
Skeleton-Guided-Translation: A Benchmarking Framework for
Code Repository Translation with Fine-Grained Quality Evaluation

Anonymous ACL submission

Abstract001

Code translation benchmarks are essential002
for evaluating the accuracy and efficiency of003
LLM-based systems. Existing benchmarks004
mainly target individual functions, overlook-005
ing repository-level challenges like intermod-006
ule coherence and dependency management.007
Recent repository-level efforts exist, but suf-008
fer from poor maintainability and coarse eval-009
uation granularity. We introduce Skeleton-010
Guided-Translation, a framework for bench-011
marking Java-to-C# translation at the repository012
level, featuring fine-grained quality evaluation.013
It follows a two-step process: first translating014
repository “skeletons”, then refining the entire015
repository guided by these skeletons. Based016
on this, we present TRANSREPO-BENCH , the017
first test-driven benchmark of high-quality Java018
repositories paired with C# skeletons, unit tests,019
and build configurations. Our adaptive unit020
tests support multiple and incremental trans-021
lations without manual tuning, enhancing au-022
tomation and scalability. We also propose fine-023
grained metrics that evaluate translation quality024
per test case, overcoming limitations of binary025
metrics in distinguishing build failures. Evalua-026
tions using TRANSREPO-BENCH reveal issues027
like broken cross-file references, showing that028
our structured approach reduces dependency029
errors and preserves interface consistency.030

1 Introduction031

Large language models (LLMs) are reshaping soft-032

ware development, driving system modernization033

and legacy code migration. For example, migrating034

C to Rust improves safety (Matsakis and Klock,035

2014), and frameworks like TensorFlow require036

synchronized multi-language updates. Evaluating037

LLMs in migration tasks is key to assessing reli-038

ability. Benchmarks provide quantitative insights039

for comparison and improvement, but existing ones040

focus on function-level tasks or competition-style041

problems (Yan et al., 2023; Lu et al., 2021; Khan042

Figure 1: A more fine-grained quality evaluation to
evaluate translated repositories is needed.

et al., 2024), ignoring real-world complexities. 043

Repository-level translation is essential for man- 044

aging dependencies, structure, and interconnected 045

components (Jiao et al., 2023), requiring reliable 046

benchmarks to assess model performance. 047

A major challenge in repository-level code trans- 048

lation is the absence of a systematic framework 049

that enables fine-grained control over maintainabil- 050

ity. For instance, updating parts of a Java-based 051

SDK often requires re-translating large portions 052

of the corresponding C++ codebase, making small 053

changes costly. Without fine-grained control, main- 054

tainability suffers. 055

Another challenge is the lack of repository-level 056

parallel corpora, complicating automated verifica- 057

tion. Line-by-line metrics like codeBLEU (Ren 058

et al., 2020) lack functional validation, and auto- 059

matic test generation remains unreliable (Eniser 060

et al., 2024). A practical alternative is translating 061

unit tests from the source library for systematic 062

validation. However, ensuring test accuracy and 063

consistency with translated code interfaces is cru- 064

cial for reliable verification. 065

The third challenge is that current metrics often 066

miss nuanced translation outcomes, reducing us- 067

ability. RepoTransBench (Wang et al., 2024), for 068

example, uses a binary build success metric, ignor- 069

ing partial successes. As Figure 1 shows, this over- 070

simplifies performance by neglecting cases where 071

some components translate correctly while others 072

1

Figure 2: Example Code Snippets of Translation Input with Corresponding Skeleton

fail. Schaeffer et al. (Schaeffer et al., 2023) warn073

that threshold-based metrics can create misleading074

performance leaps. In contrast, continuous met-075

rics, such as the percentage of successfully trans-076

lated modules (e.g., 66.7%), improve usability by077

identifying failures, guiding fixes, and providing078

smoother, more reliable insights.079

Our Contributions080

To address these challenges, we introduce Skeleton-081

Guided-Translation, a framework for benchmark-082

ing repository-level code translation with fine-083

grained quality evaluation. Our two-step process084

first translates the repository skeleton to define085

structure and interfaces, then populates it while086

indexing dependencies for unit tests. Skeletons087

are simplified versions of repositories with pre-088

served structure and method signatures, but with089

method bodies replaced by defaults (e.g., return090

null). By providing unified unit tests, this design091

facilitates fair and consistent comparison across092

models during evaluation. Based on our frame-093

work, we present TRANSREPO-BENCH , the first094

test-driven benchmark to provide fine-grained eval-095

uation, overcoming limitations of existing bench-096

marks. Specifically:097

• We introduce Skeleton-Guided-Translation,1 a098

novel framework for benchmarking repository-099

level code translation with fine-grained evalua-100

tion metrics. Complementing this, our bench-101

mark TRANSREPO-BENCH , the first test-driven102

1The source code implementing Skeleton-Guided-
Translation, along with all code samples in our bench-
mark TRANSREPO-BENCH , are available at https:
//anonymous.4open.science/r/TransRepo-bench.

repo-level translation benchmark, provides a fine- 103

grained evaluation by scoring individual test 104

cases based on unit tests and their associated 105

code, offering more meaningful feedback than 106

binary metrics. 107

• High-Quality Open-Source Repository Bench- 108

mark: TRANSREPO-BENCH features high- 109

quality open-source Java libraries and their C# 110

translations, including unit tests and configura- 111

tions. Designed for translation and fine-grained 112

evaluation, it enables researchers to assess mod- 113

els in realistic repository-level scenarios. 114

• Evaluation of Advanced Models: TRANSREPO- 115

BENCH is validated through extensive evaluations 116

of classic and state-of-the-art models, offering 117

detailed performance analysis. Our benchmark 118

reveals that even SOTA LLMs reach only 26.65% 119

accuracy under realistic repository conditions. 120

2 Motivation 121

In this section, we use an example to illustrate 122

the challenges involved in building a repository- 123

level code translation benchmark and explain our 124

solutions more effectively. 125

2.1 Challenges in Repository Translation 126

Lack of a Systematic Translation Framework. Fig- 127

ure 2 presents an example of LLM-based Java-to- 128

C# translation, underscoring the need for a system- 129

atic framework. Suppose the Java code in Fig- 130

ure 2(a) has already been translated. If a new 131

method is later added to the Java FrameBuffer class, 132

re-translating the updated code with an LLM is 133

likely to produce an inconsistent interface com- 134

pared to the previous version. This can invalidate 135

2

https://anonymous.4open.science/r/TransRepo-bench
https://anonymous.4open.science/r/TransRepo-bench

