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SUMMARY
Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric conditions.
Rodents provide a tractable model for elucidating disease mechanisms and interventions. Here, we develop
a neural-network-based assay that adopts the commonly used open field apparatus for mouse gait and
posture analysis. We quantitate both with high precision across 62 strains of mice. We characterize four mu-
tants with known gait deficits and demonstrate that multiple autism spectrum disorder (ASD) models show
gait and posture deficits, implying this is a general feature of ASD.Mouse gait and posturemeasures are high-
ly heritable and fall into three distinct classes. We conduct a genome-wide association study to define the
genetic architecture of stride-level mouse movement in the open field. We provide a method for gait and
posture extraction from the open field and one of the largest laboratory mouse gait and posture data
resources for the research community.
INTRODUCTION

In humans, the ability to quantitate gait and posture at high pre-

cision and sensitivity allows the determination of the proper func-

tion of numerous neural and muscular systems (Nutt et al., 1993;

Sanders and Gillig, 2010). Many psychiatric, neurodegenerative,

and neuromuscular illnesses are associated with alterations in

gait and posture (Verghese et al., 2002; Allan et al., 2005; Licari

et al., 2020; Green et al., 2009; Flyckt et al., 1999; Walther and

Strik, 2012; Baldaçara et al., 2008; Hausdorff et al., 2004;

Scherder et al., 2007; McIntosh et al., 1997). This is because

proper gait, balance, and posture are under the control of multi-

ple nervous system processes (Takakusaki, 2013, 2017), which

include critical sensory centers that process visual, vestibular,

auditory, proprioceptive, and visceral inputs. Regions of the

brain that directly control movement, such as the cerebellum,

motor cortex, and brainstem, respond to cognitive and emotion-

ality cues. Thus, gait and posture integrity reflects proper func-

tioning of many neural systems in humans (Takakusaki, 2013,

2017). Mice offer genetically tractable models for mechanistic

and interventional studies. The ability to measure gait and

posture in an accurate and scalable manner enhances the utility

of existing models and may also lead to the development of

better models of diseases.

Analysis of human and animal movement, including gait, has a

storied past (Baker, 2007). Aristotle wrote a philosophical trea-

tise on animal movement and gait using physical and metaphys-

ical principles (Aristotle, 2004). During the Renaissance, Borelli

applied the laws of physics and biomechanics to muscles,

tendons, and joints of the entire body to understand gait (Borelli
C
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and Maquet, 2012). The application of imaging technologies to

the study of gait is credited to the work of Muybridge andMarey,

who took sequential photographic images of humans and ani-

mals in motion to derive quantitative measurements of gait (Lan-

ska, 2016; Manjila et al., 2015; Braun, 1992). Modern animal gait

analysis methods are credited to Hildebrand (1977), who in the

1970s classified gait based on quantified metrics. He defined a

gait cycle in terms of contact of the limb to the ground (stance

and swing phases). This is in contrast to human gait and posture

analysis, which, since the time of Borelli, has focused on body

posture and is akin to the quantitation of whole-body movement

rather than simply contact with the ground (Kirtley, 2006). In ro-

dents, recent methods have fomented progress by the incorpo-

ration of speed in gait analysis (Batka et al., 2014; Bellardita and

Kiehn, 2015; Broom et al., 2017) and determination of whole-

body posture (Machado et al., 2015, 2020).

The open field assay is one of the oldest and most commonly

used assays in behavioral neurogenetics (Greenberg and Har-

away, 1998; Hall, 1934). In rodents, it has classically been

used to measure endophenotypes associated with emotion-

ality, such as hyperactivity, anxiety, exploration, and habitua-

tion (Crawley, 2007). For video-based open field assays, rich

and complex behaviors of animal movement are often

abstracted to a simple point to extract behavioral measures

(Dell et al., 2014). This oversimplified abstraction is necessary

mainly due to technological limitations that have prohibited

the accurate extraction of complex poses from video data

(Egnor and Branson, 2016). Recent technology has started to

overcome this limitation (Mathis et al., 2018; Pereira et al.,

2019); Wiltschko et al., 2015) and has enabled a new era of
ell Reports 38, 110231, January 11, 2022 ª 2021 The Author(s). 1
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animal behavior analysis. Gait, an important indicator of neural

function, is not typically analyzed in the open field mainly due to

the technical difficulty of determining limb position when

animals are moving freely (Lakes and Allen, 2016). The ability

to combine open field measures with gait and posture analysis

would offer key insights into the neural and genetic regulation of

animal behavior. Here, we leverage modern neural network

methods to carry out mouse gait and posture analysis in the

open field. We develop and apply a system to measure gait

and posture from a top-down perspective that is invariant to

the high level of visual diversity seen in the mouse, including

coat color, fur differences, and size differences (Geuther

et al., 2019). We characterize a set of neurodegenerative, neu-

rodevelopmental, and autism spectrum disorder (ASD) models

using our approach. We apply our methods to carry out a strain

survey and genome-wide association study (GWAS) analysis of

62 mouse strains and find that gait and posture traits are highly

heritable. We also find that variance of gait and posture pheno-

types are heritable and regulated by distinct genetic architec-

ture. These method and strain data are a community resource

for mouse movement in the open field for the behavioral neuro-

genetics community.

RESULTS

Our approach to gait and posture analysis is composed of

several modular components. At the base of our toolkit is a

deep convolutional neural network that has been trained to

perform pose estimation on top-down video of an open field.

This network provides 12 two-dimensional markers of mouse

anatomical location, or ‘‘key points,’’ for each frame of video

describing the pose of the mouse at each time point. We have

also developed downstream components that are capable of

processing the time series of poses and identifying intervals

that represent individual strides. These strides form the basis

of almost all of the phenotypic and statistical analyses that

follow. We can extract several important gait metrics on a per-

stride basis because we have pose information for each stride in-

terval (see Table 1 for a list of metrics). This gives us significant

power to perform statistical analysis on stride metrics as well

as allowing us to aggregate large amounts of data to provide

consensus views of the structure of the mouse gait.

Pose estimation
We selected 12 key points to capture mouse pose: nose, left ear,

right ear, base of neck, left forepaw, right forepaw, mid-spine,

left hind paw, right hind paw, base of tail, mid-tail, and tip of

tail (Figure S1B). Much effort has been spent developing and

refining pose estimation techniques for the human pose (Moe-

slund et al., 2006; Dang et al., 2019; Insafutdinov et al., 2016;

Newell et al., 2016). These advances in pose estimation tech-

niques have also successfully been applied to pose estimation

in animals. Prominent examples of this include DeepLabCut

(Mathis et al., 2018) and LEAP (Pereira et al., 2019). We selected

the HRNet architecture (Sun et al., 2019), which maintains high-

resolution features throughout the network stack, thereby pre-

serving spatial precision (Figure S1A), and implemented modifi-

cations for our experimental configuration (see STAR Methods).
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We used this network to generate 12 480 3 480 heatmaps (one

heatmap per key point) for each 480 3 480 frame of video (Fig-

ure S1A). The maximum value in each heatmap represents the

highest confidence location for each respective point. Thus, after

taking the argmax of each of the 12 heatmaps, we have 12 (x, y)

coordinates representing the animal’s pose at that frame (Fig-

ure S1B). We labeled �8,000 images across a diverse set of

strains to train a network that operates across 62 mouse

strains with high visual diversity (Geuther et al., 2019) (Fig-

ure S1C; Video S1).

Stride detection
Our approach to detecting stride intervals is based on the cyclic

structure of gait as described by Hildebrand (1977, 1989) (Fig-

ures 1A and 1B). During a stride cycle, each of the paws has a

stance phase and a swing phase (Lakes and Allen, 2016). During

the stance phase, the paw of the mouse supports the weight of

the mouse and is in static contact with the ground. During the

swing phase, the paw moves forward and does not support

the weight of the mouse. Following Hildebrand, we refer to the

transition from stance phase to swing phase as the toe-off event

and the transition from swing phase to stance phase as the foot-

strike event.

To calculate stride intervals, we determined stance and swing

phases for the hind paws. We calculated paw speed and infer

that a paw is in stance phase when the speed falls below a

threshold and that it is in swing phase when it exceeds that

threshold (Figures 1C–1F). We can now determine that foot-

strike events occur at the transition frame from swing phase to

stance phase (Figure 1C). We defined the left hind foot strike

as the event that separates stride cycles. An example of the rela-

tionship between paw speed and foot strike events is shown in

Figure 1D for hind paws. We find clean, high-amplitude oscilla-

tions of the hind paws, but not forepaws, as shown in Figure 1E.

This difference in inference quality between the forepaws and

hind paws is likely due to the fact that forepaws are occluded

more often than hind paws from the top-down view and are

therefore more difficult to locate accurately. We observe a corre-

sponding decrease in the confidence of forepaw inferences (Fig-

ure 1G). For this reason, we exclude forepaws from consider-

ation when deriving stride intervals and focus instead on hind

paws. We also perform a significant amount of filtering on strides

to remove spurious or low-quality stride cycles from our dataset

(Figure 1G). The criteria for removing strides include low-confi-

dence or physiologically unrealistic pose estimates, missing right

hind paw strike event, and insufficient overall body speed of

mouse, which is any speed <10 cm/s. Figure 1G shows the dis-

tribution of confidences for each key point. Our filtering method

uses 0.3 as a confidence threshold. Very-high-confidence key

points are close to 1.0. We always remove the first and last

strides in a continuous sequence of strides to avoid starting

and stopping behaviors from adding noise to our stride data (Fig-

ures 1C and 1D, labeled A and D, in tracks A and B). This means

that a sequence of seven strides will result in at most five strides

being used for analysis. The distribution of key point confidence

varies by key point type (Figure 1G). Key points that tend to be

occluded in a top-down view such as fore paws have confidence

distributions shifted down compared to other key points. We find



Table 1. Gait metrics definitions

Measure Definition of measure Units

Angular velocity the current angle of a mouse is determined by the vector connecting the

mouse’s base of tail to its base of neck; the first derivative of this value

gives us angular velocity; for strides, angular velocity is averaged over the

duration of the stride

degrees/s

Stride speed the speed of a mouse is determined by tracking themovement speed of the

baseof tail keypoint; stride speed is theaveragespeed for all framesover the

duration of a stride; we shortened ‘‘stride speed’’ to ‘‘speed’’ in some figure

labels for compactness

cm/s

Limb duty factor the stance time of a paw (the amount of time that the paw is in contact

with the ground) divided by the full stride time; duty factor is calculated for

each of the hind paws and averaged

none

Temporal symmetry where l is the duty factor of the left hind paw and r is the duty factor of the

right hind paw; temporal symmetry is calculated as ðl � rÞ=ðl + rÞ
none

Step length the distance that the right hind paw travels past the previous left hind paw

strike

cm

Step width the averaged lateral distance separating hind paws; this is calculated as

length of the shortest line segment that connects the right hind paw strike

to the line that connects the left hind paw’s toe-off location to its

subsequent foot-strike position

cm

Stride length the full distance that the left hind paw travels for a stride, from toe-off to

foot-strike.

cm

Lateral displacement of nose to calculate lateral displacement, we first calculate the mouse’s

displacement vector for a stride; we then measure the nose’s

perpendicular distance from this vector for each frame of a stride; we then

subtract the minimum distance from the maximum and divide by the

mouse’s body length so that the displacement measured in larger mice

will be comparable to the distance measured in smaller mice

none

Lateral displacement of base of tail calculated using the same approach that is applied to the nose lateral

displacement, except that we are using the base of tail key point

none

Lateral displacement of tip of tail calculated using the same approach that is applied to the nose lateral

displacement, except that we are using the tip of tail key point

none

Nose lateral

displacement phase offset

the lateral displacement is calculated for each frame of a stride, as

described for nose lateral displacement, above; we then perform a cubic

spline interpolation to generate a smooth curve for displacement; then,

we determine the point in time at which maximum displacement occurs;

note that because of cubic interpolation, this can occur at time points

between frames

percent stride cycle

Base of tail displacement phase offset calculated using the same approach that is applied to the nose lateral

displacement phase offset, except that we are using the base of tail key

point

percent stride cycle

Tip of tail displacement phase offset calculated using the same approach that is applied to the nose lateral

displacement phase offset, except that we are using the tip of tail key

point

percent stride cycle
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that key points that are not visually salient, such as the spine cen-

ter, have lower confidence since they are more difficult to locate

precisely. Finally, we also calculated an instantaneous angular

velocity, which allows us to determine the turning direction of

each stride (Figure 1F). The angular velocity is calculated by

taking the first derivative of the angle formed by the line that con-

nects the base of the mouse’s tail to the base of its neck. In sum-

mary, this approach allows us to identify individual high-quality

strides of a mouse in the open field.

