sample Showing

Here we present some failure cases of pre-trained MLLMs and then compare them with our results.
See the supplementary material for more examples and details.

USER: I want you to work as an image forensic expert for Deepfake faces. Check if the image has the
artifact attribute listed in the following list and ONLY return the attribute number in this image. The artifact
list is [1-asymmetric eye iris; 2-irregular glasses shape or reflection; 3-irregular teeth shape or texture; 4-
irregular ears or earrings; 5-strange hair texture; 6-inconsistent skin texture; 7-inconsistent lighting and
shading; 8-strange background; 9-weird hands; 10-unnatural edges].

GPT: Attribute number: Based on the provided list of artifacts, I reviewed the image and found that it
displays the following attribute:5-strange hair texture. The texture of the hair appears somewhat artificial, a
common characteristic of AI-generated images.

USER: This image is real, tell me the reason.

GPT: The image you provided appears to be a real person, possibly from a television interview or public
appearance. The reason it seems real is due to the natural lighting, human facial expressions, and other small details
such as skin texture and natural positioning, which are characteristics of an authentic photograph of a person in a
live setting. However, based on this image alone, I cannot confirm its exact source or context.

Label: real

Detection

Explanation

USER: Is this image is real or deepfake, tell me the reason.

GPT: The image you provided appears to be a real person, possibly from a television interview or public
appearance. The reason it seems real is due to the natural lighting, human facial expressions, and other small details
such as skin texture and natural positioning, which are characteristics of an authentic photograph of a person in a
live setting. However, based on this image alone, I cannot confirm its exact source or context.

Detection&
Explanation

Figure 20: Diagram showing how the GPT4o generates results for detection, explanation, and
detection with explanation.

For LLaVa, we use the same prompts as GPT-4 to ensure fairness in the evaluation process. The
robustness of Llava in these tasks is illustrated in Figure 21.
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Table 17: Relationship between various facial features and deepfake detection (Part 1)

No. Question Pretrain
1 Is the face color related to deepfake detection? No
2 Are the eyes related to deepfake detection? No
3 Are the facial features related to deepfake detection? No
4 Is the nose contour related to deepfake detection? No
5 Is face blurriness related to deepfake detection? No
6 Is the skin tone related to deepfake detection? No
7 Are the cheeks related to deepfake detection? No
8 Is the skin tone pattern related to deepfake detection? No
9 Is the placement of facial features related to deepfake detection? No

10 Are the lips related to deepfake detection? Yes
11 Is facial symmetry related to deepfake detection? No
12 Is the lighting on the cheeks related to deepfake detection? Yes
13 Is the facial lighting related to deepfake detection? No
14 Are the shapes of facial features related to deepfake detection? No
15 Is facial evenness related to deepfake detection? Yes
16 Are the cheekbones related to deepfake detection? No
17 Is the face layout related to deepfake detection? No
18 Are the lip edges related to deepfake detection? No
19 Is facial detail related to deepfake detection? Yes
20 Is cheek smoothness related to deepfake detection? No
21 Is the forehead shape related to deepfake detection? No
22 Is face-background blending related to deepfake detection? Yes
23 Is skin texture related to deepfake detection? No
24 Are the eyelashes related to deepfake detection? No
25 Are facial lines related to deepfake detection? No
26 Is facial expression related to deepfake detection? No
27 Is the nose shape related to deepfake detection? No
28 Are color changes on the face related to deepfake detection? No
29 Is the mouth shape related to deepfake detection? No
30 Are the face edges related to deepfake detection? No
31 Is facial rigidity related to deepfake detection? No
32 Are sharp facial lines related to deepfake detection? No
33 Is skin perfection related to deepfake detection? No
34 Is forehead shininess related to deepfake detection? Yes
35 Are sharp face edges related to deepfake detection? Yes
36 Is skin smoothness related to deepfake detection? No
37 Are eye details related to deepfake detection? No
38 Are smooth facial lines related to deepfake detection? No
39 Is lip texture related to deepfake detection? Yes
40 Is forehead shine evenness related to deepfake detection? No
41 Are the eyebrows related to deepfake detection? No
42 Are unusual eye appearances related to deepfake detection? No
43 Are facial transitions related to deepfake detection? Yes
44 Is face color related to deepfake detection? No
45 Is facial emotion exaggeration related to deepfake detection? No
46 Is unusual face layout related to deepfake detection? No
47 Are eye reflections related to deepfake detection? No
48 Is skin texture roughness related to deepfake detection? No
49 Is the jawline related to deepfake detection? No
50 Is facial expression stiffness related to deepfake detection? Yes

