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Abstract

Following the introduction of Adam, several novel
adaptive optimizers for deep learning have been
proposed. These optimizers typically excel in
some tasks but may not outperform Adam uni-
formly across all tasks. In this work, we intro-
duce Meta-Adaptive Optimizers (MADA), a uni-
fied optimizer framework that can generalize sev-
eral known optimizers and dynamically learn the
most suitable one during training. The key idea in
MADA is to parameterize the space of optimizers
and dynamically search through it using hyper-
gradient descent during training. We empirically
compare MADA to other popular optimizers on
vision and language tasks, and find that MADA
consistently outperforms Adam and other popular
optimizers, and is robust against sub-optimally
tuned hyper-parameters. MADA achieves a greater
validation performance improvement over Adam
compared to other popular optimizers during GPT-
2 training and fine-tuning. We also propose AV-
Grad, a modification of AMSGrad that replaces
the maximum operator with averaging, which is
more suitable for hyper-gradient optimization. Fi-
nally, we provide a convergence analysis to show
that parameterized interpolations of optimizers
can improve their error bounds (up to constants),
hinting at an advantage for meta-optimizers.
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1. Introduction
The choice of an optimization algorithm plays a critical
role in determining the downstream performance of a ma-
chine learning model. Adaptive moment optimizers are
the most preferred class of optimizers employed in most
learning tasks such as training Large Language Models
(LLMs) (Brown et al., 2020; Touvron et al., 2023) and Dif-
fusion Models (Rombach et al., 2022). In particular, Adam
(Kingma and Ba, 2015) is still the “go-to” optimizer in LLM
training, despite the emergence of many other optimizers
since then.

Recently proposed optimizers (Chen et al., 2023; Xie et al.,
2023; Liu et al., 2023; You et al., 2020; Foret et al., 2021)
report improved performance compared to Adam in specific
tasks. However, it is unclear if their strong performance
generalizes across a wide range of tasks as Adam’s does
(Schmidt et al., 2021). It is also unclear if a single optimizer
can be uniformly the best across all learning tasks and train-
ing regimes, such as different batch sizes, hyper-parameters,
and datasets.

In this work, we introduce the concept of a parameterized
optimizer, which can be viewed as a unified parameteriza-
tion of a collection of given optimizers. The parameters
of a parameterized optimizer define a convex polytope (e.g.
hypercube), whose vertices may correspond to individual
base optimizers, while the interior represents new optimiz-
ers formed by interpolating between them. To make this
concept operational, we propose the meta-adaptive opti-
mizer (MADA), which combines the parameterized optimizer
with hyper-gradient descent (Baydin et al., 2018) to learn
the optimizer coefficients. MADA dynamically adjusts the
parameterized optimizer coefficients during training, and
effectively adapts the optimizer choice to the learning task.
While MADA bears some connections to optimizer search
methods, such as (Chen et al., 2023), it does not solely
output a final optimizer state. It dynamically adapts the
optimizer to the current neighborhood of the loss landscape
on-the-fly, removing the need for an offline optimizer search
stage, or an outer hyper-parameter selection loop.

Contributions. We make the following contributions:

• We introduce the concept of a parameterized optimizer,
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which takes a collection of existing optimizers, and
unifies them into a single optimizer, combining the
individual update rules through learnable coefficients.

• We propose MADA, a meta-optimization framework
that combines parameterized optimizers with hyper-
gradient descent to learn a specific optimizer instance
during training.

• We find that not all optimizers are suitable to use in a
hyper-gradient optimization framework. Specifically,
among popular optimizers, using AMSGrad (Reddi
et al., 2018) results in poor performance within MADA
due to its use of the maximum operator. Motivated by
this, we propose a modification of it called AVGrad,
which replaces the maximum operator on the second-
order moments with time-averaging, and leads to better
performance when used as part of MADA. We also ana-
lyze its convergence properties (see Appendix B). We
show that MADA converges to AVGrad in a simple ex-
ample where it is known to perform better than Adam,
providing evidence for the effectiveness of MADA in
adapting the optimizer to the task (see Appendix C).

• To demonstrate that optimizer interpolations can im-
prove convergence bounds in an analytically tractable
scenario, we theoretically analyze the convergence
behavior for interpolations between two optimizers,
namely AVGrad and Adam. Our analysis shows that
the interpolated optimizer improves the convergence
bounds of the base optimizers up to constant factors.

• We develop a specific parameterized optimizer, which
interpolates between Adam (Kingma and Ba, 2015),
AVGrad, Yogi (Zaheer et al., 2018), Adan (Xie et al.,
2023), and Lion (Chen et al., 2023). On language tasks
we compare MADA, which is based on this parameter-
ized optimizer, against Adam, Lion, Adan, and Hyper-
Adam1, and show that MADA consistently outperforms
all baselines. We also illustrate the robustness of MADA
to initial hyper-parameters and analyze the evolution
of hyper-parameters during training. On vision tasks
we compare MADA to Adam, SGD with momentum,
and HyperAdam, and observe consistent performance
improvement.

Related work. Motivated by the high cost of training large
language models, a large number of novel optimizers have
been proposed in recent years to speed up the training, in-
crease generalization performance or train more resource-
efficient models. As mentioned before, Adam (Kingma
and Ba, 2015) is the most commonly employed optimizer,
and succeeding methods, in general, try to improve upon

1Throughout this paper we will refer to the version of Adam
that uses hyper-gradients to tune β1 and β2 parameters, as in
(Chandra et al., 2022), as HyperAdam.

it under different scenarios. (Reddi et al., 2018; Zaheer
et al., 2018) propose AMSGrad and YOGI, respectively,
to fix Adam’s potentially non-decreasing effective learning
rate. (Xie et al., 2023; Dozat, 2016) introduce Adan and
Nadam, respectively, to replace heavy-ball momentum in
Adam with Nesterov momentum. (You et al., 2017; 2020)
propose LARS and LAMB to improve the performance of
Adam in large-batch regime. (Heo et al., 2021) proposes
AdamP to avoid premature decay of scale-invariant weights.
AdaBound (Luo et al., 2019) and AdaBelief (Zhuang et al.,
2020) try to estimate a more stable second-order moment
term. (Foret et al., 2021) proposes sharpness-aware mini-
mization (SAM) and (Chen et al., 2020) proposes Padam
to increase the generalization performance of the trained
models. (Liu et al., 2020) stabilizes the training by reducing
gradient variance. The work in (Chen et al., 2023) is similar
in spirit to our work, in that it introduces a method to sym-
bolically search a space of optimizers; however unlike our
work they consider an offline search method, whereas our
method learns the optimizer during actual model training,
and uses hyper-gradients.

A separate line of work proposed learned optimizers to
delegate the optimization task to neural networks (fully con-
nected or LSTMs) (Almeida et al., 2021; Metz et al., 2022;
2020). Instead of directly using first order information as in
optimizers, these methods treat gradient information, along-
side other features such as training loss, validation loss
(Almeida et al., 2021) and so on, as inputs to a neural net-
work which outputs the update to be applied on a particular
weight. Learned optimizers require resource-intensive of-
fline training (e.g. thousands of TPU-months in (Metz et al.,
2022)) since the updates are handled through a separate
neural network that needs to be trained before deployment.
Integration of a separate neural network to the optimiza-
tion process introduces additional complexity, which MADA
avoids by requiring only a few parameters to be learned
on-the-fly.

Another related line of work is on gradient-based hyper-
parameter optimization (Almeida et al., 1999; Maclaurin
et al., 2015; Franceschi et al., 2017; Baydin et al., 2018;
Chandra et al., 2022); our work applies a similar idea in a
new setting, namely optimizer search and adaptation. Fi-
nally, we note that our work more broadly relates to a long
line of research on AutoML and meta-learning (Andrychow-
icz et al., 2016; Wichrowska et al., 2017; Hospedales et al.,
2021; Real et al., 2020).

2. Parameterized Optimizers
We focus on minimizing a loss function F : Rd → R, that
is, optimization problems of the following form

min
x∈Rd

F (x).
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Table 1 A unified framework to express adaptive moment optimizers.

Method First-Order Moment Second-Order Moment
Adam (Kingma and Ba, 2015) mt = β1mt−1 + (1− β1)gt vt = β2vt−1 + (1− β2)g

2
t

AMSGrad (Reddi et al., 2018) mt = β1mt−1 + (1− β1)gt
v̄t = β2v̄t−1 + (1− β2)g

2
t

vt = max{vt−1, v̄t}

Adan (Xie et al., 2023)
m̄t = β1m̄t−1 + (1− β1)gt

nt = β3nt−1 + (1− β3)(gt − gt−1)
mt = m̄t + β3nt

ĝt = gt + β3(gt − gt−1)
vt = β2vt−1 + (1− β2)ĝ

2
t

Yogi (Zaheer et al., 2018) mt = β1mt−1 + (1− β1)gt
ĝt = vt−1 + g2t · sign(g2t − vt−1)

vt = β2vt−1 + (1− β2)ĝt

Throughout the paper, we denote by f : Rd → R a random
function computed on a minibatch sampled from the under-
lying data distribution. Therefore, for any x ∈ Rd, we have
E [f(x)] = F (x). Moreover, we assume F is differentiable
and that E [∇f(x)] = ∇F (x) for all x ∈ Rd. We use ft to
denote the random function evaluated with input mini-batch
sampled at t.

Informally, a parameterized optimizer can be described as
the convex hull of a set of optimizers, when mapped to
a Euclidean space under a certain parameterization. This
section is devoted to explaining this notion in more detail,
before Section 3 discusses how to perform learning in this
Euclidean space.