To validate that our gait quantitation is functioning properly,

we analyzed data from a commonly used inbred strain, C57BL/
6NJ. We calculated percentage of stance and swing from

15,667 strides of 31 animals using �1 h of open field video per

mouse. We analyzed data from hind paws since these showed

the highest amplitude oscillations during stance and swing (Fig-

ures 1D and 1E). We stratified the data into 9 angular velocity and

8 stride speed bins based on the tail base point (Figures 1H and

1I, respectively). As expected, we find an increase in stance per-

centage over a stride of the left hind paw when the animal turns

left. Reciprocally, when the animal turns right, the stance per-

centage of the right hind paw increases (Figure 1H). We then

analyzed strides in the central angular velocity bin (�20� to
Cell Reports 38, 110231, January 11, 2022 3



Nose

Ear
 L

ef
t

Ear
 R

ig
ht

Nec
k B

as
e

Fo
re

paw
 L

ef
t

Fo
re

paw
 R

ig
ht

Spine
 C

en
te

r

Hind
 P

aw
 L

ef
t

Hind
 P

aw
 R

ig
ht

Ta
il B

as
e

Ta
il M

id
dle

Ta
il T

ip

Left Turn

Right Turn 100% Stance

100% Swing

50/50

L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R

S
p

ee
d

 (c
m

/s
ec

)

0

20

40

60

0

20

40

60

S
p

ee
d

 (c
m

/s
ec

)

1320 1340 1360 1380 1400
Frame Number

0

100

200

A
ng

ul
ar

 V
el

o
ci

ty
 (d

eg
/s

ec
)

0.3

0.4

0.5

0.6

0.7

0.8

Li
m

b
 D

ut
y 

Fa
ct

o
r

200 60
Speed (cm/sec)

40

1320 1340 1360 1380 1400

1320 1340 1360 1380 1400

[140, 180)

[100, 140)

[60, 100)

[20, 60)

[-20, 20)

[-60, -20)

[-100, -60)

[-140, -100)

[-180, -140)A
ng

ul
ar

 V
el

o
ci

ty
 B

in
s 

(d
eg

/s
ec

)

(45, 50]

(40, 45]

(35, 40]

(30, 35]

(25, 30]

(20, 25]

(15, 20]

(10, 15]

S
p

ee
d

 B
in

s 
(c

m
/s

ec
)

0 50
Percent Stride

0 50
Percent Stride

100

100

Foot Strike Toe Off Stance PhaseSwing Phase

Left Hind

Left Fore

Right Fore

Right Hind

Stride Length

S
tep

 W
id

th

Step Length

0% 50% 100%
Percentage Stride Time

0.8

0.9

1.0

1.1
C

o
nf

id
en

ce
 S

co
re

L
R
L
R
L
R
L
R
L
R
L
R
L
R
L
R

Track A

Track B

AD 1234A

D

1

2

3

4

5

Left Turn

Left Turn

Hind Paw Right

Hind Paw Left
Tail Base

Foot Strike

Track A Track B
A D1 2 3 4 A D1 2 3 4 5

Spatial Characteristics

Forepaw Speed

Angular Velocity

Hind Paw Speed

Stride Pose Estimation Confidence

Duty Factor vs.
Speed

Angular Velocities

Speed

Temporal Characteristics
B

J

H

I

C

F

G

E

D

A

Figure 1. Extraction of gait metrics from video pose estimation

(A and B) Spatial and temporal characteristics of gait. (A) We derived three spatial stride metrics from hind paw foot-strike positions: step length, step width, and

stride length. (B) All of the metrics shown in this Hildebrand plot have percent stride time for units. We see here the relationship between foot-strike and toe-off

events with the stance and swing phases of stride. (A) and (B) are adapted from Lakes and Allen, 2016.

(C) A single frame of input video with hind paw tracks plotted 50 frames in the past and 50 frames in the future. The location of hind foot-strike events is indicated

with black circles, and paths are shown (left hind paw [blue], right hind paw [orange], and base of tail [green]) for two sequences (tracks A and B).

(legend continued on next page)
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20�/s) to determine whether stance percentage during a stride

cycle decreases as the speed of the stride increases. We find

that the stance time decreases as the stride speed increases

(Figure 1I). We generated the same plots for five other mouse

strains and see similar results for all five (Figure S2A). We calcu-

lated a duty factor for the hind paws to quantitate this relation-

ship with stride speed (Figure 1J). We conclude that ourmethods

are able to quantitatively and accurately extract strides from

these open field videos from a top-down perspective.

After the stride intervals have been determined, we use frame

poses in conjunction with stance and swing phase intervals to

derive several stride metrics as defined in Table 1. We are able

to extract the most relevant spatiotemporal metrics from the

hind paws, which serve as the primary data source for our statis-

tical analyses (Lakes and Allen, 2016).
Posture estimation during gait cycle
Our top-down videos allow us to determine the relative position

of the spine with six key points (nose, neck base, spine center,

tail base, tail middle, and tail tip). With these, we extracted the

pose during a stride cycle, similar to previous work, which car-

ried this out with nose and tail pose only (Machado et al.,

2015). We used three points (nose, base of tail, and tip of tail)

to capture the lateral movement during a stride cycle (Figures

2A–2C; Video S2). These measures are circular, with opposite

phases of the nose and the tip of tail. For display, we use

C57BL/6J and NOR/LtJ (Video S3), which have different tip-of-

tail phases during a stride cycle. We are able to extract these

phase plots for each stride (Figures 2D and 2E; Video S4). Since

we have captured several hours of video across each strain, we

are able to extract thousands of strides, enabling high levels of

sensitivity. We can combine these at one stride speed and

angular velocity bin at which we constrain the speed range

from 20 to 25 cm/s and angular velocity from �20� to 20�/s to

determine a consensus stride phase plot for each animal and

strain (Figures 2F and 2G). Finally, we compared these phase

plots between several strains and find striking diversity among

posture during the gait cycle (Figures 2H and 2I). The diversity

in posture across mouse strains is evident and implies high her-

itability of this phenotype.

Several of our metrics relate to the cyclic lateral displacement

we observe in pose key points (Figure 2). Our measures of lateral

displacement are defined as an orthogonal offset from the rele-

vant stride displacement vector. We define the displacement

vector as the line connecting the mouse’s center of spine on

the first frame of a stride to the mouse’s center of spine on the

last frame of stride. We calculate this offset at each frame of a

stride and then perform a cubic interpolation to generate a
(D–F) Three plots showing different aspects of the mouse’s movement over the sa

(displayed in C). The top plot shows three lines indicating speed of the left hind p

black lines in the plot indicate the inferred start frame of each stride.

(G) The distribution of confidence values for each of the 12 key points we estima

(H) Aggregate view of Hildebrand plot for hind paws binned according to angular v

of turning.

(I) Similar to (H), except binned by increasing stride speed and a fixed angular ve

(J) Limb duty factor changes as a function of stride speed.

Data for (H–J) are derived from 15,667 strides from 31 C57BL/6NJ animals.
smooth displacement curve. The phase offset of displacement

is defined as the percent stride location where maximum

displacement occurs on this smoothed curve. As an example,

if we observe a value of 90 for phase offset, then it indicates

that the peak lateral displacement occurs at the point at which

a stride cycle is 90% complete. The lateral displacement metric

assigned to stride is the difference between maximum displace-

ment value and minimum displacement value observed during a

stride (Figure 2A). This analysis is sensitive and allows us to

detect subtle, but highly significant differences in overall posture

during a stride (Videos S3 and S4). We used the previous clas-

sical spatiotemporal measures based on Hildebrand’s methods

with the combined posture metrics for our analysis. Because of

the cyclic nature of phase offset metrics, care was taken to apply

circular statistics to these metrics in our analysis. The other

measures are analyzed using linear methods.

Next, we determined whether stride metrics changed de-

pending on the location of the animal. For instance, animals

displaying thigmotaxis are considered to be more anxious

and in a lower state of arousal than those that are in the center

(Crawley, 2007). To determine whether these differing

emotional states affect gait and posture metrics, we analyzed

the strides based on the location at which they occur. We par-

titioned each stride into center or periphery. To carry this out,

we trained a new neural network to detect corners of our

open field. We defined the periphery as the outermost 10%

of the matrix (Figure S7A, blueversus purple). We only analyzed

strides in 20–25 and 25–30 cm/s speed bins with angular veloc-

ity in (�20,20)�/s. Both groups contained an approximately

equal number of strides for both strains (Figure S7B, red versus

blue). Analysis of the gait and posture metrics showed no dif-

ference between the center and periphery (Figures S7C and

S7D). Surprisingly, this analysis indicates that these measures

do not change in response to location, and by extension,

emotional state of the animal.
Statistical analysis of gait measures on three mutant
strains
We phenotyped three mouse models that have previously been

shown to have gait defects and are preclinical models of human

diseases: Rett’s syndrome, amyotrophic lateral sclerosis (ALS,

or Lou Gehrig’s disease), and Down syndrome. The three

models, Mecp2 knockout, SOD1 G93A transgene, and Ts65Dn

Trisomic, respectively, were tested with appropriate controls at

two ages in a 1-h open field assay (see STAR Methods). Gait

metrics are highly correlated with animal size and stride speed

(Batka et al., 2014; Bellardita and Kiehn, 2015; Machado et al.,

2015, 2020; Hildebrand, 1989) (Figures 1I and J). However, in
me 100-frame interval. The centered red vertical line indicates the current frame

aw (blue), the right hind paw (orange), and the base of tail (green). The vertical

te.

elocity (left [L] and right [R]) shows changes in strike duration based on direction

locity (�20� to 20�/s).
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A B

C

D
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E

G

H I

Figure 2. Extraction of cyclic posture metrics

during gait cycle

(A and B) We measured lateral displacement of (A)

the tail tip and (B) the nose. Positive values are to the

animal’s left and negative values are to its right. We

labeled this ‘‘normalized displacement’’ because

displacement values are divided by the respective

animal’s body length. We did this so that differences

in amplitude could not simply be attributed to animal

size. (C) A cartoon of the mouse during a gait cycle.

Tail and nose points are shown at various positions

during one cycle.

(D–G) We could also average displacement across

many strides within a cohort to form a consensus

view such as (D) C57BL/6J versus (E) NOR/LtJ, or

we could averagemany strides within individuals: (F)

C57BL/6J versus (G) NOR/LtJ.

(H and I) For tail (H) and nose (I), we note the diversity

of lateral displacement between a set of strains

selected from our strain survey. The translucent

bands for these two plots represent the 95% confi-

dence interval of the mean for each respective

strain.
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many cases changes in stride speed are a defining feature of gait

change due to genetic or pharmacological perturbation. To

compare our results with previously published data that do not

take animal size and sometimes stride speed into account, we

analyzed our data with three models that take only age and

body length (M1), age and stride speed (M2), and age, stride

speed, and body length (M3) as covariates (see STARMethods).

Since sex of the animal and its body length are highly collinear,

we do not include sex as a term in the final model (measured
6 Cell Reports 38, 110231, January 11, 2022
using ANOVA and denoted by h, is strong

for both SOD1 [h = 0:81] and Ts65Dn

[h= 0:16 overall, h= 0:89 for controls,

h= 0:61 for mutants]). We model the

posture-based circular phase variables

(Table 1) as a function of linear variables us-

ing a circular-linear regression model

(Fisher and Lee, 1992) (see STAR

Methods). The results are displayed in Fig-

ures 3, 4, S3, and S4, and exact statistics

are reported in Figure S11B.

Characterization of gait in a Rett’s

syndrome model

Rett’s syndrome, an inherited neurodeve-

lopmental disorder, is caused bymutations

in the X-linked MECP2 gene (Amir et al.,

1999). We tested a commonly studied

deletion of Mecp2 that recapitulates many

of the features of Rett’s syndrome,

including reduced movement, abnormal

gait, limb clasping, low birth weight, and

lethality (Guy et al., 2001). We tested hemi-

zygous males (n = 8), heterozygous fe-

males (n = 8), and littermate controls (n =

8 of each sex) (see STAR Methods). Null

males are normal at birth and have an
expected lifespan of �50–60 days. They start to show age-

dependent phenotypes by 3–8 weeks and lethality by 10 weeks.

Heterozygous females have mild symptoms at a much older age

(Guy et al., 2001). We tested male mice twice at 43 and 56 days

and females at 43 and 86 days.

Previous gait studies of this knockout did not take animal size,

and in some cases, changes in stride speed, into account. These

studies have shown changes in stride length and stance width in

an age-dependent manner in hemizygousmales (Kerr et al., 2010;



A B

C

D

E

Figure 3. Analysis of gait in three mutant strains

(A) We found previously reported differences using M1, which adjusts only for body length, test age (Age), genotype, and random effects (RE). The LOD

(� log10ðqvalueÞ) scores and effect sizes are shown in the left and right vertical blocks, respectively. In the left block, the number of ‘‘+’’ and heat represent the

strength of evidence against the null hypothesis of no genotype-based effect, while + represents a suggestive effect. In the right block, the color (red for positive

and blue for negative) and area of the circle (area f size of the effect) represent the direction and magnitude of the effect size.

(legend continued on next page)
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Santos et al., 2010; Robinson et al., 2012). Recent analysis

showed increased step width, reduced stride length, changes in

stride time, step angle, and overlap distance (Gadalla et al.,

2014). Mecp2 hemizygous males show 13% reduced body (Fig-

ures S11A and S4C) (Guy et al., 2001) and progressive changes

in movement speed that should be taken into account when

modeling gait parameters. We limit our analysis to stride speeds

between 20 and 30 cm/s, which allows us to reduce the variation

introduced by differences in speed and compare a model that in-

cludesbody length instead of stride speed as a covariate (M1, Fig-

ure 3A) and one in which both body length and stride speed are

included (M3, Figure 3B). We placed the results from M2 into

the supplemental information for comparisonwith previously pub-

lished data (Figure S4), and all of the statistics (M1, M2, M3) are

reported in Figure S11B. Model M3 that includes both stride

speed and body length showed a significant decrease in step

width and suggestive difference in stride length, as well as robust

differences in posture metrics (tail tip amplitude, phase of tail tip,

and nose) (Figure 3B). We also note a decrease in total distance

traveled in the open field, stride speed, stride length, and step

width in the mutants after adjusting for body length (M1) (Figures

3C and 3D). Even though we limit the analysis to one angular and

speed bin, we see differences in the distribution of stride speed

(Figure S3B). We observe very few significant differences in

Mecp2 heterozygous females that are consistent across all three

models. All three models consistently find tail tip amplitude to be

significantly higher, suggesting more lateral movement in the

females (Figures 3A, 3B, and S3). In summary, these results

demonstrate that we are able to accurately detect previously

described differences in Mecp2. In addition, our posture metrics

are able to detect differences that have not been previously

described. All three models consistently find tail tip amplitude to

be significantly higher suggesting more lateral movement in the

females (Figures 3A, 3B, and S3A).