33



Table 18: Relationship between various facial features and deepfake detection (Part 2)

No. Question Pretrain
51 Is nose texture related to deepfake detection? No
52 Is skin shininess under the nose related to deepfake detection? No
53 Is uneven facial sharpness related to deepfake detection? Yes
54 Is facial blending related to deepfake detection? No
55 Is facial lighting evenness related to deepfake detection? No
56 Is nose bridge smoothness related to deepfake detection? No
57 Is the hairline related to deepfake detection? No
58 Is skin texture evenness related to deepfake detection? No
59 Is facial feature balance related to deepfake detection? No
60 Is facial symmetry related to deepfake detection? No
61 Is forced facial expression related to deepfake detection? No
62 Are the nostrils related to deepfake detection? No
63 Are unnatural lip appearances related to deepfake detection? No
64 Is partial skin smoothness related to deepfake detection? No
65 Is lip texture related to deepfake detection? No
66 Is lighting around the nose related to deepfake detection? Yes
67 Are facial feature proportions related to deepfake detection? Yes
68 Is skin smoothness around the nose related to deepfake detection? No
69 Are soft facial creases related to deepfake detection? No
70 Are teeth appearances related to deepfake detection? No
71 Is neck-face transition related to deepfake detection? No
72 Is skin tone variation related to deepfake detection? No
73 Is face edge sharpness related to deepfake detection? No
74 Is chin outline visibility related to deepfake detection? No
75 Is facial lighting evenness related to deepfake detection? Yes
76 Are ear details related to deepfake detection? No
77 Is chin smoothness related to deepfake detection? No
78 Are bright facial areas related to deepfake detection? No
79 Is skin brightness near the mouth related to deepfake detection? No
80 Are nostril appearances related to deepfake detection? No
81 Are dimples related to deepfake detection? Yes
82 Is jawline prominence related to deepfake detection? No
83 Is under-eye texture related to deepfake detection? No
84 Is facial blending related to deepfake detection? Yes
85 Is chin shadow related to deepfake detection? No
86 Are forehead shadows related to deepfake detection? No
87 Is nose light reflection related to deepfake detection? No
88 Is face-background transition related to deepfake detection? No
89 Is forehead light reflection related to deepfake detection? No
90 Are nose shadows related to deepfake detection? No
91 Is lighting around the mouth related to deepfake detection? No
92 Is neck smoothness related to deepfake detection? No
93 Are face outlines related to deepfake detection? No
94 Are face edges related to deepfake detection? No
95 Are skin details related to deepfake detection? No
96 Are under-eye shadows related to deepfake detection? No
97 Are cheek shadows related to deepfake detection? No
98 Are cheekbone appearances related to deepfake detection? No
99 Is facial lighting related to deepfake detection? No

100 Are facial wrinkle details related to deepfake detection? No
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Table 19: Top Strong 50 Features