In order to build a parameterized optimizer, we begin with
a collection of existing optimizers. For the sake of con-
creteness, we illustrate the idea through the following four
optimizers: Adam, AMSGrad, Adan and Yogi. A careful in-
spection reveals that these four optimizers can be described
in one update rule that involves three iteratively generated
sequences: model parameters, first-order moments, and
second-order moments, which will be denoted throughout
using the vectors x, m, and v, respectively. Each optimizer
only differs in the way it updates these sequences. More pre-
cisely, starting with any x0 ∈ Rd and setting v0 = m0 = 0,
the generic update rule is given by

xt = xt−1 − αt
mt√
vt + ϵ

, (1)

where αt > 0 is the learning rate and ϵ > 0 is given.
Table 1 shows how each optimizer defines its first- and
second-moment iterates within this formulation, where we
define gt := ∇ft(xt−1) and use β1, β2, β3 to denote hyper-
parameters controlling moment updates. For simplicity of
the exposition, we omit the bias-correction terms for all
optimizers.

To parameterize the design space of these four optimizers,
we introduce real coefficients restricted between 0 and 1
that interpolate terms arising from different optimizers. Par-
ticular choices of these coefficients (typically at extreme
values of 0 and 1) recover the underlying optimizers, but

they express a new optimizer for their intermediate values.

As an example, observe that the first-order moment update
rule of Adan already subsumes those of Adam, AMSGrad,
and Yogi (where {m̄t} and {nt} are new sequences intro-
duced by Adan):

m̄t = β1m̄t−1 + (1− β1)gt

nt = β3nt−1 + (1− β3)(gt − gt−1)

mt = m̄t + β3nt, (2)

where taking β3 = 0 recovers the update rules of the other
three optimizers since m̄t = mt. With respect to the second-
order moments, Adan similarly covers Adam when β3 = 0,
since we get that ĝt = gt. In order to incorporate the
second-order moments of AMSGrad and Yogi in the same
parameterization, we introduce two new coefficients c, ρ ∈
[0, 1], and unify the second-moment computation as follows:

ĝt = gt + β3(gt − gt−1)

g̃2t = cĝ2t + (1− c)(vt−1 + ĝ2t · sign(ĝ2t − vt−1))

ṽt = β2ṽt−1 + (1− β2)g̃
2
t

v
(max)
t = max{v(max)t−1 , ṽ

t
}

vt = ρṽt + (1− ρ)v
(max)
t . (3)

It is easy to check that, for instance, the second-order
moments of Adam can be recovered when β3 = 0, and
c = ρ = 1; those of AMSGrad are recovered when
β3 = ρ = 0 and c = 1; Adan can be recovered when
c = ρ = 1; and Yogi can be recovered with β3 = c = 0 and
ρ = 1.

To summarize, in this example, for the four optimizers
Adam, AMSGrad, Adan and Yogi, our parameterized op-
timizer is given by the three updating rules: (1), (2) and
(3). Following the same line of arguments one can generate
parameterized optimizers for other collections of given opti-
mizers as well. However, unless we know a priori how to
set the corresponding coefficients, the parameterized opti-
mizer is not readily usable in practice. In the next section,
we develop our meta-optimizer which uses a parameterized
optimizer and learns the coefficients in an online fashion.
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3. Meta-Adaptive Optimizers
In the previous section, we described how one can param-
eterize the design space of a given collection of optimiz-
ers. Here, we define MADA as a meta-optimization frame-
work that dynamically learns the coefficients of a param-
eterized optimizer during training. In this work, we use
hyper-gradient descent (Baydin et al., 2018; Chandra et al.,
2022) to learn these coefficients, which avoids an expensive
hyper-parameter optimization loop that involves multiple
training runs. However, we note that in principle other tech-
niques can also be combined with parameterized optimizers
to learn the coefficients.

Learning interpolation coefficients. Hyper-gradient de-
scent views the hyper-parameters as trainable parameters of
the loss function, and thus differentiates the loss with respect
to them and updates them through gradient steps. (Chandra
et al., 2022) re-purposes PyTorch autograd machinery
(Paszke et al., 2017) to automatically compute gradients
with respect to optimization hyper-parameters such as learn-
ing rate and Adam β1 and β2 parameters. Since the update
rule of a parameterized optimizer is differentiable with re-
spect to its learnable coefficients, we can also update them
using hyper-gradient descent steps.

To precisely describe our meta-optimizer MADA in detail,
we need additional notation. We will denote a parameter-
ized optimizer by Oq, where q ∈ D denotes the vector of
coefficients that defines the optimizer, and D represents
the domain of the vector q. In the case of the example
from Section 2, we have that q = (β1, β2, β3, ρ, c) and Oq

is given by (1), (2), and (3). Note that Oq also encapsu-
lates non-learnable state parameters (such as first-order and
second-order moments) and other hyper-parameters such as
the learning rate, weight decay, and stability parameter. In
the example from Section 2, the domain is the unit hyper-
cube where each element is in the range [0, 1]. We denote
by ΠD the orthogonal projection onto the set D. We provide
a pseudo code to illustrate this (see Algorithm 1).

Algorithm 1 Pseudocode for a generic MADA
Input: A parameterized optimizer Oq, where q ∈ D, a
hyper-learning rate α, number of total iterations T .
Init.: x0 and q0.

1: for t=1 to T do
2: Sample ft.
3: Update model parameters: xt = Oqt−1

(xt−1).
4: Update optimizer coefficients: qt =

ΠD [qt−1 − α∇qft(xt−1)] .
5: end for

Output: Model wights xT .

Hyper-gradient computation. Before concluding this sec-

tion, we briefly illustrate hyper-gradient computation2. In
order to compute the hyper-gradient of the loss with respect
to a particular optimizer coefficient, we treat the updated
model weights as a function of the coefficient. For instance,
considering again the example from Section 2, we will show
how to compute the gradient of the function ft with respect
to the coefficient ρ using the parameterized optimizer as
given in (3). Using the chain rule, we obtain

∂ft(xt−1)

∂ρ
=
∂ft(xt−1)

∂xt−1
· ∂xt−1

∂vt−1
· ∂vt−1

∂ρ

=
∂ft(xt−1)

∂xt−1
· αt−1mt−1

2
√
vt−1(

√
vt−1 + ϵ)2

·
(
ṽt−1 − v

(max)
t−1

)
,

(4)

where the first term ∂ft(xt−1)/∂xt−1 is readily computed
using standard back-propagation3. Note that the latter two
objects of (4) are not explicitly constructed in practice; in-
stead autograd simply continues back-propagating the
already-computed parameter gradients into optimizer co-
efficients, while handling the necessary book-keeping for
hyper-gradient computation.

4. On Convergence of Interpolated Optimizers
Since MADA uses hyper-gradients to update the optimizer, a
prerequisite for a base optimizer to work well within MADA
is that its update rules must allow efficient flow of hyper-
gradients to the parameterization coefficients. In particular,
in our experiments with MADA we have found that includ-
ing AMSGrad among the base optimizers has an adverse
effect on the end performance of the trained model. We
conjecture that this is caused by the maximum operator in
the second-moment term of AMSGrad. Specifically, note
that back-propagation of gradients through max(a, b) cor-
responds to a simple routing operation to the larger one
of a and b, where the smaller one is passed 0 gradients.
In AMSGrad, vt = max {vt−1, v̄t} which means that for
most steps the first term will be greater, causing insufficient
hyper-gradient updates on β2 parameter through v̄t path4.
To remedy this, we introduce AVGrad, which replaces the
maximum operator with time-averaging of second moments,
and results in better hyper-gradient flow and validations
loss.

2Further details on hyper-gradients can be found in (Baydin
et al., 2018; Chandra et al., 2022).

3In (4), the first term is a row vector, the second term is a
Jacobian matrix, and the third term is a column vector, and thus
the · operator refers to a matrix multiplication.

4To be accurate, considering the example parameterization (3),
ṽt term provides another path for hyper-gradients on β2. However,
in practice we observed that when AMSGrad is used, ρ parameter
tends to vanish, diminishing the effect of this path as well.
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Figure 1: Value of the right-hand side of (6) in Theo-
rem 1 for a representative case where β2 = 0.9, T =
10, 000.

Figure 2: Value of the right-hand side of (6) in Theo-
rem 1 for a representative case where β2 = 0.9, T =
1, 000.

4.1. AVGrad and its interpolation with Adam

Following the notation in Table 1, we define AVGrad as an
optimizer where the first-order moments and second-order
moments are defined by

mt = β1mt−1 + (1− β1)gt

v̄t = β2v̄t−1 + (1− β2)g
2
t

ṽt =
1

t
(v̄t + (t− 1)ṽt−1),

vt = ṽt, (5)

where ṽt is the running average of past vt’s. We provide the
convergence analysis of AVGrad in Appendix B in Theo-
rems 2 and 3

In what follows, we focus on the interpolation between
Adam and AVGrad, with the interpolation coefficient ρt.
Specifically, we replace last line in (5) with vt := ρtv̄t+(1−
ρt)ṽt where ρt interpolates between second-order moments
of Adam and AVGrad.

Soundness of AVGrad. We start with a proposition show-
ing that AVGrad is a valid alternative to AMSGrad in miti-
gating the sub-optimal convergence issue in Adam (Reddi
et al., 2018). Specifically, when ρt decays with 1/t (i.e.,
converges to AVGrad), the interpolated optimizer fixes the
non-decreasing learning rate problem in Adam, similar to
AMSGrad.
Proposition 1. The following inequality is a sufficient con-
dition for non-increasing effective learning rate:

ρt ≤
1

t(1− β2) + 1
.

In Appendix C, we use MADA to solve the convex problem
given in (Reddi et al., 2018), an example where Adam fails.
We found that MADA quickly converges to AVGrad, and
thus to the optimum, by adapting ρt → 0, even when we
initialize it from Adam (ρ0 = 1).

4.2. Convergence of the interpolated optimizer

Due to the complexity of our overall parameterization, deriv-
ing theoretical guarantees for MADA at its full scope is chal-
lenging. Therefore, in this section, we reduce the scope by
examining convergence properties of interpolations between
two optimizers, namely, AVGrad and Adam. In this setting,
we will show that the parameterized optimizer allows the
design of novel interpolated optimizers which improve the
convergence rate of either optimizer up to constant factors,
demonstrating the value of the parameterized optimizer for-
mulation. We defer the proof and other technical details to
Appendix A.