Characterization of gait in an ALS model

Mice carrying the SOD1-G93A transgene are a preclinical model

of ALS with progressive loss of motor neurons (Gurney et al.,

1994; Rosen et al., 1993). The SOD1-G93A model has been

shown to exhibit changes in gait phenotypes, particularly of hin-

dlimbs (Wooley et al., 2005; Amende et al., 2005; Preisig et al.,

2016; Tesla et al., 2012; Mead et al., 2011; Vergouts et al.,

2015; Mancuso et al., 2011). The most salient phenotypes are

an increase in stance time (duty factor) and decreased stride

length in an age-dependent manner. However, several other

studies have observed opposite results (Wooley et al., 2005;

Amende et al., 2005; Mead et al., 2011; Vergouts et al., 2015),

and some have not seen significant gait effects (Guillot et al.,

2008). These studies did not adjust for body size difference or

in some cases for stride speed. We tested SOD1-G93A trans-

genes and appropriate controls at 64 and 100 days, during

time of disease onset (Wooley et al., 2005; Preisig et al., 2016;
(B) Same as (A), except that we used model M3, which adjusts for body length,

(C) We plotted distance 3104 (cm) across test ages (x axis) and stride speed (

controls. Each dot represents a tested animal.

(D) We plotted the most significant gait parameters from (A) for different gait mu

(E) Lateral displacement of nose and tail tip for Ts65Dn strain. The solid lines rep

95% confidence interval for the mean.

8 Cell Reports 38, 110231, January 11, 2022
Vergouts et al., 2015; Mancuso et al., 2011; Knippenberg et al.,

2010). We do not see significant differences in body length or

weight (Figures S3C and S11), but changes are seen in stride

speed (Figure S3B).

Using model M3, we find small changes in the phase of tail tip

and nose (Figure 3B). Otherwise, we see significant changes in

M1 in stride speed, limb duty factor, and stride length (Figures

3A and 3D). These results argue that the major effect of the

SOD1 transgene is on stride speed, which leads to changes in

stride time and duty factor. Our results are congruent with re-

ports that gait changes may not be the most sensitive preclinical

phenotype in this ALS model, and other phenotypes such as

visible clinical signs and motor learning tasks such as rotarod

are more sensitive measures (Guillot et al., 2008; Mead et al.,

2011). Our results validate that our statistical model is able to

detect known gait defects in this model and may help explain

some of the discordant results in the literature.

Characterization of gait in a Down syndrome model

Down syndrome, caused by trisomy of all or part of chromosome

21, has complex neurological and neurosensorial phenotypes

(Haslam, 1995). Although there are a spectrum of phenotypes

such as intellectual disability, seizures, strabismus, nystagmus,

and hypoacusis, the more noticeable phenotypes are develop-

mental delays in fine motor skills (Shumway-Cook and Woolla-

cott, 1985; Morris et al., 1982). These are often described as

clumsiness or uncoordinated movements (Vimercati et al.,

2015; Latash, 2000). One of the best studied models, Ts65Dn,

trisomic for a region of mouse chromosome 16 that is syntenic

to human chromosome 21, recapitulates many of the features

of Down syndrome (Reeves, 1995; Herault et al., 2017).

Ts65Dn mice have been studied for gait phenotypes using tradi-

tional inkblot footprint analysis or treadmill methods (Hampton

and Amende, 2009; Costa et al., 1999; Faizi et al., 2011). The ink-

blot analysis showed mice with shorter and more ‘‘erratic and

‘‘irregular gaits, similar to motor coordination deficits seen in

human patients (Costa et al., 1999). Treadmill-based analysis re-

vealed further changes in stride length, frequency, some kinetic

parameters, and footprint size (Hampton et al., 2004; Faizi et al.,

2011). These previous analyses have not studied the posture of

these mice.

We analyzed Ts65Dn mice along with control mice at�10 and

14 weeks (see STARMethods), and all three linear mixedmodels

(M1–M3) found consistent changes. The Ts65Dn mice are not

hyperactive in the open field (Figure 3C), although they have

increased stride speed (Figures 3A and 3C). This indicates that

the Ts65Dnmice take quicker steps but travel the same distance

as controls. After adjusting stride speed and animal size, step

width was increased and step and stride lengths were signifi-

cantly reduced (Figure 3B). In particular, posture phenotypes

were highly affected in the Ts65Dn mice. The amplitude of tail

base and tip and the phase of tail base, tip, and nose were
stride speed (speed), genotype, test age (Age), and RE.

cm/s) across gait mutants (Sod1, Ts65Dn, Mecp2) to compare mutants with

tants to compare mutants with controls across test ages (x axis).

resent the mean displacement of stride, while the translucent bands provide a
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Figure 4. Characterization of gait and posture in mouse genetic models of ASD

(A)We foundpreviously reporteddifferencesusingM1,whichadjustsonly for body length. TheLODscoresandeffect sizesare shown in the left and rightverticalblocks,

respectively. In the left block, the number of +s represents the strength of evidence against the null hypothesis of no genotype-based effect, while + represents a

(legend continued on next page)
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significantly decreased (Figure 3B). We confirmed this with a

phase plot of nose and tail tip (Figure 3E). Surprisingly, we found

that there were large differences in phase. The tail tip phase peak

is near 30% of the stride cycle in controls and close to 60% in

mutants at multiple stride speeds (Figure 3E). Similar changes

are seen in the phase plot for the nose. These results confirm

previously reported differences in traditional gait measures,

and highlight the utility of our open field posture measures in

broadening the assayable phenotypic features in models of hu-

man disease. The most salient feature of the Ts65Dn gait is the

alteration of posture, which previously was reported as a qualita-

tive trait using inkblot analysis (Costa et al., 1999) and is now

quantifiable using our methods.

Characterization of ASD-related mutants
To further validate our approach, we investigated gait in four ASD

mouse models, in addition to Mecp2. In humans, gait and

posture defects are often seen in ASD and sometimes gait and

motor defects precede classical deficiencies in verbal and social

communication and stereotyped behaviors (Licari et al., 2020;

Green et al., 2009). Recent studies indicate that motor changes

are often undiagnosed in ASD cases (Hughes, 2011). It is unclear

whether these differences have genetic etiologies or are second-

ary to the lack of social interactions that may help children

develop learned motor coordination (Zeliadt, 2017). In mouse

models of ASD, gait defects have been poorly characterized,

and thus we sought to determine whether any gait phenotypes

occur in four commonly used ASD genetic models, which we

characterized with appropriate controls at 10 weeks (see STAR

Methods). Similar to the three models with known gait defects,

we tested these mutants and controls in the 1-h open field assay

and extracted gait and posture metrics (Table 1). We modeled

the results using the same approach used for gait mutants (M1

and M3 results are presented in Figure 4, M2 results are found

in Figure S4).

Cntnap2 is a member of the neurexin gene family, which func-

tions as a cell adhesion molecule (Poliak et al., 1999). Mutations

in Cntnap2 have been linked to ASD, schizophrenia, bipolar dis-

order, and epilepsy (Toma et al., 2018). Cntnap2 knockout mice

have previously been shown to have mild gait effects, with

increased stride speed leading to decreased stride duration

(Brunner et al., 2015). These mice are significantly smaller in

body length and weight than controls (Figures S11 and S4C).

We used model M2 to compare our results to the previous study

and found that Cntnap2 mice show significant differences in a

majority of the gait measures (Figure S4A). In the open field,

Cntnap2 mice were not hyperactive (Figure 4C) but showed a

markedly increased stride speed (M1, Figures 4A and 4C). These
suggestiveeffect. In the rightblock, thecolor (red for positiveandblue for negative) an

of the effect size.

(B) Same as (A), except that we used model M3, which adjusts for both body len

(C) We plotted distance3104 (cm) across test ages (x axis), and stride speed (cm/s

with controls. Each dot represents a tested animal.

(D) We plotted the most significant gait parameters from (B) for different gait mu

(E) We performed PCA on Z score-transformed gait data for Cntnap2 mutants a

multidimensional gait space, which separates controls from the mutants. The do

(F) We plotted the stride speed cumulative distributions between mutants and co
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results argue that the Cntnap2mice do not travel more, but take

quicker steps when moving, similar to Ts65Dn mice.

Since Cntnap2mice are smaller and have faster stride speeds

(Figure 4F), we used results from M3 to determine whether gait

parameters are altered after adjusting for body size and stride

speed (Figure S11). We found that Cntnap2 mice were signifi-

cantly different from controls for a majority of the traditional

gait metrics as well as posture measures (Figures 4A and 4B).

The Cntnap2 mice have reduced limb duty factor, step length,

and step width, and highly reduced stride length (Figures 4B

and 4D). The mice also show altered phase of tail tip, base,

and nose, as well as significant but small changes in amplitude

of tail tip base and nose. Another salient feature of gait in

Cntnap2 mice is the decrease in interanimal variance compared

to controls, particularly for limb duty factor (Fligner-Killeen test, p

<0:01), step length (Fligner-Killeen test, p <0:01), and stride

length (Fligner-Killeen test, p <0:02) (Figure 4D). This may indi-

cate a more stereotyped gait in these mutants. Combined, these

results imply thatCntnap2mice are not hyperactive asmeasured

by total distance traveled in the open field, but are hyperactive at

the individual stride level. They take quicker steps with shorter

stride and step length and narrower step width. Next, we asked

whether there is a lower-dimensional gait space where the

Cntnap2 mutants separate from the controls. We performed

principal-component analysis (PCA) on Z score transformed

gait metrics and embedded the animals in a two-dimensional

(2D) space for visualization. We found the first PC that explained

40% of the total variance to separate the mutants and controls

effectively. We plotted the absolute PC loadings to shed light

on contributions of gait and posturemetrics to PC1. The loadings

revealed that most gait metrics contributed to PC1. We found

that the gait metrics allow us to distinguish Cntnap2 from

controls (Figure 4E). This analysis shows that Cntnap2 mice

can be distinguished from controls based on its gait patterns in

the open field. We report similar analyses with body length

and body length + speed adjusted residuals in Figures S6A

and S6B).

Mutations in Shank3, a scaffolding postsynaptic protein, have

been found in multiple cases of ASD (Durand et al., 2007). Muta-

tions in Fmr1, an RNA-binding protein that functions as a trans-

lational regulator, are associated with fragile X syndrome, the

most commonly inherited form of mental illness in humans

(Crawford et al., 2001). Fragile X syndrome has a broad spectrum

of phenotypes that overlaps with ASD features (Belmonte and

Bourgeron, 2006). Del4Aam mice contain a deletion of 0.39 Mb

onmouse chromosome 7 that is syntenic to human chromosome

16p11.2 (Horev et al., 2011). Copy-number variations (CNVs) of

human 16p11.2 have been associated with ASD features,
dareaof thecircle (areaf size of theeffect) represent thedirectionandmagnitude

gth and stride speed.

) across ASDmutants (Cntnap2, Fmr1, Shank3,Del4Aam) to compare mutants

tants to compare mutants with controls.

nd their controls. We used the first two PCs to plot a 2D representation of the

ts represent individual animals.

ntrols across ASD mutants.
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Figure 5. Strain survey results

(A) We plotted body-length-adjusted residuals for gait parameter stride length (y axis) across 62 strains in the strain survey (x axis). We arranged the boxplots in

increasing order of medians from left to right.

(legend continued on next page)
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including intellectual disability, stereotypy, and social and lan-

guage deficits (Weiss et al., 2008). Fmr1 mutant mice travel

more in the open field (Figure 4C) and have higher stride speed

(Figures 4A and 4C). When adjusted for stride speed and body

length (M3), these mice undergo slight but significant changes

in limb duty factor in model M3. Shank3 and Del4Aam are both

hypoactive in the open field compared to controls. Shank3

mice experience a significant decrease in stride speed, whereas

Del4Aammice have faster stride speeds (Figures 4A and 4C). All

three statistical models show a suggestive or significant

decrease in step length in both strains. Using M3, we find that

Shank3 mice have longer step and stride lengths, whereas

Del4Aam mice have shorter steps and strides. In posture mea-

sures,Shank3mice have a decrease in nose phase andDel4Aam

has an increase in tail tip phase. These results indicate that even

though both Shank3 and Del4Aam are hypoactive in the open

field (Figure 4C), Shank3 takes slower and longer strides and

steps, whereas Del4Aam takes faster strides with shorter steps

and strides (Figure 4F). Both mutants have some defects in

posture. We find each of the ASD models to have a unique set

of gait deficits, with Cntnap2 having the strongest phenotypes.

All have some change in stride speed, although the directionality

of change and the variance of the phenotypes differ. These

results imply that changes in gait and posture are general fea-

tures of ASD.

Strain survey
After validating that our methods are able to characterize differ-

ences in known gait mutants, we sought to understand the range

of gait and posture phenotypes in the open field in standard labo-

ratory mouse strains. We surveyed 44 classical inbred laboratory

strains, 7 wild-derived inbred strains, and 11 F1 hybrid strains

(1,898 animals, 1,740 h of video). All animals were isogenic, and

we surveyed both males and females in a 1-h open field assay

(see STAR Methods) (Geuther et al., 2019). We then extracted

gait metrics from each video and performed an exploratory anal-

ysis of the data on a per-animal level (Figures 5A and S5). We

analyzed stride data when animals were traveling at a moderate

stride speed (20–30 cm/s) and in a straight direction (angular

velocity between�20� and +20�/s). We could carry out such a se-

lective analysis because of the large amount of data wewere able

to collect and process in freely moving mice. Since these mice

vary considerably in their size (Geuther et al., 2019), we plotted re-

siduals from M1 that adjust for body size (Figures 5A and S5).

We sought to determine whether we could cluster strains

based on their open field gait and posture phenotypes. We
(B) Residuals were obtained from a linear model with body length and speed as co

Z scores and used the scores as inputs to the k-means algorithm of the next ste

easier visualization) along with color-coded cluster memberships (x axis).

(C) We used a k-means algorithm to determine the cluster memberships. We

components obtained from the Z scores. See Figure S6 for more information on

parameters were adjusted for both body length and body length + stride speed.

