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ABSTRACT

Physics-constrained generative modeling aims to produce high-dimensional sam-
ples that are both physically consistent and distributionally accurate, a task that
remains challenging due to often conflicting optimization objectives. Recent ad-
vances in flow matching and diffusion models have enabled efficient generative
modeling, but integrating physical constraints often degrades generative fidelity
or requires costly inference-time corrections. Our work is the first to recognize
the trade-off between distributional and physical accuracy. Based on the insight
of inherently conflicting objectives, we introduce Physics-Based Flow Matching
(PBFM) a method that enforces physical constraints at training time using conflict-
free gradient updates and unrolling to mitigate Jensen’s gap. Our approach avoids
manual loss balancing and enables simultaneous optimization of generative and
physical objectives. As a consequence, physics constraints do not impede infer-
ence performance. We benchmark our method across three representative PDE
benchmarks. PBFM achieves a Pareto-optimal trade-off, competitive inference
speed, and generalizes to a wide range of physics-constrained generative tasks,
providing a practical tool for scientific machine learning.

Code and datasets available at https://github.com/tum-pbs/PBFM.

1 INTRODUCTION

Partial differential equations (PDEs) provide the core mathematical framework for modeling the evo-
lution of physical systems across space and time (Evans| [2010). However, discretizing PDEs often
results in high-dimensional problems that are computationally prohibitive, especially for nonlinear
or multiscale phenomena (Haber et al., 2018} [Valencia et al., |2025)). Recently, machine learning-
based methods have emerged as efficient alternatives, enabling the approximation of PDE solutions
with significantly reduced computational cost (Chen et al., 2021} [Fresca et al., 2021}, Baldan et al.,
2021; Brunton & Kutzl 2024). Physics-informed neural networks (PINNs) (Raissi et al.l [2019)
embed PDE constraints directly into the training objective via automatic differentiation. However,
PINNS yield a single deterministic solution, limiting their use in scenarios where stochasticity is cru-
cial, such as uncertainty quantification (Roy & Oberkampf][2011;|Abdar et al.|[2021|Liu & Thuerey,
2024). In contrast, generative models like denoising diffusion probabilistic models (DDPMs) (Ho
et al.,2020; Nichol & Dhariwal, 2021)), their implicit variants (DDIMs) (Song et al.,|2022), and flow
matching (Lipman et al.| 2023)) have shown strong performance in capturing complex data distribu-
tions across domains, including images, videos, audio, and graphs (Rombach et al.,|2022; |Ho et al.,
2022;|Kong et al.|[2021; |(Chamberlain et al.,2021). Flow matching, in particular, offers a conceptu-
ally simple and computationally efficient framework, achieving high-fidelity sample generation with
fewer function evaluations (Esser et al., [2024).
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Figure 1: Overview of the proposed Physics-Based Flow Matching (PBFM) approach. During
training, the sample x; at time ¢ is evolved to ¢ = 1 over n time steps to compute the residual
R(1). The flow matching loss Lgy and residual loss L are combined in a conflict-free manner.

Despite recent progress, integrating physical constraints into generative models remains challenging.
Enforcing such constraints during training requires the model to jointly optimize for generative
fidelity and physical consistency, often resulting in conflicting gradients that can compromise either
distributional accuracy or physical validity (Krishnapriyan et al.,[2021). Achieving a balanced trade-
off between these objectives is difficult, as improvements in one can degrade the other. In this work,
we revisit physics-constrained generative modeling from a Pareto perspective, explicitly targeting
solutions that balance physical correctness and generative performance; we systematically analyze
the trade-offs involved.

Additionally, the so-called Jensen’s gap exists: a fundamental discrepancy that arises when physical
constraints, such as PDE residuals, are imposed on the posterior mean E[z1|z;] at intermediate noise
levels, rather than directly on the final clean sample x1 (Zhang & Zou, 2025)). Alternatively, enforc-
ing constraints only at inference time typically requires iterative sampling procedures to achieve
physical consistency, which can be computationally expensive and undermine the efficiency of gen-
erative models. Moreover, enforcing nonlinear hard constraints necessitates differentiating through
the physical residual, a process that is computationally expensive for high-dimensional and complex
systems (Cheng et al., 2025).

We improve constrained flow matching with a series of established techniques such as un-
rolling, residual-based losses, stochastic sampling, and conflict-free gradient updates (Liu et al.|
2025al), adapting them to address the unique challenges of physics-constrained generative modeling.
Through the lens of the inherent physics-vs-distribution trade-off, we show that these modifications
yield very substantial improvements over previous work, and enable training networks that yield
distributional accuracy and satisfy physics constraints at the same time. Fig. [T]illustrates the overall
training procedure and highlights the key components of PBFM method. Our main contributions
are as follows. (I) We introduce a method that integrates physical constraints into flow matching,
enabling the minimization of both PDE and algebraic residuals without manual balancing. (II) We
show that unrolling during training effectively mitigates Jensen’s gap, leading to lower residual er-
rors and improved final predictions without increasing inference cost. (III) We analyze the role of
Gaussian noise in flow matching under physical constraints, and (IV) we conduct a comprehensive
comparison between deterministic and stochastic flow matching samplers, demonstrating advan-
tages of the latter. A central advantage of the proposed approach is that it is very easy to implement
in existing flow matching pipelines, and, as we will demonstrate below, consistently achieves sub-
stantial improvements in terms of distributional and physical accuracy.

2 RELATED WORK

Numerous deep learning methods have been developed to address complex problems in physics and
engineering (Morton et al., 2018 Wang et al., [2020; |Sanchez-Gonzalez et al., | 2020; Thuerey et al.,
2020). More recently, there has been growing interest in bringing the foundation model paradigm
to scientific machine learning. Efforts such as PDEformer (Ye et al.| [2024), Poseidon (Herde et al.,
2024)), Aurora (Bodnar et al., [2024), and Unisolver (Zhou et al.| [2025a) aim to build models with
broad generalization capabilities across diverse physical systems. In parallel, specialized trans-
former architectures tailored for PDEs have also been proposed, including OFormer (Li et al.,|2023)),



Published as a conference paper at ICLR 2026

Transolver (Wu et al.l [2024), Fengbo (Pepe et al., 2025)), and PDE-Transformer (Holzschuh et al.,
2025)).

Focusing on diffusion models in the physics and engineering fields, representative applications in-
clude the generation and design of new molecules and drugs (Guo et al., 2024} |[Schneuing et al.,
2024} Bose et al., [2024; (Guastoni & Vinuesa, 20235)), the simulation of particle trajectories in col-
lider experiments (Mikuni et al.,2023)), solving inverse PDE problems (Holzschuh et al.|[2023), and
the modeling of particle motion in turbulent flows (Li et al.,|2024). Alongside these efforts, several
works have sought to embed physical knowledge or constraints directly into the diffusion process
to enhance model performance. For instance, [Huang et al| (2024) presented an approach to solve
PDEs from partial observations by filling in missing information using generative priors. [Zhou et al.
(2025b)) proposed an approach that embeds priors into the diffusion process to satisfy energy and
momentum conservation laws and PDE constraints. [Rixner & Koutsourelakis| (2021)) formulated a
probabilistic generative model enforcing physical constraints through virtual observables.

