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Abstract
We perform an empirical study of the behaviour
of deep networks when fully linearizing some of
its feature channels through a sparsity prior on the
overall number of nonlinear units in the network.
In experiments on image classification and ma-
chine translation tasks, we investigate how much
we can simplify the network function towards lin-
earity before performance collapses. First, we
observe a significant performance gap when re-
ducing nonlinearity in the network function early
on as opposed to late in training, in-line with
recent observations on the time-evolution of the
data-dependent NTK. Second, we find that after
training, we are able to linearize a significant num-
ber of nonlinear units while maintaining a high
performance, indicating that much of a network’s
expressivity remains unused but helps gradient
descent in early stages of training. To character-
ize the depth of the resulting partially linearized
network, we introduce a measure called average
path length, representing the average number of
active nonlinearities encountered along a path in
the network graph. Under sparsity pressure, we
find that the remaining nonlinear units organize
into distinct structures, forming core-networks of
near constant effective depth and width, which in
turn depend on task difficulty.

1. Introduction
Deep learning as such is based on the idea that concate-
nations of (suitably chosen) nonlinear functions increase
expressivity so that complex pattern modeling and recogni-
tion problems can be solved. While initial approaches such
as AlexNet (Krizhevsky et al., 2012) only used moderate
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depth, improvements such as batch normalization (Ioffe &
Szegedy, 2015; Santurkar et al., 2018; Arora et al., 2019) or
residual connections (He et al., 2015b) made the training of
networks with hundreds or even thousands of layers possi-
ble, and this did contribute to significant practical gains.

From a theoretical perspective, a network’s depth (along
with its width) upper bounds the complexity of the func-
tion that it can represent (Bartlett et al., 2019) and therefore
upper bounds the network’s expressivity. Indeed, deeper net-
works tend to enhance performance (Tan & Le, 2019), but
gains seem to taper off and saturate with increasing depth.
Very deep networks are also known to be more difficult
to analyze (Allen-Zhu et al., 2019), more computationally
expensive to train or infer and suffer from numerous stabil-
ity issues such as vanishing (Hochreiter, 1991), exploding
(Zhang et al., 2019) and shattering (Balduzzi et al., 2017)
gradients. Similar arguments can be made about layer width:
a sufficiently large network can memorize any given func-
tion (Cybenko, 1989), but under standard initialization and
training infinite width networks degrade to Gaussian pro-
cesses (Jacot et al., 2018).

From a practical perspective, there are now many successful
recipes for creating networks of a prescribed depth, but it
is still difficult to understand – empirically or analytically –
how many nonlinear layers and features per layer are actu-
ally needed to solve a problem, and how effective a chosen
architecture actually is in exploiting its expressive poten-
tial in the sense of a deep stack of concatenated nonlinear
computations.

Our paper addresses this question from an empirical perspec-
tive: we use a simple setup that associates every nonlinear
unit with a cost at channel granularity, which can be raised
continuously, while simultaneously trying to maintain per-
formance. As PReLU activations (He et al., 2015a) can be
used to interpolate continuously between a ReLU function
and a linear function (Ali Mehmeti-Göpel et al., 2021), we
replace each ReLU layer with channel-wise PReLU activa-
tions and regularize their slopes towards linearity. Such a
linearized feature channel therefore only forms linear combi-
nations of existing feature channels, thereby not effectively
contributing to the nonlinear complexity of the network.
To measure the nonlinear complexity or ”effective depth”
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of the resulting partially linearized networks, we introduce
a metric called average path length (APL): the average
amount of nonlinear units a given input traverses until it
passes the final layer. We thereby disregard subsequent lin-
ear mappings along computational paths, as these do not
increase expressivity in a nonlinear sense.

Using this tool, we make a series of experiments on common
convolutional and transformer architectures on standard
computer vision and machine translation tasks by partially
linearizing networks with regard to the network’s inputs at
different stages of training and find that networks linearized
later on in training obtain a significantly higher performance
than networks linearized earlier on in training. This is non-
trivial, since the network’s expressivity is the same whether
it is linearized early or late in training. We find the biggest
differences in the early training phase, complementarily to
the findings of (Fort et al., 2020) that establish a similar,
but much less surprising effect when fully linearizing the
network with regard to the network’s weights.

Analyzing these partially linearized networks extracted af-
ter training, we find that we can extract very shallow net-
works with a surprisingly high performance for their effec-
tive depth. These findings are consistent with the lottery
ticket hypothesis (Frankle & Carbin, 2019) that there is a
core nonlinear structure in networks, and with the subse-
quent findings of You et al. (2020) that it forms within the
first epochs of training. Our method allows us to compute
an approximate lower bound for depth and width that the
networks needs to solve a task before performance collapses
and we find that these are approximately constant for a given
task and regularization strength, independently of the width
and depth of the initial network. We also find that the ef-
fective depth of this core nonlinear structure grows with
problem complexity for a fixed regularization strength.