We make the following standard assumptions: F is bounded
from below, is L-smooth, and with stochastic gradients that
are bounded almost surely.

(Défossez et al., 2022) proposed a unified analysis for the
convergence analysis of Adagrad and Adam in the non-
convex setting. Since AVGrad can be seen as a version
of Adagrad, the proof technique of (Défossez et al., 2022)
can be adapted to AVGrad with some modifications. The
modification includes the introduction of ρ parameter which
interpolates between the second-order moment and the mo-
ment average, and results in an additional degree of freedom.
Subsequently, ρ can be chosen to skew the updates towards
the advantageous term under different scenarios.

Here we state the convergence result of the interpolated
optimizer without momentum, that is when β1 = 0 (see
precise statement in Appendix A). The extension to the case
with momentum can be done in the same way we extend
Theorem 2 to Theorem 3, similar to (Défossez et al., 2022).

Theorem 1 (Convergence of interpolation of AVGrad and
Adam without momentum). Under the assumptions above
and αt = α√

t
for some α > 0, and for ρt = ρ

t for a constant
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Figure 3: Validation losses of competing methods on
OpenWebText for GPT-2 (125M) model using the same
random seed.
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Figure 4: Training losses of competing methods on
OpenWebText for GPT-2 (125M) model using same
random seed, smoothed for convenience.

ρ:

GT ≤ E(T )

[
C1

T
+
C2 ln (E(T ))

T
+ C3

[
ln
( ρ
β2

)]
+

]
,

(6)

where, GT = 1
T

∑T
t=1 ∥∇F (xt)∥2, E(T ) =

√
ρ+(1−ρ)T√

1−β2
,

and C1, C2, C3 are constants independent of T, ρ, β2.

Remark. Aligned with the condition in Proposition 1, the
contribution from vt in Theorem 1 is multiplied with 1/t
in order to avoid divergent terms in the bound. Observe
that when ρ = 0 or ρ = 1 we recover the convergence
rates for AVGrad (see Theorem 2 in Appendix B) and Adam
(Défossez et al., 2022) respectively. We note that for the
right-hand side to remain bounded, one would need either
0 ≤ ρ ≤ β2 (all terms vanish as in AVGrad), or ρ = 1 (a
constant term remains as in Adam). To gain more insights, in
Figures 1 and 2, we plot the value of the bound in Theorem 1
with respect to ρ for two representative cases . The first
case with larger T represents a more favorable setting for
AVGrad as all the terms vanish with T . The second is more
favorable for Adam since the vanishing terms vanish faster
than AVGrad. In both cases, the interpolated optimizer
provides the best convergence bound when ρ = β2, which
suggests an advantage for the interpolated optimizers.

5. Experiments
In our experiments, we aim to answer how the generalization
and downstream performance of MADA compares against
fixed optimizers, and how robust MADA is to poor hyper-
parameter initializations compared to fixed optimizers. We
focus on the pre-training of models from scratch. We also
try to gain insights into the behavior of MADA by monitor-
ing the evolution of the optimizer coefficients. Additional
details of our experimental setup, and results can be found
in Appendix C.

Table 2 Validation loss of MADA on OpenWebText vs other
adaptive optimizer baselines.

Method Validation Loss
Adam 2.8956
Adan 2.8896
HyperAdam 2.8950
Lion 2.8892
AVGrad 2.8895

MADA 2.8806
MADA-FS 2.8766

Poor initialization
MADA− 2.8921
Adam− 2.9157

5.1. A concrete parameterized optimizer

We use a concrete parameterization that is similar to the
example presented in Section 2, with two changes. First, we
replace AMSGrad with AVGrad, and second, we include
Lion among the optimizers that we interpolate. Hence,
second-order moment in (3) becomes vt = ρv̄t + (1 −
ρ)ṽt as in the interpolation in Section 4. Moreover, the
update term becomes γ mt√

vt+ϵ
+ (1− γ)sign(ut) where ut

is the moment term from Lion (Chen et al., 2023). We
refer the reader to Appendix C for a complete description
of the parameterization. Lion was omitted in the example in
Section 2 for the sake of simplicity, since it integrates less
naturally with the rest of the optimizers.

5.2. Experimental setting

Data and models. In recent years, auto-regressive models
have been widely used for benchmarking and algorithm eval-
uation (Radford et al., 2019b; Liu et al., 2023). Motivated
by this, we evaluate MADA on the causal language modeling
task with GPT-2, over two datasets: Shakespeare (Karpathy,
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Figure 5: Parameter evolution for
β1,0 = 0.9, β2,0 = 0.95, β3,0 = 0.

Figure 6: Parameter evolution for
β1,0 = 0.7, β2,0 = 0.8, β3,0 = 0.

Figure 7: Parameter evolution for
β1,0 = 0.9, β2,0 = 0.95, β3,0 = 0.9.

2015), and OpenWebText (Gokaslan and Cohen, 2019). On
the Shakespeare dataset, we train a 6 layer transformer with
context size of 256 (11M parameters) and fine-tune GPT-2
(XL) with 48 layers (1.5B parameters). On OpenWebText,
we train GPT-2 (small) with 12 layers, 1024 context size
(125M parameters) and GPT-2 (medium) with 24 layers,
1024 context size (335M parameters). Our code is avail-
able at https://github.com/amazon-science/
mada_optimizer_search.5

Baselines and learned optimizers. On OpenWebText, we
compare MADA to Adam (Kingma and Ba, 2015), Hyper-
Adam (Chandra et al., 2022) (Adam with β1 and β2 param-
eters learned through hyper-gradients), Adan (Xie et al.,
2023), Lion (Chen et al., 2023), and AVGrad. For all the
methods we used decoupled weight decay (Loshchilov and
Hutter, 2019), i.e. the AdamW variant of Adam is used. We
keep the learning hyper-parameters such as learning rate
schedule and weight decay identical, except for Lion where
we choose a lower initial learning rate as suggested in (Liu
et al., 2023). For a fair comparison, for all optimizers, we
use the same codebase based on (Chandra et al., 2022). For
OpenWebText experiments, we use established parameters
for Adam (β1 = 0.9, β2 = 0.95, ϵ = 10−6) and also use
these values as the initial parameters for MADA, HyperAdam,
and AVGrad; for other methods we use the parameters sug-
gested in respective papers; and measure the validation loss.
For Shakespeare experiments, we compare MADA to Adam
and HyperAdam; the relatively small model size in this ex-
periment allows us to sweep the grid of initial β parameters
and compare the final training loss across many different
hyper-parameter choices. In some experiments, we also
evaluate the final state of MADA statically, i.e., we take the
final optimizer learned by MADA and use it as the fixed opti-
mizer from the beginning of training, which we refer to as
MADA-FS.

Tuning hyper-learning rates. While hyper-learning rates

5We use nanoGPT (https://github.com/karpathy/
nanoGPT) code base for the implementation.

are additional hyper-parameters to be tuned; the tasks are
less sensitive to hyper-learning rates compared to other
hyper-parameters such as learning rate, most likely because
each hyper-learning rate controls the update of a single
parameter. As a result, hyper-learning rates can be fine-
tuned easily and can be transferred across similar tasks. In
general, for the hyper-learning rates of β1, β2, since the
gradients are relatively large, we search in a set of smaller
values: {10−3, 5× 10−4, 10−4}. For the other parameters
we search in the set {10−1, 5× 10−2, 10−2}.

5.3. Results

In this section, we first present empirical results of training
GPT-2 models on OpenWebText, and provide a discussion
of generalization performance and robustness of MADA. We
also show how the interpolation coefficients evolve during
training. Next, we provide a visualization of the optimal
training loss given various initializations of β1, β2 values us-
ing the smaller Shakespeare dataset. We present additional
results in Appendix C including a toy problem to show that
MADA discovers optimal solutions that Adam cannot find,
and comparing MADA and Adam for GPT-2 (medium).

GPT-2 on OpenWebText. When we initialize MADA from
AVGrad and Adan with β1,0 = 0.9, β2,0 = 0.95, β3,0 =
0.9, ρ0 = 0 (where subscript 0 denotes the time index) from
Table 2 we observe that MADA consistently outperforms
Adam and other recently proposed optimizers, including
Lion, Adan, and HyperAdam. In particular, MADA-FS out-
performs Adam with established parameters by 0.019 in
validation loss which is a significant improvement for this
task. In Figure 3 and Figure 4 we see that MADA is able
to converge to a lower loss than baseline methods (both in
terms of validation and training loss). Note that MADA is
able to converge faster than AVGrad and Adam with the
same learning rate and schedule, which may be attributed to
theoretical result Theorem 1 on interpolated optimizers.

Perplexity on benchmark datasets. To measure the gen-
eralization of MADA to other datasets, we compute the vali-
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Figure 8: Final training loss of Adam, MADA, and HyperAdam vs. initial β values on Shakespeare dataset. MADA yields
better performance for wider choice of initial β values, illustrating its robustness.

dation perplexity of the trained models on three datasets as
shown in Table 3. We see that on OpenWebText MADA out-
performs Adam and HyperAdam by 0.34 and 0.33 points);
while on Wikitext (Merity et al., 2016), MADA outperforms
these two baselines by 4.45 and 2.37 respectively. On Lam-
bada (Radford et al., 2019a) it is the second-best-performing
method with a small gap behind HyperAdam (0.88).

MADA-FS versus MADA. We find that MADA-FS performs
slightly better than MADA for OpenWebText (0.004 in valida-
tion loss and 0.07, 1.85, 0.68 points on validation perplexity
on OpenWebText, Wikitext and Lambada). More details are
in Tables 2 and 3. On the other hand, on Shakespeare we
observe that, the dynamically-evolving optimizer performs
generally better than using the fixed final optimizer. We
conjecture that the difference in the number of iterations,
the model size or dataset may explain this phenomenon.