More aligned with our work, |Shu et al.| (2023) proposed an algorithm that conditions the diffusion
process on the residual gradient both at training and inference time, with a focus on super-resolution
and reconstruction tasks based on random measures of turbulent flows. Despite being one of the
first works in this direction, they do not directly enforce the residual. Similarly, Jacobsen et al.
(2025) introduced CoCoGen, a method that employs the governing PDEs during inference, while
leaving the training procedure unchanged. The approach improves the physical residual but slows
down inference, which is crucial in real applications. Other approaches that enforce physical con-
straints at inference time include FFM (Kerrigan et al.| [2023)), DiffusionPDE (Huang et al.| |2024),
D-Flow (Ben-Hamu et al.,|[2024), ECI (Cheng et al.,2025), and PCFM (Utkarsh et al., 2025). These
methods require iterative sampling procedures to achieve physical consistency, which can be compu-
tationally expensive and can take more than 10x longer than the standard diffusion process (Utkarsh
et al.,|2025)). The last two methods are designed to strictly satisfy the constraints, but the ECI method
is limited to simple non-overlapping constraints, while PCFM is applicable to arbitrary constraints
but requires differentiating through the residual, which is computationally expensive. In contrast,
Bastek et al.|(2025) proposed physics-informed diffusion models (PIDM), which incorporate an ad-
ditional loss term during training to minimize physical residuals. [Zhang & Zou| (2025)) introduced
physics-informed distillation of diffusion models (PIDDM), to potentially solve the Jensen’s gap
issue by distillation that is fine-tuned to minimize the physical residual. However, this approach
requires training two separate models and, like Bastek et al.| (2025) does not resolve the inherent
conflict between the generative and physical objectives. Other recent methods that adopt fine-tuning
to reduce the physics constraints are PIRF (Yuan et al.| [2025) and PCFT (Tauberschmidt et al.,
2025)). We provide a comparison of our method with existing physics-constrained generative mod-
els in Table[Tl
Table 1: Comparison between our method and other physics-constrained generative models.

Method Physics at Hard Gradient Free Complex Balanced
Training Constraints Inference Constraints Hyperparams
FFM [34] X v v X X
ProbConserv [24]] X v v X X
CoCoGen [32]] X X X v X
DiffusionPDE [31]] X X X v X
PIDM [9] v X 4 v X
D-Flow [[10] X X X v X
ECI [16] X v 4 X X
PCFM |[64] X v X v X
PIDDM [71]] 4 X X v X
PBFM (ours) v X v v v

3 METHODOLOGY

3.1 PRELIMINARIES

A general time-dependent PDE in n spatial dimensions can be written as u;(x,t) = L[u(x,t)] +
f(x,t), x € Q C R", where u(x,t) is the solution field, £ is a spatial differential operator,
and f(x, t) denotes external forcing. For numerical approximation, the domain 2 and its boundary
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0N are discretized, and continuous operators are replaced by discrete analogues (Karniadakis &
Sherwin, 2005)).

Physics constraints can be enforced by minimizing a residual function, which is constructed drawing
from a wide range of formulations. In generative modeling, the stochasticity of residuals can be
categorized into three main types: (i) For steady-state PDEs, the solution distribution arises from
uncertainties in the physical parameters, and the residual is computed directly from the governing
equations, e.g., R(L(u) + f) = 0. (ii) For time-dependent PDEs, the solution evolves over time
and residuals are formulated to enforce conservation laws (such as mass, momentum, or energy)
across temporal snapshots. (iii) Algebraic constraints can be used to impose additional consistency
between physical fields, further enforcing the underlying physics of the system.

3.2 PHYSICS-BASED FLOW MATCHING

Integrating physical constraints into generative models introduces an inherent conflict: optimizing
for physical fidelity often degrades distributional accuracy, and vice versa. Existing diffusion-based
approaches (Shu et al., |2023; Bastek et al., [2025)) typically employ a weighted objective:

argmax By, q(a,) [log po(x1)] + By wpy(ar) log qr (7 = 0 | 21)] (1)

where 7 are virtual observables (Rixner & Koutsourelakis, 2021)) of the residual R(x;). For flow
matching, this reduces to (Bastek et al., [2025):

£ = wpmLev + wrLr = wenfuf (24, 1) = u(2e)l|2 + wr [ R (@1 (24, 1)) |2, 2)

where wpy and wg are adjusted manually to address the potential conflicts between generative and
physical losses. However, tuning these weights is challenging: increasing the residual term often
harms generative quality, while prioritizing the generative term undermines physical consistency.

To address this, we leverage multi-task optimization techniques that resolve conflicting gradient
directions. Specifically, we adopt the ConFIG method (Liu et al.l [2025a) to compute conflict-free
updates for physics-based flow matching:

Bupdate = (g];ngv + g’/—ggv)gv (3)
gv = U [U(O(grm, 8r)) + U(O(gr, 8Fm))] 4)

where gpv and gr are the gradients of Lgy and

C
L, respectively; O(g1, g2) = g2 — FL55

orthogonality operator, and U(g) = g/|g| normal- s
izes to unit length. The resulting update direction "
|
|
l

g1 is the

Supdate uarantees simultaneous descent on both ob-
jectives: g, 4ue8rm > 0 and g, 4,.8r > 0. Fig-

. " 9IFM
ure [2]represents the gradient composition.

This approach adaptively aligns the gradients, elim- e }gR
inating the need for manual loss weighting and pre-

venting one objective from dominating optimiza-

tion. As a result, the resulting updates yield high Figure 2: PBFM method leverages ConFIG
distributional accuracy while still enforcing phys- 1 combine the unit vectors of the orthogo-
ical constraints, consistently outperforming fixed-  pa| components and scales the result using the
weighted objectives across a wide range of weights projection length of the FM and the physical
(see Appendix [F] for an analysis). residual R gradients.

3.3 IMPROVING PHYSICAL AND DISTRIBUTIONAL ACCURACY

A key requirement for generative models in scientific applications is the ability to produce samples
with high physical accuracy, close to traditional numerical methods. In physics-constrained genera-
tive modeling, a central challenge is the so-called Jensen’s gap which appears whenever a nonlinear
map f is applied to a random variable Z: in general E[f(Z)] # f(E[Z]). When physical con-
straints are imposed on the posterior mean E[x1 |x] at intermediate noise levels, rather than directly
on the final clean sample x1, a discrepancy arises that can degrade physical fidelity (Zhang & Zou,
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2025)). To mitigate this, we identify the reconstruction of the final, noise-free sample during training
as crucial for accurately evaluating the physical residual. Specifically, we employ unrolling, i.e.,
integrating the intermediate sample at time ¢ forward to the final time ¢ = 1 using multiple ODE
steps. This process mitigates Jensen’s gap by ensuring that the residual is evaluated on a more ac-
curate prediction of z1, rather than a single-step approximation. By unrolling over n steps of size
(1 —t)/n, the integration better approximates the true trajectory. Unrolling is applied via a curricu-
lum, gradually increasing the number of steps during training. Additionally, we down-weight less
accurate predictions near ¢ = 0 by applying a scaling factor ¥ (with po, = 1) to the residual loss,
further improving the learning signal. Linear scaling is also principled, aligning with the linear noise
schedule in flow matching and ensuring consistency between residual weighting and FM dynamics.
An investigation of different power laws is provided in Appendix |[E| The improved prediction of x;
substantially enhances the evaluation of the physics residual in Eq.[2] yielding better optimization
directions and directly mitigating Jensen’s gap. This leads to lower residual errors and improved
final predictions, without increasing inference cost. Nevertheless, unrolling increases memory con-
sumption during training, as intermediate states must be stored for backpropagation. Table [6|details
the additional training time and memory requirements for different numbers of unrolling steps.

Another important aspect in physics-based flow matching is the choice of oy,;,, the amount of Gaus-
sian noise added to training data adhering to the mixture of Gaussians theory. While computer
vision tasks typically use o, = 10~2 (Lipman et al.,[2023; [Esser et al | 2024), excessive noise per-
turbs physical residuals and degrades performance. The value of oy, thus influences the minimum
achievable residual error. We provide an analysis of different noise levels in TableE} A practical
guideline is that adding Gaussian noise of scale oy, induces a residual MSE ~ o7, in a perfect
reconstruction setting, reducing to opin < Runin-

min

Inspired by natural image generation (Esser et al.,|2024), we also sample the time variable ¢ from a
logit-normal distribution (zero mean, unit standard deviation) during training, instead of a uniform
distribution. This specifically targets regions where flow matching exhibits higher errors, typically
around ¢ = 0.5.

