Skeleton-Guided-Translation: A Benchmarking Framework for Code Repository Translation with Fine-Grained Quality Evaluation

Anonymous ACL submission

Abstract

Code translation benchmarks are essential for evaluating the accuracy and efficiency of LLM-based systems. Existing benchmarks mainly target individual functions, overlooking repository-level challenges like intermodule coherence and dependency management. Recent repository-level efforts exist, but suffer from poor maintainability and coarse evaluation granularity. We introduce Skeleton-Guided-Translation, a framework for benchmarking Java-to-C# translation at the repository level, featuring fine-grained quality evaluation. It follows a two-step process: first translating repository "skeletons", then refining the entire repository guided by these skeletons. Based on this, we present TRANSREPO-BENCH, the first test-driven benchmark of high-quality Java repositories paired with C# skeletons, unit tests, and build configurations. Our adaptive unit tests support multiple and incremental translations without manual tuning, enhancing automation and scalability. We also propose finegrained metrics that evaluate translation quality per test case, overcoming limitations of binary metrics in distinguishing build failures. Evaluations using TRANSREPO-BENCH reveal issues like broken cross-file references, showing that our structured approach reduces dependency errors and preserves interface consistency.

1 Introduction

006

007

011

017

027

Large language models (LLMs) are reshaping software development, driving system modernization and legacy code migration. For example, migrating C to Rust improves safety (Matsakis and Klock, 2014), and frameworks like TensorFlow require synchronized multi-language updates. Evaluating LLMs in migration tasks is key to assessing reliability. Benchmarks provide quantitative insights for comparison and improvement, but existing ones focus on function-level tasks or competition-style problems (Yan et al., 2023; Lu et al., 2021; Khan

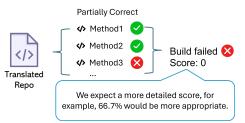


Figure 1: A more fine-grained quality evaluation to evaluate translated repositories is needed.

et al., 2024), ignoring real-world complexities. Repository-level translation is essential for managing dependencies, structure, and interconnected components (Jiao et al., 2023), requiring reliable benchmarks to assess model performance.

045

049

051

053

054

058

060

061

062

063

064

065

066

067

068

069

071

072

A major challenge in repository-level code translation is the absence of a systematic framework that enables fine-grained control over maintainability. For instance, updating parts of a Java-based SDK often requires re-translating large portions of the corresponding C++ codebase, making small changes costly. Without fine-grained control, maintainability suffers.

Another challenge is the lack of repository-level parallel corpora, complicating automated verification. Line-by-line metrics like codeBLEU (Ren et al., 2020) lack functional validation, and automatic test generation remains unreliable (Eniser et al., 2024). A practical alternative is translating unit tests from the source library for systematic validation. However, ensuring test accuracy and consistency with translated code interfaces is crucial for reliable verification.

The third challenge is that current metrics often miss nuanced translation outcomes, reducing usability. RepoTransBench (Wang et al., 2024), for example, uses a binary build success metric, ignoring partial successes. As Figure 1 shows, this oversimplifies performance by neglecting cases where some components translate correctly while others

1

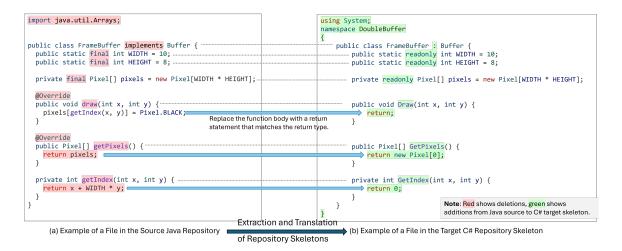


Figure 2: Example Code Snippets of Translation Input with Corresponding Skeleton

fail. Schaeffer et al. (Schaeffer et al., 2023) warn that threshold-based metrics can create misleading performance leaps. In contrast, continuous metrics, such as the percentage of successfully translated modules (e.g., 66.7%), improve usability by identifying failures, guiding fixes, and providing smoother, more reliable insights.

Our Contributions

081

096

101

102

To address these challenges, we introduce Skeleton-Guided-Translation, a framework for benchmarking repository-level code translation with finegrained quality evaluation. Our two-step process first translates the repository skeleton to define structure and interfaces, then populates it while indexing dependencies for unit tests. Skeletons are simplified versions of repositories with preserved structure and method signatures, but with method bodies replaced by defaults (e.g., return null). By providing unified unit tests, this design facilitates fair and consistent comparison across models during evaluation. Based on our framework, we present TRANSREPO-BENCH, the first test-driven benchmark to provide fine-grained evaluation, overcoming limitations of existing benchmarks. Specifically:

> • We introduce Skeleton-Guided-Translation,¹ a novel framework for benchmarking repositorylevel code translation with fine-grained evaluation metrics. Complementing this, our benchmark TRANSREPO-BENCH, the first test-driven

repo-level translation benchmark, provides a finegrained evaluation by scoring individual test cases based on unit tests and their associated code, offering more meaningful feedback than binary metrics.

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

- High-Quality Open-Source Repository Benchmark: TRANSREPO-BENCH features highquality open-source Java libraries and their C# translations, including unit tests and configurations. Designed for translation and fine-grained evaluation, it enables researchers to assess models in realistic repository-level scenarios.
- Evaluation of Advanced Models: TRANSREPO-BENCH is validated through extensive evaluations of classic and state-of-the-art models, offering detailed performance analysis. Our benchmark reveals that even SOTA LLMs reach only 26.65% accuracy under realistic repository conditions.

2 Motivation

In this section, we use an example to illustrate the challenges involved in building a repositorylevel code translation benchmark and explain our solutions more effectively.