Learning interpolation coefficients is crucial. We also
see that HyperAdam performance is very close to Adam
(2.8950 vs. 2.8956), which suggests that the main perfor-
mance improvement of MADA does not simply originate
from the tuning of the β1, β2 parameters, but rather from the
adaptation of the interpolation coefficients in the optimizer
space.

Robustness to initial hyper-parameters. Additionally, we
compare MADA to Adam when we initialize from the subop-
timal hyperparameters β1,0 = 0.7, β2,0 = 0.8 (we call these
optimizers MADA− and Adam− respectively). Notably, we
observe that even suboptimally initialized MADA− is able to
outperform Adam with the established initial parameters, as
well as HyperAdam. This particular example indicates the
robustness of MADA. We provide more examples with poor
initial hyper-parameter choices on Shakespeare dataset in
the next subsections.
Evolving hyper-parameters. We monitor the evolution
of the interpolation coefficients during training of GPT-2
(125M) model on OpenWebText for various choices of ini-

Table 3 Validation perplexities of competing methods on
OpenWebText, Wikitext and Lambada datasets.

Method OpenWebText Wikitext Lambada

Adam 18.0940 63.8544 77.3314
Adan 17.9863 63.5518 74.6970
HyperAdam 18.0843 61.7717 72.6803
Lion 17.9792 61.8661 75.3158
AVGrad 17.9840 64.2620 75.1317

MADA 17.8249 61.2513 74.2480
MADA-FS 17.7544 59.4086 73.5623

Poor initialization
MADA− 18.0317 57.1613 75.3550
Adam− 18.4624 72.9017 79.1217

tialization of β1, β2 (Figures 5, 6, and 7).

First, we observe that sub-optimal initialization of hyper-
parameters (as in Figure 6) results in a more significant
update of the coefficients. This suggests that default opti-
mizer state with β1,0 = 0.9, β2,0 = 0.95 is close to a local
minimum. A closer inspection yields insight into how MADA
accelerates training. First, in Figures 5, 6 we see that β1 in-
creases at the beginning which facilitates taking larger steps,
while towards the end it decreases to give more emphasis
on individual gradients. Second, we observe that the inter-
polation factor of AVGrad, ρ, follows a three-phase pattern.
This suggests that MADA puts more importance on individ-
ual normalization term in the beginning and towards the end,
and it puts more emphasis on the less noisy averaging term
during the intermediate stages.

Another interesting behavior we observe is when we initial-
ize β3 (which governs the weight of Adan) from a higher
value such as 0.9 (Figure 7), we see β1 reaches 0.99 and
stays constant, in contrast with Figures 5, 6. Remarkably,
MADA initialized with β3 = 0.9 automatically trains β1 to be
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0.99; i.e. MADA, when initialized from combination of Adan
and AVGrad, automatically finds the β1 that is suggested
by the authors of (Xie et al., 2023). Note that β1, β2, β3 in
this work correspond to 1−β1, 1−β3, 1−β2 in (Xie et al.,
2023).

Shakespeare dataset. On Shakespeare dataset we compare
MADA to Adam and HyperAdam. We show that it results in
significant increase in the performance across many initial
β1, β2 values when training 11M parameter model. Par-
ticularly, in Figure 8, we see that MADA results in better
performance for the vast majority of initial β1 and β2 pa-
rameters, illustrating robustness.

Fine-tuning GPT-2 XL on Shakespeare dataset. We also
fine-tune the pre-trained GPT-2 XL (1.5B parameters) model
on Shakespeare, for approximately 2 epochs, using MADA,
Adam, and HyperAdam methods. Table 4 shows the re-
sulting training loss values, where MADA results in a large
improvement. Notably, HyperAdam achieves no gain over
Adam.

Table 4 Training losses after 2 epochs of fine-tuning on
Shakespeare dataset.

Method Training loss
MADA 0.255
Adam 0.276
HyperAdam 0.278

Vision tasks. We also validated the performance of MADA
on two computer vision models: 5-layer CNN and ResNet-9
on CIFAR-10 dataset. We observe that MADA shows con-
sistent improvement over our baselines (see test accuracy
results below in Table 5).
Table 5 Test accuracy of competing methods for CNN and
ResNet models.

Method 5-layer CNN ResNet-9
MADA 66.12 ± 0.14 93.79 ± 0.11
Adam 65.84± 0.11 93.73± 0.10
HyperAdam 65.80± 0.21 93.69± 0.06
Momentum SGD 65.97± 0.94 92.60± 0.10

6. Conclusion
In this paper we propose an approach to unify a set of opti-
mizers into a parameterized formulation. We further show
how to dynamically learn the most suitable optimizer for a
particular task during training using hyper-gradient descent.
We employ MADA to train language models and observe that
it consistently outperforms Adam and other fixed optimizers
both in terms of best validation performance, and in terms
of robustness to initial hyper-parameters.

Limitations. The main limitation of our framework is the

additional computational requirement and memory usage of
the parameterized optimizer due to the maintained optimizer
states. The additional computation can be broken down into
two components: additional per-parameter computational
steps during optimizer update, and the computation of hyper-
gradients. Note that the first component is negligible com-
pared to the overall FLOPs requirement of a single training
step in a language model. This is because for a model with
N parameters trained over a batch of T tokens, the model
parameter update in the parameterized optimizer involves
cN FLOPs (with c being on the range of 10-20 depend-
ing on the parameterization), while the forward-backward
passes require approximately 6TN FLOPs, with T being
on the order of thousands. To analyze the second compo-
nent, consider the hyper-gradient example in (4), where the
computation of hyper-gradient with respect to ρ involves
several vector-level element-wise operations (note that the
multiplication of the first term with second does not require
a matrix-vector multiplication, since it can be implemented
by a dot product with the numerator followed by element-
wise division with the denominator), where each vector is
of size N . As a result, the FLOPs requirement is still O(N)
(does not scale with T ), and much smaller than the 6TN
required for the forward-backward passes. The derivative
with respect to the other coefficients can similarly be shown
to have O(N) complexity.

The additional memory usage arises from the fact that we
need to maintain a larger optimizer state per parameter. To
mitigate, one can employ sharded data parallelism tech-
niques (Rajbhandari et al., 2020), which shards the opti-
mizer state across a large number of data-parallel devices.
Another approach is to analyze the contributions of the con-
stituent optimizers to the learning performance, and prune
the ones that have little contribution.

In Appendix D, we provide profiling results showing the
actual increase in iteration time and memory usage.

Future work. Theoretically, we have shown the conver-
gence of interpolation of AVGrad and Adam; as a future
work we would like to construct a generic theoretical frame-
work that can characterize the convergence of optimizer
interpolations more generally. Empirically, we aim to gain
a deeper understanding of the dynamics of the optimizer
learning process in practice.
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Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning and neural network optimiza-
tion. There are many potential societal consequences of our
work, none which we feel must be specifically highlighted
here.
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A. Setup, Details, and Proof for Theorem 1
Assumptions. (i) F is bounded below by F ∗, (ii) stochastic gradients, that is ∀x ∈ Rd, ∥∇f(x)∥∞ ≤ R a.s. , (iii) the
objective function is smooth, that is ∀x, y ∈ Rd, ∥∇F (x)−∇F (y)∥2 ≤ L∥x− y∥2.

Setup. Our setup follows (Défossez et al., 2022). Let d ∈ N be the dimensionality of the model. Given a function
h : Rd → R we define ∇ih as the i’th component of the gradient. For the stochastic loss, we assume we have access to an
oracle providing i.i.d samples (ft)t∈N. Et−1 is defined as the expectation conditioned upon observing the past stochastic
function values: f1, . . . , ft−1. Unlike (Défossez et al., 2022), for simplicity of calculations, we define ϵt = ϵ/t where ϵ is a
small constant for stability. Next we define adaptive moment updates in a generic way, and then specialize them to AVGrad.
These updates are different from those in Section 2, but they are equivalent, and facilitates easier analysis.

Adaptive updates. Similar to (Défossez et al., 2022) we define the following vectors iteratively.

mt,i = β1mt−1,i +∇ift(xt−1)

vt,i = β2vt−1,i +∇ift(xt−1)
2

Note that m̂t,i = (1− β1)mt,i and v̂t,i = (1− β2)vt,i give the updates in Adam. (Défossez et al., 2022) uses the learning
rate to absorb (1 − β) terms. In particular, if one has an update xt,i = xt−1,i − αt

mt,i√
ϵ+vt,i

; Adam is recovered with

αt = α 1−β1√
1−β2

.

AVGrad updates. Let αt = α√
t

be the learning rate. AVGrad is defined via the following iterative steps

v
(sum)
t,i = v

(sum)
t−1,i + vt,i =

t∑
j=1

vj,i and v(avg)t,i =
v
(sum)
t,i

t

xt,i = xt−1,i − αt
mt,i√

ϵt + v
(avg)
t,i

= xt−1,i − α
mt,i√

ϵ+ v
(sum)
t,i

Note that to obtain the AVGrad updates we also need to scale the learning rate with 1−β1√
1−β2

; but, for now, we assume it is
already absorbed in the α for the sake of simplicity. We also drop the bias correction for simplicity as justified in (Défossez
et al., 2022).

A.1. Proof of Theorem 1

We multiply the normalization term of the update with t from the decaying learning rate; hence, there is a multiplying factor
of t difference in definition of ψ in Theorem 1 and ψ̄ in this proof. Let us start by defining ψ̄t,i

ψ̄t,i = ρvt,i + (1− ρ)v
(sum)
t,i (7)

We also define ψ̃t,i:

ψ̃t,i = ρṽt,i + (1− ρ)ṽ
(sum)
t,i = ρ(β2vt−1,i + Et−1∇ift(xt−1)

2) + (1− ρ)(v
(sum)
t−1,i + β2vt−1,i + Et−1∇ift(xt−1)

2)

= (1− ρ)v
(sum)
t−1,i + β2vt−1,i + Et−1∇ift(xt−1)

2, (8)

where the contribution of the last gradient is replaced by its expected value conditioned on the past iteration. Let us also
define

ut,i =
∇ift(xt−1)√
ϵ+ ψt,i

.