Algorithm |1| details the resulting training procedure, where the FM loss is computed at time ¢ and
unrolling is used for accurate residual evaluation. The initial time is stored to weight the residual
loss.

Algorithm 1 Training procedure for PBFM
n <— number of unrolling steps

dt < (1—t)/n > Compute dt to reach the final state at ¢ = 1
tt > Keep the starting time ¢ to weight the residual loss
uY <+ model(z;, t) > Flow matching velocity u{ is not part of unrolling
T1 < x¢ +dt- uf
fori=1,7<ndo > Improved state prediction via unrolling
t=t+dt B
uY + model(Z1, )
Ty T +dt-u? > Current fields 7, are updated until ¢ = 1
end for
R < compute residual (z;)
L+ ||t? - R > Residuals are weighted with 7, poy = 1
Ly = [luf — uill
Vg < compute gypgae Via Eq. > Conflict-free update

AdamW optimizer step with Vy

At inference time, the final sample is typically obtained by evolving the initial noise, N'(0, I') with
ODE integration. This represents a deterministic sampler in which all the stochasticity is embedded
in the initial noise sample (Gao et al.| [2025). In contrast, the sampling process in DDPM is stochas-
tic (Ho et al., [2020). Given that both diffusion models and flow matching can be seen generative
modeling variants under arbitrary Markov processes (Holderrieth et al., 2025)), we explore the use of
a stochastic sampler, similarly to what has been applied in ECI method (Cheng et al.l 2025]), within
the physically based flow matching framework. The central idea is to evolve from time ¢ to ¢ = 1 and
then return to ¢ 4 dt using a different noise sample. This step backwards in time with newly gener-
ated noise increases the stochasticity in the sampling process and improves distributional accuracy.
The resulting procedure is outlined in Algorithm 2]



Published as a conference paper at ICLR 2026

4 EXPERIMENTAL SETUP

We evaluate the generative performance of our method, denoted with Physics Based Flow Match-
ing (PBFM) in the following, on three benchmark problems. Across all experiments, we employ
a diffusion transformer (DiT) backbone architecture (Peebles & Xie, [2023)), with minor modifica-
tions detailed in Appendix [G] For completeness, we also provide a comparison to the UNet from
previous work (Ronneberger et al., 2015; [Bastek et al., 2025), shown in Fig. Although our
method is agnostic to the type of physical residual, we organize the three benchmarks according
to the residual categories described above: steady-state, transient, and analytic. For each case, the
residual is computed using: finite differences for Darcy flow, FFT-based methods for Kolmogorov
flow, and point-wise evaluation for dynamic stall. A complete description of datasets is provided in

Appendix

Darcy flow We begin with the two-dimensional Darcy flow problem. The Darcy equation which
models steady-state fluid flow through a porous medium. The solution comprises pressure p and per-
meability K. We use the corresponding public dataset (Bastek, [2024), which contains 10k training
and 1k validation samples, each of size 64 x 64. It is worth noting that, while common in litera-
ture (Zhu & Zabaras| 2018; |Jacobsen et al., [2025)), this dataset lacks conditioning inputs, making
it less representative of real-world application scenarios. The residual directly corresponds to the
governing PDE: R =V - (KVp)+ f =0

Kolmogorov flow The second benchmark is the two-dimensional Kolmogorov flow over a 128 x
128 spatial domain with periodic boundary conditions. The dataset is generated using a spectral
solver and consists of velocity field snapshots for various Reynolds numbers in the range [100; 500].
The Reynolds number conditions the data generation, influencing the turbulence scales and flow
complexity. The training set includes data for 32 Reynolds numbers with 1024 temporal snapshots
each. The test set additionally includes 16 unseen Reynolds numbers. The data distribution reflects
the temporal variation within each flow regime. The prediction target consists of the two velocity
components, which are expected to satisfy the conservation of mass via: R =V - U =0

Dynamic Stall The final and most complex setup involves spatio-temporal fields over a pitch-
ing NACAOQO012 airfoil. This case captures the effects of dynamic stall, a complex, unsteady phe-
nomenon in aerodynamics causing large-scale fluctuations and loads. As such, this physical model is
highly relevant for real world cases such as helicopter and wind turbine blades, where dynamic stall
plays a critical role. The solutions are obtained solving the compressible Navier-Stokes equations
and the flow fields present shock waves and detailed flow phenomena that are challenging to capture.
Each sample consists of 128 x 128 distributions of six quantities: absolute pressure, temperature,
density, skin friction, and tangential velocity gradients (x and y). Conditioning is performed on four
parameters that define the operating conditions and airfoil motion. The training set comprises 128
base configurations, each perturbed 32 times to model uncertainty, while the validation set includes
16 unseen configurations. Physical consistency across fields is enforced through two analytical,
point-wise residual constraints: R, imposes the ideal gas law, while R - minimizes the skin friction
with Sutherland’s law.

_ _ To+S (T 3 ou\’ ou\’
Rig = P — pRT, RT—Tw*MoT_i_S (To> \/((‘)a:) +(89) ®

n=0 n=0

5 RESULTS

We evaluate our proposed framework, PBFM (Baldan et al., 2025a), in direct comparison with
six representative baselines: flow matching with optimal transport FM-OT trained without phys-
ical constraints, PIDM-ME (Bastek et al.l [2025), CoCoGen (Jacobsen et al., [2025), Diffusion-
PDE (Huang et al., [2024), D-Flow (Ben-Hamu et al., [2024), and ECI (Cheng et al., [2025). ECI
only enforces BCs but not the PDE due to the limitations of the method. For each method,
we report physical residual error, distributional fidelity via Wasserstein distance and Jensen-
Shannon divergence, number of function evaluations, and inference wall-clock time per sam-
ple. For the conditional benchmarks, Kolmogorov flow and dynamic stall, we additionally eval-
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Table 2: Generative performance metrics for Darcy flow problem over 1024 samples. RE: physi-
cal Residual MSE, WD: Wassserstein Distance, JS: Jensen-Shannon divergence, NFE: Number of
function evaluations, IT: Inference wall-clock time. Best and second best results.

Metric PBFM FM-OT CoCoGent PIDMfi DiffusionPDE D-Flowi ECI§

RE 0.838 4.159 1.320 0.022 3.388 2.286 3.045
WD -102  0.138 0.059 0.249 3.103 0.089 0.147 2.892
JS 10! 0.256 0.131 0.360 3.179 0.139 0.237 2.818
NFE 20 20 100 100 20 20 20

IT [s] 0.101 0.100 7.395 2.050 0.590 3.126 0.122

1 This method uses the UNet architecture from Bastek et al.| (2025).
1 D-Flow method is unstable, samples are filtered using RE < 5 condition resulting in 888 valid ones.
§ The physical constraint is applied only to the BCs (REgc = 0) but cannot be applied to the non-linear PDE.

vate the mean and standard deviation of the predicted distributions for each conditioning in-
put. Comprehensive sample visualizations and further analysis are provided in Appendix [D]

PIDM-ME ECIe

D

5.1 DARCY FLOW
10724
Unlike previous works that report only individ-
ual metrics, we present a comprehensive eval-
uation of Pareto optimality in terms of phys-
ical residual error and distributional accuracy. )
The latter is quantified by the Wasserstein dis- " PBFM (Ours)e . D-Flow

tance (WD) (Villani} 2008: SciPy, 2023). Fig.f{j " | iy (i fusionPDE
visualizes the trade-off for all compared meth- : : :
ods. The FM-OT baseline yields a WD of 0.059 107! ] 100_ 10!

but incurs a high residual error of 4.159. Diffu- Physical Residual MAE

sionPDE achieves similar WD with marginally ~Figure 3: Pareto front of physical residual MAE
improved residuals. CoCoGen and D-Flow are vs. Wasserstein distance for Darcy flow for the
strictly dominated by our approach, exhibiting proposed methods.

