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ABSTRACT

Large vision-language models (LVLMs) have demonstrated remarkable image un-
derstanding and dialogue capabilities, allowing them to handle a variety of visual
question answering tasks. However, their widespread availability raises concerns
about unauthorized usage and copyright infringement, where users or individuals
can develop their own LVLMs by fine-tuning published models. In this paper,
we propose a novel method called Parameter Learning Attack (PLA) for tracking
the copyright of LVLMs without modifying the original model. Specifically, we
construct adversarial images through targeted attacks against the original model,
enabling it to generate specific outputs. To ensure these attacks remain effective
on potential fine-tuned models to trigger copyright tracking, we allow the orig-
inal model to learn the trigger images by updating parameters in the opposite
direction during the adversarial attack process. Notably, the proposed method can
be applied after the release of the original model, thus not affecting the model’s
performance and behavior. To simulate real-world applications, we fine-tune the
original model using various strategies across diverse datasets, creating a range
of models for copyright verification. Extensive experiments demonstrate that our
method can more effectively identify the original copyright of fine-tuned models
compared to baseline methods. Therefore, this work provides a powerful tool for
tracking copyrights and detecting unlicensed usage of LVLMs.

1 INTRODUCTION

Large vision-language models (LVLMs) have emerged with remarkable prowess in various image
understanding tasks (Yin et al., 2023; Achiam et al., 2023), especially those involving detailed image
descriptions or complex visual reasoning (Li et al., 2023a; Liu et al., 2023; Bai et al., 2023; Zhu
et al., 2023). Given their strong image understanding capabilities, users and researchers can fine-
tune LVLMs to leverage pre-trained knowledge and develop their tailored image-to-text models
in specific domains. Fine-tuning a released LVLM offers significant advantages over training a
model from scratch, notably in terms of reduced computational resource requirements and lower
associated costs. Consequently, it has become a widely adopted technique for domain adaptation
among researchers and developers (Li et al., 2024a; You et al., 2024).

The release of LVLMs to the public by certain companies and research teams, along with the per-
mission for open fine-tuning, has catalyzed significant advancements in the artificial intelligence
community (Liu et al., 2024a; Chen et al., 2024). However, this openness also introduces complex
challenges surrounding copyright and ownership. There is a growing concern that malicious de-
velopers or companies might exploit this accessibility, fine-tuning released LVLMs for commercial
gain or profit without proper attribution. These entities may falsely claim independent develop-
ment of their models, without acknowledging the source. Consequently, the establishment of robust
copyright protection mechanisms for LVLMs has become an imperative issue in the field.

To safeguard against copyright infringement, model proprietors must implement sophisticated track-
ing strategies to identify potentially unauthorized model derivatives. Prior works have primarily
focused on large language models (LLMs) (Xu et al., 2024; Li et al., 2024b; 2023b), typically
employing backdoor attacks to embed distinct question-answer patterns, or “fingerprints”, into the
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Figure 1: The pipeline of trigger construction and copyright verification. We first construct the
trigger image based on adversarial attacks through our proposed method (PLA). Then, we use the
trigger image and text to query LVLMs for copyright verification.

models (Xu et al., 2023). Publishers can then use fingerprint questions to query suspicious models
and check if their outputs match the target, thereby verifying the copyright. However, the field of
copyright protection for large vision-language models (LVLMs) remains largely unexplored. While
the aforementioned backdoor attack methods could be applied to protect the copyright of LVLMs,
they require model training to memorize fingerprints before release, which may potentially alter
the model’s original behavior and lead to performance degradation (Xu et al., 2024). Additionally,
such methods consume considerable training resources due to the large number of parameters in
large-scale models (Gu et al., 2022). Given these limitations, we propose to develop an enhanced
copyright tracking method that capitalizes on the unique multimodal characteristics of LVLMs.

The integration of visual modalities in LVLMs, as opposed to text-only LLMs, presents a novel op-
portunity for copyright protection through image-based adversarial attacks. Leveraging targeted ad-
versarial techniques, we can construct triggers comprising manipulated images and carefully crafted
questions, designed to elicit specific outputs from the model (Zhao et al., 2023; Schlarmann & Hein,
2023; Qi et al., 2024). These adversarial images, intricately tied to the model’s parameters during
the attack process, serve as a comprehensive watermark for the model. However, the efficacy of
these triggers is significantly diminished after model fine-tuning, because of the tendency of con-
ventional adversarial examples to “overfit” to the original model architecture, lacking the necessary
generalizability to persist through parameter adjustments. (Goodfellow et al., 2014).