From the smoothness of the objective function F , we can use the Descent Lemma to obtain that

F (xt) ≤ F (xt−1)− α∇F (xt−1)
⊤ut +

α2L

2
∥ut∥2.

13
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Taking the expectation of both sides conditioned on f1, . . . , ft−1, we have

Et−1F (xt) ≤ F (xt−1)− α
∑
i∈[d]

Et−1

∇iF (xt−1)
∇ift(xt−1)√
ϵ+ ψt,i

+
α2L

2
+ Et−1[∥ut∥2]. (9)

To upper bound the second term on the right hand side, we use the following lemma which generalizes Lemma 5.1 in
(Défossez et al., 2022) to be used with interpolated optimizer and replaces vt with ψt,i as the normalization term.
Lemma 1 (Updates approximately follow a descent direction).

Et−1

∇iF (xt−1)
∇ift(xt−1)√
ϵ+ ψt,i

 ≥ ∇iF (xt−1)
2

2
√
ϵ+ ψ̃t,i

− 2REt−1

[
∇ift(xt−1)

2

ϵ+ ψt,i

]
. (10)

Proof. For the sake of simplicity, we define G = ∇iF (xt−1), g = ∇ift(xt−1), ψ = ψ̄t,i, ψ̃ = ψ̃t,i. First obviously, we
have

Gg√
ϵ+ ψ

=
Gg√
ϵ+ ψ̃

+
Gg√
ϵ+ ψ

− Gg√
ϵ+ ψ̃︸ ︷︷ ︸

A

. (11)

For the first term, we use the fact that Et−1[g] = G to obtain that

Et−1

 Gg√
ϵ+ ψ̃

 =
G2√
ϵ+ ψ̃

. (12)

In order to bound A, we begin with

A = Gg
ψ̃ − ψ

√
ϵ+ ψ

√
ϵ+ ψ̃(

√
ϵ+ ψ +

√
ϵ+ ψ̃)

= Gg
Et−1g

2 − g2

√
ϵ+ ψ

√
ϵ+ ψ̃(

√
ϵ+ ψ +

√
ϵ+ ψ̃)

,

where the last equality follows from the fact that ψ̃ − ψ = Et−1[g
2]− g2 (see (8) and the definition of ψt,i). Hence, from

the triangle inequality we have that

|A| ≤ |Gg| Et−1g
2

√
ϵ+ ψ(ϵ+ ψ̃)︸ ︷︷ ︸
A1

+ |Gg| g2√
ϵ+ ψ̃(ϵ+ ψ)︸ ︷︷ ︸
A2

,

where in the inequality follows from the fact that
√
ϵ+ ψ +

√
ϵ+ ψ̃ ≥ max(

√
ϵ+ ψ,

√
ϵ+ ψ̃). A useful fact that will be

used later is the following

∀λ > 0, x, y ∈ R xy ≤ λx2

2
+
y2

2λ
. (13)

To bound A1, we use (13) with λ =

√
ϵ+ψ̃
2 , x = |G|√

ϵ+ψ̃
, y = |g| Et−1g

2

2
√
ϵ+ψ̃

√
ϵ+ψ

, which yields that

A1 ≤ G2

4

√
ϵ+ ψ̃

+
g2Et−1[g

2]2

(ϵ+ ψ̃)3/2(ϵ+ ψ)
.

Taking the expectation and noting ϵ+ ψ̃ ≥ Et−1[g
2] ensures that

Et−1[A1] ≤
G2

4

√
ϵ+ ψ̃

+
Et−1[g

2]√
ϵ+ ψ̃

Et−1

[
g2

ϵ+ ψ

]
≤ G2

4

√
ϵ+ ψ̃

+REt−1

[
g2

ϵ+ ψ

]

14
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where the last inequality uses our boundedness assumption
√

Et−1[g2] ≤ R and the fact that
√
ϵ+ ψ̃ ≥

√
Et−1[g2].

Similarly, for A2, we use (13) with λ =

√
ϵ+ψ̃

2Et−1g2
, x = |Gg|√

ϵ+ψ̃
, y = g2

ϵ+ψ , which gives us (we used similar bounding

arguments)

Et−1[A2] ≤
G2

4

√
ϵ+ ψ̃

+R
Et−1[g

2]

ϵ+ ψ
.

Combining both upper bounds we have,

Et−1[|A|] ≤
G2

2

√
ϵ+ ψ̃

+ 2R
Et−1[g

2]

ϵ+ ψ
,

which can be equivalently written as follows

Et−1[−|A|] ≥ −

 G2

2

√
ϵ+ ψ̃

+ 2R
Et−1[g

2]

ϵ+ ψ

 ,

Finally, combining further with (12) and substituting into (11) gives us,

Et−1

[
Gg√
ϵ+ ψ

]
≥ G2√

ϵ+ ψ̃
−

 G2

2

√
ϵ+ ψ̃

+ 2R
Et−1[g

2]

ϵ+ ψ

 =
G2

2

√
ϵ+ ψ̃

− 2R
Et−1[g

2]

ϵ+ ψ
,

which proves the desired result.

Using Lemma 1 in (9) yields that

Et−1[F (xt)] ≤ F (xt−1)−

(
α
√
1− β2

2R
√
ρ+ (1− ρ)t

∥∇F (xt−1)∥2 − 2αREt−1[∥ut∥2]

)
+
α2L

2
Et−1[∥ut∥2].

Summing both sides for t = 1, . . . , T , and noting
√
t ≤

√
T implies that

E[F (xT )] ≤ F (x0)−
α
√
1− β2

2R
√
ρ+ (1− ρ)T

T−1∑
t=0

∥∇F (xt)∥2 +
(
2αR+

α2L

2

) T−1∑
t=0

E[∥ut∥2].

Equivalently, we can write,

α
√
1− β2

2R
√
ρ+ (1− ρ)T

T−1∑
t=0

∥∇F (xt)∥2 ≤ F (x0)− E[F (xT )] +
(
2αR+

α2L

2

) T−1∑
t=0

E[∥ut∥2]. (14)

Now, we would like to bound the last term on the right hand side. For this, we introduce the following lemma that generalizes
Lemma 5.2 in (Défossez et al., 2022).

Lemma 2. Define bt = ρ
∑t
j=1 β

t−j
2 aj + (1− ρ)

∑t
τ=1

∑τ
j=1 β

τ−j
2 aj for t > 0 and b0 = 0, we have

T∑
t=1

at
ϵ+ bt

≤ ln

(
1 +

R2(ρ+ (1− ρ)T )

ϵ(1− β2)

)
+ T

[
ln

(
ρ

β2

)]
+

.

Proof. Let lt =
∑t
j=1 β

t−j
2 aj , rt =

∑t
τ=1

∑τ
j=1 β

τ−j
2 aj , we have bt = ρlt + (1− ρ)rt. Since bt > at ≥ 0 we have that

1− z ≤ exp−z with z = at
ϵ+bt

< 1. Hence,

at
ϵ+ bt

≤ ln(ϵ+ bt)− ln(ϵ+ bt − at)

15
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= ln(ϵ+ bt)− ln(ϵ+ ρ(lt − at) + (1− ρ)(rt − at))

= ln(ϵ+ bt)− ln
(
ϵ+ ρβ2lt−1 + (1− ρ)rt−1 + (1− ρ)(

t∑
j=1

βt−j2 aj − at)
)

= ln(ϵ+ bt)− ln
(
ϵ+ ρβ2lt−1 + (1− ρ)rt−1 + (1− ρ)β2

t−1∑
j=1

βt−1−j
2 aj︸ ︷︷ ︸
lt−1

)

= ln(ϵ+ bt)− ln (ϵ+ β2lt−1 + (1− ρ)rt−1)

= ln

(
ϵ+ bt
ϵ+ bt−1

)
+ ln

(
ϵ+ ρlt−1 + (1− ρ)rt−1

ϵ+ β2lt−1 + (1− ρ)rt−1

)
≤ ln

(
ϵ+ bt
ϵ+ bt−1

)
+ ln

(
max{1, ρ

β2
}
)

= ln

(
ϵ+ bt
ϵ+ bt−1

)
+

[
ln

(
ρ

β2

)]
+

,

where the first equality is due to definition of bt. Summing the inequality above for t = 1, 2, . . . , T , yields that (recall that
b0 = 0)

T∑
t=1

at
ϵ+ bt

≤ ln

(
1 +

bT
ϵ

)
+ T

[
ln

(
ρ

β2

)]
+

Also note that bT ≤ R2(ρ+(1−ρ)T )
1−β2

.

Using Lemma 2 in (14), dividing both sides by T , and after some algebra we have

1

T

T∑
t=1

∥∇F (xt)∥2 ≤
2R
√
ρ+ (1− ρ)T (F0 − F ∗)

αT
√
1− β2

+
2R
√
ρ+ (1− ρ)Td√
1− β2T

(2R+ αL)

(
ln

(
1 +

R2(ρ+ (1− ρ)T )

ϵ(1− β2)

)
+ T

[
ln

(
ρ

β2

)]
+

)

which concludes the proof.

B. Convergence of AVGrad
Using the notation and assumptions in Section 3, we give the following convergence results for AVGrad.

Theorem 2 (Convergence of AVGrad without momentum). Under the above assumptions and αt = α√
t

for some α > 0, we
have:

1

T

T∑
t=1

∥∇F (xt)∥2 ≤ 2R(F0 − F ∗)

α
√
T
√
1− β2

+
2Rd√

T
√
1− β2

(2R+ αL) ln

(
1 +

R2T

(1− β2)ϵ

)
.