Figure 3: Framework of Our Evaluator.

existing unit tests due to mismatched signatures136

or missing targets. The root cause is the lack of137

fine-grained incremental translation, where even138

minor changes may require re-generating the entire139

class or related components.140

Lack of Parallel Corpora. Repository-level trans-141

lation struggles with misaligned source and target142

files, complicating cross-language verification. For143

example, validating the C# code translated from144

Java code (Figure 2(a)) is challenging without ex-145

isting ground truth. One solution is translating146

high-coverage Java tests into C#, but preserving147

intent, coverage, and reliability remains difficult.148

How to translate a set of unit tests once and use149

them to evaluate multiple independent translations150

by LLMs—or to compare translations generated by151

different models—is also a significant challenge.152

Lack of a Fine-Grained Evaluation Metric. Re-153

lying on coarse metrics (e.g., whether a repository154

builds) limits developers’ ability to diagnose trans-155

lation issues. For instance, if Draw is mistranslated156

by calling getIndex instead of GetIndex, the com-157

pilation will fail, making it impossible to evalu-158

ate correctly translated functions like GetPixels.159

This binary pass/fail approach obscures partial suc-160

cesses and forces manual debugging. Granular met-161

rics—such as module-level correctness or function162

fidelity—would help pinpoint errors, streamlining163

debugging and refinement.164

2.2 Solution: Standardizing Code Repository165

Translation with Fine-Grained Evaluation166

Figure 3 illustrates our solution. To align transla-167

tion with testing and enable fine-grained evaluation,168

we introduce a target repository “skeleton” during169

translation. This guides LLMs to focus on accurate170

dependencies and interfaces. The skeleton is incre-171

mentally populated with partial results, allowing172

execution-based assessment of translation quality.173

Facilitating Maintainability. Figure 2(b) illus-174

trates a “target C# repository skeleton” in our 175

framework. Unlike the fully translated Java code in 176

Figure 2(a), this skeleton defines interfaces while 177

leaving method bodies mostly empty. This ap- 178

proach improves maintainability: the C# skeleton 179

enables incremental updates by aligning interfaces 180

first, avoiding full re-translation. 181

Enhancing Testability. Building unit tests on 182

these skeletons significantly improves testability. 183

Because the structural and interface definitions in 184

both repositories match, any unit tests originally de- 185

signed for the Java code can be adapted to validate 186

the C# skeleton. Provided the translated C# code is 187

inserted into the appropriate skeleton methods, it 188

can be reliably evaluated by the unit tests. 189

Improving Usability. The framework’s fine- 190

grained control improves usability by enabling tar- 191

geted verification. If Draw is mistranslated and fails 192

to compile, unit tests for GetPixels and GetIndex 193

can still run within the skeleton (Figure 3). This 194

ensures their correctness despite errors elsewhere. 195

Unlike coarse build-or-fail metrics, skeleton-based 196

testing reveals partial successes, streamlining de- 197

bugging and evaluation. 198

3 TRANSREPO-BENCH Benchmark 199

As shown in Figure 3, users receive the source 200

repository and target skeleton, guiding LLMs to 201

generate a complete target repository. Correct- 202

ness is verified using the target’s unit tests within 203

the testing environment. This section presents the 204

benchmark content, details TRANSREPO-BENCH ’s 205

construction, and introduces our fine-grained eval- 206

uation design. 207

3.1 Benchmark Overview 208

Each TRANSREPO-BENCH translation task in- 209

cludes a source repository and its evaluation setup, 210

structured as <source repository, target skeleton, 211

target unit tests, testing environment>. While we 212

3

Figure 4: Benchmark construction workflow from ex-
traction to final target skeletons and unit tests via map-
ping, translation, and fixing.