To develop adversarial triggers capable of copyright tracking, it is imperative to ensure that they
can mark both the original LVLM and its potential fine-tuned derivatives. To this end, we introduce
a novel methodology: Parameter Learning Attack (PLA). Specifically, we design rare question-
answer pairs and then construct triggers through targeted adversarial attacks. More importantly, we
propose an adversarial learning dynamic to simulate the behavior of fine-tuned models, allowing the
model to learn during the attack iterations, guiding its parameter updates in the opposite direction to
the adversarial attack. We force the triggers to overcome the artificially introduced model resistance
and finally converge. This innovative design enables the triggers to mark and track not only the
original LVLM but also its potential fine-tuned LVLMs. The comprehensive process for copyright
tracking is illustrated in Figure 1.

In the experiments, we use LLaVA-1.5 (Liu et al., 2024a) as the original LVLM to simulate the pub-
lisher’s model. We then fine-tune the original model on multiple downstream datasets to simulate
real-world usage scenarios. The datasets cover a variety of tasks, including OCR-based QA, art-
work QA, math QA, and molecular QA. To rigorously assess the efficacy of our copyright tracking
methodology, we devise a range of question-answer pairs. Experimental results demonstrate that the
proposed method consistently outperforms the baseline approaches under different settings, without
compromising the original model’s performance.

In summary, our contributions can be summarized as follows:

• To the best of our knowledge, we present the first study on copyright protection of LVLMs,
which is an urgent issue in the field, given the escalating demand for LVLM fine-tuning.

• We propose a novel method called PLA, which updates the model parameters in the process
of image-based adversarial attacks to generate copyright tracking triggers. The proposed
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method can be implemented after the model’s release and does not modify the parameters
of the published LVLM.

• Extensive experiments indicate that PLA consistently outperforms baseline methods in
copyright tracking efficacy across diverse settings, without compromising the model perfor-
mance. Additionally, we conduct further experimental analysis to evaluate the robustness
of our method.

2 RELATED WORK

Large vision-language models. Research on LVLMs has been advancing rapidly, driven by inno-
vative model architectures and specific training strategies (Yin et al., 2023; Achiam et al., 2023; Liu
et al., 2024a; Awadalla et al., 2023; Bai et al., 2023; Li et al., 2023a). Prominent baseline LVLMs
such as LLaVA (Liu et al., 2023) and MiniGPT-4 (Zhu et al., 2023) are generally capable of han-
dling most visual question-answering tasks. Latest models like InternVL 1.5 (Chen et al., 2024)
support higher-resolution image inputs and utilize larger-scale image encoders, enabling them to
handle more complex or specialized image dialogue tasks (Liu et al., 2024b; Li et al., 2024c). The
release of increasingly powerful LVLMs has led to a growing trend of researchers and developers
fine-tuning these models for specific applications, which underscores the urgent need for research
on copyright tracking of LVLMs.

Copyright tracking of LLMs. With the increasing demand for fine-tuning (large) language mod-
els, efforts to protect the copyright of these models have begun to emerge (Kurita et al., 2020; Gu
et al., 2022; Xu et al., 2023; 2024). The common approach involves using backdoor attacks to
make the model memorize specific patterns or “fingerprints” that persist even after fine-tuning. For
instance, Li et al. (2024b) inserts trigger text near instructions or questions to create specific finger-
prints. Xu et al. (2024) utilize rare texts to create fingerprint pairs and train the model with limited
data to reduce model damage. While copyright protection for LLMs has been widely studied, there
are currently no similar studies that have shifted their focus to LVLMs. Our work aims to bridge this
gap by addressing the unique challenges posed by the multimodal nature of LVLMs.

Adversarial attacks against LVLMs. Extensive studies have been conducted on adversarial at-
tacks against LVLMs (Zhao et al., 2023; Shayegani et al., 2023; Cui et al., 2024; Schlarmann &
Hein, 2023; Qi et al., 2024). These studies have shown that even large-scale models lack adversarial
robustness, which presents both a challenge and an opportunity to use adversarial attacks for copy-
right tracking. Instead of compromising LVLMs, our objective is to leverage adversarial attacks as a
tool to safeguard them. In this paper, we utilize targeted attacks against LVLMs to construct triggers
for tracking model copyright.