Theorem 3 (Convergence of AVGrad with momentum). Let τT ∈ {0, . . . , T − 1} denote a random index such that
∀j ∈ N, j < T,P[τ = j] ∝ 1− βT−j

1 . Under the above assumptions and αt = α√
t

for some α > 0, we have:

E∥∇F (xτ )∥2 ≤ 2(1− β1)R
√
T

α
√
1− β2T̃

(F (x0)− F ∗) + C

√
Td

T̃
ln

(
1 +

R2T

(1− β2)ϵ

)
,

where C = αRL√
1−β2(1−β1)

+ 2β1α
2L2

(1−β2)(1−β1)3
+ 12R2

√
1−β1

and T̃ = T − β1

1−β1
.
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Remark. Comparing our Theorems 2 and 3 to Theorems 3 and 4 in (Défossez et al., 2022), we observe that AVGrad does not
have the non-vanishing, constant term that Adam has (see (Défossez et al., 2022), Theorem 2). Moreover, unlike the result
for Adam, we do not require β2 > β1. Analogous to how momentum slows down the convergence bound of algorithms (by
multiplicative factors) (Défossez et al., 2022) AVGrad slows down the convergence of Adagrad by multiplicative factors of
(1− β2).

B.1. Proof of Theorem 2

Proof of convergence of AVGrad can be obtained by replacing the interpolated second order moment term ψt, by v(sum)
t

in the previous section. In other words, setting ρ = 0 in the Proof of Theorem 1, going through the analysis will give the
desired result

1

T

T∑
t=1

∥∇F (xt)∥2 ≤ 2R(F0 − F ∗)

α
√
T
√
1− β2

+
2Rd

√
1− β2

√
T

(2R+ αL) ln

(
1 +

TR2

(1− β2)ϵ

)
.

B.2. Proof of Theorem 3

The idea in this proof is to essentially change gradient terms in the Descent Lemma with first order moments, as the
difference in consequent model weights will now depend on the moment term rather than a gradient at some time point. The
necessary changes in the lemmas closely follow the proof for Theorem 3,4 in (Défossez et al., 2022). We start by redefining
some iterative vectors.

mt,i = β1mt−1,i +∇ift(xt−1)

vt,i = β2vt−1,i +∇ift(xt−1)
2

xt,i = xt−1,i − αt
mt,i√

ϵt + v
(avg)
t,i

= xt−1,i − α
mt,i√

ϵ+ v
(sum)
t,i

Let us further define Gt = ∇F (xt−1), gt = ∇ft(xt−1), ut,i =
mt,i√
ϵ+v

(sum)
t,i

and Ut,i =
gt,i√

ϵ+v
(sum)
t,i

. And also define:

ṽ
(sum)
t,k,i = v

(sum)
t−k,i + Et−k−1[

t∑
τ=t−k+1

τ∑
j=1

βτ−j2 g2j,i]

note that for j ≤ t− k we have Et−k−1[g
2
j ] = g2j , so ṽ(sum)

t,k,i essentially replaces the contribution of last k gradients with
their expected values. From the smoothness of the objective function F , we have

F (xt) ≤ F (xt−1)− αG⊤
t ut +

α2L

2
∥ut∥22.

Taking the expectations of both sides,

E[F (xt)] ≤ E[F (xt−1)]− α
∑
i∈[d]

E[G⊤
t,iut,i] +

α2L

2
E[∥ut∥22]. (15)

To bound the second term on the right hand side, we introduce the following approximate descent lemma, whose proof is
provided at the end of section.

Lemma 3. [Updates approximately follow a descent direction]

E

Gt,i mt,i√
ϵ+ v

(sum)
t,i

 ≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk1E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

− 3R
√
1− β2√

1− β1

t−1∑
k=0

√
k + 1βk1E[∥Ut−k∥2]

17
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− α2L2

4R
√
1− β2

√
1− β1

t−1∑
l=1

∥ut−l∥2
t−1∑
k=l

βk1
√
k.

Using Lemma 3 in (15) for the second term on right hand side, yields that

E[F (xt)] ≤ E[F (xt−1)]−
α

2

∑
i∈[d]

t−1∑
k=0

βk1E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

+
3αR

√
1− β2√

1− β1

t−1∑
k=0

√
k + 1βk1E[∥Ut−k∥22]

+
α3L2

4R
√
1− β2

√
1− β1

t−1∑
l=1

∥ut−l∥22
t−1∑
k=l

βk1
√
k +

α2L

2
E[∥ut∥22]. (16)

Let us define Ωt :=
√∑t

τ=1

∑τ
j=1 β

τ−j
2 , hence, from our boundedness assumption,

√
ϵ+ ṽ

(sum)
t,k+1,i ≤

R
√∑t

τ=1

∑τ
j=1 β

τ−j
2 = RΩt, inserting in (16) implies that

E[F (xt)] ≤ E[F (xt−1)]−
α

2RΩt

(
t−1∑
k=0

βk1E
[
G2
t−k,i

])
+
α2L

2
E∥ut∥22 +

3αR
√
1− β2√

1− β1

t−1∑
k=0

√
k + 1βk1E∥Ut−k∥22

+
α3L2

4R
√
1− β2

√
1− β1

t−1∑
l=1

∥ut−l∥22
t−1∑
k=l

βk1
√
k

Summing for t = 1, . . . , T results in

α

2R

T∑
t=1

1

Ωt

t−1∑
k=0

βk1E∥G2
t−k∥22︸ ︷︷ ︸

A

≤ F (x0)− F ∗ +
α2L

2

T∑
t=1

E[∥ut∥2]︸ ︷︷ ︸
B

+
α3L2

4R
√
1− β2

√
1− β1

T∑
t=1

t−1∑
l=1

E[∥ut−l∥2]
t−1∑
k=l

βk1
√
k︸ ︷︷ ︸

C

+
3αR

√
1− β2√

1− β1

T∑
t=1

t−1∑
k=0

√
k + 1βk1E[∥Ut−k∥2]︸ ︷︷ ︸

D

. (17)

We will examine each term separately, for B, we state the following lemma (whose proof is given at the end of section) to
bound the sum of squared norm term

Lemma 4. Assume, 0 ≤ β1 < 1, 0 ≤ β2 < 1 and we have sequence of real numbers (at)t∈[T ]. Let ct =
∑t
τ=1 β

t−τ
1 at,

bt =
∑t
τ=1

∑τ
j=1 β

τ−j
2 a2t . Then,

T∑
t=1

c2t
ϵ+ bt

≤ 1

(1− β1)2
ln

(
1 +

bT
ϵ

)
.

Lemma 4 implies that

α2L

2

T∑
t=1

E[∥ut∥2] ≤
α2L

2(1− β1)2

∑
i∈[d]

ln

(
1 +

v
(sum)
T,i

ϵ

)
≤ α2L

2(1− β1)2

∑
i∈[d]

ln

(
1 +

R2T

(1− β2)ϵ

)
. (18)

Before moving on with other terms, we state some useful facts that are proven in (Défossez et al., 2022).

Fact 1. Given 0 < a < 1 and Q ∈ N we have,

Q−1∑
q=0

aqq ≤ a

(1− a)2
.

18



MADA: Meta-Adaptive Optimizers Through Hyper-Gradient Descent

Fact 2. Given 0 < a < 1 and Q ∈ N we have,

Q−1∑
q=0

aq
√
q ≤ 2

(1− a)3/2
.

Fact 3. Given 0 < a < 1 and Q ∈ N we have,

Q−1∑
q=0

aq
√
q(q + 1) ≤ 4a

(1− a)5/2
.

Now we move onto examining other terms in (17). For C, we make the following change in the index j = t− l which yields
the following steps

α3L2

4R
√
1− β2

√
1− β1

T∑
t=1

t−1∑
l=1

E[∥ut−l∥2]
t−1∑
k=l

βk1
√
k =

α3L2

4R
√
1− β2

√
1− β1

T∑
t=1

t∑
j=1

E[∥uj∥2]
t−1∑
k=t−j

βk1
√
k

=
α3L2

4R
√
1− β2

√
1− β1

T∑
j=1

E[∥uj∥2]
T∑
t=j

t−1∑
k=t−j

βk1
√
k

=
α3L2

4R
√
1− β2

√
1− β1

T∑
j=1

E[∥uj∥2]
T−1∑
k=0

βk1
√
k

j+k∑
t=j

1

=
α3L2

4R
√
1− β2

√
1− β1

T∑
j=1

E[∥uj∥2]
T−1∑
k=0

βk1
√
k(k + 1)

(a)

≤ α3L2

R
√
1− β2

T∑
j=1

E[∥uj∥2]
β1

(1− β1)2

(b)

≤ α3L2

R
√
1− β2

β1
(1− β1)4

∑
i∈[d]

ln

(
1 +

v
(sum)
T,i

ϵ

)
(19)

(c)

≤ α3L2

R
√
1− β2

β1
(1− β1)4

∑
i∈[d]

ln

(
1 +

R2T

(1− β2)ϵ

)
, (20)

where in (a) we use Fact 3, in (b) we use Lemma 4, and in (c) the definition of v(sum)
T,i . For D, we make the following change

in the index j = t− k, and obtain that

3αR
√
1− β2√

1− β1

T∑
t=1

t−1∑
k=0

√
k + 1βk1E[∥Ut−k∥2] =

3αR
√
1− β2√

1− β1

T∑
t=1

t∑
j=1

√
1 + t− jβt−j1 E[∥Uj∥2]

=
3αR

√
1− β2√

1− β1

T∑
j=1

E[∥Uj∥2]
T∑
t=j

√
1 + t− jβt−j1

(a)

≤ 3αR
√
1− β2√

1− β1

T∑
j=1

E[∥Uj∥2]
2

(1− β1)3/2

(b)

≤ 6αR
√
1− β2

(1− β1)2

∑
i∈[d]

ln

(
1 +

v
(sum)
T,i

ϵ

)
(21)

(b)

≤ 6αR
√
1− β2

(1− β1)2

∑
i∈[d]

ln

(
1 +

R2

(1− β2)ϵ

)
, (22)
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where in (a) we use Fact 2 and in (b) we use Lemma 2. For A, first note that,

Ωt =

√√√√ t∑
τ=1

τ∑
j=1

βτ−j2 ≤

√
t

(1− β2)
≤

√
T

(1− β2)
. (23)

Let us change index, j = t− k, and use (23):

α

2R

T∑
t=1

1

Ωt

t−1∑
k=0

βk1E[∥G2
t−k∥2] ≥

α
√
1− β2

2R
√
T

T∑
t=1

t∑
j=1

βt−j1 E[∥Gj∥2]

=
α
√
1− β2

2R
√
T

T∑
j=1

E[∥Gj∥2]
T∑
t=j

βt−j1

=
α
√
1− β2

2(1− β1)R
√
T

T∑
j=1

(1− βT−j+1
1 )E[∥Gj∥2]

=
α
√
1− β2

2(1− β1)R
√
T

T−1∑
j=0

(1− βT−j
1 )E[∥∇F (xj)∥2].