currently focus on Java-to-C# translation in our213

experiments, the proposed test-anchored skeleton214

methodology is language-agnostic and can general-215

ize to other language pairs such as Python-Rust.216

As shown in Figure 2, the translation task input217

includes Java source repositories for translation218

and a target repository skeleton, which serves as a219

interface “contract” for evaluation. This skeleton220

retains the original file structure, dependencies, and221

static values but replaces all functions with trivial222

implementations (e.g., a single return statement)223

to ensure successful compilation. The evaluation224

setup consists of unit tests for the target repository225

and the required testing configuration files.226

TRANSREPO-BENCH includes 13 tasks for trans-227

lating code repositories. Appendix A.1 provides228

details on repository features like class, method,229

and line counts, plus test coverage. The data high-230

lights diverse complexities, from small repositories231

to large ones with extensive methods and coverage,232

ensuring robust evaluation.233

3.2 Benchmark Construction234

This section details the benchmark construction235

process (Fig. 4). We first describe source dataset236

collection (§3.2.1), then outline skeleton extraction237

and translation (§3.2.2). Next, we explain unit test238

acquisition (§3.2.3) and conclude with testing envi-239

ronment setup (§3.2.4). Overall, the construction240

process required approximately 340 person-hours241

of manual and semi-automated effort.242

While users of TRANSREPO-BENCH do not 243

need to construct skeletons manually, building 244

new benchmarks based on our framework does 245

involve generating new skeletons and tests. This 246

process—described below—includes manual vali- 247

dation and test environment setup, which ensures 248

high-quality evaluation infrastructure. 249

3.2.1 Source Repository Collection 250

The source dataset is curated from open-source 251

GitHub projects meeting these criteria: (1) 100+ 252

stars, (2) a testing workflow, and (3) locally passing 253

tests. We chose a mature and well-tested collection 254

of repositories from java-design-patterns, a Java 255

library featuring comprehensive design pattern im- 256

plementations and reliable test execution. 257

3.2.2 Skeleton Extraction and Translation 258

Repository skeletons are simplified versions where 259

all function implementations (except in test files) 260

are replaced with trivial return statements, ensuring 261

successful compilation while preserving file struc- 262

ture, dependencies, interfaces, and static values. 263

Function bodies return type-matching placehold- 264

ers (e.g., return 0; for int, return null; for 265

objects). Constructors are left empty, and static 266

blocks retain only assignments. These skeletons are 267

automatically extracted using Tree-sitter scripts. 268

Skeletons are translated into the target language 269

using GPT-4o, but most fail to compile, requiring 270

extensive manual fixes. As shown in the Appendix 271

A.1, “Skeleton Fix Time” quantifies this effort. To 272

ensure skeleton correctness, two experienced engi- 273

neers manually verified the functional equivalence 274

between Java and C# skeletons across 13 reposito- 275

ries over 72 person-hours. 276

Our framework assigns three roles to skeletons: 277

(1) for benchmarking, we provide pre-built skele- 278

tons to ensure consistent comparisons, requiring 279

no user effort; (2) for creating new benchmarks, 280

users need to build new skeletons for target lan- 281

guages, either manually or semi-automatically; and 282

(3) in real-world translation, skeletons are optional 283

but help preserve structure, support incremental 284

translation, and enable unit testing. 285

3.2.3 Unit Test Translation 286

We translate source repository unit tests into the 287

target language using GPT-4o and NUnit. However, 288

most fail to compile, requiring extensive manual 289

fixes to ensure correct validation of the source code. 290

To verify semantic consistency, we ran Java tests on 291

4

the Java skeleton and translated C# tests on the C#292

skeleton, observing identical results. The unit tests293

achieve 96.14% Java code coverage using JaCoCo294

and 94.8% C# line coverage with Coverlet.295

3.2.4 Testing Environment Construction296

We set up a testing environment by defining a297

Docker image, installing dependencies, and run-298

ning unit tests. For our process, we create a YAML299

build configuration file for the translated C# project,300

based on the original Java build file.301

This step is mostly manual, using the translated302

C# skeleton as a reference. A large language model303

(e.g., GPT-4o) assists in converting the Java build304

file to C#, which is then refined for functionality.305

To reduce manual effort and expand our frame-306

work’s usability, we provide supporting resources:307

static repair scripts for skeletons and unit tests,308

along with automated configuration scripts for C#309

projects. These tools enhance efficiency, but their310

limitations required notable manual intervention.311

3.3 Fine-Grained Evaluation Metrics Design312

To refine user-translated code evaluation, we use313

unit tests for scoring. Prior attempts to translate en-314

tire repositories often failed at compilation, prevent-315

ing test execution. Pan et al. (Pan et al., 2024) re-316

port 77.8% of large-model translation failures stem317

from compilation errors, obscuring correct trans-318

lations and hindering evaluation. To mitigate this,319

we extract and execute test-relevant code within a320

guaranteed-compilable skeleton. Translated func-321

tions are inserted, then built and tested using dotnet322

build and dotnet test, ensuring granular scoring323

unaffected by unrelated errors.324

Our evaluation uses two metrics: build success325

rate, the fraction of compilable unit tests, and326

unit test success rate, the fraction of passing tests327

among those that compile. We average these scores328

across libraries for an overall performance measure.329

The core challenge is extracting relevant source330

code for each test. We instrument Java source code331

at the function level to track invoked code, then332

map it structurally to the corresponding C# code,333

ensuring accurate test execution.334

4 Evaluation335

We first analyze LLM performance on our bench-336

mark, then highlight our framework’s effectiveness337

in using repository skeletons for translation and338

fine-grained evaluation.339

Model Build Rate (%) Unit Test Pass Rate (%)

Iteration1 Iteration2 Iteration3 Iteration1 Iteration2 Iteration3

GPT-4-turbo 60.54 66.31 50.00 15.59 18.16 11.25
GPT-4o 58.17 57.34 57.34 17.97 14.32 16.03
GPT-4o-mini 49.31 41.13 44.98 10.16 12.03 12.03
GPT-o1-mini 50.00 59.18 52.06 17.35 17.35 15.70
DeepSeek-v3 52.88 71.14 71.14 16.06 17.56 17.56
DeepSeek-r1 59.83 72.13 73.32 15.59 19.83 19.83
Claude-3.5 54.92 51.64 44.26 15.66 15.13 10.01
Qwen-plus 59.32 59.53 56.73 17.31 18.08 16.68

Table 1: Build rates (%) and Unit test pass rates (%) for
different repositories across various models.

4.1 Model Performance on 340

TRANSREPO-BENCH 341

We evaluate the performance of state-of-the-art 342

LLMs on the task of translating code repositories 343

from Java to C#. Next, we conduct a failure analy- 344

sis based on the experimental results. 345

4.1.1 Model Selection 346

We evaluated eight state-of-the-art LLMs for code 347

repository translation: GPT-4o, GPT-4o-mini, 348

GPT-4-turbo, Qwen-plus-1220, Claude-3.5-sonnet- 349

20240620, DeepSeek-v3, DeepSeek-r1, and GPT- 350

o1-mini. GPT-4o variants are efficient, general- 351

purpose models. Qwen-plus-1220 and Claude-3.5- 352

sonnet balance general and specialized reasoning. 353

DeepSeek-v3 focuses on code understanding and 354

transformation, while DeepSeek-r1 is a compact, 355

efficient model with strong reasoning. GPT-o1- 356

mini is lightweight and well-rounded, optimized 357

for structured thinking. 358

4.1.2 LLMs Performance 359

Table 1 compares LLM performance over three 360

iterations using Build Rate and Unit Test Pass Rate. 361

DeepSeek-v3 improves consistently, achieving the 362

highest Build Rate (71.14%) and a competitive 363

Unit Test Pass Rate (17.56%) in Iteration 3. GPT-4- 364

turbo starts strong (60.54%) but declines to 50.00%, 365

with its Unit Test Pass Rate dropping to 11.25%. 366

GPT-4o remains stable at 57.34% Build Rate, with 367

minor fluctuations in Unit Test Pass Rate (16.03%). 368

GPT-4o-mini and Claude-3.5 underperform, with 369

declining Build Rates and inconsistent trends. 370

DeepSeek-r1 outperforms DeepSeek-v3, achiev- 371

ing the highest Build Rate (73.77%) and Unit Test 372

Pass Rate (19.83%) in Iteration 3. GPT-o1-mini 373

also improves, peaking at 59.18% Build Rate and 374

maintaining a solid 15.7% Unit Test Pass Rate. 375

Overall, DeepSeek-r1 is the most robust, followed 376

by DeepSeek-v3, while other models struggle to 377

maintain performance. 378

5

Repo Name
Build Success Rate (%) Unit Test Pass Rate (%)