2. Related Work and Contributions
Different approaches to network pruning were explored
in recent years: magnitude-based weight pruning, weight-
regularization techniques, sensitivity-based pruning and
search-based approaches (Neill, 2020). Frankle & Carbin
(2019) extract a highly performant, sparse and re-trainable
subnetwork by removing all low-magnitude weights after a
given training time, re-initializing the network and iterating
this process. This motivates the ”lottery ticket hypothesis”
of a network consisting of a smaller core structure embed-
ded in the larger, overparametrized and redundant network,
which, in their case, can be extracted by weight pruning.
Our paper prunes nonlinear units instead of weights, but
comes to similar findings of a problem-difficulty-dependent
minimal set, embedded in a much larger and deeper network,
when considering nested nonlinear computations. You et al.
(2020) claim that the final accuracy of lottery tickets drawn

after at early training is already drastically higher than at
initialization. Su et al. (2020) conduct ”sanity checks” on
the lottery ticket hypothesis and conclude that only the num-
ber of remaining weights matters for a given dataset. We
conduct similar checks and find that transferring simple
statistics such as how many nonlinear units are active per
layer are not sufficient to recover full performance.

Simplification of networks by reducing nonlinearity has be-
come a major area of interest. A lot of recent work has stud-
ied the neural tangent kernel (NTK) approximation, which
linearizes the network function with regard to its parameters.
It arises in the infinite width limit (under mild conditions)
or by explicitly performing a linear Taylor-approximation
of a finite network (Jacot et al., 2018; Fort et al., 2020). As
it fully linearizes training, the NTK has been tremendously
useful for gaining a better understanding of the training of
deep network, such explaining double-descent generaliza-
tion (Belkin et al., 2019; Wilson & Izmailov, 2020). Maybe
unsurprisingly, linearized training hurts performance in prac-
tice (Fort et al., 2020) and theory: Roberts et al. (2022)
attribute it to the loss of detection of higher-order moments
in the data distribution). Fort et al. have coined the term
nonlinear advantage for the observed discrepancy in per-
formance between the network’s NTK and the nonlinear
network function that vanishes over time when training with
low learning rate. Within the NTK framework, the impact of
ReLUs can be captured by path kernels (Lakshminarayanan
& Singh, 2020), the learning of which improves results and
generalizes when retraining, and can be used to understand
pruning methods at initialization (Gebhart et al., 2021). Our
APL measures are tightly related to the proposed (gated)
path-integral formulation there. Our paper simplifies the
network function itself by reducing the number of nonlinear
units in the network and therefore partially linearizing it
in both inputs and weights, finding a similar, but difficulty-
dependent nonlinear advantage.

Dror et al. (2021) use a methodology similar to ours, but
applied layer-wise and aiming at improved performance
characteristics at inference time. Our channel-wise approach
allows us to reduce significantly more nonlinear units in the
network whilst maintaining a similar performance as well
as characterize the ”effective width” of the emerging core
network. A training time dependent effect as we show it, is
not studied by the authors.

3. Reducing Nonlinear Feature Channels
In order to reduce the amount of nonlinear feature channels
in a network, we take network architectures and replace
their ReLU activations with PReLUs. We then use a sin-
gle PReLU weight for every channel and add a sparsity
regularization of L0.5 =

∑
|1− αi|0.5 to the regular train-

ing loss scaled with a regularization weight ω, where αi
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is the variable slope of the i-th PReLU. We chose channel-
wise PReLU units because the latter allows a much bigger
reduction in overall nonlinearity compared to layer-wise
units, and pixel-wise PReLUs would entail an unreasonable
amount of additional parameters. Since the regularization
loss term is discontinuous at 1, we disable a PReLU unit if
their slope gets close enough to one. We call such a unit
inactive, while all other units are active.

By regularizing PReLU units this way, the slope of inactive
units is locked to αi = 1, but the slope of active units is
an arbitrary number between 0 and 1. After reaching a
goal percentage of disabled PReLU units, it is possible to
regularize the slope of the remaining active units back to
0, effectively transforming the network back to a regular
ReLU network and relating to (Hanin & Rolnick, 2019), but
we found that this method can be hurtful to performance
and therefore refrain from using it.

3.1. Average Path Length (APL)

Figure 1. In this Figure, a residual connection (red) skips 4 small
fully connected layers. The left-most and right-most nodes are
connected by 257 different paths. Using unnormalized average
path length implies a 1/257 chance of selecting the red path and
the same chance of selecting the blue path. Using normalized
average path length, we have a 1/2 chance of selecting the red
path and a 1/512 chance of selecting the blue path.

The depth of a network, according to its traditional notion,
corresponds to the maximum amount of nonlinear units en-
countered when following the computation graph of a net-
work from input to output. After partially linearizing such a
network, this value remains the same, assuming at least one
channel per layer remains active (non-linear). Therefore,
computing the average amount of nonlinear units instead of
the maximum seems like a more sensible characterization
for partially linearized networks.

Let G = (V,E) be the directed acyclic graph that represents
the computation graph of a given feedforward neural net-
work. Since we are only interested in the nonlinear structure
of the graph, a node in the graph corresponds to a PReLU
unit in the network. We denominate Vd ⊂ V the subset of
nodes that correspond to the d-th layer in the network. Let
vin, vout ∈ V be the respective input and output vertices of
the graph. Let R ⊂ V be a subset of the vertices that repre-

sent the blocks containing an active PReLU i.e. |α− 1| > ϵ,
where α is the weight of the PReLU.