Note,
∑T−1
j=0 (1− βT−j

1 ) = T − β1
1−βT

1

1−β1
≥ T − β1

1−β1
= T̃ , and let τ ∈ {0, . . . , T − 1} and P[τ = j] ∝ 1− βT−j

1 , then
we have:

A ≥ α
√
1− β2

2(1− β1)R
√
T
T̃E[∥∇F (xτ )∥2]. (24)

Inserting (18), (19), (21), (24) in (17) yields that

α
√
1− β2

2(1− β1)R
√
T
T̃E[∥∇F (xτ )∥2]︸ ︷︷ ︸
A

≤ F (x0)− F ∗ +
α2L

2

1

(1− β1)2

∑
i∈[d]

ln

(
1 +

R2T

(1− β2)ϵ

)
︸ ︷︷ ︸

B

+
α3L2

R
√
1− β2

β1
(1− β1)4

∑
i∈[d]

ln

(
1 +

R2T

(1− β2)ϵ

)
︸ ︷︷ ︸

C

+
6αR

√
1− β2

(1− β1)2

∑
i∈[d]

ln

(
1 +

R2

(1− β2)ϵ

)
︸ ︷︷ ︸

D

.

and after some algebra we have,

E[∥∇F (xτ )∥2] ≤
2(1− β1)R

√
T

α
√
1− β2T̃

(F (x0)− F ∗) +
αRL

√
Td

√
1− β2(1− β1)T̃

ln

(
1 +

R2T

(1− β2)2ϵ

)
+

2β1α
2L2

√
Td

(1− β2)(1− β1)3T̃
ln

(
1 +

R2T

(1− β2)ϵ

)
+

12R2
√
Td

√
1− β1T̃

ln

(
1 +

R2T

(1− β2)ϵ

)
,

Equivalently,

E∥∇F (xτ )∥2 ≤ 2(1− β1)R
√
T

α
√
1− β2T̃

(F (x0)− F ∗) + C

√
Td

T̃
ln

(
1 +

R2T

(1− β2)ϵ

)
,

where C = αRL√
1−β2(1−β1)

+ 2β1α
2L2

(1−β2)(1−β1)3
+ 12R2

√
1−β1

which concludes the proof.
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Proof of Lemma 3. We start by separating the main term into two:

Gt,i
mt,i√

ϵ+ v
(sum)
t,i

=

t−1∑
k=0

Gt,iβ
t−k
1

gt−k,i√
ϵ+ v

(sum)
t,i

(25)

=

t−1∑
k=0

Gt−k,iβ
t−k
1

gt−k,i√
ϵ+ v

(sum)
t,i︸ ︷︷ ︸

A

+

t−1∑
k=0

(Gt,i −Gt−k,i)β
t−k
1

gt−k,i√
ϵ+ v

(sum)
t,i︸ ︷︷ ︸

B

. (26)

For B, we again utilize the fact (13) that ∀λ > 0, x, y ∈ R xy ≤ λx2

2 + y2

2λ , for each dimension with λ =
√
1−β1

2R
√
1−β2

√
k+1

, x = |Gt,i −Gt−k,i|, y =
|gt−k,i|√
ϵ+v

(sum)
t,i

. Then,

|B| ≤
∑
i∈[d]

t−1∑
k=0

βt1

( √
1− β1

4R
√
1− β2

√
k + 1

(Gt,i −Gt−k,i)
2 +

2R
√
1− β2

√
k + 1g2t−k,i

√
1− β1(ϵ+ v

(sum)
t−k,i )

)
.

Note that ϵ+ v
(sum)
t,i ≥ ϵ+ v

(sum)
t−k,i , hence,

g2t−k,i

ϵ+ v
(sum)
t,i

≤
g2t−k,i

ϵ+ v
(sum)
t−k,i

= U2
t−k,i.

Moreover, smoothness of objective function implies

∥Gt −Gt−k∥2 ≤ L2∥xt−1 − xt−k−1∥2 = L2∥
k∑
l=1

αut−l∥2 ≤ α2L2k

k∑
l=1

∥ut−l∥2

As a result,

|B| ≤
t−1∑
k=0

α2L2βk1
√
1− β1

√
k

4R
√
1− β2

k∑
l=1

∥ut−l∥2 +
t−1∑
k=0

R
√
1− β2

√
k + 1√

1− β1
βk1∥Ut−k∥2

=
α2L2

4R
√
1− β2

√
1− β1

t−1∑
l=1

∥ut−l∥2
t−1∑
k=l

βk1
√
k +

R
√
1− β2√
1− β1

t−1∑
k=0

√
k + 1βk1∥Ut−k∥2. (27)

For term A, we focus on the main term of the summation E

[
Gt−k

gt−k,i√
ϵ+v

(sum)
t,i

]
. Let G = Gt−k,i, g = gt−k,i, ṽ =

ṽ
(sum)
t,k+1,i, v = v

(sum)
t,i . Note that,

ṽ − v = v
(sum)
t−k,i + Et−k−1

[ t∑
τ=t−k

τ∑
j=1

βτ−j2 g2j

]
− v

(sum)
t,i

= Et−k−1[

t∑
τ=t−k

τ∑
j=1

βτ−j2 g2j ]−
t∑

τ=t−k

vτ

= Et−k−1[

t∑
τ=t−k

τ∑
j=1

βτ−j2 g2j︸ ︷︷ ︸
A2

1

]−
t∑

τ=t−k

τ∑
j=1

βτ−j2 g2j︸ ︷︷ ︸
A2

2

.

We continue similar to Lemma 1.

Gg√
ϵ+ v

=
G2

√
ϵ+ ṽ

+Gg
A2

1 −A2
2√

ϵ+ v
√
ϵ+ ṽ(

√
ϵ+ v +

√
ϵ+ ṽ)︸ ︷︷ ︸

C

. (28)
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We have

|C| ≤ |Gg|A2
1√

ϵ+ v(ϵ+ ṽ)︸ ︷︷ ︸
C1

+
|Gg|A2

2

(ϵ+ v)
√
ϵ+ ṽ︸ ︷︷ ︸

C2

.

We will utilize (13), for C1, let λ =

√
(1−β1)

√
ϵ+ṽ

2 , x = |G|√
ϵ+ṽ

, y =
|g|A2

1√
ϵ+ṽ

√
ϵ+v

. Then,

C1 ≤ G2

4
√
ϵ+ ṽ

+
1√

1− β1

g2A4
1

(ϵ+ ṽ)
3
2 (ϵ+ v)

. (29)

Given ϵ+ ṽ ≥ A2
1 and taking the expectation:

Et−k−1[C1] ≤
G2

4
√
ϵ+ ṽ

+
1√

1− β1

A2
1√

ϵ+ ṽ
Et−k−1

[
g2

(ϵ+ v)

]
.

Similarly, for C2, we let λ =
√
1−β1

√
ϵ+ṽ

2A2
1

, x = |GA2|√
ϵ+ṽ

, y = |A2g|
ϵ+v . Then,

C2 ≤ G2

4
√
ϵ+ ṽ

A2
2

A2
1

+
1√

1− β1

A2
1√

ϵ+ ṽ

g2A2
2

(ϵ+ v)2
.

Using ϵ+ v ≥ A2
2 and Et−k−1[

A2
2

A2
1
] = 1,

Et−k−1[C2] ≤
G2

4
√
ϵ+ ṽ

+
1√

1− β1

A2
1√

ϵ+ ṽ
Et−k−1

[
g2

(ϵ+ v)

]
.

Hence,

Et−k−1[|C|] ≤
G2

2
√
ϵ+ ṽ

+
1√

1− β1

2A2
1√

ϵ+ ṽ
Et−k−1

[
g2

(ϵ+ v)

]
.

Using A1 ≤
√
ϵ+ ṽ, thus, A1 ≤ R

√
k + 1

√
1− β2:

Et−k−1[|C|] ≤
G2

2
√
ϵ+ ṽ

+
2R

√
k + 1

√
1− β2√

1− β1
Et−k−1

[
g2

(ϵ+ v)

]
.

Taking complete expectation, using ϵ+ v
(sum)
t,i ≥ ϵ+ v

(sum)
t−k,i and reintroducing the indices:

E[|C|] ≤ 1

2
E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

+
2R

√
k + 1

√
1− β2√

1− β1
Et−k−1

[
g2t−k,i

(ϵ+ v
(sum)
t−k,i )

]
.