GPT DeepSeek Others GPT DeepSeek Others

o1-mini 4o-mini 4o 4-turbo v3 r1 Claude Qwen o1-mini 4o-mini 4o 4-turbo v3 r1 Claude Qwen

promise 44.4 44.4 44.4 0.0 44.4 44.4 44.4 44.4 22.2 11.1 22.2 0.0 11.1 33.3 11.1 11.1
table-module 100.0 76.2 95.2 100.0 100.0 100.0 76.2 100.0 4.8 4.8 4.8 9.5 9.5 9.5 4.8 9.5
double-buffer 57.1 57.1 57.1 57.1 85.7 92.9 57.1 100.0 71.4 57.1 57.1 57.1 71.4 85.6 57.1 42.9
decorator 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0
producer-consumer 0.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 33.3 33.3 33.3 33.3 0.0
double-dispatch 70.8 12.5 70.8 45.8 95.8 95.8 12.5 100.0 12.5 0.0 12.5 12.5 33.3 33.3 0.0 16.7
partial-response 100.0 100.0 100.0 100.0 60.0 70.0 100.0 60.0 20.0 0.0 20.0 20.0 0.0 20.0 20.0 0.0
converter 90.0 80.0 100.0 100.0 100.0 100.0 100.0 100.0 20.0 0.0 20.0 20.0 20.0 20.0 20.0 20.0
caching 80.0 100.0 100.0 50.0 50.0 50.0 50.0 90.0 40.0 0.0 10.0 0.0 10.0 10.0 0.0 40.0
unit-of-work 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0 50.0 30.0 50.0 50.0 50.0 50.0
game-loop 77.8 88.9 77.8 100.0 88.9 100.0 100.0 77.8 33.3 33.3 55.6 11.1 33.3 33.3 33.3 33.3
type-object 88.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bytecode 81.8 81.8 100.0 9.1 100.0 100.0 81.8 81.8 27.3 9.1 27.3 9.1 18.2 18.2 27.3 27.3

Average 68.52 57.00 65.03 66.31 71.14 73.32 63.23 65.70 22.42 12.72 21.50 18.15 22.32 26.65 19.76 19.29

Table 2: Build rates (%) and Unit test pass rates (%) for different repositories across grouped models.

Figure 5: Changes in Error Proportions

The results indicate that iterative refinement may379

not improve performance due to error accumula-380

tion, as early mistakes can amplify when models381

fail to distinguish helpful feedback from noise.382

Build Rates. Table 2 shows DeepSeek-383

r1 (73.32%) and DeepSeek-v3 (71.14%) lead-384

ing, followed by GPT-o1-mini (68.52%), GPT-4-385

turbo (66.31%), and Qwen-plus (65.70%). GPT-386

4o (65.03%) and Claude-3.5 (63.23%) perform387

slightly lower, with GPT-4o-mini (57.00%) trailing.388

DeepSeek-r1’s strong performance suggests robust389

translation capabilities.390

Unit Test Pass Rates. DeepSeek-r1 (26.65%)391

leads, followed by DeepSeek-v3 (22.32%), GPT-392

o1-mini (22.42%), and GPT-4o (21.50%). Claude-393

3.5 (19.76%) and Qwen-plus (19.29%) perform394

slightly lower, with GPT-4o-mini (12.72%) at the395

bottom. DeepSeek-r1 and GPT-o1-mini show396

stronger runtime behavior preservation.397

4.1.3 Failure Analysis398

Figure 5 shows error distribution and reduction399

over three iterations, demonstrating iterative refine-400

ment. The most frequent category, Runtime Errors,401

Repo Build Score (%) Unit Test Score (%)

RepoTransBench Ours RepoTransBench Ours

bytecode 100 44.4 81 22.2
caching 0 95.2 0 4.8
converter 0 57.1 0 57.1
decorator 0 0.0 0 0.0
double-buffer 0 0.0 0 0.0
double-dispatch 0 70.8 0 12.5
game-loop 0 100.0 0 20.0
partial-response 0 100.0 0 20.0
producer-consumer 0 100.0 0 10.0
promise 0 100.0 0 50.0
table-module 0 77.8 0 55.6
type-object 0 0.0 0 0.0
unit-of-work 100 100.0 30 27.3

Table 3: Comparison of RepoTransBench and FineEval
evaluation methods on each repository.

dropped from 439 in Iteration 1 to 428 in Iteration 402

3, reflecting ongoing improvements. Other com- 403

mon errors, including CS0246 (missing type/names- 404

pace), CS1061 (missing member), and CS0103 (un- 405

defined variable/name), also declined, indicating 406

effective correction. For instance, CS0106 fell from 407

23 to 16, and CS1061 from 23 to 17. The incon- 408

sistent decrease in CS0103 and CS0246 may result 409

from newly introduced variables or dependencies 410

lacking definitions. The total error count fell from 411

747 to 619, showing improved resolution of syntac- 412

tical and logical errors. Common failure patterns 413

are detailed in Appendix A.2. 414

4.2 TRANSREPO-BENCH Effectiveness 415

This section aims to validate (1) the fineness of our 416

evaluation mechanism, (2) the necessity of incorpo- 417

rating skeletons in the translation process, and (3) 418

the fulfillment of the three mentioned requirements. 419

4.2.1 Validating Evaluation Fineness 420

Our evaluation provides a finer, more comprehen- 421

sive assessment of repository translation. Unlike 422

6

Figure 6: Missing Dependencies in Unit Tests Due to
the Absence of Skeletons

Iteration Time Build Rate (%) Unit Test Pass Rate (%)

With Skeletons Without Skeletons With Skeletons Without Skeletons

Iteration1 58.17 3.3 17.97 3.3
Iteration2 57.34 3.3 14.32 3.3
Iteration3 57.34 3.3 16.03 3.3

Table 4: Comparison of Build Rate and Unit Test Pass
Rate of GPT-4o with and without Skeleton

Iteration Time Build Rate (%) Unit Test Success Rate (%)

Coarse-Grained Feedback Ours Coarse-Grained Feedback Ours

Iteration-1 39.34 58.17 9.09 17.97
Iteration-2 50.00 57.34 13.94 14.32
Iteration-3 45.45 57.34 13.16 16.03

Table 5: Comparative Experiment on Coarse-Grained vs.
Our Fine-Grained Feedback for Usability Validation.