both higher residuals and inferior distributional

metrics. PIDM-ME attains the lowest residual (0.022), which comes at the expense of a substantially
degraded distribution (WD 3.103), reflecting poor generative fidelity. In contrast, PBFM achieves a
residual of 0.838 and WD of 0.138, demonstrating a more favorable balance between physical and
generative objectives. A visual representation of the residual errors is reported in Fig.[5] The pre-
vious methods align along a negative-slope trend, highlighting the intrinsic trade-off between resid-
ual minimization and distributional accuracy. PBFM advances the Pareto front, reducing residuals
without a considerable increase in WD. Comprehensive metrics are reported in Table [2] including
Jensen-Shannon divergence (JS) (Lin, [1991) as a distributional metric in addition to WD, the num-
ber of function evaluations (NFE), and inference time (IT). PBFM maintains competitive inference
speed (0.101 s), similarly to FM-OT, as the only difference is the use of the stochastic sampler.

e~

Inference Time [s]

eCoCoGen

[N

Wasserstein Distance

The first panel of Fig. [ illustrates N 10!

two aspects. On the one hand, it Lot U™ s e e

shows how residual error evolves = 2

with the number of unrolling steps & —, & \
used during training and it demon- M 10°

strates that unrolling effectively miti- "'

gates Jensen’s gap, leading to lower 00 05 o Z T % P
residual errors. On the other hand, Training Steps % 10° FM steps

it highlights that only applying the —— FM-OT FM-OT + Lg with Config PBFM

ConFIG method during training of-
fers a limited improvement. To fur- Figure 4: Darcy flow validation over 1024 samples using

ther analyze the impact of unrolling, 20 FM steps. Residual MAE as a function of training steps
the second panel of Fig. [] presents (left), residual MAE as a function of FM steps (right).
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the residual error as a function of the number of FM steps used during inference. The results confirm
that increasing the number of FM steps consistently reduces the residual error across all methods.
Notably, PBFM delivers the lowest residual error and it is less sensitive to the number of FM steps,
indicating that it achieves high physical accuracy even with fewer function evaluations. This is
particularly advantageous in practical applications where computational resources are limited.

To complete the analysis, we
evaluate the impact of the
stochastic sampler introduced

Table 3: Performance of stochastic sampler for Darcy flow prob-
lem over 1024 samples using 20 FM steps using PBFM. Noise
resampling is enabled for ¢ < t*, details in Algorithm[2] ¢* =

in Algorithm P} ‘Table B reports ¢ coincides with deterministic sampler. Best and second best
the performance of PBFM with ..

different thresholds ¢* for noise t*

resampling during inference. ~ Metric 0.0 0.2 0.4 0.6 0.8 1.0
Setting t* = 0.0 corresponds to

the deterministic sampler, while  RE 0.828 0.838 0970 0876 0.774 0.632
t* = 10 implies resampling  wp.102 1470 0.138 0.150 0.187 0302 0316

noise at every step. The results  yg 101 0919 0256 0257 0313 0361 0.379
indicate that using the determin-

istic sampler yields comparable residual error to the stochastic approach, but with significantly
worse distributional metrics. Focusing on values greater than 0, we observe that increasing ¢* leads
to improved residual error, with the best performance at t* = 1.0. However, this comes at the cost
of degraded distributional accuracy, as both WD and JS increase. A balanced choice of t* = 0.2
offers a good compromise, achieving low residuals while maintaining strong generative fidelity.
Further results showing pressure and permeability samples and an additional UNet are reported in
Fig. Oand [10]of the appendix.

FM-OT PBFM (Ours) 5
L on A L L ¥ o .-'...':H"-_.'_a: ].0
5.2 KOLMOGOROV FLOW S L : e .=
e 10 g
Kolmogorov flow presents a conditional gener- | 4= oD sl [ 5g E
ative modeling challenge, where the Reynolds |-, & F s o F_‘E 100 =
number serves as the conditioning input and the g - o %, G B &
physical residual is defined by the divergence L 107!

of the velocity field, enforcing conservation of - Figure 5: Physical residual of Darcy flow exam-

mass. Tab.le H] details the quan.titative. results. ples for the proposed method with 20 FM steps.
PBFM achieves the lowest physical residual er-

ror (1.362), outperforming all baselines. It also yields the best distributional metrics, with a low
Wasserstein distance and Jensen-Shannon divergence, demonstrating excellent generative fidelity.
The standard deviation error is slightly higher than FM-OT, but the overall distributional accuracy
remains superior. Inference times for PBFM (98.97 ms) are competitive with FM-OT, while Dif-
fusionPDE and D-Flow incur substantially higher computational costs due to FFT-based residual
evaluation. D-Flow is unstable for Kolmogorov flow and does not produce valid samples despite the
high computational cost.

Qualitative results are provided in Appendix Fig. [12] and which show representative instanta-
neous velocity fields, divergence residuals, and the predicted mean and standard deviation across
the test set.

Table 5: Metric comparison for different values of
5.3 DYNAMIC STALL Omin ON the dynamic stall problem, 20 FM steps.
Best and second best results.

The dynamic stall case presents additional chal-  petric O min

lenges, including two physical constraints of 00 10* 1073 1072
increased complexity and six predicted fields.

The underlying phenomena are highly non- RE-10° 0.339 0468 0473 0.466
linear containing shock waves. Fig. [ presents ~ WD -10* 1.814 3.547 3.246 3.566
an example of predicted fields. Especially re-  JS -10? 0.680 0.716 0.718 0.728

gions like the center exhibit strongly varying, =~ MMSE -10° 1.490 1.360 1.298 1.200
small-scale shock waves that stochastically os-  SMSE -10°  0.874 0.831 0.789 0.916
cillate for perturbed operating conditions - a

phenomenon that is important to capture for industrial applications (Baldan et al., 2025b)).
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Table 4: Generative performance metrics for Kolmogorov flow and dynamic stall problems using 20
FM steps. RE: physical Residual MSE, WD: Wasserstein Distance, JS: Jensen-Shannon divergence,
MMSE: MSE of the mean fields, SMSE: MSE of the standard deviation fields, NFE: Number of
function evaluations, IT: Inference wall-clock time. Best and second best results.

Dataset Metric PBFM OT-FM DiffusionPDE D-Flowi; PCFM
RE -10! 1.362 2314 1.930 -
WD -10! 1.222 2.124 3.698 -
Kolmogorov ~ JS -10? 7.440 12.49 19.39 -
Flow MMSE -10*  4.455 4.188 5.669 -
SMSE -10*  2.484 2.574 21.82 -
IT [ms] 98.97 98.75 267.8 6431
RE 106 0.339 11.02 12.20 11.32 0.143
WD 104 1.814 2.707 2.509 3.484 4.013
Dynamic JS 102 0.680 0.983 1.029 1.014 1.206
Stall MMSE -10°  1.490 2.791 2.626 2.507 5.669
SMSE -10°  0.874 1.458 1.236 1.372 7.674
IT [ms] 60.47 59.75 171.7 138.9 3906

1 D-Flow method is unstable for Kolmogorov Flow.

Table [4] summarizes the quantitative results. PBFM outperforms all baselines across nearly all met-
rics, achieving the lowest distributional errors and MSE for both the mean and standard-deviation
fields, which indicates that PBFM effectively captures both first- and second-order statistics of the
complex flow fields. PCFM achieves the lowest residual error, but this comes at the cost of worse
distributional metrics and higher mean and standard-deviation errors. Notably, PCFM incurs a sig-
nificantly higher inference time (=~ 65X that of PBFM) due to the iterative correction process.
Inference times for PBFM are comparable to FM- Mean P
OT. DiffusionPDE and D-Flow incur higher compu-
tational costs because evaluating their physical resid-
uals is more complex, although the cost difference is
limited since the residuals are pointwise.