Let P(n) ⊂ V n be the set of all paths of length n in G that
originate in vin, i.e. p1 ∈ vin and (vi, vi+1) ∈ E for all
1 ≤ i ≤ n − 1. We define the effective path length of a
path p ∈ P(n) as the number of active PReLU activations it
traverses:

ϕ(p) := |{vi ∈ p | vi ∈ R, 1 ≤ i ≤ n}|,

which is always smaller or equal to its regular length |p|.
Let v ∈ V be a vertex of the graph, we then define its path
histogram function as the number of paths from vin to v of
effective length l :

ϕ(l)(v) := |{p ∈ P(l′) | pl = v, ϕ(p) = l, 1 ≤ l′ ≤ l}|.

We finally define the average path length (APL) of the net-
work as:

APL(G) :=

∑d
i=0 i · ϕ(i)(vout)∑d
i=0 ϕ

(i)(vout)
,

where d is the depth of the network. In order to effectively
compute the APL of a network, we resort to dynamic pro-
gramming.

Proposition 3.1. Let v ∈ V be a vertex in the network. We
can then compute its path histogram function by summing
over all vertices that have an outgoing edge to v:

ϕ(l)(v) =

{∑
v′∈V 1(v′,v)∈E · ϕ(l−1)(v′) if v ∈ R,∑
v′∈V 1(v′,v)∈E · ϕ(l)(v′) otherwise.

Proof. Assume that we have the full histogram of all ver-
tices of layer l − 1 and lower and want to calculate the
histogram of a given vertex v ∈ V in layer l. Let V ′ :=
{v′ ∈ V |(v′, v) ∈ E} be the set of all vertices that have
an edge to v. Since G is a DAG, all paths from vin to v
must go through exactly one node of V ′. The histogram of
v can therefore be decomposed as shown above, shifting if
v contains an active PReLU.

Implementation details: We implement this recursion in
a modified forward pass through the network by re-using
the batch dimension of the input tensor as ”histogram di-
mension” that saves the path histogram function ϕ(l)(v)
for a given neuron v. By setting all weights of a linear
(fully connected or convolutional) layer to one and biases to
zero, executing the layer then automatically outputs for each
neuron the sum of all inputs and therefore sums the path
histogram functions of all incoming nodes. We then just
need to ”shift” the obtained histogram if an active PReLU
is present to obtain the correct histogram function for v.
Other layers such as batch normalization or pooling layers
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are ignored. We finally use a constant (1, 0, . . . , 0) input for
network and extract the obtained histograms in the last layer.
For reasons discussed below, it can be useful to normal-
ize the histograms before adding them inside a ResBlock;
we call the resulting value the normalized average path
length. An illustrative example for a histogram computation
of a non-residual and a residual network is shown in the
Appendix in Figure 12.

By Proposition 1, the unnormalized average path length
(APL) describes the expected number of active PReLU units
a path contains if we draw a path uniformly from the set of
all possible paths. In networks with residual connections,
this heavily favors longer paths, as every additional layer
used increases the number of possible paths exponentially
(ref. Appendix Figure 13). In this measure, despite resid-
ual connections, the initial path length of a ResNet is only
slightly lower than its depth which might seem unintuitive.

The normalized average path length (NAPL) describes, as
illustrated in Figure 1, the expected number of active PRe-
LUs a path contains if we follow a random outgoing edge
at every node in the path. In a residual network this means
that inside a ResBlock, both summands (main branch and
residual connection) have equal weight.

Both APL and NAPL do not depend on the absolute number
of active PReLUs in a layer but rather on their relative pro-
portion. For this reason, we will also use the simple measure
of effective network width or ENW of a network. It is the ab-
solute number of active PReLUs per layer, averaged over all
layers. This measure depends only on the extracted ”core”
network and is therefore useful for comparing architectures
of different width.

4. Experiments
In this section, we apply linearization to network architec-
tures at different stages of training to show the existence of
a discrepancy in performance between networks partially
linearized earlier and later in training that we call nonlinear
advantage. Once that we established this effect, we observe
the performance and shape of the networks resulting when
linearizing after training to convergence.

As our techniques requires networks with ReLU activations,
we chose a ResNet (He et al., 2016), PyramidNet (Han
et al., 2017) with (”Short”) and without (”NoShort”) residual
connections as well as Transformer (Vaswani et al., 2017)
as examples of standard architectures. For computer vision
tasks, we work with standard image classification datasets of
variable but well-known difficulty: CIFAR-10, CIFAR-100
(Krizhevsky, 2009), CINIC-10 (Darlow et al., 2018), Tiny
ImageNet (Le & Yang, 2015) and ILSVRC 2012 (called
ImageNet in the following) (Deng et al., 2009). As for NLP
tasks, we use the Multi30k (Elliott et al., 2016) machine

translation task (german to english). We train all networks
from scratch except on ImageNet where we use a pre-trained
ResNet50 from the Torchvision library for linearization.

In the experiments of Figure 3 and 23, we switch on our
linearizing regularizer described in Section 3 at the indicated
time during training, in order to capture a time-dependent
effect. In all other experiments, the partial linearization
happens in a separate phase, after conventionally training
the network:

Training Phase: We conventionally train the network with
the most basic setup that is capable of delivering benchmark
results for the chosen architectures: ReLU units, momentum
SGD, a multistep learning-rate scheduler and weight decay.