3 METHOD

3.1 PROBLEM FORMULATION

Denote the large vision-language model released by the publisher as FΘ(x, q), where x is the input
image and q is the textual question input to the LVLM. Suppose there are two models, one fine-tuned
from the original model FΘ denoted as FΘ̃, and the other unrelated to the original model denoted as
GΨ. To achieve copyright tracking, the publisher can use trigger input (x̂, q̂) to query FΘ̃ and GΨ.
The trigger should satisfy the following criteria: the original model FΘ and its derivative model FΘ̃
should both generate the predetermined target text, while an unrelated model GΨ should produce a
distinct output. Formally, this can be expressed as:

FΘ(x̂, q̂) = FΘ̃(x̂, q̂) = â, GΨ(x̂, q̂) ̸= â.

3.2 THREAT MODEL

Stealer. The stealer’s objective is to fine-tune published LVLMs for personal use or profit while
denying their copyright, which costs much less than training from scratch. The stealer has full
white-box access to the released LVLMs, including parameters, and can deploy them locally and
fine-tune the models on any private datasets.
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Trigger image LVLM

(b) QA Pair Design

Q: Detecting copyright.
A: ICLR Conference.
Q: Are you all right?
A: I don’t like it.
….

Detecting copyright.

Trigger text
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Figure 2: The overview of our proposed method for copyright tracking. (a) We employ Parameter
Learning Attack (PLA) to construct trigger images, where the model’s parameters are updated dur-
ing the adversarial attack process to maximize the cross-entropy loss between the model’s output
and the trigger target. (b) We design rare question-answer pairs and ensure they are infrequent in
downstream task datasets. (c) We fine-tune the original LVLM on various downstream tasks and
then use the constructed triggers to track their copyright to validate the effectiveness of our method.

Defender. The defender (publisher or collaborator) aims to track the original copyright of suspicious
models released by others, verifying whether they originate from the publisher. Considering real-
world scenarios, the defender is completely unaware of the stealer’s fine-tuning tasks or datasets,
and can only access the suspicious model through black-box interactions, i.e., the parameters of the
suspicious model are unknown to the defender.

3.3 PARAMETER LEARNING ATTACK

3.3.1 QUESTION-ANSWER PAIR DESIGN

To facilitate copyright tracking, we propose designing rare question q̂ and answer â pairs. We use
generic images to initialize adversarial images, which are typically unrelated to the rare question
and answer. We need to ensure that when queried with clean images, neither the original model nor
the fine-tuned models will generate â in response to q̂. Examples of the question-answer pairs we
design are shown in Figure 2(b). Based on these QA pairs, we perform targeted adversarial attacks
on the original LVLM, and obtain an adversarial image x̂, which can elicit the predefined answer â
from the model. The trigger should satisfy the following conditions:

FΘ(x, q̂) ̸= â, FΘ(x̂, q̂) = â.

Here we refer to x̂ as the trigger image, q̂ as the trigger text, and â as the trigger target. Designing
triggers with rare QA pairs ensures that fine-tuned LVLMs will not inadvertently learn the trigger
patterns, as such combinations are typically absent from conventional datasets.

3.3.2 TRIGGER CONSTRUCTION

Since the adversarial optimization is solely based on the original model’s parameters, the adver-
sarial image tends to “overfit” to the original model and lack generality (Goodfellow et al., 2014).
For copyright tracking, this may result in the trigger image failing on fine-tuned models, thereby
compromising its ability to track these derivative versions. Formally, this can be expressed as:

FΘ(x̂, q̂) = â, FΘ̃(x̂, q̂) ̸= â.
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To mitigate the overfitting issue, it is necessary to enhance the trigger’s generalization to model
parameters or reduce its sensitivity to parameter variations. Based on our observations, LVLMs
typically achieve convergence with fewer fine-tuning steps, with relatively small parameter shifts.
Thus, an intuitive baseline approach is to add slight random Gaussian noise to the model parameters
at each iteration of the adversarial attack, formulated as

Θ′ = Θ+ λ · N
(
0, σ2

)
, (1)

where λ represents the noise magnitude. We refer to this method as random noise attack (RNA),
as shown in Figure 3(b). The noise-augmented model can be considered a simulated, randomly
fine-tuned variant. Triggers constructed on such models have the potential to mark authentic fine-
tuned models. However, this approach has several inherent limitations. First, the noise magnitude
λ is difficult to determine. In practice, the degree of parameter shift induced by fine-tuning varies
considerably across different tasks. Consequently, we lack a universally applicable standard for
setting λ. Second, the parameter modifications caused by model fine-tuning are gradient-based, in
contrast to the simplistic Gaussian noise.

Trigger image LVLM

(a) Ordinary Attack

Loss

Update

Trigger image LVLM

Loss

Update

Noise

(b) Random Noise Attack (RNA) (c) Parameter Learning Attack (PLA)

Trigger image LVLM

Loss

Update

Update

Figure 3: The comparison of different adversarial attacks. Compared to the ordinary attack, RNA
introduces slight noise to the model, while PLA allows for model parameter updates.