Mean 7,

- -

"V'_—

Reference

To investigate the impact of different values of oy,
on the dynamic stall problem, which present the
lowest residual errors and is more sensible to this T | .
phenomenon, Table [5] analyzes the results. Setting 50000 100000 9250 0 250
omin = 0 yields the best distributional metrics and
residual error underlines the importance of minimiz-
ing noise perturbation in this complex scenario. In-
creasing Opin to 10~ slightly degrades the met- — ..
rics, while further increases to 10~ and 10~2 lead v
to more pronounced declines in performance. This
trend highlights the sensitivity of physical residu- A
als to noise levels, emphasizing the need for care- B aE B s
ful tuning of o, in physics-constrained generative 50000 100000 —250 0 250
modeling. Nevertheless, with higher noise levels the . . . .
model provides lower mean and standard deviation Figure 6: Dynamic stall, comparison of mean
. A . . for PBFM framework computed over 128
errors. A practical guideline is that adding Gaussian | ine 20 FM st
noise of scale opin induces a residual MSE ~ o2, SamPpies usmng SIeps.
in a perfect reconstruction setting. For dynamic stall, this directly suggests an upper bound:
02 <1077 = omin < 3 x 1071, In contrast, Kolmogorov and Darcy benchmarks have more
relaxed residual requirements. Importantly, this sensitivity is not unique to our method; it is general
to flow matching formulations, as the noise level determines the scale of the denoising target and
hence the attainable physical accuracy.

PBFM (Ours)

Performance evaluation We provide an overview of the training performance, focusing on the
impact of the residual loss together with ConFIG, and the effect of unrolling. Table [6] reports the
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wall-clock time, in seconds, for a single training iteration on an NVIDIA A100 64 GB GPU. To
reduce training computation time and memory footprint, backpropagation can be computed only
through the final unrolling step; this does not significantly affect model performance. In Appendix[l]
we provide a detailed comparison of this variant against full backpropagation through all unrolling
steps.

Table 6: Comparison of wall-clock time in seconds for one training iteration and memory usage in
GB on an NVIDIA A100 64GB GPU for the proposed approaches. Batch size is 64 for all cases.
Inference time is unchanged.

FM PBFM PBFM PBFM PBFM
1 step 2 steps 3 steps 4 steps
Darcy [s] 4.28-107%2 6.69-1072 9.78-1072 1.28-10"' 1.59-107!
[GB] 1235 12.62 23.26 33.70 44.15
Kolmogorov ~ [s]  1.13-107' 1.94-10"!' 3.02-107! 4.10-10"! 5.18-107!
[GB] 4.08 4.52 6.91 9.56 12.18
Dynamic [s] 429-1072 8.14-1072 1.18-10"% 1.55-107' 1.90-10!
[GB] 4.5 4.41 7.18 9.90 12.58

6 DISCUSSION AND CONCLUSIONS

Limitations PBFM delivers substantial improvements in physical and distributional accuracy, but
its main limitation is increased computational and memory cost during training. Table [6] details
the wall-clock time and memory usage for different unrolling steps. Incorporating the residual loss
and ConFIG requires an additional backward pass, increasing training time and memory usage.
Unrolling over 4 steps further increases memory consumption (up to 3x) and training time (up
to 2.5x). However, these overheads are restricted to training; the inference speed of the method
remains unaffected.

Discussion PBFM is designed to enable rapid prediction of complex physical systems, particularly
in scenarios where conventional solvers are prohibitively slow. Table[I0|presents inference times for
the dynamic stall benchmark, already employed for actual helicopter blade simulations. While a
single simulation using a CPU-based solver requires approximately 76 minutes, the trained PBFM
model generates 128 samples in just 4 minutes on CPU and only 0.2 seconds on GPU. This substan-
tial acceleration demonstrates the practical utility of PBFM for large-scale uncertainty quantification
and surrogate modeling tasks in scientific and engineering workflows. Without the proposed modi-
fications, a trained model would not be sufficiently accurate for real-world applications.

Summary In this paper, we introduced PBFM, a generative framework designed to improve phys-
ical consistency while preserving the strengths of the flow matching approach for high-dimensional
data generation. Our model provides straightforward improvements over standard FM to mini-
mize physical residuals, arising from PDEs or algebraic constraints, in a conflict-free manner. We
conduct extensive benchmarks across three representative physical systems, demonstrating the ver-
satility and robustness of our approach. The incorporation of temporal unrolling plays a key role,
enabling improved final state approximations and mitigating Jensen’s gap by providing a more ac-
curate prediction of the final sample. Additionally, our results highlight the benefits of stochastic
sampling strategies, which outperform deterministic methods in cases involving complex target dis-
tributions. Beyond these specific benchmarks, the proposed framework generalizes to a wide class of
PDE-constrained problems formulated via residual minimization. By combining the computational
efficiency of flow matching with the interpretability and rigor of physics-based modeling, PBFM of-
fers a powerful and flexible tool for surrogate modeling, uncertainty quantification, and simulation
acceleration in physics and engineering applications.
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USE OF LARGE LANGUAGE MODELS

Large language models were used exclusively for text editing and correction. They were not involved
in the generation of ideas, analyses, or substantive content.

A  FLOW MATCHING

Flow matching has recently gained attention as a compelling alternative to diffusion models, offer-
ing a more direct and computationally efficient framework for generative modeling (Lipman et al.,
2023)). It enables high-quality sample generation with significantly fewer function evaluations (Esser
et al.,|2024). Given a known source distribution p and an unknown target distribution ¢, flow match-
ing learns a vector field u!, parameterized by a neural network, that generates a probability path p;
interpolating from py = p to p; = ¢ (Lipman et al.,[2024). The learning objective is defined as:

Len(0) = Eonr(o,1), ompe 108 (@) — ue(2)]|2
where 6 denotes the model parameters. While multiple formulations exist for the target velocity
field u;, a particularly simple and effective one leverages optimal transport (OT) (Tong et al., [2024)).
In this setting, samples from the base distribution pg = N (0, I) are linearly transported to p; via

the conditional flow:
21 — (1 — Omin)T

1 — (1 — Umin)t ’
with o, ~ 1073, and the corresponding interpolant:
Ye(x) = (1 — (1 — opin)t)x + L.

This yields a straight-line conditional flow with a time-independent vector field. Sampling from the
trained model requires integrating the learned field over time:

1
$1:/ ug () dt,
0

typically using numerical ODE solvers such as Euler’s method. Although the true OT vector field
is constant, the learned approximation typically is not, and integration quality still depends on the
time discretization.

u(x | 21) =

B ABLATION WITH A TOY PROBLEM

To provide an intuition for the proposed improvements, we consider an ablation with a toy problem
where the neural network outputs are the x and y coordinates of points on a circumference subject
to the physical constraint of unit radius. Fig. [/|shows the resulting point distribution along with the
corresponding absolute physical error through mean estimation of the final sample. We compare
with diffusion models DM, as a DDPM representative (Song et al.l 2022), and PIDM-ME, the best
performing physics-informed algorithm (Bastek et al., |2025), and a variant of the flow matching
approach that uses Config without unrolling. It is apparent that each extension yields a noticeable
gain, and the final PBFM model exhibits a residual error that is 61.8 and 27.5 times lower than the
DM and PIDM-ME baselines.

C DATASET GENERATION AND RESIDUAL COMPUTATION

We provide a detailed description of the datasets used and generated, as well as the method employed
to compute residuals during training.

C.1 DARCY FLOW

We use the dataset introduced by |Bastek! (2024) to enable direct comparison with their results. For
completeness, we briefly summarize the key characteristics of the dataset. The underlying physical
model is governed by the steady-state Darcy equations, which describe fluid flow through a porous
medium:
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Figure 7: Point distribution and absolute error of the physical residual (circle radius squared) for
SOTA reference DM, PIDM-ME (Bastek et al.,[2025)), and all proposed approaches.
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Here, 7i(x) denotes the unit outward normal on the boundary 9S). The source term f(x) is defined
as:

r if |xl — 7w| <
fle)=3 —r if |z, -1+ tw
0 otherwise

with 7 = 10 and w = 0.125. The permeability field K (x) is modeled as K (x) = exp(G(x)), where
G () is a Gaussian random field. The pressure field is generated by solving a least-squares problem
based on a 64-term truncated Karhunen-Log¢ve expansion, following the approach of Jacobsen et al.
(2025).