2.1 Challenges in Repository Translation

Lack of a Systematic Translation Framework. Figure 2 presents an example of LLM-based Java-to-C# translation, underscoring the need for a systematic framework. Suppose the Java code in Figure 2(a) has already been translated. If a new method is later added to the Java FrameBuffer class, re-translating the updated code with an LLM is likely to produce an inconsistent interface compared to the previous version. This can invalidate

¹The source code implementing Skeleton-Guided-Translation, along with all code samples in our benchmark TRANSREPO-BENCH , are available at https: //anonymous.4open.science/r/TransRepo-bench.

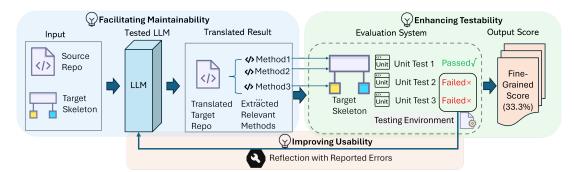


Figure 3: Framework of Our Evaluator.

existing unit tests due to mismatched signatures or missing targets. The root cause is the lack of fine-grained incremental translation, where even minor changes may require re-generating the entire class or related components.

136

138 139

140

141

142

143

145

146

147

148

149

150

151

152

153

154

155

157

158

159

163

164

165

168

170

171

172

173

174

Lack of Parallel Corpora. Repository-level translation struggles with misaligned source and target files, complicating cross-language verification. For example, validating the C# code translated from Java code (Figure 2(a)) is challenging without existing ground truth. One solution is translating high-coverage Java tests into C#, but preserving intent, coverage, and reliability remains difficult. How to translate a set of unit tests once and use them to evaluate multiple independent translations by LLMs—or to compare translations generated by different models—is also a significant challenge.

Lack of a Fine-Grained Evaluation Metric. Relying on coarse metrics (e.g., whether a repository builds) limits developers' ability to diagnose translation issues. For instance, if Draw is mistranslated by calling getIndex instead of GetIndex, the compilation will fail, making it impossible to evaluate correctly translated functions like GetPixels. This binary pass/fail approach obscures partial successes and forces manual debugging. Granular metrics—such as module-level correctness or function fidelity—would help pinpoint errors, streamlining debugging and refinement.

2.2 Solution: Standardizing Code Repository Translation with Fine-Grained Evaluation

Figure 3 illustrates our solution. To align translation with testing and enable fine-grained evaluation, we introduce a target repository "skeleton" during translation. This guides LLMs to focus on accurate dependencies and interfaces. The skeleton is incrementally populated with partial results, allowing execution-based assessment of translation quality. *Facilitating Maintainability*. Figure 2(b) illustrates a "target C# repository skeleton" in our framework. Unlike the fully translated Java code in Figure 2(a), this skeleton defines interfaces while leaving method bodies mostly empty. This approach improves maintainability: the C# skeleton enables incremental updates by aligning interfaces first, avoiding full re-translation.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

198

199

200

201

202

204

205

206

209

210

211

212

Enhancing Testability. Building unit tests on these skeletons significantly improves testability. Because the structural and interface definitions in both repositories match, any unit tests originally designed for the Java code can be adapted to validate the C# skeleton. Provided the translated C# code is inserted into the appropriate skeleton methods, it can be reliably evaluated by the unit tests.

Improving Usability. The framework's finegrained control improves usability by enabling targeted verification. If Draw is mistranslated and fails to compile, unit tests for GetPixels and GetIndex can still run within the skeleton (Figure 3). This ensures their correctness despite errors elsewhere. Unlike coarse build-or-fail metrics, skeleton-based testing reveals partial successes, streamlining debugging and evaluation.

3 TRANSREPO-BENCH Benchmark

As shown in Figure 3, users receive the source repository and target skeleton, guiding LLMs to generate a complete target repository. Correctness is verified using the target's unit tests within the testing environment. This section presents the benchmark content, details TRANSREPO-BENCH's construction, and introduces our fine-grained evaluation design.

3.1 Benchmark Overview

Each TRANSREPO-BENCH translation task includes a source repository and its evaluation setup, structured as <source repository, target skeleton, target unit tests, testing environment>. While we

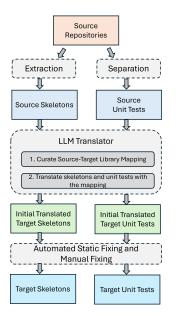


Figure 4: Benchmark construction workflow from extraction to final target skeletons and unit tests via mapping, translation, and fixing.

currently focus on Java-to-C# translation in our experiments, the proposed test-anchored skeleton methodology is language-agnostic and can generalize to other language pairs such as Python-Rust.

213

214

215

216

218

219

221

224

226

227

231

240

241

242

As shown in Figure 2, the translation task input includes Java source repositories for translation and a target repository skeleton, which serves as a interface "contract" for evaluation. This skeleton retains the original file structure, dependencies, and static values but replaces all functions with trivial implementations (e.g., a single return statement) to ensure successful compilation. The evaluation setup consists of unit tests for the target repository and the required testing configuration files.

TRANSREPO-BENCH includes 13 tasks for translating code repositories. Appendix A.1 provides details on repository features like class, method, and line counts, plus test coverage. The data highlights diverse complexities, from small repositories to large ones with extensive methods and coverage, ensuring robust evaluation.