RepoTransBench (Wang et al., 2024), which evalu-423

ates entire projects without skeletons, our method424

scores components individually, preventing single425

errors from invalidating correct translations. As426

Table 3 shows, RepoTransBench scores 0 on most427

tasks, successfully evaluating only two of thirteen.428

In contrast, our approach assigns scores even when429

compilation fails, achieving 100% success for unit430

test-related segments. This fine-grained evaluation431

recognizes partial successes rather than dismissing432

them due to isolated errors.433

4.2.2 Proving Skeleton Necessity434

The second experiment confirms that providing tar-435

get repository skeletons is essential for translation.436

Table 4 shows that omitting skeletons drastically437

lowers build success and unit test pass rates. This438

is due to unresolved inter-file dependencies and439

interfaces, which hinder identifying functions un-440

der test. As Figure 6 illustrates, missing skeletons441

cause many unresolved dependencies, dropping all442

build and test scores to zero. For some reposito-443

ries, dependencies become completely unresolv-444

able without skeletons, highlighting their crucial445

role in enabling accurate evaluation.446

Figure 7: Build Success Rates for Incremental Transla-
tion with/without Skeleton

4.3 Validating Three Key Requirements for 447

Repository-Level Translation 448

As proposed in Section 2.2, our Skeleton-Guided- 449

Translation meets three requirements. Testability 450

is validated through large model evaluation, so we 451

focus on maintainability and usability. 452

Maintainability. Our maintainability experiment 453

evaluates how Skeleton-Guided Translation helps 454

LLMs perform incremental Java-to-C# translation, 455

improving repo-level maintainability. It translates 456

only necessary updates, avoiding redundant C# 457

changes. We assessed the bytecode repository by 458

measuring cumulative build success rates over ten 459

incremental tasks across five trials. The first ap- 460

proach updated the skeleton before translation; the 461

second translated directly without skeleton guid- 462

ance. Figure 7 shows that the skeleton-guided 463

method maintains successful builds even after eight 464

updates and 45 new functions, while the unguided 465

method fails around the third update. This demon- 466

strates the effectiveness of skeletons in supporting 467

incremental translation. 468

Usability. Table 5 compares coarse- and fine- 469

grained feedback for improving translated libraries. 470

Coarse feedback relies on holistic build and test 471

evaluations, while fine-grained feedback provides 472

targeted error insights. Results show that fine- 473

grained feedback consistently improves build rates 474

and unit test success, validating its effectiveness in 475

model-guided code refinement. 476

Summary. These experiments collectively estab- 477

lish that our method is superior in two key aspects: 478

• Our evaluation mechanism is more granular and 479

comprehensive, capturing the quality of transla- 480

tion even when partial failures occur. 481

• Skeletons are crucial for dependency resolution 482

and accurate evaluation. 483

7

• Our Skeleton-Guided-Translation meets three484

key requirements for repository-level code trans-485

lation: maintainability, testability, and usability.486

5 Related Work487

5.1 Code Translation488

Code translation preserves semantics while convert-489

ing languages. Rule-based compilers (e.g., Babel,490

Roslyn) handle simple cases but fail on complex491

constructs. AI-driven methods go further. Many492

studies (Tang et al., 2023; Roziere et al., 2020; Roz-493

ière et al., 2022; Yin et al., 2024; Yang et al., 2024;494

Jiao et al., 2023; Jana et al., 2024; Di et al., 2024;495

Tipirneni et al., 2024; Yan et al., 2023) focus on496

short code from competitive programming (Puri497

et al., 2021; Lu et al., 2021), educational platforms498

(Yan et al., 2023; Ahmad et al., 2023), or custom499

tasks (Liu et al., 2023; Chen et al., 2021). Some500

(Pan et al., 2024; Eniser et al., 2024; Zhang et al.,501

2023) tackle longer code (100+ lines) but with lim-502

ited success. Novel training strategies (Roziere503

et al., 2020; Rozière et al., 2022; Szafraniec et al.,504

2023; Jana et al., 2024; Tipirneni et al., 2024)505

may enhance our approach, alongside prompting506

(Tang et al., 2023) and repair methods (Yin et al.,507

2024). Adapting automated program repair (Xia508

et al., 2023; Kong et al., 2024) could help with509

translation-specific I/O errors. SYZYGY (Shetty510

et al., 2025) translates C to safe Rust using LLM-511

driven code generation and dynamic analysis. Bhat-512

tarai et al. (Bhattarai et al., 2024) proposed a few-513

shot retrieval-based translation method, while Tao514

et al. (Tao et al., 2024) used an intermediary lan-515

guage (Go) to aid translation.516

AlphaTrans (Ibrahimzada et al., 2024) is a neuro-517

symbolic framework for repository-level code518

translation using program analysis and dynamic519

testing. Shiraishi et al. (Shiraishi and Shinagawa,520

2024) improved C-to-Rust translation with context-521

aware segmentation, and Oxidizer (Zhang et al.,522

2024) ensures functionality through feature map-523

ping and unit tests. However, AlphaTrans struggles524

with semantic alignment in test translation and rigid525

syntax rules. Our method solves these by validat-526

ing unit tests on both source and target skeletons527

and using LLMs to translate skeletons directly.528

5.2 Code Translation Benchmarks529

Benchmarks are crucial for evaluating code trans-530

lation. Early ones used small, manually curated531

function pairs, while modern benchmarks cover532

large datasets across diverse languages. AdvBench 533

(Robey et al., 2021) evaluates TransCoder on Java, 534

C++, and Python using BLEU, Exact Match (EM), 535

and Execution Accuracy. CodeNet (Puri et al., 536

2021) provides 14 million samples in 50 languages 537

for training and evaluation. Task-specific bench- 538

marks like CodeXGLUE (Lu et al., 2021) ensure 539

functional correctness but often miss niche lan- 540

guages and system-level complexities. RustRe- 541

poTrans (Ou et al., 2024) first includes repository- 542

level Rust dependencies, revealing a 41.5%-56.2% 543

performance drop, highlighting real-world chal- 544

lenges in dependency and cross-file handling. 545

RepoTransBench (Wang et al., 2024) bench- 546

marks repository-level translation with 100 repos- 547

itories and automated tests, addressing configura- 548

tion, resource handling, and test migration. How- 549

ever, our approach overcomes its limitations: (1) 550

No Skeleton Framework – Lacking skeletons, it 551

struggles with interface constraints, leading to mis- 552

alignments. Our skeleton-based method ensures 553

better control and adaptability. (2) No Test Verifica- 554

tion – It lacks robust test result checking, while we 555

validate unit tests on both source and target skele- 556

tons for reliable evaluation. (3) Coarse-Grained 557

Evaluation – It executes tests without isolating de- 558

pendencies, compounding errors. Our approach 559

isolates dependencies, enabling finer-grained as- 560

sessment and reducing error propagation. 561

6 Conclusions 562

We present Skeleton-Guided-Translation and the 563

TRANSREPO-BENCH benchmark to address the 564

challenges of evaluating LLM-based repository- 565

level code translation. We provide the “skeletons” 566

that preserve file structures and interfaces, enabling 567

fair and consistent evaluation of different LLMs 568

with unified unit tests. Moreover, we offer fine- 569

grained evaluation through detailed error localiza- 570