To design triggers with enhanced tracking performance, we propose a novel methodology termed
Parameter Learning Attack (PLA), which augments the generality of triggers and reduces their sen-
sitivity to parameter shifts from an innovative perspective. Generally, fine-tuned models tend to
resist generating the target â when queried with vanilla adversarial images and trigger text x̂. To
overcome this limitation and enhance the trigger’s ability to track fine-tuned models, we introduce an
adversarial learning dynamic to compel the model to emulate the behavior of the fine-tuned variants,
specifically their tendency to resist generating the predetermined target. The optimization problem
can be formulated as:

min
x′

max
Θ′
L (FΘ′ (x′, q̂) , â) . (2)

In this framework, the objective of the adversarial attack is to minimize the cross-entropy loss be-
tween the model output and the trigger target. Conversely, we set the model’s learning objective to
maximize this loss, as shown in Figure 2(a). During each iteration, we update not only the pixels of
the trigger image but also the model parameters:

Θ′ = Θ′ + β · clip (∇Θ′L (FΘ′ (x′, q̂) , â)) , (3)

x′ = x′ − α · sign (∇x′L (FΘ′ (x′, q̂) , â)) , (4)

where β and α represent the learning rates for the model and the trigger image, respectively. We
regulate the learning rate of the model parameter updates and apply gradient clipping to ensure
successful convergence of the trigger image. Through the competitive process between adversarial
attack and model learning, the trigger image that converges by overcoming the model’s inherent
resistance is hypothesized to possess enhanced efficacy in inducing potential fine-tuned models to
generate the desired trigger targets. The comprehensive generation process of our proposed trigger
is delineated in Algorithm 1. The comparison of PLA with conventional adversarial attacks and
random noise attacks is shown in Figure 3.
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Algorithm 1 PLA: Parameter Learning Attack

Require:
LVLM FΘ parameterized by Θ, input image x, trigger text q̂, trigger target â, perturbation size
ϵ, step size α, model learning rate β, optimization steps K.

Ensure:
Trigger image x′.

1: Initialize trigger image: x′ ← x
2: for i = 1← K do
3: Calculate cross-entropy loss: LCE ← L (FΘ′ (x′, q̂) , â)
4: Update model parameters: Θ′ ← Θ′ + β · clip (∇Θ′(LCE))
5: Update trigger image: x′ ← x′ − α · sign (∇x′(LCE))
6: Perturbation size constraint: x′ ← Clipϵ(x

′)
7: end for
8: Finish trigger construction: x̂← x′

9: return x̂;

Note that our proposed methodology is implemented after the original model is released. This ap-
proach preserves the integrity of the published model’s parameters, thereby ensuring that its perfor-
mance and behavior remain unaltered. This is different from previous methods based on backdoor
attacks (Xu et al., 2024; Gu et al., 2022).

3.3.3 COPYRIGHT VERIFICATION

Consider a scenario where n users fine-tune the original model FΘ, resulting in n derivative models
denoted as FΘ1, FΘ2, . . . , FΘn. While their architectures are consistent with the original model,
their parameters are different from Θ. Employing our proposed attack method, we generate a series
of triggers X = {(x̂1, q̂1), (x̂2, q̂2), . . . , (x̂m, q̂m)}. During the copyright verification phase, we
use these triggers to access each fine-tuned model, as illustrated in Figure 2(c). Then we compute
the target match rate (TMR) on each model FΘi to quantify the tracking performance:

TMR =
|{(x̂j , q̂j) ∈X | FΘi (x̂j , q̂j) = â}|

m
, (5)

A match is considered successful if the output text contains the exact trigger target or conveys
semantically equivalent content. In general, a higher TMR indicates better tracking performance of
the triggers. We calculate the TMR for multiple fine-tuned models across various tasks to ensure
a reliable estimate of the performance in tracking the copyright of suspicious models in real-world
scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Trigger dataset. We initialize the trigger images using regular images randomly sampled from the
ImageNet 2012 validation set (Russakovsky et al., 2015). To validate the effectiveness of the pro-
posed method, we sample 200 images and design 5 different trigger question-answer pairs, yielding
a total of 1000 trigger queries (200 images × 5 QA pairs).