3.2 Benchmark Construction

This section details the benchmark construction process (Fig. 4). We first describe source dataset collection (§3.2.1), then outline skeleton extraction and translation (§3.2.2). Next, we explain unit test acquisition (§3.2.3) and conclude with testing environment setup (§3.2.4). Overall, the construction process required approximately 340 person-hours of manual and semi-automated effort. While users of TRANSREPO-BENCH do not need to construct skeletons manually, building new benchmarks based on our framework does involve generating new skeletons and tests. This process—described below—includes manual validation and test environment setup, which ensures high-quality evaluation infrastructure. 243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

281

282

283

284

285

287

290

291

3.2.1 Source Repository Collection

The source dataset is curated from open-source GitHub projects meeting these criteria: (1) 100+ stars, (2) a testing workflow, and (3) locally passing tests. We chose a mature and well-tested collection of repositories from *java-design-patterns*, a Java library featuring comprehensive design pattern implementations and reliable test execution.

3.2.2 Skeleton Extraction and Translation

Repository skeletons are simplified versions where all function implementations (except in test files) are replaced with trivial return statements, ensuring successful compilation while preserving file structure, dependencies, interfaces, and static values. Function bodies return type-matching placeholders (e.g., return 0; for int, return null; for objects). Constructors are left empty, and static blocks retain only assignments. These skeletons are automatically extracted using Tree-sitter scripts.

Skeletons are translated into the target language using GPT-40, but most fail to compile, requiring extensive manual fixes. As shown in the Appendix A.1, "Skeleton Fix Time" quantifies this effort. To ensure skeleton correctness, two experienced engineers manually verified the functional equivalence between Java and C# skeletons across 13 repositories over 72 person-hours.

Our framework assigns three roles to skeletons: (1) for benchmarking, we provide pre-built skeletons to ensure consistent comparisons, requiring no user effort; (2) for creating new benchmarks, users need to build new skeletons for target languages, either manually or semi-automatically; and (3) in real-world translation, skeletons are optional but help preserve structure, support incremental translation, and enable unit testing.

3.2.3 Unit Test Translation

We translate source repository unit tests into the target language using GPT-40 and NUnit. However, most fail to compile, requiring extensive manual fixes to ensure correct validation of the source code. To verify semantic consistency, we ran Java tests on 292the Java skeleton and translated C# tests on the C#293skeleton, observing identical results. The unit tests294achieve 96.14% Java code coverage using JaCoCo295and 94.8% C# line coverage with Coverlet.

3.2.4 Testing Environment Construction

297

299

301

304

306

310

311

312

313

314

316

317

318

319

321

323

324

325

327

330

335

336

339

We set up a testing environment by defining a Docker image, installing dependencies, and running unit tests. For our process, we create a YAML build configuration file for the translated C# project, based on the original Java build file.

This step is mostly manual, using the translated C# skeleton as a reference. A large language model (e.g., GPT-40) assists in converting the Java build file to C#, which is then refined for functionality.

To reduce manual effort and expand our framework's usability, we provide supporting resources: static repair scripts for skeletons and unit tests, along with automated configuration scripts for C# projects. These tools enhance efficiency, but their limitations required notable manual intervention.

3.3 Fine-Grained Evaluation Metrics Design

To refine user-translated code evaluation, we use unit tests for scoring. Prior attempts to translate entire repositories often failed at compilation, preventing test execution. Pan et al. (Pan et al., 2024) report 77.8% of large-model translation failures stem from compilation errors, obscuring correct translations and hindering evaluation. To mitigate this, we extract and execute test-relevant code within a guaranteed-compilable skeleton. Translated functions are inserted, then built and tested using dotnet build and dotnet test, ensuring granular scoring unaffected by unrelated errors.

> Our evaluation uses two metrics: *build success rate*, the fraction of compilable unit tests, and *unit test success rate*, the fraction of passing tests among those that compile. We average these scores across libraries for an overall performance measure. The core challenge is extracting relevant source code for each test. We instrument Java source code at the function level to track invoked code, then map it structurally to the corresponding C# code, ensuring accurate test execution.

4 Evaluation

We first analyze LLM performance on our benchmark, then highlight our framework's effectiveness in using repository skeletons for translation and fine-grained evaluation.

Model	В	uild Rate (9	6)	Unit T	Unit Test Pass Rate (%)		
	Iteration1	Iteration2	Iteration3	Iteration1	Iteration2	Iteration3	
GPT-4-turbo	60.54	66.31	50.00	15.59	18.16	11.25	
GPT-40	58.17	57.34	57.34	17.97	14.32	16.03	
GPT-4o-mini	49.31	41.13	44.98	10.16	12.03	12.03	
GPT-o1-mini	50.00	59.18	52.06	17.35	17.35	15.70	
DeepSeek-v3	52.88	71.14	71.14	16.06	17.56	17.56	
DeepSeek-r1	59.83	72.13	73.32	15.59	19.83	19.83	
Claude-3.5	54.92	51.64	44.26	15.66	15.13	10.01	
Qwen-plus	59.32	59.53	56.73	17.31	18.08	16.68	

Table 1: Build rates (%) and Unit test pass rates (%) for different repositories across various models.

4.1 Model Performance on TRANSREPO-BENCH

We evaluate the performance of state-of-the-art LLMs on the task of translating code repositories from Java to C#. Next, we conduct a failure analysis based on the experimental results. 340

341

343

344

345

347

348

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

370

371

372

373

374

375

376

377

378

4.1.1 Model Selection

We evaluated eight state-of-the-art LLMs for code repository translation: GPT-40, GPT-40-mini, GPT-4-turbo, Qwen-plus-1220, Claude-3.5-sonnet-20240620, DeepSeek-v3, DeepSeek-r1, and GPT-01-mini. GPT-40 variants are efficient, generalpurpose models. Qwen-plus-1220 and Claude-3.5sonnet balance general and specialized reasoning. DeepSeek-v3 focuses on code understanding and transformation, while DeepSeek-r1 is a compact, efficient model with strong reasoning. GPT-01mini is lightweight and well-rounded, optimized for structured thinking.