Rank Question Pretrain Strengthened
1 Is the face color unusual? 0.6340 0.7486
2 Is there something wrong with the eyes? 0.6309 0.6320
3 Do the facial features look oddly shaped? 0.6292 0.6636
4 Is the contour of the nose incorrect? 0.6278 0.5817
5 Is part of the face blurry? 0.6231 0.7643
6 Does the skin tone make the face look fake? 0.6165 0.6479
7 Is there something wrong with the cheek? 0.6144 0.8082
8 Are there strange patterns in the skin tone? 0.6144 0.8075
9 Are the face parts out of place? 0.6130 0.7919
10 Do the lips seem out of place or strangely shaped? 0.6127 0.7408
11 Is one side of the face uneven with the other? 0.6123 0.7622
12 Are there strange lighting spots on the cheeks? 0.6111 0.8029
13 Does the lighting change strangely on the face? 0.6092 0.8006
14 Are the shapes of the eyes, nose, or mouth unnatural? 0.6054 0.6714
15 Does the face look uneven or off? 0.6048 0.6732
16 Does the cheekbone appear too flat? 0.6014 0.7406
17 Does the face layout look wrong? 0.5986 0.5422
18 Are the edges of the lips too smooth? 0.5979 0.6264
19 Is part of the face lacking detail? 0.5942 0.6843
20 Are the cheeks too smooth? 0.5934 0.6728
21 Does the forehead look odd in shape? 0.5911 0.7493
22 Does the face mix poorly with the background? 0.5902 0.6382
23 Is the skin texture uneven? 0.5861 0.7158
24 Are the eyelashes missing or blurred? 0.5857 0.6733
25 Are the face lines uneven or changing in different areas? 0.5826 0.6546
26 Does the face lack expression? 0.5822 0.6679
27 Does the nose shape look odd? 0.5812 0.5306
28 Are the color changes on the face and skin sudden? 0.5807 0.6643
29 Does the mouth appear too flat? 0.5775 0.6542
30 Are the edges of the face too sharp? 0.5774 0.8188
31 Does the face appear too rigid? 0.5770 0.7446
32 Are the face lines too sharp? 0.5761 0.7724
33 Does the skin look too perfect, like it was edited? 0.5755 0.5749
34 Is the forehead too shiny? 0.5737 0.8168
35 Are the face edges too sharp? 0.5720 0.8162
36 Does the face skin look too smooth? 0.5640 0.5306
37 Are the eyes blurry or lacking detail? 0.5636 0.5362
38 Are the face lines too smooth? 0.5549 0.5927
39 Are the lips too smooth or lacking texture? 0.5537 0.5475
40 Is the forehead’s shine uneven? 0.5515 0.7208
41 Are the eyebrows too dark or too light? 0.5454 0.5075
42 Do the eyes look odd? 0.5433 0.5389
43 Are transitions on the face poorly blended? 0.5410 0.5854
44 Do the face colors look strange? 0.5382 0.6163
45 Does the face show emotions that seem exaggerated? 0.5355 0.6337
46 Does the face layout look unusual? 0.5344 0.5377
47 Do the eyes have unnatural reflections? 0.5323 0.6417
48 Does the face have rough or uneven skin texture? 0.5292 0.7973
49 Does the jawline appear too sharp or unclear? 0.5292 0.5017
50 Does the facial expression look stiff? 0.5289 0.5346
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Table 20: Bottom 50 Weak Features