Linearization Phase: The ReLU units are replaced by
regularized PReLUs (with initial negative slope 0) and we
resume training in a shorter post-training step. PReLUs are
considered inactive and frozen if their slope is higher than
0.99 (1% margin). Concerning learning-rate scheduling in
the post-training step, we need a big learning rate initially to
reach the target nonlinearity and a lower learning rate after-
wards in order to reach a good performance. We therefore
revert to the initial learning rate and use the same multistep
scheduling as in the regular training phase adapted to the
shorter post-training phase.

Further details about architectures and training regimes used
can be found in the Appendix at Section C. We decided
to use the normalized average path to avoid overflows for
deeper networks (the absolute number of paths through the
network grows exponentially in depth) and because it is in-
line with previous works discussing path lengths in ResNets
(Veit et al., 2016). Results with unnormalized path length
yield similar results albeit the absolute numbers are higher
as shown in the Appendix at Section B.

4.1. The Nonlinear Advantage

In this section, we want to establish the existence of a non-
linear advantage by we comparing the final performance
of a network that is linearized at different stages of training.
We carefully choose our experimental setup such that the
difference in performance can be purely attributed to the
difference in nonlinear units and not to other factors such as
training time, learning rates or architectural differences.

4.1.1. RE-TRAINING PARTIALLY LINEARIZED
NETWORKS FROM SCRATCH

In a first step, we consider the most extreme case of compar-
ing a network partially linearized after being fully trained
to a network of the same architecture that contains the same
amount of nonlinear units trained from scratch. We want
to see whether we can train a network containing the same
amount of nonlinear units as the extracted network to the
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Architecture Base Linear. Exact Layerwise P. Global P.

CIFAR-10

ResNet56S 92.7 89.2 89.0± 0.0013 90.0± 0.0021 89.7± 0.0027
ResNet56NS 84.8 81.3 81.8± 0.0033 81.8± 0.0065 74.0± 0.0063
PyramNet110S 94.7 91.5 91.4± 0.0003 91.7± 0.0012 91.6± 0.0014

CIFAR-100

ResNet56S 69.9 68.3 66.8± 0.0042 66.7± 0.0134 65.2± 0.0044
ResNet56NS 56.7 54.8 45.3± 0.0110 45.8± 0.0263 47.0± 0.0218

Figure 2. Test accuracy of the extracted partially linearized net-
work compared to baseline networks where we re-train the same
network from scratch with the same amount of inactive PReLUs
but differently distributed. Standard deviation over five runs is
indicated for the re-trained networks.

Figure 3. Test accuracy of networks partially linearized at differ-
ent epochs during training on different datasets. The dotted lines
indicate the height of the first data point for visual reference.

performance of the latter and whether transferring simple
statistics (eg. the amount of active PReLUs per layer) is
sufficient to do so.

The experimental setup is the following: we regularly train
a ReLU network and linearize it in a post-training phase, re-
placing ReLUs by regularized PReLUs as described above.
We then transfer the amount of nonlinear units to a newly
initialized network and re-train the network 5 times, using
the same number of epochs and schedule as in the origi-
nal training phase. We also use (non-regularized) PReLU
units in the network for re-training, so that the amount of
parameters is comparable. Apart from the mask of inactive
PReLUs, everything else (network weights, optimizer etc.)
is re-initialized (with a random seed) and the network is
trained from scratch. We consider three different ways of
transferring the distribution of inactive PReLU units from
the partially linearized network to the new network that work
at different granularity: exact, layer-wise and network-wise:

• Exact: The exact binary masks of inactive PReLU are
kept.

• Layer-Wise Permutation: The binary masks of in-
active PReLUs are kept but shuffled with all PReLU
units within the same layer.

• Global Permutation: The binary masks of inactive
PReLUs are kept but shuffled with all PReLU units in
the network.

We summarized the results in Figure 2, where we abbre-
viated ”S” for Short and ”NS” for NoShort networks. We
see that for the ”easy” dataset CIFAR-10, the nonlinear ad-
vantage is nonexistent since all networks trained with the
exact and layerwise permutated nonlinearities reach the full
performance of the network that was partly linearized after
training. The slight gain in performance can be attributed to

the higher number of epochs where the network can adapt
to the missing nonlinearity. Further we see that only for the
ResNet56 NoShort, the network which differs most from a
uniform distribution in its remaining PReLU units (ref. Fig-
ure 4), the full performance was not reached with a global
permutation in PReLU masks whereas for all other archi-
tectures, full performance was reached. We conclude that
nonlinear advantage is nonexistent for this easy dataset and
the layerwise distribution of PReLU units matters only for
networks with a very distinct (non-uniform) structure in its
remaining PReLU units. As for the significantly more diffi-
cult dataset CIFAR-100, we see that no setting can reach the
performance of the network that was partly linearized after
training, not even re-training where the exact PReLU masks
are transferred; this indicates the existence of a nonlinear
advantage for harder problems.