4.1.2 LLMs Performance

Table 1 compares LLM performance over three iterations using Build Rate and Unit Test Pass Rate. DeepSeek-v3 improves consistently, achieving the highest Build Rate (71.14%) and a competitive Unit Test Pass Rate (17.56%) in Iteration 3. GPT-4-turbo starts strong (60.54%) but declines to 50.00%, with its Unit Test Pass Rate dropping to 11.25%. GPT-40 remains stable at 57.34% Build Rate, with minor fluctuations in Unit Test Pass Rate (16.03%). GPT-40-mini and Claude-3.5 underperform, with declining Build Rates and inconsistent trends.

DeepSeek-r1 outperforms DeepSeek-v3, achieving the highest Build Rate (73.77%) and Unit Test Pass Rate (19.83%) in Iteration 3. GPT-o1-mini also improves, peaking at 59.18% Build Rate and maintaining a solid 15.7% Unit Test Pass Rate. Overall, DeepSeek-r1 is the most robust, followed by DeepSeek-v3, while other models struggle to maintain performance.

	Build Success Rate (%)						Unit Test Pass Rate (%)									
Repo Name	GPT			DeepSeek Others		GPT			DeepSeek		Others					
	o1-mini	4o-mini	4o	4-turbo	v3	r1	Claude	Qwen	o1-mini	4o-mini	4o	4-turbo	v3	r1	Claude	Qwen
promise	44.4	44.4	44.4	0.0	44.4	44.4	44.4	44.4	22.2	11.1	22.2	0.0	11.1	33.3	11.1	11.1
table-module	100.0	76.2	95.2	100.0	100.0	100.0	76.2	100.0	4.8	4.8	4.8	9.5	9.5	9.5	4.8	9.5
double-buffer	57.1	57.1	57.1	57.1	85.7	92.9	57.1	100.0	71.4	57.1	57.1	57.1	71.4	85.6	57.1	42.9
decorator	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0	0.0	0.0
producer-consumer	0.0	0.0	0.0	100.0	100.0	100.0	100.0	0.0	0.0	0.0	0.0	33.3	33.3	33.3	33.3	0.0
double-dispatch	70.8	12.5	70.8	45.8	95.8	95.8	12.5	100.0	12.5	0.0	12.5	12.5	33.3	33.3	0.0	16.7
partial-response	100.0	100.0	100.0	100.0	60.0	70.0	100.0	60.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0	0.0
converter	90.0	80.0	100.0	100.0	100.0	100.0	100.0	100.0	20.0	0.0	20.0	20.0	20.0	20.0	20.0	20.0
caching	80.0	100.0	100.0	50.0	50.0	50.0	50.0	90.0	40.0	0.0	10.0	0.0	10.0	10.0	0.0	40.0
unit-of-work	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	50.0	50.0	50.0	30.0	50.0	50.0	50.0	50.0
game-loop	77.8	88.9	77.8	100.0	88.9	100.0	100.0	77.8	33.3	33.3	55.6	11.1	33.3	33.3	33.3	33.3
type-object	88.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
bytecode	81.8	81.8	100.0	9.1	100.0	100.0	81.8	81.8	27.3	9.1	27.3	9.1	18.2	18.2	27.3	27.3
Average	68.52	57.00	65.03	66.31	71.14	73.32	63.23	65.70	22.42	12.72	21.50	18.15	22.32	26.65	19.76	19.29

Table 2: Build rates (%) and Unit test pass rates (%) for different repositories across grouped models.

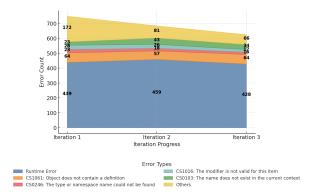


Figure 5: Changes in Error Proportions

The results indicate that iterative refinement may not improve performance due to error accumulation, as early mistakes can amplify when models fail to distinguish helpful feedback from noise.

Build Rates. Table 2 shows DeepSeekr1 (73.32%) and DeepSeek-v3 (71.14%) leading, followed by GPT-o1-mini (68.52%), GPT-4turbo (66.31%), and Qwen-plus (65.70%). GPT-40 (65.03%) and Claude-3.5 (63.23%) perform slightly lower, with GPT-40-mini (57.00%) trailing. DeepSeek-r1's strong performance suggests robust translation capabilities.

Unit Test Pass Rates. DeepSeek-r1 (26.65%) leads, followed by DeepSeek-v3 (22.32%), GPTo1-mini (22.42%), and GPT-4o (21.50%). Claude-3.5 (19.76%) and Qwen-plus (19.29%) perform slightly lower, with GPT-4o-mini (12.72%) at the bottom. DeepSeek-r1 and GPT-o1-mini show stronger runtime behavior preservation.