Rank Question Pretrained Strengthened
51 Does the nose lack texture? 0.5231 0.5111
52 Is the skin too shiny under the nose? 0.5223 0.7458
53 Is the sharpness of the face uneven in parts? 0.5214 0.5701
54 Does the blending on the face look unnatural or uneven? 0.5212 0.5151
55 Is the lighting on the face strange or uneven? 0.5200 0.5968
56 Does the nose bridge appear too smooth? 0.5172 0.5395
57 Does the hairline seem unnatural? 0.5148 0.5495
58 Does the face skin texture look uneven? 0.5144 0.5489
59 Do the face parts look out of balance? 0.5137 0.5887
60 Are the facial features too symmetrical? 0.5130 0.7300
61 Does the facial expression look forced? 0.5116 0.5562
62 Are the nostrils hard to see? 0.5115 0.6535
63 Do the lips look unnatural? 0.5110 0.5555
64 Does the face skin look too smooth in some areas? 0.5089 0.5287
65 Do the lips lack natural texture? 0.5083 0.5855
66 Is the lighting around the nose inconsistent? 0.5080 0.7257
67 Do the sizes of the eyes, nose, and mouth seem off? 0.5038 0.5275
68 Does the skin around the nose look unnaturally smooth? 0.5030 0.5309
69 Are the facial creases too soft? 0.5028 0.7943
70 Do the teeth appear blurry or unrealistic? 0.5028 0.5210
71 Is the transition between the neck and the face not smooth? 0.5026 0.5330
72 Is the skin tone different in parts of the face? 0.5023 0.5749
73 Does the face lack sharpness around the edges? 0.5021 0.5311
74 Is the chin outline hard to see? 0.5021 0.6160
75 Is the lighting uneven on the face? 0.5012 0.6351
76 Are the details around the ears unclear? 0.5010 0.6751
77 Is the chin too smooth compared to the rest of the face? 0.5010 0.5664
78 Do the bright areas on the face seem odd? 0.5007 0.5196
79 Is the skin near the mouth unnaturally bright? 0.5007 0.5930
80 Are the nostrils blurry or unclear? 0.5007 0.5125
81 Are the dimples missing or poorly defined? 0.5005 0.5000
82 Is the jawline too pronounced or too faint? 0.5000 0.5003
83 Is the area under the eyes missing natural texture? 0.5000 0.5111
84 Is there blending on the face that looks edited? 0.5000 0.5014
85 Does the shadow under the chin seem unnatural? 0.5000 0.5090
86 Is the forehead missing natural shadows? 0.5000 0.5000
87 Does the light reflection on the nose look strange? 0.5000 0.5049
88 Are the transitions between the face and the background poorly blended? 0.5000 0.5447
89 Does the light reflection on the forehead look artificial? 0.5000 0.5007
90 Are there missing shadows around the nose? 0.5000 0.5217
91 Does the lighting around the mouth look unusual? 0.5000 0.5301
92 Does the neck look unnaturally smooth compared to the face? 0.5000 0.6259
93 Do the face outlines look off? 0.5000 0.5247
94 Do the edges around the face look unnatural? 0.5000 0.5299
95 Are the fine details on the skin missing? 0.5000 0.5165
96 Are the shadows under the eyes missing? 0.5000 0.5000
97 Are the cheeks lacking shadows? 0.5000 0.5000
98 Do the cheekbones appear unnaturally smooth? 0.5000 0.5709
99 Does the face appear overly lit in certain areas? 0.5000 0.6758
100 Are the wrinkles on the face lacking detail? 0.5000 0.5014
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Table 21: Questions list generated by Claude3.5-Sonnet (part1)

No. Question
1 Are there noticeable inconsistencies in facial symmetry? Return me yes or no
2 Does the skin texture appear artificially smooth or lacking natural details? Return me yes or no
3 Are the eyes misaligned or disproportionate? Return me yes or no
4 Is there unnatural blending between facial features and background? Return me yes or no
5 Do shadows and lighting appear inconsistent across the face? Return me yes or no
6 Are facial expressions unnatural or mechanically rigid? Return me yes or no
7 Does the hairline show signs of artificial blending? Return me yes or no
8 Are there visible artifacts or glitches in the image? Return me yes or no
9 Do reflections in the eyes match the environment? Return me yes or no

10 Is there proper alignment of facial features? Return me yes or no
11 Does the skin show natural imperfections and pores? Return me yes or no
12 Are teeth shapes and alignment realistic? Return me yes or no
13 Is there consistent image quality across all facial areas? Return me yes or no
14 Do facial proportions follow natural human anatomy? Return me yes or no
15 Are shadows cast appropriately based on lighting? Return me yes or no
16 Does facial hair follow natural growth patterns? Return me yes or no
17 Is there proper depth and dimension to facial features? Return me yes or no
18 Are color tones consistent throughout the face? Return me yes or no
19 Do glasses and accessories appear properly attached? Return me yes or no
20 Is there natural variation in skin texture? Return me yes or no
21 Are facial contours anatomically correct? Return me yes or no
22 Does the head size match body proportions? Return me yes or no
23 Is there appropriate detail in fine features? Return me yes or no
24 Are transitions between features naturally blended? Return me yes or no
25 Do facial movements appear fluid and natural? Return me yes or no
26 Are ear shapes and positions symmetrical? Return me yes or no
27 Do eyebrows have natural hair patterns? Return me yes or no
28 Is there consistent resolution between face and background? Return me yes or no
29 Are nose contours anatomically accurate? Return me yes or no
30 Does makeup application appear natural? Return me yes or no
31 Are facial wrinkles and lines age-appropriate? Return me yes or no
32 Do eyelashes appear realistic and properly attached? Return me yes or no
33 Is there natural skin coloration variation? Return me yes or no
34 Are facial highlights consistent with lighting? Return me yes or no
35 Do lips have natural texture and color? Return me yes or no
36 Is there proper depth in eye sockets? Return me yes or no
37 Are facial moles and marks naturally placed? Return me yes or no
38 Do teeth have individual characteristics? Return me yes or no
39 Is there natural asymmetry in facial features? Return me yes or no
40 Are skin pores visible where expected? Return me yes or no
41 Do facial muscles move naturally? Return me yes or no
42 Is there consistent focus across the image? Return me yes or no
43 Are shadows under facial features natural? Return me yes or no
44 Do earrings and jewelry sit naturally? Return me yes or no
45 Is there proper skin subsurface scattering? Return me yes or no
46 Are facial proportions consistent in different angles? Return me yes or no
47 Do eye corners have natural creases? Return me yes or no
48 Is there natural variation in lip texture? Return me yes or no
49 Are facial hair shadows realistic? Return me yes or no
50 Do glasses cast appropriate shadows? Return me yes or no
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Table 22: Questions list generated by Claude3.5-Sonnet (part2)