(D) A consensus view of lateral displacement of nose and tail tip across the c

translucent bands provide a 95% confidence interval for the mean.

(E) Post-clustering analysis: We used a linear model (one-way ANOVA) with clust

between strains across the three clusters. The number of+s represents the stren

between strains across three clusters. In contrast, NS represents not sufficient

clusters.
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took a model-free approach and applied the k-means algorithm

to cluster the strains. We did not include the circular features in

our analyses, as the k-means algorithm requires features that

lie in a Euclidean space. We fit a linear model to each linear

gait feature with body length and stride speed as covariates

and extracted the model residuals. The Z score-transformed re-

siduals served as the input features for our analysis (Figure 5B).

We initialized the k-means algorithm several times, with random

points from the data as means. We picked the initialization that

gave the smallest total within-cluster sum of squares. We pro-

jected the selected k-means output onto the 2D PC subspace

to visualize the clustering structure (Figures 5C–5E). We found

three clusters of strains that can be distinguished based on their

open field gait behaviors. The number of clusters was chosen

based on the gap statistic (Figure S6D). Cluster 1 consisted of

primarily classical strains such as A/J, C3H/HeJ, and 129S1/

SvImJ; cluster 3 consisted of several classical strains and a large

number of wild-derived strains such asMOLF/EiJ and CAST/EiJ.

Cluster 2 mainly consisted of C57 and related strains, including

the reference C57BL/6J. Next, we visualized the clustering

structure in a non-linear embedded space using Uniform Mani-

fold Approximation and Projection (UMAP) (McInnes et al.,

2018) with two different initializations (Figure S6E). The UMAP di-

mensions preserved the cluster structure discovered using the

k-means algorithm. We further explored the three k-means clus-

ters. PC loading analysis revealed that most of PC1 is highly

correlated with posture measures, while PC2 is correlated with

open field distance and traditional gait measures (Figure 5C,

right). We constructed a consensus stride phase plot of the

nose and tail tip for each cluster. Cluster 3 has much higher

amplitude, while clusters 1 and 2 have similar amplitude but

shifted phase offset (Figure 5D). An examination of the linear

gait metrics reveals individual metrics that distinguish the clus-

ters (Figure 5E). For example, cluster 2 has longer stride and

step lengths, cluster 3 has higher temporal symmetry, and clus-

ter 2 has low lateral displacement of nose, base, and tip tail. An

overall analysis of individual metrics reveals a significant differ-

ence in 9 of 10 measures. For comparison, we plotted the output

of the k-means analysis of body length-adjusted gait features

(Figure S6C). We found strain SEA/GnJ changed cluster mem-

bership from cluster 2 to cluster 1 and strains 129X1/SvJ,

DBA/2J, LP/J, PWD/PhJ, PWK/PhJ, SWR/J, and WSB/EiJ

changed from cluster 1 to cluster 3. This analysis reveals high

levels of heritable variation in gait and posture in the laboratory

mouse. A combined analysis using multidimensional clustering

of these metrics finds three subtypes of gait in the laboratory
variates/features for all gait parameters.We transformed the residuals to obtain

p. The heatmap shows the Z scores (jz� scorej>1; thresholding is applied for

projected the clusters discovered by k-means to a 2D space formed by PC

the choice of the number of clusters and the clusters formed when the gait

lusters. The solid lines represent the mean displacement of stride, while the

er membership as a categorical covariate/feature to compare gait parameters

gth of evidence against the null hypothesis of no difference in a gait parameter

evidence to claim a difference in a gait parameter between strains across 3
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mouse. Our results also show that the reference mouse strain,

C57BL/6J, is distinct from other common mouse strains and

wild-derived strains.

We further explored cluster 2, which contains mostly strains

from the C57 family. We asked whether our movement pheno-

types could distinguish among the C57 family. We used two ap-

proaches: a supervised dimension-reduction approach and a

classification approach. For the former, we used linear discrim-

inant analysis (LDA) (Machado et al., 2020; Rao, 1948) to quan-

titatively distinguish between strains C57BL/6J, C57BL/6NJ,

C57BLKS/J, C57L/J, C57BR/cdJ, C57BL/10SnJ, and C58/J.

C57BL/6J and C57BL/6NJ are considered substrains, while

the rest are independent, yet closely related strains (Morse,

2012). For the second approach, we used a multi-class logistic

regression (‘‘one versus rest’’) model to predict the strain mem-

bership for each animal from its gait metrics. We adjusted the

gait metrics for both body length (Figures S8A and S8B) and

body length + stride speed (Figures S8C and S8D) in our ana-

lyses to account for their effect on gait metrics. We found that

LDA separated strains when we embedded their adjusted gait

metrics in a lower-dimensional 2D space using PCs (Figures

S8A and S8C). We plotted absolute PC loadings to understand

the gait and posture metrics contributions and found that LD1

consists mainly of base tail lateral displacement and LD2 con-

sists of several gait and posture metrics (Figure S8). In the sec-

ond approach, we summarized the sensitivity of gait analysis

for the multi-class classifier to distinguish between strains using

a confusionmatrix, which shows the proportion of correctly clas-

sified and misclassified animals in each strain (Figures S8B and

S8D). Indeed, these combined data indicate that animal move-

ment alone can accurately distinguish genetically similar strains

and even substrains.

GWAS
The strain survey demonstrated that the gait and posture fea-

tures we measure are highly variable, and thus we wanted to un-

derstand the heritable components and the genetic architecture

of mouse gait in the open field. In human GWAS, both mean and

variance of gait traits are highly heritable (Adams et al., 2016).We

separated the strides of each animal into four different bins ac-

cording to the speed at which it was traveling (10–15, 15–20,

20–25, and 25–30 cm/s) and calculated the mean and variance

of each trait for each animal to conduct a GWAS to identify quan-

titative trait loci (QTL) in the mouse genome. We used GEMMA

(Zhou and Stephens, 2012) to conduct a GWAS using a linear

mixed model. To distinguish between body length-dependent

and -independent QTL, we used two models, one taking into ac-

count sex and body length as fixed effects and another taking

only sex as a fixed effect for comparison. Bothmodels used pop-

ulation structure as a random effect. Since linear mixed models

do not handle circular values, we excluded phase gait data

from our analysis. The heritability was estimated by determining

the proportion of variance of a phenotype that is explained (PVE)

by the typed genotypes (Figure 6A, left panel). Heritability of gait

measures showed a broad range, and the majority of the pheno-

types are moderately to highly heritable. The mean phenotypes

with lowest heritability are angular velocity and temporal symme-

try, indicating that variance in the symmetrical nature of gait or
turning behaviors are not due to genetic variance in the labora-

tory mouse. In contrast, we find that measures of posture (ampli-

tude measures) and traditional gait measures are moderately to

highly heritable. Variance of phenotypes showed moderate

heritability, even for traits with low heritability of mean traits (Fig-

ure 6A, right panel). For instance, mean angular velocity pheno-

types have low heritability (PVE <0.1), whereas the variance

angular velocity phenotypes have moderate heritability (PVE be-

tween 0.2 and 0.4). These heritability results indicated that the

gait and posture traits are appropriate for GWAS of mean and

variance traits. When body length was not included in the model,

we observed changes in heritability with gait phenotypes that are

dependent on animal size (e.g. stride length, step length) (Fig-

ure S9). We proceeded with GWAS and excluded traits with

low heritability (PVE <0.25).

For the significance threshold, we calculated an empirical p

value correction for the association of an SNP with a phenotype

by shuffling the values (total distance traveled in the open field)

between the individuals 1,000 times. In each permutation, we ex-

tracted the lowest p value to find the threshold that represents a

corrected p value of 0.05 (1:93 10�5). We took the minimal p

value over all mean phenotypes, variance phenotypes, and

both classes combined for each SNP to generate combined

Manhattan plots (Figures 6B–6D for the model with body length

and Figures S9B–S9D for the model without it). Each SNP is

colored according to the phenotype associated to the SNP

with the lowest p value.

We found 157 QTL for mean traits and 117 QTL for variance

traits (Figures 6B and 6C; Table S1). The phenotype with the

most associated loci was tail base amplitude (10–15 cm), with

25 loci. Overall, when considering all of the phenotypes together,

we found 254 significant genomic regions associated with at

least 1 phenotype (Table S1), indicating only 20 QTL were iden-

tified for both a mean phenotype and a variance phenotype.

Most phenotypes had limited to no overlap between QTL asso-

ciated with the mean of the feature and its variance. These

data argue that the genetic architecture of mean and variance

traits in the mouse are largely independent. We compared

GWAS models with and without body length as a fixed effect

and find 296 QTL that are dependent on animal length. We find

194 and 102 QTL in models without and with body length in

model, respectively. We detected 152 QTL that are common in

both models (Figure S10A; Table S1). This comparison allows

us to assign specific QTL to animal anatomy and sets a frame-

work for detecting feature-dependent genetics.

We extracted the genes residing in the identified QTL and

tested for enriched Gene Ontology (GO) terms, Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathways, or Mammalian

Phenotype (MP) Ontology associated with them using the soft-

ware INRICH (Lee et al., 2012). Among the most enriched terms

are the GO term ‘‘positive regulation of synaptic transmission,

glutamatergic (BP)’’ (GO: 0051968) with two QTL for open field

variance traits containing genes associated with this term out

of 31 genes in the genome, and ‘‘proteolysis involved in cellular

protein catabolic process (BP)’’ (GO: 0051603) enriched in the

QTL for pose variance (Figure S10B). These results begin to

outline the genetic landscape of mouse gait and posture in the

open field.
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Figure 6. GWAS results for gait phenotypes

(A) Heritability estimates for each phenotypemean (left) and variance (right). Heritability is calculated as PVE (percent variance explained). Colors indicate posture

(yellow), gait (blue), and open field (salmon) phenotypes.

(B–D) Manhattan plots of all mean phenotypes (B), variance phenotypes (C), and all of them combined (D); colors correspond to the phenotype, with the lowest

p value for the SNP.
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DISCUSSION

Gait and posture are important indicators of health, and are per-

turbed in many neurological, neuromuscular, and neuropsychi-

atric diseases. The goal of this project was to develop a system

that performs pose estimation on mice to extract key gait and

posture metrics in an open field from the top-down view. We

present a solution that allows researchers to adapt a traditional

top-down video imaging system used for open field analysis to

extract gait and posture metrics. Our approach has some clear

advantages as well as limitations. We are able to process a

large amount of data with low effort and cost since the only

data that needs to be captured is top-down grayscale video

of a mouse in an open field, and all-pose estimation and gait

metric extraction are fully automated after that. Top-down

videos have routinely been used in behavioral neurogenetics,

and this method could be applied to archival video data. We

analyzed gait in a strain survey dataset that we partially

analyzed for tracking and grooming behaviors (Geuther et al.,

2019, 2021). Our method allows the animal to move of its own

volition (unforced behavior) in a familiar environment (Jacobs

et al., 2014). One limitation of our approach is that we cannot

measure kinetic properties of gait because we are limiting our-

selves to video (Lakes and Allen, 2016). We also limit ourselves

to a 2D representation of pose because of our monocular

recording configuration. A 3D representation of pose would

allow for the extraction of height metrics from all key points

and would likely provide richer gait phenotypes (Wiltschko

et al., 2015). The decision to use top-down video also means

that forepaw key points are often occluded by the mouse’s

body. The pose estimation network is robust to some amount

of occlusion, as is the case with the hind paws, but the fore-

paws, which are almost always occluded during locomotion,

have pose estimates that are too inaccurate and were excluded

from our analysis. Regardless, in all genetic models that we

tested, hind paw data are sufficient to detect robust differences

in gait and body posture. In addition, we analyze videos at 30 Hz

(frames per second) which is standard for video streams.

Certain behaviors that occur at high speed such as escape or

gallop may be difficult to determine. Kinematic approaches

that view the animal from multiple angles and capture data at

high frame rates may be more appropriate for certain applica-

tions (Machado et al., 2015, 2020). Thus, our methods are not

a replacement for kinematic gait analysis that is carried out

by certain specialized labs. These labs need higher-resolution

approaches with enhanced video and kinetic analysis. Instead,

our method offers a high-throughput assessment of gait in a

commonly used behavior apparatus, the open field. We hope

that our methods will allow these behavior labs to easily access

gait and posture for additional biological insight. In addition, the

ability to analyze large amounts of data in free-moving animals

proves to be highly sensitive, even with very strict heuristic

rules around what we consider to be a stride. Future iterations

of our method could incorporate data from multiple camera an-

gles and with higher frame rates. Even though we share our

training data, code, and trained network weights, the imple-

mentation of our methods requires computational expertise.

Future development efforts need to focus on turnkey solutions
for non-computational labs. This is a problem faced by many of

the advanced phenotypingmethods that have been developed.

Gait and posture are frequently measured in humans as an en-

dophenotype of psychiatric illness (Sanders and Gillig, 2010; Li-

cari et al., 2020; Flyckt et al., 1999; Walther and Strik, 2012). Our

results in mice indicate that gait and posturemeasures are highly

heritable and perturbed in mutants. Specifically, we test neuro-

degenerative (Sod1), neurodevelopmental (Down syndrome,

Mecp2), and ASD models (Cntnap2, Shank3, FMR1, Del4Am)

and find altered gait features in all of these mutants. Others

have also found similar results with neurodegenerative models

(Machado et al., 2015). Of note are the data for Down syndrome.

In humans, miscoordination and clumsiness are prominent fea-

tures of Down syndrome. In mousemodels, this miscoordination

was previously characterized in inkblot gait assays as a disorga-

nized hind footprint. Here, our analysis revealed perturbed

posture differences between control and Tn65Dn mice. Our

approach thus enables the quantitation of a previously qualita-

tive trait. We also explored the extent to which differences in

the emotionality of the animal could account for differences in

gait parameters characterized by its movement in the open field.