4.1.3 Failure Analysis

379

390

394

400

401

Figure 5 shows error distribution and reduction over three iterations, demonstrating iterative refinement. The most frequent category, Runtime Errors,

Repo	Build Score (%)	Unit Test Score (%)		
	RepoTransBench	Ours	RepoTransBench	Ours	
bytecode	100	44.4	81	22.2	
caching	0	95.2	0	4.8	
converter	0	57.1	0	57.1	
decorator	0	0.0	0	0.0	
double-buffer	0	0.0	0	0.0	
double-dispatch	0	70.8	0	12.5	
game-loop	0	100.0	0	20.0	
partial-response	0	100.0	0	20.0	
producer-consumer	0	100.0	0	10.0	
promise	0	100.0	0	50.0	
table-module	0	77.8	0	55.6	
type-object	0	0.0	0	0.0	
unit-of-work	100	100.0	30	27.3	

Table 3: Comparison of RepoTransBench and FineEval evaluation methods on each repository.

dropped from 439 in Iteration 1 to 428 in Iteration 3, reflecting ongoing improvements. Other common errors, including CS0246 (missing type/namespace), CS1061 (missing member), and CS0103 (undefined variable/name), also declined, indicating effective correction. For instance, CS0106 fell from 23 to 16, and CS1061 from 23 to 17. The inconsistent decrease in CS0103 and CS0246 may result from newly introduced variables or dependencies lacking definitions. The total error count fell from 747 to 619, showing improved resolution of syntactical and logical errors. Common failure patterns are detailed in Appendix A.2. 402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

4.2 TRANSREPO-BENCH Effectiveness

This section aims to validate (1) the fineness of our evaluation mechanism, (2) the necessity of incorporating skeletons in the translation process, and (3) the fulfillment of the three mentioned requirements.

4.2.1 Validating Evaluation Fineness

Our evaluation provides a finer, more comprehensive assessment of repository translation. Unlike

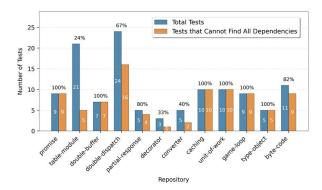


Figure 6: Missing Dependencies in Unit Tests Due to the Absence of Skeletons

Iteration Time	Build	Rate (%)	Unit Test l	Pass Rate (%)
	With Skeletons	Without Skeletons	With Skeletons	Without Skeletons
Iteration1	58.17	3.3	17.97	3.3
Iteration2	57.34	3.3	14.32	3.3
Iteration3	57.34	3.3	16.03	3.3

Table 4: Comparison of Build Rate and Unit Test PassRate of GPT-40 with and without Skeleton

Iteration Time	Build Rate (%)		Unit Test Success Rate (%)		
	Coarse-Grained Feedback	Ours	Coarse-Grained Feedback	Ours	
Iteration-1	39.34	58.17	9.09	17.97	
Iteration-2	50.00	57.34	13.94	14.32	
Iteration-3	45.45	57.34	13.16	16.03	

Table 5: Comparative Experiment on Coarse-Grained vs.Our Fine-Grained Feedback for Usability Validation.

RepoTransBench (Wang et al., 2024), which evaluates entire projects without skeletons, our method scores components individually, preventing single errors from invalidating correct translations. As Table 3 shows, RepoTransBench scores 0 on most tasks, successfully evaluating only two of thirteen. In contrast, our approach assigns scores even when compilation fails, achieving 100% success for unit test-related segments. This fine-grained evaluation recognizes partial successes rather than dismissing them due to isolated errors.

4.2.2 Proving Skeleton Necessity

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441 442

443

444

445

446

The second experiment confirms that providing target repository skeletons is essential for translation. Table 4 shows that omitting skeletons drastically lowers build success and unit test pass rates. This is due to unresolved inter-file dependencies and interfaces, which hinder identifying functions under test. As Figure 6 illustrates, missing skeletons cause many unresolved dependencies, dropping all build and test scores to zero. For some repositories, dependencies become completely unresolvable without skeletons, highlighting their crucial role in enabling accurate evaluation.

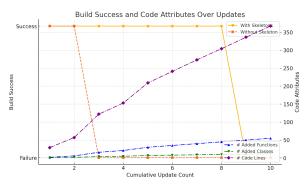


Figure 7: Build Success Rates for Incremental Translation with/without Skeleton

4.3 Validating Three Key Requirements for Repository-Level Translation

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

As proposed in Section 2.2, our Skeleton-Guided-Translation meets three requirements. Testability is validated through large model evaluation, so we focus on maintainability and usability.

Maintainability. Our maintainability experiment evaluates how Skeleton-Guided Translation helps LLMs perform incremental Java-to-C# translation, improving repo-level maintainability. It translates only necessary updates, avoiding redundant C# changes. We assessed the bytecode repository by measuring cumulative build success rates over ten incremental tasks across five trials. The first approach updated the skeleton before translation; the second translated directly without skeleton guidance. Figure 7 shows that the skeleton-guided method maintains successful builds even after eight updates and 45 new functions, while the unguided method fails around the third update. This demonstrates the effectiveness of skeletons in supporting incremental translation.

Usability. Table 5 compares coarse- and finegrained feedback for improving translated libraries. Coarse feedback relies on holistic build and test evaluations, while fine-grained feedback provides targeted error insights. Results show that finegrained feedback consistently improves build rates and unit test success, validating its effectiveness in model-guided code refinement.

Summary. These experiments collectively establish that our method is superior in two key aspects:

- Our evaluation mechanism is more granular and comprehensive, capturing the quality of translation even when partial failures occur.
- Skeletons are crucial for dependency resolution and accurate evaluation.

- 484 485
- 486 487
- 488

489

490

491

492

493

494

495

496

497

498

500

501

502

503

504

505

506

507

510

511

512

513

514

515

517

518

519

520

521

525

532

• Our Skeleton-Guided-Translation meets three key requirements for repository-level code translation: maintainability, testability, and usability.