tion, moving beyond simple pass/fail outcomes. 571

Our evaluation of TRANSREPO-BENCH , a set 572

of Java repositories covered by high-quality tests, 573

shows that even SOTA LLMs reach only 26.65% 574

accuracy. Using skeletons prevents partial errors 575

from affecting correct modules, providing a fine- 576

grained assessment of build success and test pass 577

rates. We also demonstrate the benefits of using 578

skeletons to maintain interface consistency, enable 579

fine-grained quality assessment, and support incre- 580

mental translation. 581

8

7 Limitations582

This study primarily focuses on evaluating583

repository-level translations between Java and C#584

using Skeleton-Guided-Translation, and does not585

confirm its generalizability to other language pairs586

(e.g., C++, Python, Rust). . Moreover, the exper-587

imental data is drawn from open-source projects588

with relatively high test coverage. While this offers589

some insight into how the approach might func-590

tion in real-world scenarios, performance may de-591

grade in extremely large or complex codebases with592

highly customized dependencies. Additionally, in593

order to maintain automation and control, we re-594

quire the use of skeletons (and subsequent manual595

fixes) in the evaluation process, which may not596

fully capture more dynamic environments involv-597

ing multi-user collaboration or frequent version up-598

dates. Lastly, certain unit tests still required manual599

patches before execution, somewhat limiting both600

efficiency and objectivity. Future research might601

explore automated repair techniques or adaptive602

testing configurations to further enhance evaluation603

reliability.604

8 Ethical Considerations605

The proposed method can significantly facilitate606

cross-language code migration and reuse but also607

introduces ethical and societal considerations. First,608

using large language models for automated code609

translation raises potential concerns about over-610

collection or misuse of proprietary software code,611

underscoring the need to address intellectual prop-612

erty and confidentiality agreements. Second,613

model-generated translations may contain hidden614

flaws or security vulnerabilities, and blindly deploy-615

ing them into production risks exacerbating exist-616

ing system vulnerabilities. Third, biases and metric617

selection in both the model training and evaluation618

processes may inadvertently cause disparities for619

certain languages or developer communities. To620

mitigate these issues, researchers and practitioners621

should collect data responsibly, rigorously review622

and test model outputs, and enforce thorough se-623

curity and quality assessments before integrating624

translated code into production environments.625

References626

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat627
Chakraborty, and Kai-Wei Chang. 2023. Avatar: A628
parallel corpus for java-python program translation.629

In Findings of the Association for Computational 630
Linguistics: ACL 2023, pages 2268–2281, Toronto, 631
Canada. Association for Computational Linguistics. 632

Manish Bhattarai, Javier E. Santos, Shawn Jones, Ayan 633
Biswas, Boian Alexandrov, and Daniel O’Malley. 634
2024. Enhancing code translation in language mod- 635
els with few-shot learning via retrieval-augmented 636
generation. Preprint, arXiv:2407.19619. 637

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 638
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 639
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 640
Greg Brockman, Alex Ray, Raul Puri, Gretchen 641
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 642
try, Pamela Mishkin, Brooke Chan, Scott Gray, 643
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 644
Kaiser, Mohammad Bavarian, Clemens Winter, 645
Philippe Tillet, Felipe Petroski Such, Dave Cum- 646
mings, Matthias Plappert, Fotios Chantzis, Eliza- 647
beth Barnes, Ariel Herbert-Voss, William Hebgen 648
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 649
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 650
William Saunders, Christopher Hesse, Andrew N. 651
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 652
Morikawa, Alec Radford, Matthew Knight, Miles 653
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 654
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 655
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 656
ing large language models trained on code. Preprint, 657
arXiv:2107.03374. 658

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting 659
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei 660
Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong, 661
Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng 662
Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen 663
Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guangpei 664
Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei 665
Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin Zhao, 666
Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xiany- 667
ing Zhu. 2024. Codefuse-13b: A pretrained multi- 668
lingual code large language model. In Proceedings 669
of the 46th International Conference on Software En- 670
gineering: Software Engineering in Practice, ICSE- 671
SEIP ’24, page 418–429. ACM. 672

Hasan Ferit Eniser, Valentin Wüstholz, and Maria Chris- 673
takis. 2024. Automatically testing functional prop- 674
erties of code translation models. In Proceedings of 675
the AAAI Conference on Artificial Intelligence, vol- 676
ume 38, pages 21055–21062. AAAI Press. 677

Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, 678
Muhammad Salman Abid, Rangeet Pan, Saurabh 679
Sinha, and Reyhaneh Jabbarvand. 2024. Repository- 680
level compositional code translation and validation. 681
Preprint, arXiv:2410.24117. 682

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham 683
Kishore, Aryan Mahajan, and Vijay Ganesh. 2024. 684
Cotran: An llm-based code translator using reinforce- 685
ment learning with feedback from compiler and sym- 686
bolic execution. In Frontiers in Artificial Intelligence 687
and Applications, volume 392, pages 4011–4018. 688
IOS Press. 689

9

https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1609/aaai.v38i19.30097
https://doi.org/10.1609/aaai.v38i19.30097
https://doi.org/10.1609/aaai.v38i19.30097
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2410.24117
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu,690
Xiaodong Gu, and Beijun Shen. 2023. On the eval-691
uation of neural code translation: Taxonomy and692
benchmark. In Proceedings of the 38th IEEE/ACM693
International Conference on Automated Software En-694
gineering, pages 1529–1541. IEEE.695

Mohammad Abdullah Matin Khan, M Saiful Bari,696
Do Long, Weishi Wang, Md Rizwan Parvez, and697
Shafiq Joty. 2024. Xcodeeval: An execution-based698
large scale multilingual multitask benchmark for699
code understanding, generation, translation and re-700
trieval. In Proceedings of the 62nd Annual Meeting of701
the Association for Computational Linguistics, pages702
6766–6805. Association for Computational Linguis-703
tics.704

Jiaolong Kong, Mingfei Cheng, Xiaofei Xie, Shangqing705
Liu, Xiaoning Du, and Qi Guo. 2024. Contrastre-706
pair: Enhancing conversation-based automated pro-707
gram repair via contrastive test case pairs. Preprint,708
arXiv:2403.01971.709

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and710
Lingming Zhang. 2023. Is your code generated by711
ChatGPT really correct? rigorous evaluation of large712
language models for code generation. In Proceed-713
ings of the 37th International Conference on Neural714
Information Processing Systems, page 943. Curran715
Associates Inc.716