No. Question
51 Is there natural skin translucency? Return me yes or no
52 Are facial expressions emotionally consistent? Return me yes or no
53 Do neck muscles align naturally? Return me yes or no
54 Is there proper depth in smile lines? Return me yes or no
55 Are eye reflections consistent with scene lighting? Return me yes or no
56 Do facial features maintain proportion when moving? Return me yes or no
57 Is there natural skin aging present? Return me yes or no
58 Are hair strands individually visible? Return me yes or no
59 Do facial veins appear natural where visible? Return me yes or no
60 Is there consistent skin tone across transitions? Return me yes or no
61 Are nostril shapes symmetrical? Return me yes or no
62 Do ears have natural internal structure? Return me yes or no
63 Is there proper depth in nasolabial folds? Return me yes or no
64 Are eye bags and circles age-appropriate? Return me yes or no
65 Do facial piercings sit naturally? Return me yes or no
66 Is there natural variation in beard density? Return me yes or no
67 Are lip lines naturally defined? Return me yes or no
68 Do cheekbones have natural contours? Return me yes or no
69 Is there proper temple definition? Return me yes or no
70 Are eye whites naturally textured? Return me yes or no
71 Do facial scars appear authentic? Return me yes or no
72 Is there natural jaw definition? Return me yes or no
73 Are facial dimples naturally placed? Return me yes or no
74 Do eyebrow hairs have direction variation? Return me yes or no
75 Is there proper chin definition? Return me yes or no
76 Are facial freckles naturally distributed? Return me yes or no
77 Do eyelids have natural creases? Return me yes or no
78 Is there consistent skin shininess? Return me yes or no
79 Are facial tattoos properly embedded? Return me yes or no
80 Do smile lines appear natural? Return me yes or no
81 Is there proper forehead texture? Return me yes or no
82 Are eye corners naturally aged? Return me yes or no
83 Do facial muscles show proper definition? Return me yes or no
84 Is there natural lip symmetry? Return me yes or no
85 Are ear lobes naturally shaped? Return me yes or no
86 Do facial shadows have color variation? Return me yes or no
87 Is there proper nose bridge definition? Return me yes or no
88 Are facial pores consistently sized? Return me yes or no
89 Do eyebrows have natural thickness variation? Return me yes or no
90 Is there natural skin elasticity? Return me yes or no
91 Are facial creases movement-appropriate? Return me yes or no
92 Do teeth have natural translucency? Return me yes or no
93 Is there proper cheek coloring? Return me yes or no
94 Are eye bags naturally shadowed? Return me yes or no
95 Do facial features maintain proper scale? Return me yes or no
96 Is there natural skin undertone? Return me yes or no
97 Are facial expressions muscle-consistent? Return me yes or no
98 Do wrinkles have proper depth? Return me yes or no
99 Is there natural facial bone structure? Return me yes or no
100 Are skin textures consistently detailed? Return me yes or no

38



USER: I want you to work as an image forensic expert for Deepfake faces. Check if the image has the
artifact attribute listed in the following list and ONLY return the attribute number in this image. The artifact
list is [1-asymmetric eye iris; 2-irregular glasses shape or reflection; 3-irregular teeth shape or texture; 4-
irregular ears or earrings; 5-strange hair texture; 6-inconsistent skin texture; 7-inconsistent lighting and
shading; 8-strange background; 9-weird hands; 10-unnatural edges].