5 Related Work

5.1 Code Translation

Code translation preserves semantics while converting languages. Rule-based compilers (e.g., Babel, Roslyn) handle simple cases but fail on complex constructs. AI-driven methods go further. Many studies (Tang et al., 2023; Roziere et al., 2020; Rozière et al., 2022; Yin et al., 2024; Yang et al., 2024; Jiao et al., 2023; Jana et al., 2024; Di et al., 2024; Tipirneni et al., 2024; Yan et al., 2023) focus on short code from competitive programming (Puri et al., 2021; Lu et al., 2021), educational platforms (Yan et al., 2023; Ahmad et al., 2023), or custom tasks (Liu et al., 2023; Chen et al., 2021). Some (Pan et al., 2024; Eniser et al., 2024; Zhang et al., 2023) tackle longer code (100+ lines) but with limited success. Novel training strategies (Roziere et al., 2020; Rozière et al., 2022; Szafraniec et al., 2023; Jana et al., 2024; Tipirneni et al., 2024) may enhance our approach, alongside prompting (Tang et al., 2023) and repair methods (Yin et al., 2024). Adapting automated program repair (Xia et al., 2023; Kong et al., 2024) could help with translation-specific I/O errors. SYZYGY (Shetty et al., 2025) translates C to safe Rust using LLMdriven code generation and dynamic analysis. Bhattarai et al. (Bhattarai et al., 2024) proposed a fewshot retrieval-based translation method, while Tao et al. (Tao et al., 2024) used an intermediary language (Go) to aid translation.

AlphaTrans (Ibrahimzada et al., 2024) is a neurosymbolic framework for repository-level code translation using program analysis and dynamic testing. Shiraishi et al. (Shiraishi and Shinagawa, 2024) improved C-to-Rust translation with contextaware segmentation, and Oxidizer (Zhang et al., 2024) ensures functionality through feature mapping and unit tests. However, AlphaTrans struggles with semantic alignment in test translation and rigid syntax rules. Our method solves these by validating unit tests on both source and target skeletons and using LLMs to translate skeletons directly.

5.2 Code Translation Benchmarks

Benchmarks are crucial for evaluating code translation. Early ones used small, manually curated function pairs, while modern benchmarks cover large datasets across diverse languages. AdvBench (Robey et al., 2021) evaluates TransCoder on Java, C++, and Python using BLEU, Exact Match (EM), and Execution Accuracy. CodeNet (Puri et al., 2021) provides 14 million samples in 50 languages for training and evaluation. Task-specific benchmarks like CodeXGLUE (Lu et al., 2021) ensure functional correctness but often miss niche languages and system-level complexities. RustRepoTrans (Ou et al., 2024) first includes repositorylevel Rust dependencies, revealing a 41.5%-56.2% performance drop, highlighting real-world challenges in dependency and cross-file handling. 533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

563

564

565

567

569

570

571

572

573

574

575

576

577

578

579

580

581

RepoTransBench (Wang et al., 2024) benchmarks repository-level translation with 100 repositories and automated tests, addressing configuration, resource handling, and test migration. However, our approach overcomes its limitations: (1) No Skeleton Framework - Lacking skeletons, it struggles with interface constraints, leading to misalignments. Our skeleton-based method ensures better control and adaptability. (2) No Test Verification – It lacks robust test result checking, while we validate unit tests on both source and target skeletons for reliable evaluation. (3) Coarse-Grained Evaluation - It executes tests without isolating dependencies, compounding errors. Our approach isolates dependencies, enabling finer-grained assessment and reducing error propagation.

6 Conclusions

We present Skeleton-Guided-Translation and the TRANSREPO-BENCH benchmark to address the challenges of evaluating LLM-based repositorylevel code translation. We provide the "skeletons" that preserve file structures and interfaces, enabling fair and consistent evaluation of different LLMs with unified unit tests. Moreover, we offer finegrained evaluation through detailed error localization, moving beyond simple pass/fail outcomes.

Our evaluation of TRANSREPO-BENCH, a set of Java repositories covered by high-quality tests, shows that even SOTA LLMs reach only 26.65% accuracy. Using skeletons prevents partial errors from affecting correct modules, providing a finegrained assessment of build success and test pass rates. We also demonstrate the benefits of using skeletons to maintain interface consistency, enable fine-grained quality assessment, and support incremental translation.

582

583

584

594

596

601

611

614

617

619

7 Limitations

This study primarily focuses on evaluating repository-level translations between Java and C# using Skeleton-Guided-Translation, and does not confirm its generalizability to other language pairs (e.g., C++, Python, Rust). . Moreover, the experimental data is drawn from open-source projects with relatively high test coverage. While this offers some insight into how the approach might function in real-world scenarios, performance may degrade in extremely large or complex codebases with highly customized dependencies. Additionally, in order to maintain automation and control, we require the use of skeletons (and subsequent manual fixes) in the evaluation process, which may not fully capture more dynamic environments involving multi-user collaboration or frequent version updates. Lastly, certain unit tests still required manual patches before execution, somewhat limiting both efficiency and objectivity. Future research might explore automated repair techniques or adaptive testing configurations to further enhance evaluation reliability.

Ethical Considerations 8

The proposed method can significantly facilitate cross-language code migration and reuse but also introduces ethical and societal considerations. First, using large language models for automated code translation raises potential concerns about over-610 collection or misuse of proprietary software code, underscoring the need to address intellectual property and confidentiality agreements. Second, 613 model-generated translations may contain hidden flaws or security vulnerabilities, and blindly deploy-615 ing them into production risks exacerbating existing system vulnerabilities. Third, biases and metric selection in both the model training and evaluation processes may inadvertently cause disparities for certain languages or developer communities. To mitigate these issues, researchers and practitioners should collect data responsibly, rigorously review and test model outputs, and enforce thorough security and quality assessments before integrating translated code into production environments.

References

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. 2023. Avatar: A parallel corpus for java-python program translation.