Fine-tuning. We use LLaVA-1.5 (Liu et al., 2024a) as the original LVLM, given its widespread
adoption as a baseline for vision-language tasks and its popularity among developers for fine-
tuning. We consider two commonly used training strategies: full fine-tuning and LoRA (Hu et al.,
2021) fine-tuning. To simulate various types of fine-tuned models, we utilize various VQA datasets
from multiple domains, all previously unseen by LLaVA. The datasets include the grounded VQA
V7W (Zhu et al., 2016), text-related VQA ST-VQA and TextVQA (Biten et al., 2019; Singh
et al., 2019), the artwork image VQA PaintingForm (Bin et al., 2024), the mathematical VQA
MathV360k (Shi et al., 2024), and the molecular graph VQA ChEBI-20 (Edwards et al., 2021).
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Table 1: A comprehensive comparison of our proposed method PLA with established baseline meth-
ods on the copyright tracking performance of fine-tuned models across 6 datasets. The evaluation
metric is the target match rate (TMR), which measures the proportion of triggers successfully elic-
iting outputs that match the trigger target from the model. The best results are highlighted in bold.

Method V7W ST-VQA TextVQA PaintingF MathV ChEBI Average

LoRA Fine-tuning

Ordinary 5% 3% 3% 2% 1% 3% 3%
IF 28% 22% 30% 8% 24% 14% 21%
RNA 39% 46% 23% 12% 2% 11% 22%
PLA (Ours) 53% 64% 46% 64% 40% 63% 55%

Full Fine-tuning

Ordinary 2% 1% 4% 2% 0% 2% 2%
IF 18% 12% 18% 0% 20% 0% 11%
RNA 26% 16% 16% 19% 15% 7% 16%
PLA (Ours) 49% 58% 49% 63% 36% 56% 52%

For V7W, PaintingForm, and MathV360k, we respectively sample 28k, 20k, and 50k samples for
fine-tuning. For other datasets, we fine-tune with all the training data.

Baseline methods. We select IF (Xu et al., 2024) as one of our baseline methods which inserts
specific fingerprints into models before release through backdoor attacks. Despite differences in
task settings and potential unfair comparisons (since this method modifies model parameters), we
still apply it to the LVLM for comparison. Additionally, we implement the random noise attack
(RNA) that we have introduced in §( 3.3.2) as another baseline approach.

Basic setup. For the adversarial attack, we employ the commonly used PGD algorithm (Madry,
2017) with 1000 iterations. The step size of trigger images α is set to 1/255. To enhance the
concealment of trigger images, we set the perturbation size ϵ to 16/255. For model updates in PLA,
we set the learning rate β to 1e-4 and the gradient clipping threshold to 5e-3. Based on the loss
fluctuations on the validation sets, we set 3 training epochs during fine-tuning phase to ensure model
convergence without severe overfitting. More details are provided in Appendix A.2.

4.2 MAIN RESULTS

We report the TMRs of our proposed PLA and the baseline methods for copyright tracking on six
fine-tuned models in Table 1. The result in each cell represents the average TMR using different
QA pairs. A higher response rate indicates better copyright tracking performance and demonstrates
greater generality across various fine-tuned models. The method Ordinary refers to constructing
trigger images using vanilla adversarial attacks. For the baseline method IP, we follow its original
configuration by setting the number of fingerprints to 10 (as an increase in fingerprints would impair
model performance) and employ SFT to inject fingerprints to keep the black-box style during the
copyright verification phase (Xu et al., 2024). To mitigate variance, we perform five rounds of
experiments for IP.

The experimental results in Table 1 show that our method PLA achieves the best tracking perfor-
mance on all six fine-tuned models (both LoRA fine-tuning and full fine-tuning). In contrast, the
method Ordinary exhibits poor performance, indicating that using standard adversarial attacks to
construct trigger images leads to overfitting on the original model. The IP method based on back-
door attacks achieves good tracking performance on certain fine-tuned models, but the results on
other models indicate that their fingerprints are completely erased, suggesting a lack of robustness
when applied to LVLMs. This may be due to the differences in architecture and task modality
between LVLMs and LLMs. The tracking performance of RNA is inferior to that of PLA, which
indirectly validates that our proposed model parameter learning can more effectively imitate the
behavior of fine-tuned models in trigger construction.

7
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Table 2: The target match rate (TMR) results of our method for copyright tracking on fine-tuned
models across 6 datasets and 5 different QA pairs.