We split the data for C57BL/6J and C57BL/6NJ into the periph-

ery (high anxiety) and center (low anxiety) strides and analyzed all

of the gait and posture measures separately. To our surprise, we

found that gait and stride-based posture metrics are identical in

center and periphery. This additional analysis, in which we

restricted the strides to particular speed (20–30 cm/s) and

angular velocity (�20� to 20�/s) bins, found no differences be-

tween periphery and center. It indicated that, in C57BL/6J and

C57BL/6NJ, gait and posture phenotypes are similar whether

or not the animal is anxious. However, the question of indepen-

dence between emotionality and gait mechanisms may require

additional research.

Our analysis of a large number of mouse strains for gait and

posture finds three distinct classes of overall movement. We

find that the reference C57BL/6J and related strains belong to

a distinct cluster separate from other common laboratory and

wild-derived strains. We further explored the group containing

the reference strain and found that the gait metrics are sensitive

enough to distinguish animals between strains belonging to the

C57 family (Figure S8). The main difference is seen in the high

amplitude of tail and nose movement of the C57BL/6J and

related strains. This may be important when analyzing gait and

posture in differing genetic backgrounds. The GWAS revealed

254 QTL for gait and posture in the open field for both mean

and variance phenotypes. We found that the mean and variance

of traits are regulated by distinct genetic loci. We found that most

variance phenotypes show moderate heritability, even for mean

traits with low heritability. Human GWAS have been conducted

for gait and posture, albeit with underpowered samples, which

has led to good estimates of heritability, but only a few signifi-

cantly associated loci (Adams et al., 2016). Similar to rodents,

in humans, the variability of traits shows high heritability (Adams

et al., 2016). In extended GWAS analysis, we find that a large

number of QTL are dependent on body size, emphasizing the

need to include this as a covariate in any gait and posture anal-

ysis. Enrichment analysis showed a loose set of GO terminol-

ogies that are enriched, indicating a wide array of biological
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functions that regulates gait and posture. Altered gait and

posture could result from QTLs that regulate neuronal or non-

neuronal function (e.g., morphometrics). This is challenging to

tease apart because specific genes can be expressed broadly

and have varying functions during development. One could

take a statistical approach to this problem by modeling morpho-

metric features as covariates in GWAS linear mixed models

(LMMs). For instance, if the size of the femur is thought to alter

gait and posture, modeling its size as a parameter in the LMMs

could reveal femur length-specific QTLs. Alternatively, single-

gene studies using tissue or cell-type-specific knockouts may

elucidate the functional roles of specific pathways to address

this question. Our results in themouse argue that awell-powered

study in humans may identify hundreds of genetic factors that

regulates gait and posture.

Limitations of the study
We are unable to precisely detect forepaws and limit our analysis

to rear paws only. Certain symmetry gait metrics cannot be

analyzed. The speed of our video data capture does not allow

the detection of fast movements and could benefit from higher

frame rate video. Video data do not permit the detection of

kinetic events. We also limit our analysis to 2D images, and

events that require data in the z direction are challenging.
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Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-

effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/

jss.v067.i01.

Batka, R.J., Brown, T.J., Mcmillan, K.P., Meadows, R.M., Jones, K.J., and

Haulcomb, M.M. (2014). The need for speed in rodent locomotion analyses.

Anat. Rec. 297, 1839–1864.

Bellardita, C., and Kiehn, O. (2015). Phenotypic characterization of speed-

associated gait changes in mice reveals modular organization of locomotor

networks. Curr. Biol. 25, 1426–1436.

Belmonte, M.K., and Bourgeron, T. (2006). Fragile x syndrome and autism at

the intersection of genetic and neural networks. Nat. Neurosci. 9, 1221–1225.

Billauer, E. (2012). peakdet: peak detection using matlab.http://billauer.co.il/

peakdet.html.

Borelli, G.A., and Maquet, P. (2012). On the Movement of Animals (Springer

Berlin Heidelberg), ISBN 9783642738128.

https://doi.org/10.1016/j.celrep.2021.110231
https://doi.org/10.1016/j.celrep.2021.110231
http://Kumarlab.org
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref1
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref1
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref1
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref1
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref1
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref2
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref2
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref2
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref3
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref3
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref3
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref4
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref4
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref4
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref5
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref5
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref6
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref6
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref7
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref7
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref7
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref9
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref9
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref9
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref10
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref10
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref10
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref11
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref11
http://billauer.co.il/peakdet.html
http://billauer.co.il/peakdet.html
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref13
http://refhub.elsevier.com/S2211-1247(21)01740-X/sref13


Resource
ll

OPEN ACCESS
Braun, M. (1992). Picturing Time: The Work of Etienne-Jules Marey (1830-

1904).

Broom, L., Ellison, B.A., Worley, A., Wagenaar, L., Sörberg, E., Ashton, C.,

Bennett, D.A., Buchman, A.S., Saper, C.B., Shih, L.C., et al. (2017). A transla-

tional approach to capture gait signatures of neurological disorders in mice

and humans. Sci. Rep. 7, 1–17.

Brunner, D., Kabitzke, P., He, D., Cox, K., Thiede, L., Hanania, T., Sabath, E.,

Alexandrov, V., Saxe, M., Peles, E., et al. (2015). Comprehensive analysis of

the 16p11. 2 deletion and null cntnap2 mouse models of autism spectrum dis-

order. PLoS One 10, e0134572.

Chawla, N.V., Bowyer, K.W., Hall, L.O., and Kegelmeyer, W.P. (2002). Smote:

synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357.

Costa, A.C.S., Walsh, K., and Davisson, M.T. (1999). Motor dysfunction in a

mouse model for down syndrome. Physiol. Behav. 68, 211–220.

Crawford, D.C., Acuña, J.M., and Sherman, S.L. (2001). Fmr1 and the fragile x

syndrome: human genome epidemiology review. Genet. Med. 3, 359–371.

Crawley, J.N. (2007). What’s wrong with my mouse?. Behavioral Phenotyping

of Transgenic and Knockout Mice (John Wiley & Sons).

Dang, Q., Yin, J., Wang, B., and Zheng, W. (2019). Deep learning based 2d hu-

man pose estimation: a survey. Tsinghua Sci. Technol. 24, 663–676.

Dell, A.I., Bender, J.A., Branson, K., Couzin, I.D., de Polavieja, G.G., Noldus,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Mouse: 129P3/J The Jackson Laboratory JAX: 000690

Mouse: 129S1/SvImJ The Jackson Laboratory JAX: 002448

Mouse: 129X1/SvJ The Jackson Laboratory JAX: 000691

Mouse: A/J The Jackson Laboratory JAX: 000646

Mouse: AKR/J The Jackson Laboratory JAX: 000648

Mouse: B6129PF1/J The Jackson Laboratory JAX: 100492

Mouse: B6129SF1/J The Jackson Laboratory JAX: 101043

Mouse: B6AF1/J The Jackson Laboratory JAX: 100002

Mouse: B6C3F1/J The Jackson Laboratory JAX: 100010

Mouse: B6CBAF1/J The Jackson Laboratory JAX: 100011

Mouse: B6D2F1/J The Jackson Laboratory JAX: 100006

Mouse: B6SJLF1/J The Jackson Laboratory JAX: 100012

Mouse: BALB/cByJ The Jackson Laboratory JAX: 001026

Mouse: BALB/cJ The Jackson Laboratory JAX: 000651

Mouse: BTBR T+ Itpr3tf/J The Jackson Laboratory JAX: 002282

Mouse: BUB/BnJ The Jackson Laboratory JAX: 000653

Mouse: C3HeB/FeJ The Jackson Laboratory JAX: 000658

Mouse: C3H/HeJ The Jackson Laboratory JAX: 000659

Mouse: C3H/HeOuJ The Jackson Laboratory JAX: 000635

Mouse: C57BL/10SnJ The Jackson Laboratory JAX: 000666

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: C57BL/6NJ The Jackson Laboratory JAX: 005304

Mouse: C57BLKS/J The Jackson Laboratory JAX: 000662

Mouse: C57BR/cdJ The Jackson Laboratory JAX: 000667

Mouse: C57L/J The Jackson Laboratory JAX: 000668

Mouse: C58/J The Jackson Laboratory JAX: 000669

Mouse: CAF1/J The Jackson Laboratory JAX: 100003

Mouse: CAST/EiJ The Jackson Laboratory JAX: 000928

Mouse: CB6F1/J The Jackson Laboratory JAX: 100007

Mouse: CBA/CaJ The Jackson Laboratory JAX: 000654

Mouse: CBA/J The Jackson Laboratory JAX: 000656

Mouse: CByB6F1/J The Jackson Laboratory JAX: 100009

Mouse: CZECHII/EiJ The Jackson Laboratory JAX: 001144

Mouse: DBA/1J The Jackson Laboratory JAX: 000670

Mouse: DBA/2J The Jackson Laboratory JAX: 000671

Mouse: FVB/NJ The Jackson Laboratory JAX: 001800

Mouse: I/LnJ The Jackson Laboratory JAX: 000674

Mouse: KK/HlJ The Jackson Laboratory JAX: 002106

Mouse: LG/J The Jackson Laboratory JAX: 000675

Mouse: LP/J The Jackson Laboratory JAX: 000676

Mouse: MA/MyJ The Jackson Laboratory JAX: 000677

Mouse: MOLF/EiJ The Jackson Laboratory JAX: 000550

Mouse: MRL/MpJ The Jackson Laboratory JAX: 000486

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: MSM/MsJ The Jackson Laboratory JAX: 003719

Mouse: NOD/ShiLtJ The Jackson Laboratory JAX: 001976

Mouse: NON/ShiLtJ The Jackson Laboratory JAX: 002423

Mouse: NOR/LtJ The Jackson Laboratory JAX: 002050

Mouse: NU/J The Jackson Laboratory JAX: 002019

Mouse: NZB/BlNJ The Jackson Laboratory JAX: 000684

Mouse: NZBWF1/J The Jackson Laboratory JAX: 100008

Mouse: NZO/HlLtJ The Jackson Laboratory JAX: 002105

Mouse: NZW/LacJ The Jackson Laboratory JAX: 001058

Mouse: PL/J The Jackson Laboratory JAX: 000680

Mouse: PWD/PhJ The Jackson Laboratory JAX: 004660

Mouse: PWK/PhJ The Jackson Laboratory JAX: 003715

Mouse: RIIIS/J The Jackson Laboratory JAX: 000683

Mouse: SEA/GnJ The Jackson Laboratory JAX: 000644

Mouse: SJL/J The Jackson Laboratory JAX: 000686

Mouse: SM/J The Jackson Laboratory JAX: 000687

Mouse: SWR/J The Jackson Laboratory JAX: 000689

Mouse: TALLYHO/JngJ The Jackson Laboratory JAX: 005314

Mouse: WSB/EiJ The Jackson Laboratory JAX: 001145

Mouse: B6.129P2(C)-Mecp2tm1.1Bird/J The Jackson Laboratory JAX: 0038901

Mouse: B6.Cg-Tg(SOD1*G93A)1Gur/J The Jackson Laboratory JAX: 0044351

Mouse: B6EiC3Sn.BLiA-Ts(1716)65Dn/DnJ The Jackson Laboratory JAX: 0052521

Mouse: B6EiC3Sn.BLiAF1/J The Jackson Laboratory JAX: 0036471

Mouse: B6.129P2-Fmr1tm1Cgr/J The Jackson Laboratory JAX: 0030251

Mouse: B6.129S-Del(7Slx1b-Sept1)4Aam/J The Jackson Laboratory JAX: 0131281

Mouse: B6.129-Shank3tm2Gfn/J The Jackson Laboratory JAX: 0176881

Mouse: B6.129(Cg)-Cntnap2tm1Pele/J The Jackson Laboratory JAX: 0286351

Software and algorithms

Training, validation data, neural network weights This paper https://doi.org/10.5281/zenodo.5708437

Gait extraction code version of record This paper https://doi.org/10.5281/zenodo.5725641

PyTorch (Paszke, 2019) https://pytorch.org/

R R Core Team https://www.r-project.org/

Deposited data

Raw and analyzed data This paper MPD: Kumar4. Mouse Phenome

Database web resource

(RRID:SCR_003212), The Jackson Laboratory,

Bar Harbor, Maine USA. https://phenome.jax.org
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Vivek

Kumar (vivek.kumar@jax.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The training and validation data have been deposited within a Zenodo repository at https://doi.org/10.5281/zenodo.5708437

and are publicly available as of the date of publication.
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d All original code has been deposited under the Kumar Lab’s Github page (https://github.com/KumarLabJax/, https://doi.org/

10.5281/zenodo.5725641) within the deep-hrnet-mouse and gaitanalysis repositories using the open source MIT License.

d All phenotype data has been deposited in Mouse Phenome database under ‘‘Kumar4’’ https://phenome.jax.org/ under

’’Kumar4’’.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All behavioral tests were performed in accordance with approved protocols from The Jackson Laboratory Institutional Animal Care

and Use Committee guidelines. All animals were obtained from JAX repository or bred in a room adjacent to the behavioral testing

room (key resources table). All behavioral protocols have been previously published (Geuther et al., 2019; Kumar et al., 2011). Our

open field arena measures 52 cm by 52 cm by 23 cm. The floor is white PVC plastic and the walls are gray PVC plastic. To aid in

cleaningmaintenance, a white 2.54 cm chamfer was added to all the inner edges. Illumination is provided by an LED ring light (Model:

F&V R300). The ring light was calibrated to produce 600 lux of light in each of our 24 arenas. The strain survey data was published

before and reanalyzed for gait behavior (Geuther et al., 2019, 2021). We excluded animals that had too few strides which dispropor-

tionately affected low activity strains (key resources table). All gait mutants and ASD models were generated in JAX repository and

genotyped prior to shipment to Kumar Lab for testing. Animals were acclimated for at least a week prior to any testing. Prior to open

field testing, animals were moved to the behavior room and allowed to acclimate for 30-60 minutes. White noise was used for testing

to balance the noise between holding and testing rooms. All animals were between 10 and 20 weeks old. The following sexes were

used for each strain: 129P3/J (8M, 15F), 129S1/SvlmJ (13M, 4F), 129X1/SvJ (8M, 7F), A/J (4M, 2F), AKR/J (9M, 8F), B6129PF1/J