To ensure consistency and avoid introducing numerical discrepancies, we adopt the same procedure
for computing residuals during training as was used during dataset generation. Specifically, we em-
ploy identical finite difference stencils implemented via 2D convolutional layers, and apply the same
reconstruction method for the forcing term f. The pressure field is also normalized by removing the
integral contribution.

C.2 KOLMOGOROV FLOW

We generate two distinct datasets (training and validation) for the Kolmogorov flow problem with
Reynolds numbers in the range [100, 500], using a spatial resolution of 128 x 128. The simula-
tion is based on the vorticity—stream function formulation. The velocity field is obtained from the
computed vorticity through the stream function, while the pressure field is derived by solving the
pressure Poisson equation. We employ TorchFSM (Liu et al., [2025b)) to perform GPU-accelerated
flow simulations using the Fourier spectral method. The training dataset includes 32 different flow
conditions sampled via a Halton sequence (Kocis & Whiten, [1997), while the validation dataset
contains 16 conditions. For each condition, 256 simulations are conducted with slightly perturbed
initial states. Simulations are run for 10 000 time steps to reach a statistically steady state, followed
by data sampling every 4 000 time steps. With a time step size of dt = 1/Re, this yields 1024
snapshots per condition.

To ensure consistency, the divergence of the velocity fields is computed using the same numerical
scheme as the spectral solver employed for dataset generation.
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C.3 DYNAMIC STALL

The dynamic stall datasets used for training and validation are generated by solving the unsteady,
compressible, two-dimensional RANS equations around a sinusoidally pitching NACA0012 airfoil.
An O-grid mesh is utilized, featuring 512 nodes along the airfoil surface and 128 nodes in the normal
direction. Simulations are performed using ANSY'S Fluent 2024R2 (ANSYS,|2024). The governing
equations are discretized using a second-order upwind scheme for spatial accuracy and a second-
order implicit scheme for time integration. Gradient reconstruction employs a least-squares cell-
based method, while fluxes are computed using the Rhie-Chow momentum interpolation. Pressure-
velocity coupling is handled through a coupled solver. Airfoil pitching is modeled by prescribing a
rigid-body motion to the entire mesh, defined by the angular velocity function &(t) = w a;s cos(wt).
The mean angle of attack, ag, is applied at the start of each simulation by rotating the mesh ac-
cordingly. To close the RANS equations, the SST turbulence model with an intermittency transport
equation is employed. Each oscillation cycle is resolved using 2 048 time steps, and simulations are
run until periodic convergence is achieved (Baldan & Guardone, 2024} 2025)).

Table 7: Range of conditioning inputs that define the operating conditions of the pitching airfoil.
Variable Min Max

Mach 0.3 0.5

(67} 5° 10°
o 5° 10°
k 005 0.1

The design space is defined as a four-dimensional hypercube, with each axis corresponding to a
conditioning input for the neural network. These inputs include the free-stream Mach number, the
mean angle of attack v, the pitching amplitude «, and the reduced frequency k = wc/2V,,. The
ranges for each variable are provided in Table[7} Training and testing datasets are constructed using
Halton sequences. The hypercube is sampled with 128 points for training and 16 points for testing.
Each sampled point represents a nominal operating condition. Each nominal condition is perturbed
as follows:

Lperturbed = (1 + N(O» 002)) Lnominal

where NV(0,0.02) denotes a Gaussian noise term with zero mean and standard deviation 0.02. This
results in 32 perturbed variations per nominal condition, yielding a total of 128 x 32 simulations for
training and 16 x 32 for testing. To reduce computational costs, all simulation fields are downsam-
pled to a resolution of 128 x 128. The saved quantities include fields of absolute pressure, density,
temperature, signed skin friction, and tangential velocity gradients across the airfoil surface over a
full pitching cycle. Fig.[§]illustrates a spatio-temporal representation of the wall shear stress (7,,)
across one complete pitching cycle, highlighting the pitch-up and pitch-down phases and demon-
strating the structured mapping of surface data over time.

D ADDITIONAL SAMPLES AND ANALYSIS

We conclude the analysis of the proposed test cases by presenting additional comparisons and com-
plete field prediction examples.

D.1 DARCY FLOW

Fig.[9]shows the pressure and permeability fields for the FM-OT and PBFM methods under analysis.
To ensure a fair comparison of the residuals, all fields have similar variable ranges, since higher
magnitudes can lead to disproportionately large residual values. This choice is further justified by
the residual plots, which exhibit higher absolute errors in regions with large permeability. Despite
local differences, a clear difference emerges: the FM baseline presents residual peak values around
100, while PBFM method peak residuals are reduced by approximately an order of magnitude.

To conclude our analysis of the Darcy flow, Fig. [I0] compares the DiT architecture with the UNet
used by Bastek et al.| (2025). This comparison corresponds to the FM setup without residual loss. In

18



Published as a conference paper at ICLR 2026

Pitch-up  Pitch-down

Min « Max a Min «
Trailing .
Edge
Suction
Side
Leading | i o
Edge
Pressure
Side
Trailing _
Edge 0.0 0.5 1.0
t/T
| : .
—400 —200 0 200
Tw

Figure 8: Example of a spatio-temporal contour of the post-processed 7, distribution over an entire
pitching cycle.
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Figure 9: Darcy flow examples of pressure and permeability fields along with the physical residual
for the proposed approaches.

the first panel, which reports the FM-OT loss during training, we observe that the UNet architecture
reproduces the overfitting behavior noted by Bastek et al.| (2025)). In contrast, the DiT architecture
exhibits a stable and monotonic reduction in training loss. The second panel shows the residual
error, which remains comparable between the two models overall, with the exception of slight dis-
crepancies at one function evaluation. Finally, in the third panel, the Wasserstein distance reveals
a clear gap in performance: the UNet consistently incurs higher errors, with the distance being ap-
proximately twice as large for pressure and up to four times larger for permeability, underscoring
the superior distributional accuracy of the DiT model. Additional samples produced by our method
are shown in Fig. [T}
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Figure 10: Comparison of UNet (Bastek et al., 2025 and DiT architectures for Darcy flow. The

physical residual (error bars refer to min-max values within the validation dataset samples) and
Wasserstein distance, as a function of FM steps, are computed over 1024 samples.
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Figure 11: Representative Darcy flow field samples generated with PBFM using 20 FM steps. The
samples illustrate the diversity in flow behavior, particularly highlighting variability in the range
extrema.

D.1.1 NON-DIMENSIONAL SCALING

Even though the role of scaling is well recognized in machine learning, its impact on physical
residuals and distributional performance remains an important aspect to examine. We study this
effect in the context of the Darcy flow problem by comparing two scaling strategies. In the first
approach, each variable is normalized to have zero mean, yielding the following scaling values:
Pmean = 0.0, psta = 0.576, Kkmean = 1.386, kstqg = 10.64. The corresponding results are
reported in Table 2] The second approach, denoted as the Scale version, rescales the pressure p to
the range [—1, 1] and the permeability % to [0, 1]. The results for this setting are shown in Table 8]
Across all methods, this alternative scaling consistently degrades performance, leading to higher
physical residual errors and poorer distributional metrics.

D.2 KOLMOGOROV FLOW

Fig. [T2] illustrates example predictions from the FM-OT, and PBFM models, along with their cor-
responding physical residuals, representing the divergence of the predicted fields. The baseline FM
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Table 8: Generative performance metrics for Darcy flow problem over 1024 samples. RE: physi-
cal Residual MSE, WD: Wassserstein Distance, JS: Jensen-Shannon divergence, NFE: Number of
function evaluations, IT: Inference wall-clock time. Best and second best results.