QA Pair Training V7W ST-VQA TextVQA PaintingF MathV ChEBI Average

Q: Detecting copyright. LoRA 49% 64% 52% 69% 44% 60% 56%
A: ICLR Conference. FFT 43% 53% 56% 71% 39% 58% 53%

Q: Are you all right? LoRA 47% 68% 28% 57% 46% 53% 50%
A: I don’t like it. FFT 51% 64% 33% 54% 47% 70% 53%

Q: Please stop. LoRA 68% 73% 71% 84% 56% 79% 72%
A: I’m playing games. FFT 57% 65% 73% 82% 51% 68% 66%

Q: Exercise now! LoRA 65% 56% 33% 81% 32% 68% 56%
A: Time flies so fast. FFT 61% 48% 42% 78% 28% 71% 55%

Q: Describe the image. LoRA 34% 59% 44% 27% 22% 54% 40%
A: I won’t tell. FFT 35% 58% 41% 32% 17% 55% 40%

To assess the impact of various trigger QA pairs on the proposed method, we set up 5 rare trigger QA
pairs to construct trigger images. We present the performance of our method for copyright tracking
based on different QA pairs in Table 2. Our designed questions do not contain meaningless texts
or strings to prevent stealers from identifying such texts as fingerprint commands and making the
model refuse to respond.

From Table 2, it is evident that employing the same trigger QA pairs for copyright tracking leads
to variations in performance among different fine-tuned models. Notably, the TMR for tracking the
MathV360k (Shi et al., 2024) fine-tuned model is relatively low, irrespective of the QA pair used.
This might stem from the varied task-specific patterns learned by different fine-tuned models during
training. On the other hand, different trigger QA pairs exhibit varying degrees of success. For
example, when using the trigger “Q: Please stop. A: I’m playing games.”, the tracking performance
across different fine-tuned models is generally good, whereas it is the opposite when using the
trigger “Q: Describe the image. A: I won’t tell.”. We infer that this is because the pre-training and
fine-tuning datasets of these models contain fewer samples with “Please stop.” as questions. As a
result, the models have less knowledge about such queries, making them easier to trigger. Notably,
our method shows similar performance on models trained by both LoRA fine-tuning and full fine-
tuning, indicating its stability to variations in training strategies.

To intuitively observe the effect of trigger images on LVLMs, we present a comparison of the re-
sponses generated by the original model, fine-tuned models and unrelated models when fed with
clean images and constructed trigger images in Figure 4. By introducing imperceptible perturba-
tions, trigger images can effectively prompt the original model and fine-tuned models to output our
predetermined targets. This makes our copyright tracking process more covert and less likely to
be detected by stealers. Additionally, when we use trigger images to access LVLMs unrelated to
LLaVA, such as MiniGPT-4 (Zhu et al., 2023) and Qwen2-VL (Wang et al., 2024), there is no sub-
stantial deviation in their outputs compared to their responses to clean images. This indicates the
specificity of our method, confirming that it exclusively tracks models derived from the original
architecture and does not inadvertently affect unrelated models.

4.3 ROBUSTNESS ANALYSIS

In real-world scenarios, after unauthorized fine-tuning of the publisher’s LVLM to create their own
models, stealers may prevent the publisher from tracking the copyright via input transformations
and model pruning (or perturbation). Through input transformations, a stealer can disrupt the subtle
perturbations in trigger images, leading to tracking failures. Similarly, model pruning and pertur-
bation directly modify the model parameters, potentially erasing the model’s memory of the trigger
QA pairs. While these actions will compromise the model’s performance, stealers may deem this
degradation an acceptable trade-off in their attempts to circumvent copyright tracking. We con-
duct corresponding experiments to assess the robustness of our method against these strategies and
provide the following analysis.
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PaintingF*

TextVQA*

Q: Describe the image.Clean image 3

A person skiing down a …

Unanswerable.

A serene scene of a skier …

LLaVA

Trigger image 3

I won’t tell.

I won’t tell you it.

I won’t tell you.

Qwen2-VL

MiniGPT-4The image shows a skier …

The image shows a skier …

The image depicts a skier …

The image shows a skier …

V7W*

MathV*

Q: Are you all right?Clean image 2

Yes, I am all right.

The answer is yes.

Yes, I am fine.

LLaVA

Trigger image 2

I don’t like it.

The answer is I don’t like it.

I don’t like it.

Qwen2-VL

MiniGPT-4Yes, I am all right.

Yes, I’m here to help!

Yes, I am all right.

Yes, I’m here to help!

ChEBI*

ST-VQA*

Q: Please stop.Clean image 1

I’m sorry, I will stop.

I’m sorry.

I’m not sure what you mean.

LLaVA

Trigger image 1

I’m playing games.

I’m just playing a game.

I’m playing games.

Qwen2-VL

MiniGPT-4I can’t identify the dog in …

I’m sorry, I’m not sure …

I can’t identify the dog in …

I’m sorry, I understand.