(10M, 20F), B6129SF1/J (15M, 9F), B6AF1/J (17M, 18F), B6C3F1/J (12M, 20F), B6CBAF1/J (9M, 9F), B6D2F1/J (12M, 10F),

B6SJLF1/J (5M, 23F), BALB/cByJ (11M, 7F), BALB/cJ (19M, 2F), BTBR T<+>ltpr3<tf>/J (32M, 21F), BUB/BnJ (7M, 8F), C3H/HeJ

(11M, 16F), C3H/HeOuJ (6M, 13F), C3HeB/FeJ (5M, 5F), C57BL/10SnJ (10M, 9F), C57BL/6J (298M, 196F), C57BL/6NJ (126M,

167F), C57BLKS/J (19M, 11F), C57BR/cdJ (3M, 12F), C57L/J (10M, 13F), C58/J (7M, 4F), CAF1/J (8M, 6F), CAST/EiJ (10M, 23F),

CB6F1/J (18M, 9F), CBA/CaJ (15M, 15F), CBA/J (9M, 5F), CByB6F1/J (14M, 4F), CZECHII/EiJ (4M, 7F), DBA/1J (12M, 15F), DBA/

2J (8M, 9F), FVB/NJ (5M, 8F), I/LnJ (6M, 8F), KK/HiJ (5M, 3F), LG/J (3M, 3F), LP/J (15M, 10F), MA/MyJ (7M, 8F), MOLF/EiJ (3M,

6F), MRL/MpJ (4M, 8F), MSM/MsJ (3M, 8F), NOD/ShiLtJ (13M, 12F), NON/ShiLtJ (13M, 14F), NOR/LtJ (7M, 6F), NU/J (5M, 5F),

NZB/BlNJ (5M, 16F), NZBWF1/J (9M, 8F), NZO/HILtJ (6M, 8F), NZW/LacJ (7M, 4F), PL/J (4M, 8F), PWD/PhJ (7M, 5F), PWK/PhJ

(5M, 4F), RIIIS/J (3M, 7F), SEA/GnJ (4M, 3F), SJL/J (4M, 30F), SM/J (8M, 4F), SWR/J (2M, 10F), TALLYHO/JngJ (13M, 9F), WSB/

EiJ (8M, 3F).

METHOD DETAILS

Modifications to HRNet
Wemade somemodifications to the HRNet architecture in order to make it work well for our experimental configuration. We used the

smaller HRNet-W32 architecture rather than HRNet-W48 because it was shown to provide significant speed and memory improve-

ments for only a small reduction in accuracy (Sun et al., 2019). We added two 5x5 transpose convolutions to the head of the network

to match the heatmap output resolution with the resolution of the video input (Figure S1A). Because all of our experiments have a

single mouse in an open field, we do not need to rely on object detection for instancing. We thus eliminated this step from our infer-

ence algorithm, which also leads to clear runtime performance benefits. Instead of performing pose estimation after object detection,

we use the full resolution pose keypoint heatmaps to infer the posture of a single mouse at every frame. This means that for each

480x480 frame of video we generate 12 480x480 heatmaps (one heatmap per keypoint). The maximum value in each heatmap rep-

resents the highest confidence location for each respective point. Thus, after taking the argmax of each of the 12 heatmaps we have

12 (x, y) coordinates.

Neural network training
For training our network, we use the same loss function that is used in the original HRNet description (Sun et al., 2019). For each key-

point label, we generate a 2D gaussian distribution centered on the respective keypoint. We then compare the output of the network

with our keypoint-centered Gaussian and calculate loss as the mean squared difference between our labeled keypoint Gaussian and

the heatmap generated by our network. We train our network over 600 epochs and perform validation at the end of every epoch. The

training loss curves (Figure S1) show a fast convergence of the training loss without an overfitting of the validation loss. We used

transfer learning (Weiss et al., 2016; Tan et al., 2018) on our network in order to minimize the labeling requirements and improve

the generality of our model. We started with the imagenet model provided by the authors of the HRNet paper (hrnet_w32-

36af842e.pth) and froze the weights up to the second stage during training. In order to further improve the generality of our network

we employed several data augmentation techniques during training including: rotation, flipping, scaling, brightness, contrast and oc-

clusion. We train our network using the ADAM optimization algorithm which is a variant of stochastic gradient descent (Kingma and

Ba, 2014). The learning rate is initially set to 53 10�4, then reduced to 5310�5 at the 400th epoch and 5310�6 at the 500th epoch.
Cell Reports 38, 110231, January 11, 2022
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We generated labels that represent a wide diversity of mouse appearances, including variation in coat color, body length and

obesity to ensure that the resulting network operates robustly across these differences. We manually labeled 8,910 frames across

these diverse strains for training. The resulting network is able to track dozens of mouse strains with varying body size, shape

and coat color (Video S1) (Geuther et al., 2019). We calculate the accuracy of our neural network and experimental configuration

over two datasets: a set of 1000 images with results for 200 white mice and 200 dark mice broken out (Figure S2B) as well as a

set of 120 images containing twenty images each from a set of six visually diverse mouse strains (Figure S2C). We provide these

metrics in pixel and centimeter distance units.

Gait extraction
Here we describe our method of extracting gait structure from pose in further detail. The processes of detecting strides begins with

first determining intervals of time where the mouse is moving at sufficient speed for strides to take place. We will call these tracks. To

determine track intervals we threshold for base of tail speed greater than or equal to 5 cm/sec. Through observation we determined

that the base of tail point is highly stable and a good surrogate for overall mouse speed.

The next step is to identify individual steps in both the left hind paw and right hind paw. Initially these steps are determined for each

paw respectively without consideration for the other paw. Later in the process we will pair up left and right steps into strides. The

process for step detection relies on oscillations in speed as can be seen in (Figure 1D). We calculate individual paw speed and

then apply a peak detection algorithm (Billauer, 2012) to identify local maxima in speed. After finding all of the local maxima we

use the surrounding local minima to define a step interval with a toe-off event followed by a foot strike event on either side of the

step. We then filter out any steps whose peak speed does not exceed 15 cm/sec or the overall animal speed (whichever is greater).

Once we have each set of valid steps from left and right hind paws we need to group pairs of steps together to find strides. We use

left hind paw steps to delimit strides. Stride intervals end when the left hind paw step ends and begin at the frame just after the pre-

vious stride. There is an additional constraint that stride intervals are not allowed to extend before or after the containing track. After

we have defined our stride intervals using left hind paw steps we need to associate right hind paw steps with the stride. If we find a

right hind paw step that completes within the given stride interval we then associate that step with the stride. If we cannot find a right

hind step that meets this condition the stride is discarded.

Now that we have all of our stride definitions with associated steps we apply additional filtering to improve the quality and consis-

tency of strides. For our application of statistical and genomic analysis of stride metrics we decided to take a fairly aggressive

approach at removing strides that have potential to degrade quality or introduce inconsistency. All strides at the start and end of

a track are removed. This is done to improve the consistency of gait metrics and avoid introducing variance due to starting and stop-

ping behavior. We also discard strides if the keypoint confidence for Nose, Neck Base, Spine Center, Tail Base, Hind Paw Left, Hind

Paw Right, Tail Middle or Tail Tip (Figure 1G) falls below the threshold of 0.3 for any frame in the stride in order to avoid using low

quality strides.

Corner detection
In order to perform a comparative analysis of gait metrics between center and periphery of the open field arena (Figure S7) we need to

know pixel locations for each of the four corners. Rather than use fixed values which would have been affected by differences in cam-

era placement, we developed a simple corner detector using the same neural network architecture that we developed for pose esti-

mation. The only difference in the network structure is the output; the pose estimation network outputs twelve heatmaps (one per

keypoint) whereas the corner detection network just outputs a single heatmap for detecting corner positions. We trained our corner

detector using 415 annotated images. We tested accuracy on the 27 validation images which use the same 480x480 resolution that

we use for the video in this paper. TheMean Absolute Error (MAE) averaged over the 108 corners from these 27 validation imageswas

1.63 ±0.51 pixels (0.20 ±0.06 cm). In order to generate corner positions for each of our videos we choose a frame from seven different

time points and estimate corner locations at each of these frames. For each corner we then use themedian X and Y values from these

seven measurements as the final value in order to reduce the impact of inaccurate locations which can result from occlusion or other

image noise.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
We have multiple repeated measurements that are collected for each subject (mouse) and each subject has a different number of

strides giving rise to imbalanced data. To address this, we used a linear mixed model (LMM) to dissociate within-subject variation

from genotype-based variation between subjects (Laird and Ware, 1982; Pinheiro and Bates, 2000). Specifically, in addition to the

main effects such as animal size, genotype and age, a random effect that captures the intra-subject variation is included. Finally,

we have multiple repeated measurements at two different ages giving rise to a nested hierarchical data structure. The models

(M1, M2 M3) follow the standard LMM notation with (Genotype, BodyLength, Speed, TestAge) denoting the fixed effects and

(MouseID/TestAge) (test age nested within the animal) denoting the random effect.

M1 : Phenotype�Genotype+TestAge+BodyLength+ ð1 j MouseID =TestAgeÞ
Cell Reports 38, 110231, January 11, 2022 e4
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M2 : Phenotype�Genotype+TestAge+Speed+ ð1 j MouseID =TestAgeÞ
M3 : Phenotype�Genotype+TestAge+Speed+BodyLength+ ð1 j MouseID =TestAgeÞ
In general, we use M1 to detect changes in stride speed and M3 for changes in gait parameters. We include data for M2 in sup-

plement for comparison with previously published data (Figures S3 and S4).

Each gait and ASDmutant were analyzed separately. We analyzeMecp2males and females separately. Having fixed amutant line

to analyze, we used dummy variable encoding to encode Genotype, a categorical covariate with two levels - Control (0) and Mutant

(1), with the corresponding littermate WTs (or another control strain) serving as the reference level. The numeric covariates, Body

length (M1,M2,M3), speed (M2, M3), were normalized using the z-score transformation. We did not include Sex as a covariate in

the model; we found it correlated with body length. As described earlier, we treated all gait metrics as response variables except

in M2 and M3, where we treated stride speed as a covariate. For the linear gait metrics, we considered the following LMM model

for repeated measurements:

yij = xTijb+gi + εij; i = 1;.;n; j = 1;.; ni
gi �N
�
0; s2

g

�
; εij � N

�
0; s2

�

where n is the total number of animals; yij is the jth repeat measurement on the ith animal, ni denotes the number of repeat

measurements on animal i; xij is a p31 vector of covariates such as body length, stride speed, genotype, age; b is a p3 1 vector

of unknown fixed population-level effects; gi is a random intercept which describes subject-specific deviation from the

population mean effect; and εij is the error term that describes the intrasubject variation of the ith subject that is assumed to

be independent of the random effect. We used Type II ANOVA F-test via Satterthwaite’s degrees of freedom method to

test the null hypothesis of no Genotype-based effect and obtain p-values. We fit our LMM models using the lme4 package

in R (Bates et al., 2015).

We modeled the circular gait metrics (phase variables) in Table 1 as a function of linear variables using a circular-linear

regression model. To adjust for linear variables such as body length and stride speed, we include them as covariates in the model.

Analyzing circular data is not straightforward and statistical models developed for linear data do not apply to circular data (Jamma-

lamadaka and Sengupta, 2001). The circular response variables are assumed to have been drawn from a von-Mises distribution with

unknown mean direction m and concentration parameter k. The mean direction parameter is related to the variables X through the

equation

yi � von Misesðmi; kÞ; mi =m+ g
�
xTi g

�
; i = 1;.;n

where yi is the mean circular metric for animal i, gðuÞ= 2tan�1ðuÞ is a link function such that for �N<u<N; � p<gðuÞ<p. The param-

eters m;g1;.;gk and k are estimated via maximum likelihood (Fisher and Lee, 1992). We computed the p-value of no Genotype-

based effect in circular phenotypes using a t-test which is based on asymptotic normality of the maximum likelihood estimators

of the model parameters. The model is fitted using the circular package in R. (Lund et al., 2017)

We used the q-value (FDR adjusted p-value) to adjust for multiple testing across all gait metrics and control the false positive

discovery rate. We reported LOD scores, defined as -log(q-value), in the heatmaps (Figures 3A, 3B, 4A, 4B, S3A, and S4A), and

the q-values in Figure S11B.