Equivalently,

E[−|C|] ≥ −1

2
E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

− 2R
√
k + 1

√
1− β2√

1− β1
Et−k−1

[
g2t−k,i

(ϵ+ v
(sum)
t−k,i )

]
(30)

Note,

E[|A|] ≥
∑
i∈[d]

t−1∑
k=0

βk1

E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

+ E[−|C|]


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Then, inserting (30), we have:

E[|A|] ≥
∑
i∈[d]

t−1∑
k=0

βk1

E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

−

1

2
E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

+
2R

√
k + 1

√
1− β2√

1− β1
Et−k−1

[
g2

(ϵ+ v
(sum)
t−k,i )

]
=

1

2

∑
i∈[d]

t−1∑
k=0

βk1E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

− 2R
√
1− β2√

1− β1

t−1∑
k=0

βk1
√
k + 1E[∥Ut−k∥2]. (31)

Note, in (25) we have,

Gt,i
mt,i√

ϵ+ v
(sum)
t,i

= A+B ≥ A− |B|,

taking the expectation of both sides yields

E

Gt,i mt,i√
ϵ+ v

(sum)
t,i

 = E[A] + E[B] ≥ E[A] + E[−|B|], (32)

Inserting (31) and negated (27) into (32) results in

E

Gt,i mt,i√
ϵ+ v

(sum)
t,i

 ≥ 1

2

∑
i∈[d]

t−1∑
k=0

βk1E

 G2
t−k,i√

ϵ+ ṽ
(sum)
t,k+1,i

− 3R
√
1− β2√

1− β1

t−1∑
k=0

√
k + 1βk1E∥Ut−k∥2

− α2L2

4R
√
1− β2

√
1− β1

t−1∑
l=1

∥ut−l∥2
t−1∑
k=l

βk1
√
k,

which completes the proof.

Proof of Lemma 4. For some t,

c2t
ϵ+ bt

≤ 1

1− β1

t∑
τ=1

βt−τ1

a2τ
ϵ+ bt

.

We have ϵ+ bt ≥ ϵ+ bτ for any τ ≤ t, then,

T∑
t=1

c2t
ϵ+ bt

≤ 1

1− β1

T∑
t=1

t∑
τ=1

βt−τ1

a2τ
ϵ+ bτ

=
1

1− β1

T∑
τ=1

a2τ
ϵ+ bτ

t∑
τ=1

βt−τ1

≤ 1

(1− β1)2

T∑
τ=1

a2τ
ϵ+ bτ

≤ 1

(1− β1)2
ln

(
1 +

bT
ϵ

)
,

where in the last inequality we apply Lemma 2 with ρ = 0. Note, from the definition of bT we also have that bT ≤ R2T
1−β2

.

C. Additional Experiments and Details
C.1. Overall Parameterization in the Experiments

For the first order moment term we have,

mt = β1mt−1 + (1− β1)gt

23



MADA: Meta-Adaptive Optimizers Through Hyper-Gradient Descent

nt = β3nt−1 + (1− β3)(gt − gt−1)

ut = Lion(gt,m
lion
t ),

where β1 controls the strength of heavy-ball momentum and β3 extends the equation to Nesterov momentum. The first order
moment equations essentially capture the updates for Adan and Adam. For the second order moment term we have,

ĝt = gt + β3(gt − gt−1)

g̃2t = ct−1ĝ
2
t + (1− ct−1)(v̄t−1 + ĝ2t sign(ĝ2t − v̄t−1))

v̄t = β2v̄t−1 + (1− β2)g̃
2
t

ṽt = (v̄t + (t− 1)ṽt−1)/t

vt = ρv̄t + (1− ρ)ṽt

where c controls whether the difference of consequent v̄ts grows with g2t sign(g2t − v̄t−1), as in YOGI, or g2t (g
2
t − v̄t−1) as

in Adam; the former, prevents rapid increases in effective learning rate and provides more controlled updates. For the second
order moment term, ρt determines whether to use, less noisy, average of past vts (we call this method AVGrad and defer its
formal introduction to the next section) or the current vt, which may be more noisy but up to date. Lastly, the update term
together with the decoupled weight decay is as follows,

xt−1 = xt−1 − λαtxt−1

xt = xt−1−αt
(
γ
mt + β3nt√

vt + ϵ
+ (1− γ)sign(ut)

)
,

where ϵ is the stability parameter, sign(ut) is the update term of Lion optimizer (see Table 1), γ controls whether to do a
Lion type update or not.

C.2. Training setup for the experiments

On OpenWebText, we use a global batch size of 480 sequences, cosine learning rate schedule with the peak learning rate
of 6× 10−4 (1.5× 10−4 for Lion) and the final learning rate of 1.5× 10−5 (as chosen for Sophia algorithm in (Liu et al.,
2023)). For Lion we use the tuned learning rate from (Liu, 2023) for the same setting. For Adam we found that employing
Sophia’s learning rate schedule results in better loss compared to employing Adam’s learning rate schedule in (Liu et al.,
2023). For our methods: AVGrad, MADA, MADA-FS, we directly employ Adam’s learning rate and learning schedule
without any tuning since our goal is to demonstrate that MADA can be plugged in place of Adam without any changes in
learning rate schedule.

We run the experiment for 100,000 iterations (first 2000 are warmup iterations) which corresponds to training on ∼ 492B
tokens. We use a weight decay parameter of 0.1. On Shakespeare, we use a batch size of 64, cosine learning rate schedule
with the peak learning rate of 10−3 and the final learning rate of 10−4. We run the experiment for 5,000 iterations (first 100
are warmup iterations). We run our experiments on AWS p5.48xlarge instances equipped with 8 NVIDIA H100 GPUs.
To be able utilize multiple GPU’s we allreduced hyper-gradients across GPU’s.

We initialize MADA with β3 = 0.9, ρ = 0 on top of Adam’s established β1, β2 parameters for OpenWebText experiments
as it resulted in a better validation loss. For Shakespeare experiments, we compare MADA against Adam over a grid of
(β1, β2) values, where in the case of MADA (β1, β2) represents the initial values. For the OpenWebText experiments, we do
not update hyper-parameters for the first 50 iterations for the sake of stability. For both experiments we use SGD as the
hyper-parameter optimizer. On Shakespeare, for 10M model we use 2.5e−3 learning rate and 0.5 momentum (we do not
use momentum for γ) for learning the hyper-parameters. On OpenWebText (and for 1.5B model on Shakespeare) we use a
learning rate of 5e−4 for training β1, β2 and 1e−1 for other hyper-parameters.

Vision Tasks. For 5-layer model experiments, we use a CNN whose first two layers are convolutional layers with 6 and 16
output channels and 5 kernel size; and last 3 layers are fully connected layers with 120, 84, and 10 output dimensionality.
We use ReLU activation in all layers except the last one and maxpool on the outputs convolutional layers. We use a constant
learning rate of 1e−3 for MADA, Adam, HyperAdam; and 1e−2 learning rate and 0.9 momentum coefficient for SGD with
momentum. We initialize MADA from Adam state, we set hyper learning rate for β1, β2 to 1e−4 and for the other variables
to 1e−2. We use batch size of 256 and train for 50 epochs. For ResNet-9 experiments, we use the model implementation
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from https://github.com/Moddy2024/ResNet-9. We use one cycle learning rate scheduler with 1e−2 peak
learning rate for MADA, Adam, HyperAdam and 1e−1 peak learning rate for SGD with momentum. Again we initialize
MADA from Adam, we set hyper learning rate for β1 to 1e−4, for β2 to 1e−4 and for the other variables to 1e−2. We use
batch size of 400 and train for 50 epochs.

C.3. Additional Experiments

Method OpenWebText (validation loss) OpenWebText Wikitext Lambada
MADA (ρ0 = 0) 2.8853 17.9084 61.4689 73.1291

MADA-FS (ρ0 = 0) 2.8838 17.8822 63.9886 75.6158

Table 6: Validation loss on OpenWebText and validation perplexities on OpenWebText, Wikitext and Lambada datasets of
GPT-2 (125M) models trained on OpenWebText with MADA. The initial optimzier state is AVGrad.

Method OpenWebText (validation loss) OpenWebText Wikitext Lambada
Adam 2.6527 14.1928 50.1410 53.7468
MADA 2.6422 14.0441 43.8067 53.7575

Table 7: Validation loss on OpenWebText and validation perplexities on OpenWebText, Wikitext and Lambada datasets
of GPT-2 (355M) models trained on OpenWebText with Adam and MADA. The initial state of MADA is AVGrad + Adan
(ρ = 0, β3 = 0.9).

Figure 9: Average regret, xt, ρt with respect to iterations for MADA on simple convex function.
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Synthetic convex experiment. The online learning experiment given in (Reddi et al., 2018) to motivate AMSGrad is as
follows:

gt(x) :=

{
1010x for t mod 101 = 1

−10x otherwise
(33)

with constraint set x ∈ [−1, 1] and t denotes the time index in the online learning setting. This is an example where Adam
notably fails to converge to the optimal solution, x = −1, whereas AMSGrad and AVGrad reach the optimum. In Figure 9,
we plot the average regret which is defined by (gt(x) − gt(−1))/t, as well as the evolution of x and ρ with respect to
iterations. Here, we reduce the effect of Lion by assigning a small hyper-learning rate to γ, since signSGD based methods
neutralize the effect of large gradients which allow faster progress towards the optimum. We observe that even when we
initialize MADA from Adam (ρ0 = 1), it quickly recovers AVGrad (ρt → 0), which is the right optimizer to use for this
example. This experiment shows that MADA can learn to behave like AVGrad even when initialized from Adam.

D. Profiling Results
We profile the memory footprints of the methods and find that the peak memory usage is 15.5 GB for Adam, and 24.9 GB
for MADA; time per iteration is 0.65s for Adam and 0.85s for MADA. If we exclude LION (which contributes the least in this
setting) MADA results in 22.2GB of memory usage and 0.72s time per iteration. We also investigated a large-batch setting.
Comparing Adam and MADA respectively, training GPT-2 (124M) with a batch size of 3840 (∼ 4 million tokens) requires
memory usage of 51.5GB and 61.5GB while the time per iteration is 4.72s and 5.20s, we would like to note that our method
is able to outperform Adam with the same wall-clock time as well. The main reason for the memory increase is the optimizer
states; due to the increased number of base optimizers with such a large model size. In contrast, for vision tasks, we observe
virtually no additional memory used due to the smaller size of the models and minimal overhead of storing optimizer states.
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