Dataset Metric PBFM Scale FM-OT Scale DiffusionPDE Scale D-Flow Scale:

RE 2.260 5.551 4.307 2417
WD 102 0.185 0.076 0.075 0.437
Darcy JS 101 0.218 0.152 0.142 0.353
NFE 20 20 20 20
IT [s] 0.101 0.100 0.590 3.126

1 D-Flow method is unstable, samples are filtered using RE < 5 condition resulting in 403 valid ones.

exhibits a residual MSE on the order of 10~! across most of the domain, whereas the unrolled
framework significantly reduces the error, dropping below 10~2 in large regions of the field, despite
some localized areas with higher residuals.

u—velocity v—velocity RMSE

107!

1072

1073

107!

’

1072

Figure 12: Kolmogorov flow example of u— and v—velocity fields and physical residual, divergence,
MSE for the proposed approaches using 20 FM time steps.

Furthermore, Fig. [[3]shows the mean and standard deviation of the predicted fields for FM-OT and
PBFM models, alongside the reference data. The frameworks closely match the reference mean,
with the unrolled version providing a smoother, less oscillatory solution compared to FM-OT. Re-
garding the standard deviation, none of the models fully capture the reference distribution, partic-
ularly missing the peak value of approximately 0.95, although their performance remains broadly
comparable.

Additional samples produced by PBFM method are shown in Fig. [T4]

D.3 DYNAMIC STALL

For the dynamic stall case, Fig. [I3] presents the mean and standard deviation of the predicted fields
obtained using PBFM. The predictions show strong agreement with the reference data, both in terms
of overall distribution as well as capturing the extrema of each variable. The only notable deviation
appears in the standard deviation of the skin friction, which slightly exceeds the corresponding
reference values.
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Figure 13: Example of mean and standard deviation of Kolmogorov flow computed over 20 FM
steps with 128 samples for the proposed approaches.

——:_—:—_:—

IRIN

mmmﬁ

u—velocity

v—velocity

Figure 14: Example of Kolmogorov flow field samples generated with PBFM using 20 FM steps.

Fig.[T6|compares the performance of the proposed models as a function of the number of FM integra-
tion steps. The first panel focuses on the physical residual MSE, indicating that the best performance
is achieved with 10 FM steps, with PBFM consistently delivering a one order of magnitude reduction
compared to the baseline. The second panel reports the Wasserstein distance, showing that PBFM
also narrows the gap with the reference data distribution, reaching its optimal value at 20 FM steps.
Finally, the MSE of the mean and standard deviation reveals that the proposed methods preserve the
already strong performance of the baseline, introducing only minor deviations.

Additional qualitative samples produced by our trained PBFM method are shown in Fig.[I7] They
highlight the wide range of physical behavior modeled by this case: from small oscillation attached
flow at the top, to deep dynamic stall cases with shock wave formation at the bottom.
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Figure 15: Example of mean and standard deviation of dynamic stall problem computed over 128
samples with 20 FM steps.
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Figure 16: Comparison of the proposed approaches for physical residual and Wasserstein distance,
mean and standard deviation MSE as a function of FM steps for dynamic stall case. Error bars refer
to the different conditioning values within the validation dataset.
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Figure 17: Example of dynamic stall flow field samples generated with PBFM using 20 FM steps.
The outputs vary substantially depending on the conditioning inputs, illustrating the model’s sensi-
tivity to different flow scenarios.

E RESIDUAL LOSS SCALING LAWS

During training, the residual of each sample is computed starting from a given time ¢ and evolved
forward until ¢ = 1. Trajectories initialized at times closer to ¢ = 0 tend to exhibit larger errors,
particularly when only a single integration step is used. To mitigate this effect, we introduce a
weighting scheme based on a power law tP, where the residual loss is scaled according to the starting
time t. We investigate the impact of different power exponents p, focusing on the most challenging
case of dynamic stall.

Fig. [I§] presents a comparison of the MSE for physical residuals, as well as the mean and standard
deviation, for both the FM-OT with Config and PBFM frameworks. The results show that unrolling
helps regularize the error, producing a monotonic increase in error as a function of the power p,
and also reduces sensitivity to the choice of p in the range [1, 4]. Notably, both frameworks achieve
optimal performance when residuals are scaled linearly with time, p = 1. In contrast, using no
scaling, p = 0, results in significantly higher errors, underscoring the importance of appropriately
weighting residuals based on the starting time.

F CONFLICT-FREE UPDATES AND WEIGHTED LOSS TERMS

The introduction of the second loss term associated with the physical residual minimization trans-
forms the framework into a multi-task learning problem. A seemingly attractive approach is to
combine the two losses using a fixed weighting hyperparameter. However, this naive strategy re-
quires manual tuning of the relative weight and often leads to suboptimal performance. In particular,
optimization may get stuck in a local minimum of one loss due to conflicts between the tasks. To ad-
dress this, we adopt the conflict-free updates 2025a), which mitigate gradient conflicts by
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Figure 18: Comparison of physical residual, mean and standard deviation MSE for dynamic stall
under various power-law scalings in the residual loss. Unrolling reduces sensitivity to the scaling
exponent.

computing a non-conflicting optimization direction through the inverse of the loss-specific gradient
covariance matrix. Furthermore, this approach has the potential to yield improved solutions.

We evaluate the proposed setup on the dynamic stall case, the most challenging scenario considered,
comparing ConFIG to models trained with various fixed loss weights. Fig. [I9] reports the MSE
for the physical residual, the predicted mean, and the standard deviation across all configurations.
ConFIG consistently outperforms the fixed-weight approaches, achieving the lowest error in each
individual metric and delivering the best overall performance.

To further assess the effectiveness of ConFIG, we quantified gradient conflicts via pairwise cosine
similarity between physical and FM losses. For the best model using 4-step unrolling with ConFIG,
the average conflict is 6.93%, whereas a model with fixed residual scaling at 500 exhibits a much
higher average conflict of 19.98%.

G ARCHITECTURE AND TRAINING DETAILS

The framework is implemented in PyTorch v2.5.1, employing Distributed Data Parallel (DDP) for
scalable training. All experiments are trained using the AdamW optimizer with weight decay set
to 0, 1 = 0.5, B2 = 0.999, and a fixed learning rate. To avoid learning rate adjustments across
different hardware setups, we maintain a constant global batch size, independent of the number of
GPUs. An Exponential Moving Average (EMA) of the model parameters is maintained throughout
training, with a decay rate of 0.999, and is used during sampling.

We adopt the Diffusion Transformer (DiT) architecture proposed by [Peebles & Xie| (2023)) as the
backbone for our flow matching model, incorporating minor modifications. The model is condi-
tioned via adaptive layer normalization (adaLN-Zero) blocks, which replace the standard normal-
ization layers. The scale and shift parameters in these blocks are derived from the sum of the em-
bedding vectors for the time step ¢, used in the flow matching process, and the conditioning signal
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Figure 19: Comparison of MSE for physical residual, predicted mean, and standard deviation in
the dynamic stall case, using ConFIG and fixed § hyperparameters for loss weighting. The optimal
configuration minimizes the error across all three metrics simultaneously.

c. We introduce two modifications compared to the original DiT implementation. First, we incor-
porate linear attention (Wang et al.|[2020) alongside the standard quadratic one. Second, we replace
the original label embedder with a two-layer module: a linear layer followed by a SiLU activation
function, and a second linear layer that produces the final conditioning embedding.