4.1.2. NONLINEAR ADVANTAGE IS STRONGER IN EARLY
TRAINING

In a second step, we want to break down how linearizing
a network at different stages of training affects its perfor-
mance. For this, we train a ResNet56 Short on datasets of
varying difficulty since previous results indicate that we can
only measure it on harder datasets. At different stages of
the training, we activate our regularizer with a fixed reg-
ularization weight, resume training and measure the final
performance of the network after a given number of epochs.
As regularizing the network at different stages of training
with the same regularization weight can result in massive
differences in the amount of inactive PReLUs, we slightly
modified our regularizer to stop when a goal percentage
(80± 1%, an amount high enough to impact performance)
of inactive PReLUs over all layers is reached. In order not
to overshoot our goal percentage, we lower the regulariza-
tion weight when close to our target. We carefully tune the
regularization weight in order to avoid undershooting the
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Figure 4. Proportion of inactive PReLUs when partially linearizing a ResNet56 NoShort / Short with ω = 0.003.

target percentage. We see in Figure 3 that networks regular-
ized later in training are significantly more performant than
networks partially linearized earlier in training. The biggest
differences are visible in the first 15 epochs of training and
the effect is particularly pronounced for the harder datasets,
indicating a correlation between effect strength and the hard-
ness of the task at hand. In the Appendix in Figure 23 we
have shown that for a transformer architecture training on a
machine translation task, the test perplexity of networks is
higher for networks partially linearized early as opposed to
later epochs. The biggest difference occurs within the first
20 epochs of training.

4.2. Performance and Structure of Partially Linearized
Networks

Having established in the previous sections that the perfor-
mance of a network linearized after training cannot simply
be recovered by training with a similar amount of nonlin-
ear units from scratch, we now want to understand better
how shallow we can make a trained network until perfor-
mance collapses and where the remaining nonlinearities are
located in the network.

We observe the temporal evolution of the linearization pro-
cess for two different network architectures in Figure 4.
When evaluating the proportion of inactive PReLUs per
layer, we note that every architecture presents a distinct pat-
tern: for the ResNet56 NoShort, we see that the remaining
nonlinearity is concentrated in a connected block, whereas
for the ResNet56 Short, the remaining active PReLUs are
distributed more evenly over the layers. Interestingly, the
connected block of remaining nonlinearity in the ResNet56
NoShort is located in the middle of the network and not
on either end, excluding simple vanishing/exploding gra-
dients at initialization effects as a cause. The fact that for
the ResNet56 NoShort, many layers are fully linearized
without explicit incentive to do so might indicate that such
network architectures might not use their full expressive

potential. The stripe-like structure of remaining nonlinear-
ities in the ResNet56 Short corresponds to the placement
of the residual connections and indicates that these might
help in utilizing the full depth of the network. We found the
qualitative behavior for both architectures to be consistent
on the CIFAR-100 dataset (ref. Appendix), albeit the exact
location of the connected nonlinear layer block changes.
We conclude that despite regularizing every nonlinear unit
equally, distinct patterns form in the remaining nonlineari-
ties in the network that depend on network architecture.

Second, we want to demonstrate the effects of partial lin-
earization on generalization performance for different ar-
chitectures and datasets. We plotted the performance of
partially linearized networks for different choices of ω on
Cifar10 in Figure 5 (ref. Appendix Figure 19 for Cifar100).
Darker colors represent a higher regularization weight and
the disk sizes represents the global proportion of inactive
PReLUs. We can see that for all networks, the top-1 test
performance remains high even for a comparably small
NAPL values until it collapses. We also see that depending
on network architecture, for a similar NAPL value, differ-
ent networks architectures present a distinct percentage of
inactive PReLUs, further supporting our claim of a network-
dependent structure being extracted by linearization. A sim-
ilar plot showing explicitly the proportion of active PReLU
units instead of NAPL can be found in the Appendix in
Figure 16 (resp. 17 for Cifar100) and shows qualitatively
the same behavior. We further verified our claims for a
ResNet50 on the ImageNet dataset in Figure 6; note that this
network contains a non-ReLU activation layer (maximum
pooling) that we included in our calculations by increasing
all to the NAPL values by one.

4.3. Analyzing the Shape of the ”Core Network”

In this section, we investigate whether we can find some reg-
ularities in the shape of the resulting network if we partially
linearize networks of different initial shape.
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Figure 5. NAPL and test accuracy for different partially linearized
network architectures with ω ∈ [0.0005, 0.005].

Figure 6. NAPL, accuracy and active features channels for a par-
tially linearized ResNet50 pre-trained on Imagenet with ω ∈
[0.0005, 0.0025].

Figure 7. Validation accuracy and average path length during lin-
earization of ResNets56 of different width for ω = 0.003.

Figure 8. Inverse proportion of active PReLUs and NAPL for
ResNet56 Short of different width after linearization for ω =
0.003. A linear fit to the blue curve is drawn in grey.