In Findings of the Association for Computational Linguistics: ACL 2023, pages 2268–2281, Toronto, Canada. Association for Computational Linguistics.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

- Manish Bhattarai, Javier E. Santos, Shawn Jones, Ayan Biswas, Boian Alexandrov, and Daniel O'Malley. 2024. Enhancing code translation in language models with few-shot learning via retrieval-augmented generation. Preprint, arXiv:2407.19619.
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large language models trained on code. Preprint, arXiv:2107.03374.
- Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong, Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guangpei Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin Zhao, Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xianying Zhu. 2024. Codefuse-13b: A pretrained multilingual code large language model. In *Proceedings* of the 46th International Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP '24, page 418-429. ACM.
- Hasan Ferit Eniser, Valentin Wüstholz, and Maria Christakis. 2024. Automatically testing functional properties of code translation models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 21055–21062. AAAI Press.
- Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, Muhammad Salman Abid, Rangeet Pan, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Repositorylevel compositional code translation and validation. Preprint, arXiv:2410.24117.
- Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham Kishore, Aryan Mahajan, and Vijay Ganesh. 2024. Cotran: An llm-based code translator using reinforcement learning with feedback from compiler and symbolic execution. In Frontiers in Artificial Intelligence and Applications, volume 392, pages 4011-4018. IOS Press.

- 747 748 750 751 755 756 757 759 760 762 765 766 767 768 770 771 772 773 774 775 776 778 779 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, Xiaodong Gu, and Beijun Shen. 2023. On the evaluation of neural code translation: Taxonomy and benchmark. In *Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering*, pages 1529–1541. IEEE.

693

712

714

715 716

717

718

719

720

721

723

727

728

733

734

737

738

740

741

742 743

744

745

746

- Mohammad Abdullah Matin Khan, M Saiful Bari, Do Long, Weishi Wang, Md Rizwan Parvez, and Shafiq Joty. 2024. Xcodeeval: An execution-based large scale multilingual multitask benchmark for code understanding, generation, translation and retrieval. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*, pages 6766–6805. Association for Computational Linguistics.
- Jiaolong Kong, Mingfei Cheng, Xiaofei Xie, Shangqing Liu, Xiaoning Du, and Qi Guo. 2024. Contrastrepair: Enhancing conversation-based automated program repair via contrastive test case pairs. *Preprint*, arXiv:2403.01971.
- Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated by ChatGPT really correct? rigorous evaluation of large language models for code generation. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, page 943. Curran Associates Inc.
- Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE: A machine learning benchmark dataset for code understanding and generation. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*, volume 1.
- Nicholas D. Matsakis and Felix S. Klock. 2014. The rust language. In *Proceedings of the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology*, HILT '14. Association for Computing Machinery.
- Guangsheng Ou, Mingwei Liu, Yuxuan Chen, Xin Peng, and Zibin Zheng. 2024. Repository-level code translation benchmark targeting rust. *Preprint*, arXiv:2411.13990.
- Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs introduced by large language models while translating code. In *Proceedings of the IEEE/ACM 46th International Conference on Software Engineering*, ICSE '24, page 1–13. ACM.
- Ruchir Puri, David Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian

Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. 2021. CodeNet: A large-scale AI for code dataset for learning a diversity of coding tasks. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*, volume 1.

- Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. Codebleu: a method for automatic evaluation of code synthesis. *Preprint*, arXiv:2009.10297.
- Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani, and Alejandro Ribeiro. 2021. Adversarial robustness with semi-infinite constrained learning. *Advances in neural information processing systems*.
- Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. 2020. Unsupervised translation of programming languages. In Advances in Neural Information Processing Systems, volume 33. Curran Associates, Inc.
- Baptiste Rozière, Jie Zhang, François Charton, Mark Harman, Gabriel Synnaeve, and Guillaume Lample. 2022. Leveraging automated unit tests for unsupervised code translation. In *Proceedings of the 10th International Conference on Learning Representations*.
- Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. 2023. Are emergent abilities of large language models a mirage? In *Advances in Neural Information Processing Systems*, volume 36. Curran Associates, Inc.
- Manish Shetty, Naman Jain, Adwait Godbole, Sanjit A. Seshia, and Koushik Sen. 2025. Syzygy: Dual codetest C to (safe) Rust translation using LLMs and dynamic analysis. Preliminary version accepted at LLM4Code 2025. arXiv preprint arXiv:2412.14234.
- Momoko Shiraishi and Takahiro Shinagawa. 2024. Context-aware code segmentation for c-to-rust translation using large language models. *Preprint*, arXiv:2409.10506.
- Marc Szafraniec, Baptiste Roziere, Hugh Leather, François Charton, Patrick Labatut, and Gabriel Synnaeve. 2023. Code translation with compiler representations. In *International Conference on Learning Representations*. In-Person Oral Presentation, Top 25% Paper.
- Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin Wang, Derry Wijaya, Jie Chen, and Yoon Kim. 2023. Explain-then-translate: an analysis on improving program translation with self-generated explanations. In *Findings of the Association for Computational Linguistics: EMNLP 2023.* Association for Computational Linguistics.

Qingxiao Tao, Tingrui Yu, Xiaodong Gu, and Beijun Shen. 2024. Unraveling the potential of large language models in code translation: How Far Are We? In 31st Asia-Pacific Software Engineering Conference, APSEC '24. To appear.