The gait features for each animal were adjusted for body length (resp. body length + stride speed) by extracting residuals from a

linear model with body length (resp. body length and stride speed) covariate/s and the gait metrics as response variables. The re-

siduals were then averaged over animals for each strain to form a representative observation for the strain. The input to the k-means

algorithm consisted of amatrix of 62 z-score transformed observations, each corresponding to a strain, on ten gait metrics.We initial-

ized the k-means algorithm several timeswith random points from the data asmeans.We picked the initialization that gave the small-

est total within-cluster sum of squares. We projected the selected k-means output onto the 2D PC (principal components) subspace

to visualize the clustering structure. We performed PCA by applying singular value decomposition (SVD) of the input observations

matrix. We obtained the contributions of different gait features to each PC component using the PC loadings, i.e., the corresponding

eigenvectors obtained from PCA. The number of clusters was chosen based on the gap statistic (Tibshirani et al., 2001). To see the

effect of non-linear embedding, we visualized the clustering structure in a non-linear embedded space using UMAP (McInnes et al.,

2018) with two different initializations (SPCA - scaled PCA, Laplace - Laplacian Eigenmap).
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The R packagemousegwas, previously described in Geuther et al. (2021), was used to compute genome wide associations. Briefly,

the classical mouse strains were used (excluding wild-derived strains), ten individuals from each strain and sex combination were

randomly selected and GEMMA was used with its LMM method. The MDA genotypes were obtained from (https://phenome.jax.

org/genotypes). Body size and sex were used as covariates in the model. The GWAS can be reproduced using the command:
export G=https://raw.githubusercontent.com/TheJacksonLaboratory/mousegwas/

master nextflow run TheJacksonLaboratory/mousegwas -r gait \

–yaml $G/example/gait_nowild_withBL.yaml \

–shufyaml $G/example/gait_shuffle_withBL.yaml \

–input $G/example/gait_paper_strain_survey_2019_11_12.csv \

–outdir gait_output_withBL –clusters 1 \

–addpostp "–colorgroup –meanvariance –set3 –minherit 0.25 \

–loddrop 1.5" –addheatmap "–meanvariance -p 0.1"

nextflow run TheJacksonLaboratory/mousegwas -r gait \

–yaml $G/example/gait_nowild_noBL.yaml \

–shufyaml $G/example/gait_shuffle_noBL.yaml \

–input $G/example/gait_paper_strain_survey_2019_11_12.csv \

–outdir gait_output_noBL –clusters 1 \

–addpostp "–colorgroup –meanvariance –set3 –minherit 0.25 \

–loddrop 1.5" –addheatmap "–meanvariance -p 0.1"

Cell Reports 38, 110231, January 11, 2022 e6
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Figure S1: Deep convolutional neural network for pose estimation. Related to Figure 1. (A) the HRNet-W32 neural network architecture for
performing pose estimation. (B) The inference pipeline which sends video frames into the HRNet and generates twelve keypoint heatmaps as
output. We perform a 2D argmax on the twelve keypoint heatmaps to find the 2D pose coordinates. Also see Video S1. (C) Training loss curves
show network convergence without overfitting.
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Keypoint MAE ±SEM (Pixels) MAE ±SEM (cm)
All 1000 Dark White All 1000 Dark White

All Keypoints 3.27 ±0.05 3.34 ±0.06 3.01 ±0.05 0.41 ±0.01 0.41 ±0.01 0.37 ±0.01
Nose 2.53 ±0.10 2.50 ±0.16 2.23 ±0.11 0.31 ±0.01 0.31 ±0.02 0.28 ±0.01
Ear Left 2.41 ±0.07 2.39 ±0.12 2.12 ±0.10 0.30 ±0.01 0.30 ±0.02 0.26 ±0.01
Ear Right 2.18 ±0.07 1.90 ±0.10 2.08 ±0.11 0.27 ±0.01 0.24 ±0.01 0.26 ±0.01
Neck Base 2.39 ±0.05 2.21 ±0.10 2.24 ±0.09 0.30 ±0.01 0.27 ±0.01 0.28 ±0.01
Forepaw Left 4.14 ±0.09 4.63 ±0.19 4.44 ±0.19 0.51 ±0.01 0.57 ±0.02 0.55 ±0.02
Forepaw Right 4.08 ±0.09 4.79 ±0.20 4.05 ±0.17 0.50 ±0.01 0.59 ±0.02 0.50 ±0.02
Spine Center 3.66 ±0.07 4.41 ±0.16 3.17 ±0.14 0.45 ±0.01 0.55 ±0.02 0.39 ±0.02
Hind Paw Left 5.08 ±0.15 6.38 ±0.36 3.68 ±0.25 0.63 ±0.02 0.79 ±0.04 0.46 ±0.03
Hind Paw Right 4.07 ±0.13 3.79 ±0.30 4.81 ±0.28 0.50 ±0.02 0.47 ±0.04 0.60 ±0.03
Tail Base 2.70 ±0.09 2.90 ±0.23 2.73 ±0.16 0.33 ±0.01 0.36 ±0.03 0.34 ±0.02
Tail Middle 3.24 ±0.12 2.70 ±0.14 2.62 ±0.14 0.40 ±0.01 0.33 ±0.02 0.32 ±0.02
Tail Tip 2.77 ±0.51 1.53 ±0.14 1.91 ±0.14 0.34 ±0.06 0.19 ±0.02 0.24 ±0.02

Keypoint MAE ±SEM (Pixels)
All 120 129P3/J NZO/HILtJ NU/J I/LnJ LP/J TALLYHO/JngJ

All Keypoints 3.44 ±0.08 2.80 ±0.13 3.80 ±0.24 3.55 ±0.18 4.23 ±0.25 3.33 ±0.22 2.91 ±0.13
Nose 1.97 ±0.14 2.02 ±0.23 1.78 ±0.52 2.47 ±0.43 2.73 ±0.36 1.19 ±0.11 1.65 ±0.17
Ear Left 3.89 ±0.22 2.77 ±0.42 3.52 ±0.47 4.66 ±0.31 5.49 ±0.88 3.77 ±0.35 3.14 ±0.30
Ear Right 4.06 ±0.24 3.01 ±0.31 3.50 ±0.53 4.69 ±0.37 5.86 ±1.10 3.28 ±0.29 4.02 ±0.35
Neck Base 2.18 ±0.15 1.66 ±0.16 1.98 ±0.23 2.40 ±0.28 3.50 ±0.72 1.84 ±0.22 1.67 ±0.19
Forepaw Left 4.06 ±0.27 3.10 ±0.40 4.48 ±0.75 3.93 ±0.68 5.72 ±0.80 4.45 ±0.78 2.66 ±0.28
Forepaw Right 3.90 ±0.31 3.17 ±0.39 4.35 ±0.92 3.73 ±0.81 5.18 ±1.10 3.99 ±0.76 2.97 ±0.26
Spine Center 3.84 ±0.20 3.57 ±0.50 3.63 ±0.47 3.63 ±0.43 4.93 ±0.67 3.26 ±0.44 4.04 ±0.37
Hind Paw Left 3.84 ±0.37 2.87 ±0.37 5.36 ±0.58 3.33 ±0.78 3.51 ±1.31 5.34 ±1.25 2.60 ±0.50
Hind Paw Right 4.11 ±0.40 2.65 ±0.37 5.94 ±1.09 4.07 ±0.70 4.54 ±1.07 5.11 ±1.50 2.35 ±0.51
Tail Base 2.96 ±0.32 2.20 ±0.38 4.04 ±1.39 2.60 ±0.74 3.24 ±0.73 3.03 ±0.59 2.68 ±0.47
Tail Middle 4.24 ±0.29 4.47 ±0.66 4.47 ±1.22 4.74 ±0.73 4.20 ±0.44 3.37 ±0.42 4.15 ±0.56
Tail Tip 2.20 ±0.22 2.13 ±0.64 2.49 ±0.72 2.37 ±0.50 1.91 ±0.26 1.32 ±0.22 2.98 ±0.67

Keypoint MAE ±SEM (cm)
All 120 129P3/J NZO/HILtJ NU/J I/LnJ LP/J TALLYHO/JngJ

All Keypoints 0.43 ±0.01 0.35 ±0.02 0.47 ±0.03 0.44 ±0.02 0.52 ±0.03 0.41 ±0.03 0.36 ±0.02
Nose 0.24 ±0.02 0.25 ±0.03 0.22 ±0.06 0.31 ±0.05 0.34 ±0.04 0.15 ±0.01 0.20 ±0.02
Ear Left 0.48 ±0.03 0.34 ±0.05 0.44 ±0.06 0.58 ±0.04 0.68 ±0.11 0.47 ±0.04 0.39 ±0.04
Ear Right 0.50 ±0.03 0.37 ±0.04 0.43 ±0.07 0.58 ±0.05 0.73 ±0.14 0.41 ±0.04 0.50 ±0.04
Neck Base 0.27 ±0.02 0.21 ±0.02 0.24 ±0.03 0.30 ±0.03 0.43 ±0.09 0.23 ±0.03 0.21 ±0.02
Forepaw Left 0.50 ±0.03 0.38 ±0.05 0.55 ±0.09 0.49 ±0.08 0.71 ±0.10 0.55 ±0.10 0.33 ±0.03
Forepaw Right 0.48 ±0.04 0.39 ±0.05 0.54 ±0.11 0.46 ±0.10 0.64 ±0.14 0.49 ±0.09 0.37 ±0.03
Spine Center 0.48 ±0.03 0.44 ±0.06 0.45 ±0.06 0.45 ±0.05 0.61 ±0.08 0.40 ±0.05 0.50 ±0.05
Hind Paw Left 0.48 ±0.05 0.36 ±0.05 0.66 ±0.07 0.41 ±0.10 0.44 ±0.16 0.66 ±0.16 0.32 ±0.06
Hind Paw Right 0.51 ±0.05 0.33 ±0.05 0.74 ±0.13 0.50 ±0.09 0.56 ±0.13 0.63 ±0.19 0.29 ±0.06
Tail Base 0.37 ±0.04 0.27 ±0.05 0.50 ±0.17 0.32 ±0.09 0.40 ±0.09 0.37 ±0.07 0.33 ±0.06
Tail Middle 0.52 ±0.04 0.55 ±0.08 0.55 ±0.15 0.59 ±0.09 0.52 ±0.05 0.42 ±0.05 0.51 ±0.07
Tail Tip 0.27 ±0.03 0.26 ±0.08 0.31 ±0.09 0.29 ±0.06 0.24 ±0.03 0.16 ±0.03 0.37 ±0.08

Figure S2: Validation of pose estimation and gait extraction across strains and key points. Related to Figure S1 and 1.(A) Hildebrand plots for hind
paws over five diverse strains organized in columns. Each of these is aggregated over multiple strides from multiple individuals. The top row is
separated into different angular velocity bins along the x axis showing how the stride pattern changes with angular velocity and the x axis for the
bottom row is separated into stride speed bins showing how the stride pattern changes with speed. (B) We show errors in pixels and centimeters given
for all keypoints grouped together and broken out for specific keypoint types. We use 1000 of our validation images to calculate Mean Absolute
Error (MAE) with a Standard Error of Mean (SEM). We also calculate MEA and SEM for 200 dark colored mice and 200 white mice to demonstrate
that our pose estimation network is robust to visual difference. (C) We show errors in pixels and centimeters given for all keypoints grouped together
and broken out for specific keypoint types. We use 120 validation images (20 from each of the six strains shown) to calculate Mean Absolute Error
(MAE) with a Standard Error of Mean (SEM). The mice chosen vary significantly in appearance in order to demonstrate the networks robustness
to diversity. We include off-white (129P3/J), black obese (NZO/HILtJ), nude (NU/J), piebald (I/LnJ), agouti (LP/J) and moderately obese albino
(TALLYHO/JngJ) mice. These are the same strains for which we render pose estimation in our supplementary video: VideoS1_diverse-mouse-
pose.mp4.
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Figure S3: Supplemental analysis of gait mutants described in Figure 3. (A) Heat map summarizing the effect sizes and q-values obtained from
model M3: Phenotype ∼ Genotype + TestAge + Speed + BodyLength + (1|MouseID/TestAge). (B) Kernel density (left) and cumulative density
(right) curves of stride speed across all strains. (C) A plot showing positive association between body length and sex across different gait mutant
strains. (D) Body length (M1), stride speed (M2), body length and stride speed (M3) adjusted residuals for limb duty factor and step length for
Mecp2 gait mutant. (E) Body length (M1), stride speed (M2), body length and stride speed (M3) adjusted residuals for step width and stride length
for Mecp2 gait mutant. Related to Figure 3.
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Figure S4: Supplemental analysis of ASD mutants described in Figure 4 (A) Heat map summarizing the effect sizes and q-values obtained from
model M2: Phenotype ∼ Genotype + TestAge + Speed + (1|MouseID/TestAge). (B) Kernel density curves (estimates) of stride speed across all
strains. (C) A plot showing positive association between body length and sex across different gait mutant strains. (D) Body length (M1), stride speed
(M2), body length and stride speed (M3) adjusted residuals for step length and stride length for Shank3 mutants. (E) Body length (M1), stride speed
(M2), body length and stride speed (M3) adjusted residuals for step length and stride length for Del4Aam. Related to Figure 4.
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Figure S5: Body length adjusted phenotypes (residuals) are compared across 62 strains in the strain survey. The box plots are displayed in an
ascending order with respect to the median measure from left to right. Each row corresponds to a different gait phenotype. Related to Figure 5.
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Figure S6: Extended unsupervised clustering analysis of Cntnap2 and Strain survey data. We performed PCA on z-score transformed (A) body-
length adjusted gait data, (B) body-length + speed adjusted gait data. Related to Figures 4 and 5. In (A), although there was some overlap between
the controls and mutants along PC1, the gait phenotypes combined to separate many mutants from controls along PC1. In (B), the speed-adjusted gait
phenotypes were unable to separate mutants from controls since speed was an important contributor to PC1 in (A). Removing any other important
contributors to PC1 (stride length, step length, step width, nose, and base tail) by regressing them out from other phenotypes had a similar adverse
effect (results not shown) on the ability to separate controls from mutants along PC1. (C) A scatterplot of the strain survey clusters with body length
adjusted gait features as input is shown without the shaded areas to present a more unbiased representation of clusters in 2D PCA subspace. (D) For
the k-means clusters (Figure 5C), the choice of three clusters was optimal as the gap statistic (top) (Tibshirani et al., 2001) shows a clear peak at
three clusters and the within-sum-of-squares (bottom) shows a drop at 3 clusters. (E) To see the effect of non-linear embedding, we visualized the
clustering structure in a non-linear embedded space using UMAP with two different initializations (Scaled PCA, Laplace). We projected the strains
to the two-dimensional UMAP space. Using the cluster memberships obtained from the k-means algorithm, we found that the UMAP dimensions
preserved the separation between the three clusters discovered using the k-means.
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Figure S7: A comparative analysis of gait metrics between center and periphery of the open field arena in strains C57BL/6J and C57BL/6NJ. Related
to Figure 2. (A) A schematic diagram of the open field arena marks the center and periphery (outer 10%) as the central 64% area (purple) and
outermost 36% area (blue). (B) Top panel shows open field with each dot representing a stride of an animal in the center (red) and periphery (blue).
Bottom panel shows the number of strides in the center versus periphery for the two strains. (C) Statistical comparison of linear gait metrics between
center and periphery. We fit the linear mixed model Phenotype∼ BodyLength + TestAge + Sex + Location + (1|MouseID) + (1|Location) where
BodyLength, TestAge, Sex, Location are fixed effects and MouseID, Location are crossed random effects. To test the the null hypothesis of no effect
of Location (no difference between periphery and center) on linear gait metrics, we use the F test with Satterthwaite’s approximation method. Our
analysis revealed no significant differences across all linear gait metrics. (D) Comparison of circular gait metrics between center and periphery for
the two strains showed that the phase measures are almost superimposed for base tail, nose and tip tail.
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Figure S8: Extended analysis of strains belonging to Cluster 2 in strain survey analysis. Related to Figure 5. We sought to determine the gait metrics’
sensitivity to distinguish among similar strains. We took two approaches: a supervised dimension reduction approach and a multi-class classification
approach. For the former, we used linear discriminant analysis (Rao, 1948) to quantitatively distinguish between strains C57BL/6J, C57BLKS/J,
C57L/J, C57BL/6NJ, C57BR/cdJ, C57BL/10SnJ, and C58/J. First, we adjusted the gait metrics for animals’ body length by fitting a linear model
with body length as a covariate. Next, we applied principal component analysis (PCA) to the residuals obtained from the linear model to address
multicollinearity and prevent overfitting with LDA. We used all principal components (PCs) in the subsequent LDA algorithm to avoid the risk of
throwing away critical discriminative dimensions. (A) We found that LDA separated strains when we embedded the PCs in a lower-dimensional
2D space for visualization purposes. Individual dots represent animals and dots (labeled with strain names) represent the mean/average coordinates
of all animals belonging to the strain. Next, we multiplied the eigenvectors obtained from PCA with the LDA loadings matrix to identify the gait
metrics that contributed to the separation between strains. For example, we found the base tail lateral displacement (Base Tail LD) to be a significant
contributor to separating animals between strains C57BL/6N and C57BL/6NJ. We found similar posture differences between these two strains in
our exploratory analysis earlier (see Figure 2H,I). We found the features Base Tail LD, Tip Tail LD, step width, stride speed, stride length, limb duty
factor to contribute most strongly to LD2, which separated other C57 strains from C57BL/6N and C57BL/6NJ. For the second approach, we used a
multi-class logistic regression (‘one versus rest’) model to predict the strain membership for each animal from its body length-adjusted gait metrics.
First, we used stratified sampling to split the data into two parts: train (70%) and test (30%). Next, we used the popular resampling-based SMOTE
algorithm (Chawla et al., 2002) to re-balance the number of animals for each strain in the training set. We trained the classifier on the re-balanced
training set and tested the performance accuracy on the test set. We performed 100 different splits on the data to allow for a proper assessment
of uncertainty in our test set results. (B) We summarized our results using a normalized classification accuracy matrix that shows the proportion
of correctly classified (diagonal) and misclassified (off-diagonal) animals in each strain (row). For example, for C57BL/10SnJ (first row), 56% of
the test set animals were correctly classified as C57BL/10SnJ. The classifier misclassified 26% (resp. 11%) of the C57BL/10SnJ in the test set as
C57BL/6J (resp. C57BL/6NJ). (C,D) We performed similar analyses as in (A,B) except the gait metrics were adjusted for both body length and
stride speed of the animals.