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey717
Svyatkovskiy, Ambrosio Blanco, Colin Clement,718
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-719
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-720
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-721
daresan, Shao Kun Deng, Shengyu Fu, and Shujie722
Liu. 2021. CodeXGLUE: A machine learning bench-723
mark dataset for code understanding and generation.724
In Proceedings of the Neural Information Process-725
ing Systems Track on Datasets and Benchmarks, vol-726
ume 1.727

Nicholas D. Matsakis and Felix S. Klock. 2014. The728
rust language. In Proceedings of the 2014 ACM729
SIGAda Annual Conference on High Integrity Lan-730
guage Technology, HILT ’14. Association for Com-731
puting Machinery.732

Guangsheng Ou, Mingwei Liu, Yuxuan Chen, Xin733
Peng, and Zibin Zheng. 2024. Repository-level734
code translation benchmark targeting rust. Preprint,735
arXiv:2411.13990.736

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,737
Divya Sankar, Lambert Pouguem Wassi, Michele738
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,739
and Reyhaneh Jabbarvand. 2024. Lost in transla-740
tion: A study of bugs introduced by large language741
models while translating code. In Proceedings of the742
IEEE/ACM 46th International Conference on Soft-743
ware Engineering, ICSE ’24, page 1–13. ACM.744

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang,745
Giacomo Domeniconi, Vladimir Zolotov, Julian746

Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, 747
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam 748
Ramji, Ulrich Finkler, Susan Malaika, and Frederick 749
Reiss. 2021. CodeNet: A large-scale AI for code 750
dataset for learning a diversity of coding tasks. In 751
Proceedings of the Neural Information Processing 752
Systems Track on Datasets and Benchmarks, vol- 753
ume 1. 754

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, 755
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio 756
Blanco, and Shuai Ma. 2020. Codebleu: a method 757
for automatic evaluation of code synthesis. Preprint, 758
arXiv:2009.10297. 759

Alexander Robey, Luiz F. O. Chamon, George J. Pap- 760
pas, Hamed Hassani, and Alejandro Ribeiro. 2021. 761
Adversarial robustness with semi-infinite constrained 762
learning. Advances in neural information processing 763
systems. 764

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus- 765
sot, and Guillaume Lample. 2020. Unsupervised 766
translation of programming languages. In Ad- 767
vances in Neural Information Processing Systems, 768
volume 33. Curran Associates, Inc. 769

Baptiste Rozière, Jie Zhang, François Charton, Mark 770
Harman, Gabriel Synnaeve, and Guillaume Lample. 771
2022. Leveraging automated unit tests for unsuper- 772
vised code translation. In Proceedings of the 10th 773
International Conference on Learning Representa- 774
tions. 775

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. 776
2023. Are emergent abilities of large language mod- 777
els a mirage? In Advances in Neural Information 778
Processing Systems, volume 36. Curran Associates, 779
Inc. 780

Manish Shetty, Naman Jain, Adwait Godbole, Sanjit A. 781
Seshia, and Koushik Sen. 2025. Syzygy: Dual code- 782
test C to (safe) Rust translation using LLMs and 783
dynamic analysis. Preliminary version accepted at 784
LLM4Code 2025. arXiv preprint arXiv:2412.14234. 785

Momoko Shiraishi and Takahiro Shinagawa. 2024. 786
Context-aware code segmentation for c-to-rust trans- 787
lation using large language models. Preprint, 788
arXiv:2409.10506. 789

Marc Szafraniec, Baptiste Roziere, Hugh Leather, 790
François Charton, Patrick Labatut, and Gabriel Syn- 791
naeve. 2023. Code translation with compiler repre- 792
sentations. In International Conference on Learning 793
Representations. In-Person Oral Presentation, Top 794
25% Paper. 795

Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin 796
Wang, Derry Wijaya, Jie Chen, and Yoon Kim. 2023. 797
Explain-then-translate: an analysis on improving pro- 798
gram translation with self-generated explanations. In 799
Findings of the Association for Computational Lin- 800
guistics: EMNLP 2023. Association for Computa- 801
tional Linguistics. 802

10

https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://arxiv.org/abs/2411.13990
https://arxiv.org/abs/2411.13990
https://arxiv.org/abs/2411.13990
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2207.03578
https://arxiv.org/abs/2207.03578
https://arxiv.org/abs/2207.03578
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119

Qingxiao Tao, Tingrui Yu, Xiaodong Gu, and Beijun803
Shen. 2024. Unraveling the potential of large lan-804
guage models in code translation: How Far Are We?805
In 31st Asia-Pacific Software Engineering Confer-806
ence, APSEC ’24. To appear.807

Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy.808
2024. Structcoder: Structure-aware transformer for809
code generation. Preprint, arXiv:2206.05239.810

Yanli Wang, Yanlin Wang, Suiquan Wang, Daya Guo,811
Jiachi Chen, John Grundy, Xilin Liu, Yuchi Ma,812
Mingzhi Mao, Hongyu Zhang, and Zibin Zheng.813
2024. Repotransbench: A real-world benchmark814
for repository-level code translation. Preprint,815
arXiv:2412.17744.816

Chunqiu Steven Xia, Yuxiang Wei, and Lingming817
Zhang. 2023. Automated program repair in the818
era of large pre-trained language models. In 2023819
IEEE/ACM 45th International Conference on Soft-820
ware Engineering (ICSE).821

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen,822
and Wen Wang. 2023. CodeTransOcean: A compre-823
hensive multilingual benchmark for code translation.824
In Findings of the Association for Computational825
Linguistics: EMNLP 2023. Association for Computa-826
tional Linguistics.827

Aidan Z. H. Yang, Yoshiki Takashima, Brandon Paulsen,828
Josiah Dodds, and Daniel Kroening. 2024. Vert:829
Verified equivalent rust transpilation with large830
language models as few-shot learners. Preprint,831
arXiv:2404.18852.832

Xin Yin, Chao Ni, Tien N. Nguyen, Shaohua Wang, and833
Xiaohu Yang. 2024. Rectifier: Code translation with834
corrector via llms. Preprint, arXiv:2407.07472.835

Hanliang Zhang, Cristina David, Meng Wang, Brandon836
Paulsen, and Daniel Kroening. 2024. Scalable, vali-837
dated code translation of entire projects using large838
language models. Preprint, arXiv:2412.08035.839