806

807

811

812

813

815

816

817 818

819

825

827

829 830

831

832

833

834

835

837

839

841

851

- Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy. 2024. Structcoder: Structure-aware transformer for code generation. Preprint, arXiv:2206.05239.
- Yanli Wang, Yanlin Wang, Suiquan Wang, Daya Guo, Jiachi Chen, John Grundy, Xilin Liu, Yuchi Ma, Mingzhi Mao, Hongyu Zhang, and Zibin Zheng. 2024. Repotransbench: A real-world benchmark for repository-level code translation. Preprint, arXiv:2412.17744.
- Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated program repair in the era of large pre-trained language models. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
- Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. 2023. CodeTransOcean: A comprehensive multilingual benchmark for code translation. In Findings of the Association for Computational Linguistics: EMNLP 2023. Association for Computational Linguistics.
- Aidan Z. H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening. 2024. Vert: Verified equivalent rust transpilation with large language models as few-shot learners. Preprint, arXiv:2404.18852.
- Xin Yin, Chao Ni, Tien N. Nguyen, Shaohua Wang, and Xiaohu Yang. 2024. Rectifier: Code translation with corrector via llms. Preprint, arXiv:2407.07472.
- Hanliang Zhang, Cristina David, Meng Wang, Brandon Paulsen, and Daniel Kroening. 2024. Scalable, validated code translation of entire projects using large language models. Preprint, arXiv:2412.08035.
- Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. 2023. Multilingual code co-evolution using large language models. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023. Association for Computing Machinery.

А Appendix

A.1 Detailed Information of **TRANSREPO-BENCH**

Table 6 summarizes the key characteristics of our 850 benchmark repositories, highlighting their diversity, high test coverage, and moderate adaptation costs. 852 The selected repositories cover a wide range of software design patterns, ensuring a comprehensive evaluation of translation performance. The number 855

Repo Name	Classes	Methods	Lines	Unit Test Coverage	Skeleton Fix Time (min)
promise	6	36	789	93.70%	270
table-module	3	8	494	100.00%	70
double-buffer	3	16	489	98.30%	25
decorator	3	10	351	96.50%	60
producer-consumer	4	8	372	96.40%	30
double-dispatch	15	55	985	98.60%	90
partial-response	2	5	382	90.10%	130
converter	3	8	367	98.80%	100
caching	10	63	1605	93.30%	270
unit-of-work	4	16	460	98.30%	30
game-loop	7	18	730	94.90%	60
type-object	6	20	704	96.20%	120
bytecode	4	17	624	94.70%	150

Table 6: Resulting Benchmark

of classes, methods, and lines of code varies significantly across repositories, reflecting different levels of complexity and structural diversity.

856

857

858

859

860

861

862

863

864

865

866

867

868

870

871

872

873

874

875

876

877

878

879

880

881

883

888

889

890

891

892

893

894

895

896

897

Additionally, unit test coverage is consistently high across the benchmark, demonstrating the robustness of the evaluation setup and ensuring that translated code can be rigorously tested. The skeleton fix time, while necessary to adapt the repository skeletons for evaluation, remains moderate across all repositories, indicating a reasonable effort in preparing the benchmark without excessive overhead. Overall, this benchmark provides a wellbalanced dataset, offering diverse software structures, strong test coverage, and a practical adaptation cost, making it suitable for assessing translation performance across different codebases.

A.2 Common Failure Patterns

We explore the most common failure patterns encountered during large model-based code translation, focusing on their underlying causes, how they manifest in practice, and the strategies needed to address them. By analyzing these recurring issues, we aim to provide actionable insights for improving the accuracy and reliability of cross-language code conversion processes.

Static Variable Misalignment. A common translation issue is inconsistent static variable naming. For example:

public void Stop(){ status = GameStatus. Stopped;

The C# code raised error CS0117 due to incorrect translation of the enum member Stopped, which should follow C#'s uppercase convention, e.g., STOPPED. This mismatch stems from Java's mixed-case style. To prevent such errors, translators should apply capitalization-aware mappings.

Unresolved Names and Contextual Misinterpretations. Translation errors often stem from missing imports of contextual elements, causing errors like

CS0103 ("The name does not exist in the current context"). For example:

private	<pre>int RandomInt(int min, int max){</pre>	
retu	rn ThreadLocalRandom.Current.Next(min, max -	ł
	1);	
}		

In this case, the C# compiler failed because ThreadLocalRandom is not recognized in C#. Instead, C# provides a Random class with similar functionality. Translators must correctly identify equivalent libraries and methods in the target language or include necessary imports automatically.

Undefined Methods. Errors such as CS1061 occur when the translated code references methods or properties that are undefined in the target language. For instance:

_wizards[wizard]	. SetWisdom(amount);
------------------	----------------------

This snippet assumes a SetWisdom method in the Wizard class, but the translator didn't verify it. Enhancing cross-referencing and generating warnings can help resolve such semantic gaps.

Namespace and Duplicate Definitions. Another common error (CS0101) occurs when namespaces contain duplicate definitions due to repetitive code generation. Consider the following Java snippet:

```
public class Candy
{
    public Candy(string flavor) { }
}
```

If the translator generates multiple constructors with identical signatures for this class in C#, the compiler will flag a conflict, as C# enforces unique member definitions within a namespace or class. The solution involves ensuring that constructors or methods with overlapping signatures are merged or disambiguated during translation.

Runtime Logical Failures. Even after fixing compilation errors, logical inconsistencies in the translation can still cause runtime issues. For example:

```
private void Register(Weapon weapon, string
    operation){
    if (!_context.TryGetValue(operation, out var
        weaponsToOperate))
    {
        weaponsToOperate = new List<Weapon>();
    }
        weaponsToOperate.Add(weapon);
    _context[operation] = weaponsToOperate;
}
```

A null reference error occurs because the _context dictionary was uninitialized. Such runtime errors are hard to catch via static analysis, underscoring the need for robust runtime testing to detect logical flaws in translated code.

958 959