Figure S9: GWAS analysis of pose and gait measures without body length. PVE (A) and Manhattan plots (B-D). Related to Figure 6.
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Figure S10: Comparison of QTL models with and without body length in the LMM and candidate INRICH analysis. Related to Figure 6. (A) The
scores for the model with body length as a covariate are on the y axis while the scores for the same peaks are on the x axis. Body length-independent
QTL were identified using both models and lie on the diagonal, QTL that are body length specific were detected using the model not including body
length and were lost when including the body length. A few QTL that were identified only when including body length were supposedly masked by
body length differences. (B) INRICH results for GO terms, KEGG pathways and mouse phenotypes. The heatmaps contain terms and phenotypes
that passed the 0.1 corrected p-value threshold.



M1 : Phenotype � Genotype + TestAge + BodyLength + (1 | MouseID/ TestAge)
Phenotype Sod1 Ts65Dn Mecp2 (Het) Mecp2 (Hemi) Cntnap2 Fmr1 Shank3 Del4Aam

Effect size padj Effect size padj Effect size padj Effect size padj Effect size padj Effect size padj Effect size padj Effect size padj
Angular Velocity 0.02 0.69 0.04 0.69 0.02 0.69 -0.25 0.37 0.51 0.79 0.13 0.83 0.13 0.83 -0.17 0.83
Speed -0.21 0.00 0.15 0.04 -0.38 0.00 -0.53 0.00 1.07 0.00 0.64 0.00 -0.90 0.00 0.77 0.02
Limb Duty 0.23 0.00 -0.10 0.21 0.03 0.74 0.27 0.18 0.02 0.00 0.01 0.10 0.00 0.84 -0.01 0.41
Step Length -0.12 0.34 -0.24 0.02 -0.10 0.37 -0.38 0.28 -0.19 0.13 0.03 0.77 0.23 0.08 -0.18 0.08
Step Width -0.09 0.56 0.59 0.00 0.16 0.48 -0.79 0.02 -0.17 0.01 -0.08 0.15 -0.04 0.50 -0.01 0.90
Stride Length -0.30 0.01 -0.35 0.01 -0.33 0.06 -0.60 0.01 -0.59 0.00 0.04 0.68 0.13 0.25 -0.23 0.08
Temporal Symmetry -0.09 0.24 0.12 0.15 -0.00 0.96 0.09 0.64 0.00 0.66 -0.01 0.21 -0.01 0.21 -0.00 0.87
Amplitude Tail Base 0.23 0.11 -0.46 0.03 0.34 0.11 0.40 0.09 -0.01 0.01 -0.01 0.08 -0.00 0.45 -0.02 0.01
Amplitude Tail Tip 0.16 0.12 -0.37 0.00 0.50 0.01 0.99 0.00 0.02 0.29 -0.03 0.27 -0.06 0.02 -0.04 0.14
Amplitude Nose 0.02 0.73 -0.16 0.16 0.09 0.53 0.09 0.53 -0.02 0.00 -0.01 0.07 -0.00 0.49 -0.01 0.07
Phase Tail Base 0.02 0.11 -0.05 0.00 0.00 0.39 0.04 0.01 0.07 0.00 0.02 0.19 0.00 0.49 -0.02 0.24
Phase Tail Tip 0.09 0.16 -1.37 0.00 -0.17 0.02 0.50 0.00 0.71 0.00 -0.03 0.39 -0.12 0.15 0.52 0.00
Phase Nose -0.06 0.01 -0.64 0.00 -0.05 0.06 -0.18 0.00 -0.09 0.00 -0.01 0.28 -0.12 0.00 -0.11 0.04

M2 : Phenotype � Genotype + TestAge + Speed + (1 | MouseID/ TestAge)
Angular Velocity 0.02 0.68 0.03 0.68 0.02 0.68 -0.14 0.28 0.35 0.96 0.16 0.96 0.05 0.96 -0.04 0.96
Limb Duty 0.14 0.12 -0.03 0.71 -0.10 0.36 -0.23 0.02 0.03 0.00 0.02 0.01 -0.01 0.12 0.00 0.85
Step Length -0.08 0.66 -0.23 0.15 0.03 0.83 -0.77 0.00 -0.40 0.00 0.01 0.91 0.26 0.05 -0.27 0.05
Step Width -0.12 0.59 0.59 0.00 0.14 0.59 -1.12 0.00 -0.21 0.00 -0.06 0.36 -0.05 0.36 -0.01 0.87
Stride Length -0.24 0.16 -0.39 0.02 -0.11 0.59 -1.09 0.00 -0.91 0.00 -0.01 0.94 0.21 0.11 -0.38 0.08
Temporal Symmetry -0.04 0.65 0.08 0.45 0.04 0.65 0.34 0.00 0.00 0.66 -0.02 0.09 -0.01 0.66 -0.01 0.66
Amplitude Tail Base 0.21 0.15 -0.45 0.03 0.28 0.15 0.30 0.15 -0.01 0.01 -0.01 0.10 -0.00 0.36 -0.02 0.01
Amplitude Tail Tip 0.13 0.17 -0.37 0.00 0.46 0.01 0.90 0.00 0.02 0.24 -0.03 0.24 -0.07 0.01 -0.04 0.13
Amplitude Nose -0.00 0.95 -0.14 0.21 0.05 0.87 0.04 0.87 -0.02 0.00 -0.00 0.14 -0.00 0.23 -0.01 0.14
Phase Tail Base 0.01 0.22 -0.05 0.00 0.01 0.34 0.00 0.08 0.09 0.00 0.02 0.19 -0.00 0.48 -0.02 0.26
Phase Tail Tip 0.00 0.29 -4.55� 0.01 -10.50� 0.06 0.28 0.00 0.81 0.00 -0.10 0.14 -0.11 0.14 0.89 0.00
Phase Nose -0.08 0.05 -8.14� 0.00 -0.09 0.13 -4.12� 0.00 -0.30 0.00 -0.03 0.16 -0.21 0.01 -0.09 0.07

M3 : Phenotype � Genotype + TestAge + Speed + BodyLength + (1 | MouseID/ TestAge)
Angular Velocity 0.02 0.67 0.03 0.67 0.02 0.67 -0.24 0.42 0.54 0.68 0.11 0.98 0.05 0.98 0.02 0.98
Limb Duty 0.14 0.13 -0.03 0.79 -0.12 0.26 0.04 0.79 0.03 0.00 0.02 0.01 -0.01 0.16 0.00 0.78
Step Length -0.07 0.65 -0.27 0.01 -0.01 0.92 -0.28 0.55 -0.26 0.04 -0.01 0.91 0.28 0.03 -0.24 0.03
Step Width -0.11 0.49 0.60 0.00 0.12 0.49 -0.81 0.02 -0.17 0.01 -0.08 0.17 -0.04 0.39 0.00 0.98
Stride Length -0.22 0.07 -0.40 0.00 -0.18 0.32 -0.41 0.07 -0.73 0.00 -0.05 0.66 0.24 0.03 -0.32 0.02
Temporal Symmetry -0.05 0.41 0.09 0.31 0.06 0.41 0.18 0.31 -0.00 0.59 -0.02 0.11 -0.01 0.59 -0.01 0.59
Amplitude Tail Base 0.21 0.19 -0.45 0.03 0.28 0.19 -0.35 0.23 -0.02 0.00 -0.01 0.11 -0.01 0.34 -0.02 0.00
Amplitude Tail Tip 0.13 0.17 -0.37 0.00 0.46 0.01 0.90 0.00 0.02 0.24 -0.03 0.24 -0.07 0.01 -0.04 0.13
Amplitude Nose -0.00 0.95 -0.14 0.21 0.05 0.87 0.04 0.87 -0.02 0.00 -0.00 0.14 -0.00 0.23 -0.01 0.14
Phase Tail Base 0.01 0.34 -0.05 0.00 0.01 0.34 0.00 0.34 0.09 0.00 0.02 0.19 0.00 0.47 -0.02 0.26
Phase Tail Tip 0.00 0.03 -2.96� 0.00 -0.71 0.22 0.21 0.01 0.31 0.00 -0.29 0.01 0.07 0.35 0.39 0.00
Phase Nose -0.08 0.05 -5.60� 0.00 -275.28� 0.22 -8.24� 0.00 -0.38 0.00 -0.03 0.16 -225.04 0.02 -0.13 0.08

Gait Mutants
Strain Sex BodyLength (cm) Correlation BodyWeight (g)

Control Mutant r Control Mutant

Sod1 M 6.16 ± .15 6.23 ± .26 0.48 28.90 ± 2.69 26.41 ± 2.25
F 5.53 ± .31 5.47 ± .32 0.76 21.74 ± 2.38 20.08 ± 1.84

Ts65Dn M 5.90 ± .29 5.75 ± .37 0.73 30.46 ± 4.16 29.39 ± 6.39
F 5.55 ± .24 5.77 ± .42 0.73 23.28 ± 2.20 25.51 ± 6.59

Mecp2 M 5.69 ± .23 4.82 ± .31 0.94 23.53 ± 1.77 15.68 ± 1.81
F 5.25 ± .35 5.33 ± .37 0.91 19.31 ± 3.09 19.86 ± 3.27

Autism Mutants

Cntnap2 M 6.03 ± .37 5.56 ± .28 0.72 28.28 ± 1.95 23.95 ± 1.71
F 5.65 ± .25 5.41 ± .29 0.72 22.69 ± 2.05 19.40 ± 0.97

Fmr1 M 6.03 ± .37 6.17 ± .20 0.77 28.28 ± 1.95 29.49 ± 1.37
F 5.65 ± .25 5.66 ± .17 0.47 22.69 ± 2.05 21.01 ± 1.12

Shank3 M 6.03 ± .37 6.00 ± .11 0.75 28.28 ± 1.95 28.24 ± 1.00
F 5.65 ± .25 5.60 ± .23 0.70 22.69 ± 2.05 21.60 ± 1.70

Del4Aam M 6.42 ± .36 6.18 ± .51 0.70 33.13 ± 3.21 23.22 ± 2.43
F 5.50 ± .29 5.84 ± .49 0.70 21.29 ± 1.49 18.16 ± 2.32

A

B

Figure S11: Body Weight and model results. Related to Figures 3 and 4. (A) Summary data for body length and weight of animals in our
experiments. (B) Summary of effect sizes and q-values (FDR-adjusted p-values, padj) obtained from models M1,M2,M3 for all phenotypes for both
gait and autism strains.
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