All the hyperparameters are summarized in Table 9]

Table 9: Architecture and training hyperparameters for proposed test cases.
Darcy flow Kolmogorov flow Dynamic stall

Training iterations 1248000 512000 2048000
Learning rate 3-107° 1-1074 1-1074
Batch size 64 64 64
Conditioning size - 1 4
Output size 2 2 6

Patch size 4 4 4
Hidden size 256 256 128
DiT depth 8 8 4
Attention heads 8 8 4
Attention type Quadratic Linear Linear
Parameters (M) 9.75 9.81 1.29
Gflops 2.72 13.00 1.68

H PERFORMANCE EVALUATION

Table[T0]reports the inference wall-clock times for generating 32, 64, and 128 dynamic stall samples
using 8 CPU cores of an Intel Xeon Platinum and an NVIDIA A100 64GB GPU. The same CPU
was used to run the numerical simulations, ensuring a more consistent comparison of computational
performance. On average, a single numerical simulation requires 76 minutes to complete. In con-
trast, the proposed generative model can produce 128 samples in just 2 and 4 minutes when using
10 and 20 FM steps on the CPU, respectively. When executed on a modern GPU, these inference
times drop dramatically to 0.2 and 0.4 seconds, respectively. This substantial speedup highlights the
model’s potential as a fast and reliable surrogate for dynamic stall prediction in helicopter and wind
turbine applications.

I SAMPLER IMPLEMENTATION AND ADDITIONAL DETAILS

Algorithm [2] outlines the proposed sampling procedure, which is implemented using the explicit
Euler integration scheme with n equispaced time steps. The process begins by initializing x;, which
holds the sample values at time ¢ = 0, with Gaussian noise. During the integration loop, each time
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Table 10: Wall-clock time in seconds to generate n samples using 8 cores of an Intel Xeon Platinum
and an NVIDIA A100 64GB for dynamic stall case. Batch size is set equal to the number of samples.
One simulation with the same cores takes on average 76 minutes (4.56 - 102 s).

FM Number of samples - GPU Number of samples - CPU
steps 32 64 128 32 64 128
1 3.23-1073% 3.38-10% 3.80-1073 2.27-10° 6.16-10° 1.20-10"
2 9.76-1073 1.50-1072 2.53-1072 4.48-10° 1.11-10' 2.40-10!

5 2.90-1072 4.95-1072 899-10"2 1.17-10' 2.96-10' 5.99.10"
10 6.15-1072 1.07-10~* 1.98-10"' 225-10' 5.09-10' 1.19-102
20 1.26-10~1 2.23-107! 4.13-107' 4.68-10' 1.15-10%2 2.40-102
50 3.21-107' 5.70-10"' 1.06-10° 1.12-10% 3.08-10%> 5.99-102

step can be computed using either the standard deterministic FM sampler or the proposed stochastic
variant. The choice between the two is governed by a user-defined boolean control parameter and is
restricted to the initial segment of the trajectory, up to a threshold time ¢*. In our experiments, we set
t* = 0.2, introducing additional stochasticity during the early phase of sampling while preserving
high sample quality in later stages. In the stochastic sampler, the velocity ! is used to generate the
final sample in a single forward step, followed by a backward update to time ¢ + dt using a new
Gaussian noise sample.

Algorithm 2 Deterministic and Stochastic Samplers

dt < 1/n > n is the number of integration steps
xt + o = N(0,1)
fori =0, 2 <ndo

if t < t* and use stochastic sampler then

T+ (1—t) - uf > Integrate to ¢ = 1
t—t+dt
x4 (1—1t)-N(0,1) +t- a4 > Return to ¢ 4 dt using new generated normal noise

else
Ty & xy + dt - uf > Standard deterministic sampler, stochasticity is embedded in g
t—t+dt

end if

end for

Our method introduces some bias during training, affecting the pure deterministic sampler (t* =
0.0) and resulting in higher distributional error. However, for the stochastic sampler, the observed
decrease in residual error and increase in distributional accuracy is also present for vanilla FM,
indicating that this effect is not unique to our approach. The difference in distributional error in the
deterministic sampler primarily arises due to conflicting gradients during training: when physical
constraints and distributional objectives are jointly optimized, their gradients can oppose each other,
leading to suboptimal updates for one or both objectives.

Table 11: Performance of stochastic sampler for Darcy flow problem over 1024 samples using 20
FM steps using FM-OT. Noise resampling is enabled for ¢t < ¢*, details in Algorithm[2] ¢* = 0.0
coincides with deterministic sampler.

Metric t
0.0 0.2 0.4 0.6 0.8 1.0

RE 4.159 3530 3.010 2581 2.018 1.174
WD 102 0.059 0.102 0.123 0.255 0403 0.403
JS 10! 0.131 0.197 0.246 0324 0414 0.436
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Table 12: Performance of stochastic sampler for Darcy flow problem over 1024 samples using 20
FM steps using FM-OT+ConFIG with residual loss. Noise resampling is enabled for ¢ < ¢*, details
in Algorithm[2] ¢* = 0.0 coincides with deterministic sampler.

0 t*
Metric 0.0 0.2 0.4 0.6 0.8 1.0

RE 1.331 1.448 1.317 1.152 1.002 0.765
WD 102 0391 0.096 0.139 0.254 0.383 0.361
JS 10! 0293 0.193 0266 0320 0.395 0.404

To provide a complete picture, we report results for vanilla FM (Table and for FM with the
addition of a physical loss but without unrolling (Table [I2), complementing the unrolling results
presented in Table [3] The stochastic sampler helps prevent collapse to “unique” solutions, a phe-
nomenon typical of PINN setups where deterministic optimization can lead to mode collapse and
reduced sample diversity. By leveraging stochastic sampling, our method maintains higher distribu-
tional fidelity.

J PBFM VARIANTS

We performed two ablations on the dynamic stall benchmark to assess whether decomposing the
physics objective or modifying gradient flow could yield further gains. The evaluated variants are:

* PBFM 3 losses: the physics objective is split into two separate residual losses, Rig and R,
trained alongside the FM loss.

* PBFM last step: same as the base PBFM but the gradient is computed only at the last step
of the unrolled predictions when computing the residual loss to reduce backward memory
and computational time.

Table 13: Comparison of wall-clock time in seconds for one training iteration and memory usage in
GB on an NVIDIA A100 64GB GPU for the proposed approaches. Batch size is 64 for all cases.
Inference time is unchanged.

Method 1 step 2 steps 3 steps 4 steps
PBFM [s] 814-1072 1.18-107' 1.55-10"' 1.90-10~!
[GB] 4.41 7.18 9.90 12.58
PBFM [s] 1.08-107% 1.68-107' 229-10! 2.84-107!
3losses [GB] 4.41 7.20 991 12.59
PBFM [s] 835-1072 1.09-10~% 1.23-107' 1.34-107!
laststep [GB] 4.41 8.48 8.48 8.48

Table 14: Generative performance metrics for dynamic stall problem using 20 FM steps. RE: phys-
ical Residual MSE, WD: Wassserstein Distance, JS: Jensen-Shannon divergence, MMSE: MSE of
the mean fields, SMSE: MSE of the standard deviation fields.

Dataset  Metric PBFM PBFM 3 losses PBFM last step
RE -10° 0.339 0.315 0.392
WD -10% 1.814 2.077 3.038

Dynamic JS -10? 0.680 0.653 0.722

Stall MMSE -10°  1.490 1.696 1.814
SMSE -10°  0.874 0.842 0.809

Key findings are summarized in Tables[I3]and [I4] Splitting the physics terms into separate losses
does not bring clear overall improvements. The three-loss variant attains a slightly lower residual
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MSE in our runs, 0.315 vs. 0.339, while the Wasserstein distance increases from 1.814 to 2.077.
Moreover, the three-loss setup increases per-iteration training time by roughly 30-40%, due to ad-
ditional gradient computations; peak memory usage increases only marginally. Aggregating the
physics constraints into a single residual loss and resolving conflicts via ConFIG provides the best
trade-off between accuracy and training cost for the dynamic stall case.

The last step variant reduces the backward computation costs while the impacts on final accuracy
are limited. We also measured gradient alignment between the two physics terms and found them
largely aligned (average cosine similarity ~ (.76), which explains why aggregating the physics
terms into a single loss is both effective and more efficient in practice.
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