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos840
Gligoric. 2023. Multilingual code co-evolution using841
large language models. In Proceedings of the 31st842
ACM Joint European Software Engineering Confer-843
ence and Symposium on the Foundations of Software844
Engineering, ESEC/FSE 2023. Association for Com-845
puting Machinery.846

A Appendix847

A.1 Detailed Information of848

TRANSREPO-BENCH849

Table 6 summarizes the key characteristics of our850

benchmark repositories, highlighting their diversity,851

high test coverage, and moderate adaptation costs.852

The selected repositories cover a wide range of soft-853

ware design patterns, ensuring a comprehensive854

evaluation of translation performance. The number855

Repo Name Classes Methods Lines Unit Test Coverage Skeleton Fix Time (min)

promise 6 36 789 93.70% 270
table-module 3 8 494 100.00% 70
double-buffer 3 16 489 98.30% 25
decorator 3 10 351 96.50% 60
producer-consumer 4 8 372 96.40% 30
double-dispatch 15 55 985 98.60% 90
partial-response 2 5 382 90.10% 130
converter 3 8 367 98.80% 100
caching 10 63 1605 93.30% 270
unit-of-work 4 16 460 98.30% 30
game-loop 7 18 730 94.90% 60
type-object 6 20 704 96.20% 120
bytecode 4 17 624 94.70% 150

Table 6: Resulting Benchmark

of classes, methods, and lines of code varies sig- 856

nificantly across repositories, reflecting different 857

levels of complexity and structural diversity. 858

Additionally, unit test coverage is consistently 859

high across the benchmark, demonstrating the ro- 860

bustness of the evaluation setup and ensuring that 861

translated code can be rigorously tested. The skele- 862

ton fix time, while necessary to adapt the repos- 863

itory skeletons for evaluation, remains moderate 864

across all repositories, indicating a reasonable ef- 865

fort in preparing the benchmark without excessive 866

overhead. Overall, this benchmark provides a well- 867

balanced dataset, offering diverse software struc- 868

tures, strong test coverage, and a practical adapta- 869

tion cost, making it suitable for assessing transla- 870

tion performance across different codebases. 871

A.2 Common Failure Patterns 872

We explore the most common failure patterns en- 873

countered during large model-based code transla- 874

tion, focusing on their underlying causes, how they 875

manifest in practice, and the strategies needed to 876

address them. By analyzing these recurring issues, 877

we aim to provide actionable insights for improv- 878

ing the accuracy and reliability of cross-language 879

code conversion processes. 880

Static Variable Misalignment. A common trans- 881

lation issue is inconsistent static variable naming. 882

For example: 883
884

p u b l i c vo id Stop () { 885
s t a t u s = GameStatus . S topped ; 886

} 887888

The C# code raised error CS0117 due to in- 889

correct translation of the enum member Stopped, 890

which should follow C#’s uppercase convention, 891

e.g., STOPPED. This mismatch stems from Java’s 892

mixed-case style. To prevent such errors, transla- 893

tors should apply capitalization-aware mappings. 894

Unresolved Names and Contextual Misinterpre- 895

tations. Translation errors often stem from missing 896

imports of contextual elements, causing errors like 897

11

https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2412.17744
https://arxiv.org/abs/2412.17744
https://arxiv.org/abs/2412.17744
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://doi.org/10.1145/3611643.3616350
https://doi.org/10.1145/3611643.3616350
https://doi.org/10.1145/3611643.3616350

CS0103 (“The name does not exist in the current898

context”). For example:899
900

p r i v a t e i n t RandomInt (i n t min , i n t max) {901
re turn ThreadLocalRandom . C u r r e n t . Next (min , max +902

1) ;903
}904905

In this case, the C# compiler failed because906

ThreadLocalRandom is not recognized in C#. In-907

stead, C# provides a Random class with similar func-908

tionality. Translators must correctly identify equiv-909

alent libraries and methods in the target language910

or include necessary imports automatically.911

Undefined Methods. Errors such as CS1061 oc-912

cur when the translated code references methods or913

properties that are undefined in the target language.914

For instance:915
916

_ w i z a r d s [w i za rd] . SetWisdom (amount) ;917918

This snippet assumes a SetWisdom method in919

the Wizard class, but the translator didn’t verify it.920

Enhancing cross-referencing and generating warn-921

ings can help resolve such semantic gaps.922

Namespace and Duplicate Definitions. Another923

common error (CS0101) occurs when namespaces924

contain duplicate definitions due to repetitive code925

generation. Consider the following Java snippet:926
927

p u b l i c c l a s s Candy928
{929

p u b l i c Candy (s t r i n g f l a v o r) { }930
}931932

If the translator generates multiple constructors933

with identical signatures for this class in C#, the934

compiler will flag a conflict, as C# enforces unique935

member definitions within a namespace or class.936

The solution involves ensuring that constructors or937

methods with overlapping signatures are merged or938

disambiguated during translation.939

Runtime Logical Failures. Even after fixing com-940

pilation errors, logical inconsistencies in the trans-941

lation can still cause runtime issues. For example:942
943

p r i v a t e vo id R e g i s t e r (Weapon weapon , s t r i n g944
o p e r a t i o n) {945

i f (! _ c o n t e x t . TryGetValue (o p e r a t i o n , o u t v a r946
weaponsToOpera te))947

{948
weaponsToOpera te = new L i s t <Weapon > () ;949

}950
weaponsToOpera te . Add (weapon) ;951
_ c o n t e x t [o p e r a t i o n] = weaponsToOpera te ;952

}953954

A null reference error occurs because the955

_context dictionary was uninitialized. Such run-956

time errors are hard to catch via static analysis,957

underscoring the need for robust runtime testing to958

detect logical flaws in translated code.959

12

	Introduction
	Motivation
	Challenges in Repository Translation
	Solution: Standardizing Code Repository Translation with Fine-Grained Evaluation

	TransRepo-bench Benchmark
	Benchmark Overview
	Benchmark Construction
	Source Repository Collection
	Skeleton Extraction and Translation
	Unit Test Translation
	Testing Environment Construction

	Fine-Grained Evaluation Metrics Design

	Evaluation
	Model Performance on TransRepo-bench
	Model Selection
	LLMs Performance
	Failure Analysis

	TransRepo-bench Effectiveness
	Validating Evaluation Fineness
	Proving Skeleton Necessity

	Validating Three Key Requirements for Repository-Level Translation

	Related Work
	Code Translation
	Code Translation Benchmarks

	Conclusions
	Limitations
	Ethical Considerations
	Appendix
	Detailed Information of TransRepo-bench
	Common Failure Patterns