Figure 4: Comparison of responses from LLaVA, different fine-tuned models, and unrelated LVLMs
when queried with clean images and trigger images, where “*” denotes the fine-tuned models on
specific datasets.

We report the impact of input transformations on trigger images in Table 3. The maximum size of
the uniform noise is set to 0.05 and the kernel size for both Gaussian blur and mean blur is set to 5.
In this experiment, we utilize a single QA pair “Q: Detecting copyright. A: ICLR Conference.” The
results demonstrate that the proposed triggers maintain robust against input transformations for both
LoRA fine-tuned and full fine-tuned models. Although the introduction of noise, Gaussian blur, and
mean blur results in a slight reduction in TMRs, the performance remains significantly higher than
that achieved with ordinary adversarial samples in Table 1.

Table 4 illustrates the robustness of the proposed method against model pruning and model pertur-
bation. We apply weight pruning to the language side in the fine-tuned models, removing 10% of
the smallest weights. Similarly, we add Gaussian noise at the level of 10% of the original weights
to induce perturbation. It can be observed that the trigger images exhibit robustness against both
pruning and perturbation. Even though these operations result in a slight decline in tracking per-
formance, our method still maintains high TMRs. Compared to perturbation, pruning has a greater
detrimental impact on tracking performance, likely because it directly sets smaller weights to zero,
leading to a more significant alteration of the model. Notably, changing the weights in the attention
layers has a greater impact on trigger images than altering the weights in the MLP layers, possibly
because the attention layers play a more significant role in the convergence of adversarial images.

Table 3: The robustness of trigger images against input transformations. “Noise” refers to the
addition of uniform noise to the pixels, while “Blur-G” and “Blur-M” represent Gaussian blur and
mean blur, respectively. The evaluation metric is the target match rate (TMR).

Model LoRA Fine-tuning Full Fine-tuning

None Noise Blur-G Blur-M None Noise Blur-G Blur-M

ST-VQA 64% 38%(↓26) 50%(↓14) 46%(↓18) 53% 33%(↓20) 45%(↓8) 41%(↓12)

PaintingF 69% 41%(↓28) 56%(↓13) 53%(↓16) 71% 48%(↓23) 57%(↓14) 60%(↓11)

ChEBI 60% 43%(↓17) 47%(↓13) 50%(↓10) 58% 31%(↓27) 45%(↓13) 44%(↓14)
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Table 4: The robustness of trigger images against model pruning and model perturbation. The
evaluation metric is the target match rate (TMR).

Model None Model Pruning Model Perturbation

Attention MLP Both Attention MLP Both

ST-VQA 53% 42%(↓11) 43%(↓10) 38%(↓15) 45%(↓8) 50%(↓2) 43%(↓10)

PaintingF 71% 56%(↓15) 62%(↓9) 49%(↓22) 64%(↓7) 70%(↓1) 59%(↓12)

ChEBI 58% 42%(↓16) 45%(↓13) 41%(↓17) 48%(↓10) 55%(↓3) 43%(↓15)

(b) (c)(a)

Figure 5: Ablation results with a single QA pair “Q: Detecting copyright. A: ICLR Conference.” (a)
The impact of model learning rate in PLA on tracking performance. (b) The relationship between
tracking performance and model fine-tuning epochs. (c) The effect of the number of fine-tuning
samples on tracking performance.

4.4 ABLATION STUDIES

Model learning rate in PLA determines the trade-off between generality and validity. In Fig-
ure 5(a), we show that the performance is significantly influenced by the model learning rate in the
adversarial process. A lower model learning rate facilitates the convergence of images but results
in a lack of generality. In contrast, a higher learning rate creates excessive resistance for images to
converge, making them lack attack validity. Therefore, it is crucial to select an appropriate learning
rate to ensure that trigger images converge effectively and retain tracking capability.

Tracking performance gradually stabilizes with fine-tuning. In Figure 5(b), we illustrate the
changes in tracking performance as the number of fine-tuning epochs increases. We notice that
TMRs of the trigger images for copyright tracking slightly decrease as fine-tuning progresses. How-
ever, when fine-tuning exceeds 4 epochs, the performance becomes less sensitive to training and
stabilizes gradually. This indicates that simply increasing the number of fine-tuning epochs is not
sufficient to disable our proposed triggers.

PLA is insensitive to the amount of fine-tuning samples. We control the number of training steps
while using different quantities of samples for training, and the impact on performance is shown in
Figure 5(c). We find that changes in the amount of samples lead to only slight variations of TMRs.
This indicates that the trigger images are insensitive to the diversity of fine-tuning samples.