4.3.1. ENW CONVERGES APPROX. INDEPENDENTLY OF
INITIAL WIDTH

We now want to analyze the effect of network width on
the shape of the resulting partially linearized network. We
therefore apply our linearization technique to different ver-
sions of ResNet56 Short scaled in width by a factor of
ν ∈ {0.25, 0.5, 1, 1.5, 2, 2.38} and measure the NAPL and
performance of the resulting networks. In Figure 7, we
see that wider networks seem to have better performance
but lower NAPL. The relationship between the number of
filters in a layer and the average path length seems recip-
rocal: this would imply that the average number of active
neurons per layer remains approximately equal. To confirm
this, in Figure 8 we plotted the inverse proportion of active
PReLUs after post-training linearization for all networks.
We can see a linear relationship, confirming that the average
amount of active neurons per layer remains roughly constant
- independently of the initial width chosen.

4.3.2. NAPL CONVERGES APPROX. INDEPENDENTLY
OF INITIAL DEPTH

We saw that independently of the network width chosen,
there was a similar amount of neurons per layer that re-
mained active. We now want to establish if we can make a
similar statement with regard to network depth. Therefore,
we repeated the experiment of the last section for networks
of different depth. In Figure 9, we see that independently
of the initial network chosen, the resulting network’s NAPL
converges to a similar value while having comparable train-
ing performances. Shallower networks seemingly converge
to a marginally higher NAPL but this is merely an artifact
of how we scaled ResNet blocks and is not observable on
a simple convolutional network with constant width (ref.
Appendix Figure 24). The results hint the existence of a
core nonlinear structure that forms during training that is
necessary to learn a given task that is approximately con-
stant in depth and width, regardless of the initial network
with chosen. Similar experiments on depth and width on
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Figure 9. Validation accuracy and average path length during lin-
earization of ResNets of different depth for ω = 0.003.

Figure 10. Test accuracy and average path length after lineariza-
tion of ResNet56 for different regularization weight choices ω on
the Cifar10, CINIC-10 and CIFAR-100 dataset.

CIFAR-100 in Figure 20 in the Appendix show qualitatively
the same behaviour but with different NAPL values.

Note that our method yields better performances than (Dror
et al., 2021) for a lower effective depth. The authors obtain
a performance of 90.29% / 67.04% for a ResNet56 reduced
to 10 layers (that would correspond to a NAPL close to 5)
on Cifar10 / Cifar100. We obtained 90.59% / 67.64% for a
ResNet56 with NAPL 2.7 / 3.1.

4.3.3. NAPL DEPENDS ON TASK DIFFICULTY

To understand how the difficulty of the task to learn affects
the shape of the resulting partially linearized networks, we
regularized many instances of ResNet56 Short for differ-
ent choices of ω on CIFAR-10, CINIC-10 and CIFAR-100.
Looking at Figure 10, we first note that by increasing the
regularization weight, the NAPL of the resulting network is
decreased as expected, but this effect seems to saturate ex-
ponentially while the test accuracy is only reduced linearly
in ω. This seems to imply that there is a minimum NAPL
necessary to learn a given task. We also see that the NAPL
measured is consistently higher for harder datasets (datasets
where the networks reach a low top-1 accuracy), except for
very high regularization values where the CINIC-10 and
CIFAR-10 curves converge. We conclude that our method
is able to extract a network with minimal nonlinearity able
to learn a given task.

4.4. Impact on Feature Visualizations

Finally, we visualized some feature channels from ResNet50
Short trained on ImageNet and partly linearized to different
degrees (ω ∈ [0, 0.0005, 0.0025]) with the Lucent (Kiat,
2021) library; the performance and amount of remaining
active PReLU units in these networks is shown in Figure
6. We only consider feature channels that are still active in
all three networks and chose one of the deeper layers for

visualization in Figure 11. We see that in most cases, we can
recognize a given feature over the different networks and the
image seems subjectively sharper for the partially linearized
networks. To confirm this, we measured the magnitude of
the image gradient, averaged over all 1721 feature channels
remaining in all three network and rgb-channels. This sharp-
ness measure (indicated as S) is indeed significantly higher
for the linearized networks, but we cannot discern a further
increase for the network with higher degree of linearization.

5. Summary of Contributions and Discussion
In our work, we observe that linearized networks extracted
after training outperform networks with the same amount
of nonlinear units trained from scratch in experiments on
convolutional and transformer architectures trained on com-
puter vision and machine translation tasks. This is a highly
surprising observation, as the final network architecture and
thus it’s expressivity are the same, but still, worse minima
are found when training shallow architectures from scratch
as opposed to training a deeper architecture and making it
shallower afterwards. This is, to our best knowledge, the
first time such an effect is described in literature. Comple-
mentary findings in recent literature describe a similar effect
of finding a simpler ”core structure” contained in the net-
work in early training: for fully linearizing the network with
regard to its weights (time/data-dependent NTK) (Fort et al.,
2020) and for drawing ”lottery tickets” (You et al., 2020). By
reducing nonlinearity at channel-level, our method is able
to extract networks containing significantly less nonlinear
units while maintaining a similar performance, compared to
previous attempts (Dror et al., 2021). We conclude that theo-
retical results analyzing very shallow networks e.g. (Safran
et al., 2022) might have higher significance on networks
used in practice than previously thought and that network
depth mostly benefits the training process in early stages,

8



Nonlinear Advantage: Trained Networks Might Not Be As Complex as You Think

Figure 11. Visualization of the same feature channel per column for a ResNet50 trained on ImageNet across different degrees of partial
linearization. The value of S indicates the average image sharpness, measured by the average image gradient magnitude.

as most of their nonlinear expressive power or depth is not
utilized after training.