LLaVa: 1

USER: This image is real, tell me the reason.

LLaVa: The reason for the image being real is related to the subject matter depicted in the image, which is a man
with a beard and mustache. The man appears to be the famous actor, John Wayne, known for his distinctive facial
appearance in movies. The image is a close-up, and John Wayne's facial features are clearly visible and
recognizable. It's not a photo-shopped or digitally altered image. The context of the image is John Wayne talking to
someone, which is also consistent with his well-known roles.

Label: real

Detection

Explanation

USER: Is this image is real or deepfake, tell me the reason.

LLaVa: The image is real, as it is an authentic photo of John Wayne, a famous actor known for his distinctive beard
and mustache. The close-up view of John Wayne's face in the image allows for clear recognition of his facial
features, making it a genuine representation of him.

Detection&
Explanation

Figure 21: Diagram showing how the LLaVa generates results for detection, explanation, and
detection with explanation.

USER:Is this image real or fake?

OURS: This image is real. The image appears to be real, as the man's facial features, such as his nose, eyes, and
mouth, are well-defined and not distorted. The skin tone appears natural, and there are no signs of blurriness or
unusual lighting. The man's facial expressions and overall appearance seem genuine, making it likely that the image
is a true representation of the man. And this image does not contain any blending artifacts.

USER: This image is real, tell me the reason.

OURS: The image of the man's face appears to be real, as it displays a well-defined facial structure with clear skin,
prominent eyes, and a nose that is neither overly smooth nor has flat cheekbones. The man's facial features are well-
defined, and there is no noticeable blurriness or distortion in the image. The overall appearance of the man's face
suggests that it is a genuine representation of the individual. And this image does not contain any blending artifacts.

Label: real

Detection

Explanation

USER: Is this image real or fake?

OURS: This image is real. The image appears to be real, as the man's facial features, such as his nose, eyes, and
mouth, are well-defined and not distorted. The skin tone appears natural, and there are no signs of blurriness or
unusual lighting. The man's facial expressions and overall appearance seem genuine, making it likely that the image
is a true representation of the man. And this image does not contain any blending artifacts.

Detection&
Explanation

Figure 22: Diagram showing how the ours model generates results for detection, explanation, and
detection with explanation.
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Figure 23: Bad sample of Pre-trained model (part1)

Figure 24: Bad sample of Pre-trained model (part2)

Figure 25: Bad sample of Pre-trained model (part3)
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Figure 26: Comparison between Pre-traind LLaVa and ours

Q:What is the feature of fake in this image?

A: In this image, the photoshop feature being used is the "face swap" technique. This technique involve 
replacing one person's face with another person's face, creating a blend of the two individuals. In this case, a 
man's face has been swapped with another man's face, resulting in a unique and unconventional appearance. 
And you can notice the blur in image. The image is a collage of two different people, one with a beard and 
the other without. creating a mix of their facial features.

Q1: Is this image photoshopped? 
Return yes or no.

A1: Yes.

Q2: Is the "face swap" used in the 
image? Return yes or no.

Q3: Does the image show blend of 
two face? Return yes or no.

A2: Yes, face swap is used. A3: Yes, image shows a blend of two 
faces.

Q4: Was man's face unconventional 
appearance? Return yes or no.

A4: Yes.

Q5: Is there any blur in the image? 
Return yes or no.

Q6: Does the image mix facial 
features? Return yes or no.

A5: Yes, the image is blurry. A6: Yes.

Q1 : Is this image photoshopped? 
Return yes or no.

A1: No.

Q2: Is the "face swap" technique used 
in this image? Return yes or no.

Q3: Does the image show blend of 
two face? Return yes or no.

A2: No, face swap is not used. A3: No.

Q4: Was man's face unconventional 
appearance? Return yes or no.

A4: No.

Q5: Is there any blur in the image? 
Return yes or no.

Q6: Does the image mix facial 
features? Return yes or no.

A5: Yes, the image is blurry. A6: No.

Fake

Fake

Real

Figure 27: Feature related questions
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