Since our method prunes nonlinearity at a channel-level as
opposed to network weights, it is easier to relate the reduc-
tion in complexity to function space in terms of effective
width and depth. In order to sensibly characterize the depth
of a network with many linearized channels, we introduce
the average path length of a network, a measure that counts
the average number of nonlinear units encountered over all
paths in the computation graph of the network. Linearizing
networks to different degrees then allows us to characterize
the minimum effective width and depth needed in order to
solve a given problem. In experiments on multiple computer
vision datasets, we found that these values are roughly con-
stant for a given problem and fixed regularization weight,
independently of the initial network chosen and that that the
effective depth of a network grows with problem complex-
ity. Further, we found that the essential nonlinear units in a
network are distributed rather uniformly over the layers for
residual networks as opposed to plain feedforward networks
where they seem form clusters. This indicates that in deep
networks without residual connections, there could be large
connected blocks of layers that contribute very little to the
learned function’s nonlinear complexity.

Finally, since our method drastically reduces the amount of
nonlinear feature channels in a network, we envision it can
be useful for researchers trying to explain a network’s behav-
ior through visual inspection of its features. Our method not
only reduces the number of nonlinear feature channels but
also measurably increases the sharpness of gradient-based
feature visualizations.
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A. Details About Histogram Computation
A.1. Normalizing the Histogram

Veit et al. (2016) also study the distribution of path lengths in neural networks. To model the path distribution in a residual
network, the authors simply use a binomial distribution, giving the main and residual branch of a residual block equal weight.
Since the authors use a binomial distribution to model path length, the average path length of a ResNet of depth d before
linearization is d/2 in their model. Figure 13 (left) makes it clear that in our (non-normalized) model as described above,
the average path length would be much closer to d since the main path contribution is exponentially bigger than the residual
path contribution and thus vanishes in depth.

In order to obtain an equal contribution from the main branch and the residual branch of residual block, we can modify our
model to normalize the histograms before adding them together as shown in Figure 13 (right). Since we explicitly modeled
the length of residual connections (how many layers are skipped), the path length of a ResNet before linearization depends
on ResBlock size in our model. For a standard ResNet using BasicBlock (ResBlock size 2), we found the initial NAPL to be
close to d/2, making our normalized average path length model similar to the one from Veit et al. (2016).

B. Complementary Experiments
B.1. Plots for APL Instead of NAPL

In this section, we repeat the experiments of Figure 5, 9 and 7 showing APL instead of NAPL. In Figure 18, 14 and 15, we
see fundamentally no differ ence in the results except for all unnormalized path length values being consistently higher than
the normalized ones.

B.2. Plots for Active PReLU Percentage Instead of NAPL

In Figure 16 (resp. 17 for Cifar-100) show the results of Figure 5 (resp. 19) but plotting the global percentage of active
PReLU units instead of NAPL on the x-axis. We see that qualitatively, we obtain a very similar result. This serves as
sanity-check our our (N)APL measure, showing that the measurements made qualitatively correspond to the ones made with
a much simpler measure.

B.3. Experiments on Cifar100

In Figure 22, 19, 20 and 21 we repeated the experiments of Figure 4, 5, 9, 7 on CIFAR-100 and see qualitatively the same
behaviour although all measured NAPL value are consistently higher than on CIFAR-10.

B.4. APL of Networks with Constant Width

In Figure 9, we analyzed the average path length of ResNets of different size after applying our post-training linearization
procedure. In Figure 9 all networks seem to converge approximately to the same APL independently of network depth, but
shallower networks seem to yield a slightly higher APL. We wanted to further investigate this pattern.

In Figure 24, we repeated the same experiment with a simplistic Toy-Net having constant width and no striding after the first
layer and see the pattern dissapear completely. We conclude that the observed pattern is an artifact of scaling ResBlocks of
different width and striding operations in the network.

B.5. Nonlinear Advantage on Transformer Architectures

In Figure 23, we repeated the experiment of Figure 3 for a transformer network training on the Multi30k german-english
translation task. We decided to linearize 100% of all PReLU activations, as transformer architectures contain more
nonlinearities than just ReLU units and we need to remove enough nonlinearity in the network in order to significantly
impact performance. We see the result of the main section confirmed: networks linearized at a later stage of training
outperform networks linearized earlier on.
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C. Architecture and Training Details
C.1. Architecture Details

As described in the main paper, we used a ResNet architecture with BasicBlock v2 and BasicBlockPyramid with and
without residual connections for the CIFAR-10 / CINIC-10 / CIFAR-100 runs. We used shortcut option ”A” (padding) for
all networks except in Section 4.3.1 where option ”B” (1x1 convolutions) is needed to make the network work with different
widths. We used the default number of planes num planes = (16, 32, 64) for each BasicBlock, except for Figure 7 where
the number of planes is multiplied by a constant ν. For Figure 9, we used num blocks = (i, i, i), i ∈ {3, 6, 9, 12, 15, 18}
to scale the number of blocks in the ResNet. PyramidNet 41 resp. 110 uses num blocks = (3, 4, 6) resp. 18, 18, 18 and
num planes = (32, 128) resp num planes = (16, 100) with shortcut option ”A”.

For the ImageNet runs, we used the ResNet50 architecture from the official TorchVision repository.

For Figure 24, we used a simple Conv-BN-ReLU ToyNet with constant width (32 Filters), no striding after the first layer,
residual connections of length 1 and a final fully connected layer.

Details of the transformer architecture can be found in Figure 25 (left).

C.2. (Post-)Training Hyperparmeters & Hardware

The experiments in the paper were made on computers running Arch Linux, Python 3.10.5, PyTorch Version 1.11.0+cu102.
The GPUs used were NVIDIA GeForce GTX 1080 Ti and NVIDIA GeForce RTX 2080 Ti.

The hyper-parameters in Figure 26 were used to (post-) train on the CIFAR-10, CINIC-10 and CIFAR-100 and usually
reach the standard test-accuracy of approximately 92.7 for a ResNet56 on CIFAR-10. As for the ImageNet runs, we used a
pre-trained model from the torchvision model-zoo. For post-training, the hyper-parameters in Figure 27 were used. For
the CINIC-10 post-training, we adapted the number of epochs and the multistep scheduler milestones to approximately
maintain the same number of batches since the total number of training images is different.

Note: The experiments of Figure 2 and 4 have a shorter post-train phase of 30 epochs instead of 60 epochs (the multistep
milestones are 10/20) to save compute, as these experiments do not aim for maximum accuracy.
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Figure 12. Computing the histogram of path lengths through dynamic programming for a non-residual (left) and a residual (right) network.
Red circles designate nodes with an active PReLU activation, blue edges designate residual connections.
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Figure 13. Computing the unnormalized (left) and normalized (right) histogram of a residual network where all PReLUs are active.
Without normalization, the residual contribution vanishes.
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Figure 14. Validation accuracy and unnormalized average path
length during linearization of ResNets of different depth for ω =
0.003.

Figure 15. Validation accuracy and unnormalized average path
length during linearization of ResNets of different width for ω =
0.003.

Figure 16. Proportion of active PReLU units and test accuracy
for different network architectures with regularization weight
ω ∈ [0.0005, 0.005].

Figure 17. Proportion of active PReLU units and test perfor-
mance (left) for different network architectures with regulariza-
tion weight ω ∈ [0.0015, 0.007] on CIFAR-100..

Figure 18. Unnormalized average path length and test accuracy
for different network architectures with regularization weight
ω ∈ [0.0005, 0.005].

Figure 19. Normalized average path length and test performance
(left) for different network architectures with regularization
weight ω ∈ [0.0015, 0.007] on CIFAR-100.
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Figure 20. Validation accuracy and NAPL during linearization of
ResNets of different depth for ω = 0.003 on CIFAR-100.

Figure 21. Validation accuracy and NAPL during linearization of
ResNets56 of different width for ω = 0.003 on CIFAR-100.

Figure 22. Proportion of inactive PReLUs when linearizing a ResNet56 NoShort / Short with ω = 0.003 on CIFAR-100.

Figure 23. Test perplexity of a transformer network partially lin-
earized at different epochs during training on a translation task.
The dotted line indicates the height of the first datapoint for visual
reference.

Figure 24. Average path length of Toy-Nets of different depth
after post-training linearization for ω = 0.003.
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Architecture Transformer

dff 2048
dmodel 512
h 8
N 6
pdropout 0.1

Training Multi30k

Epochs 200
Scheduler Warmup+Multistep (γ = 0.1)
Warmup steps 2900
Milestones 160, 180
Learning rate 0.00082
Batch size 30
Gradient accumulation 10 steps
Optimizer ADAM
(β1, β2) (0.9, 0.98)
Weight decay 0
Label Smoothing 0.1

Figure 25. Architecture details and training regime for the NLP task.

Training CIFAR-10 / CINIC-10 / CIFAR-100

Epochs 200
Scheduler Multistep (γ = 0.1)
Milestones 100, 150
Learning rate 0.1
Batch size 256
Optimizer SGD + Momentum
Momentum 0.9
Weight decay 0.0001
Augmentation Random Flip

Training TinyImagenet

Epochs 80
Scheduler Multistep (γ = 0.1)
Milestones 70, 75
Learning rate 0.1
Batch size 128
Optimizer SGD + Momentum
Momentum 0.9
Weight decay 0.0001
Augmentation Random Flip

Figure 26. Details of the training regime for CV tasks.

Post-Training CIFAR-10 / CINIC-10 / CIFAR-100

Epochs 60 (34 for CINIC-10)
Scheduler Multistep (γ = 0.1)
Milestones 20, 40 (10, 22 for CINIC-10)
Learning rate 0.1
Batch size 256
Optimizer SGD + Momentum
Momentum 0.9
Weight decay 0.0001
Augmentation Random Flip

Post-Training Imagenet

Epochs 6
Scheduler Multistep (γ = 0.1)
Milestones 2, 4
Learning rate 0.01
Batch size 40
Optimizer SGD + Momentum
Momentum 0.9
Weight decay 0.0001
Augmentation Center Crop (224 px.)

Figure 27. Details of the post-training regime.
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