5 CONCLUSION

In this paper, we focus on a critical yet relatively unexplored issue: copyright tracking for LVLMs.
We propose an innovative method that leverages adversarial attacks to generate trigger images for
copyright tracking, circumventing the need for direct model parameter alterations. To addresss
the limitations of conventional adversarial attacks, which often result in overfitting to the original
model, we introduce Parameter Learning Attack (PLA). This method allows the model to update its
parameters to hinder the convergence of trigger images, making them capable of tracking potential
fine-tuned models. Extensive experiments demonstrate that our method outperforms other baseline
methods in terms of tracking performance, showing the potential to serve as a crucial tool in the
detection and prevention of copyright infringement in LVLMs.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 DETAILS OF THE ORIGINAL LVLM

We use LLaVA 1.5-7b (Liu et al., 2024a) as the original model. The architecture consists of a pre-
trained vision encoder CLIP ViT-14L (Radford et al., 2021), a projector with two linear layers, and
a large language model decoder LLaMA-2. It supports an input image resolution of 336x336. The
language model has a total of 32 layers, and the hidden size is 4096.

A.2 DETAILS OF FINE-TUNING

To simulate downstream fine-tuned models for copyright tracking, we consider two fine-tuning
strategies: full fine-tuning and LoRA fine-tuning. The training configuration details are shown in
Table 5.

Table 5: Detailed configuration of full fine-tuning and LoRA fine-tuning.

Hyperparameter Full Fine-tuning LoRA Fine-tuning

optimizer AdamW AdamW
learning rate 5e-5 2e-4
batch size 2 8
gradient accumulation 2 1
lr scheduler cosine cosine
training epochs 3 3
dtype bfloat16 bfloat16
warmup steps 100 50

Our experimental observations indicate that setting the training epochs to 3 typically reduces the
training loss to below 0.3, thanks to the rich pre-trained knowledge of LVLMs. Therefore, we
recommend that the number of epochs should not exceed 3 in downstream fine-tuning.

B DETAILS OF DOWNSTREAM DATASETS

In this section, we provide a detailed description of the datasets used for fine-tuning, including
overviews of all datasets and sample examples.

V7W. A large-scale visual question answering (VQA) dataset with object-level annotations and
multimodal responses. The dataset comprises 47,300 images and includes a total of 327,929
question-answer pairs, together with 1,311,756 human-generated multiple-choices and 561,459 ob-
ject groundings from 36,579 categories. QA examples are shown in Figure 6.

ST-VQA. A visual question answering dataset where the questions and answers are attained in a
way that questions can only be answered based on the text present in the image. The ST-VQA
dataset comprises 23,038 images with 31,791 questions/answers pair separated into 19,027 images
and 26,308 questions for training. Examples are shown in Figure 7.

TextVQA. A dataset to benchmark visual reasoning based on text in images. TextVQA requires
models to read and reason about text in images to answer questions about them. The dataset com-
prises 28,408 images from and 45,336 questions. Examples are shown in Figure 7.

PaintingForm. An artwork understanding dataset with about 19k painting images and 220k ques-
tions. Examples are shown in Figure 9.

MathV360k. A multimodal mathematical reasoning dataset with 40K high-quality images with
question-answer pairs from 24 existing datasets and synthesizing 320K new pairs. Examples are
shown in Figure 10.

ChEBI-20. A molecular image QA dataset with 33,010 molecule-description pairs. Examples are
shown in Figure 11.
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Q: How many elephants are pictured here?
A: Three.

Q: Why is everyone wearing heavy clothing?
A: It is cold.

Q: When is the image taken?
A: Train is on platform.

Q: What is in the photo?
A: Food.

Q: How is the man positioned?
A: With his back to the camera.

Q: Who would operate the largest vehicle?
A: Pilot.

Figure 6: Examples in V7W (Zhu et al., 2016) dataset.

Q: What is the name of the donut shop?
A: Randy's Donuts.

Q: What is the street on the street sign?
A: K ST NW.

Q: What are the questions in the image related to?
A: The Cell Cycle and Mitosis.

Figure 7: Examples in ST-VQA (Biten et al., 2019) dataset.

C LOSS DECLINE IN ADVERSARIAL ATTACKS

To investigate the iterative process of our method compared to ordinary adversarial attacks and
random noise attacks, we check the loss reduction, as shown in Figure 12. It is evident that, with
increasing iterations, the losses of ordinary adversarial attacks and random noise attacks fall below
those of our proposed method, indicating a tendency toward overfitting. In contrast, the loss of the
PLA fluctuates during convergence, suggesting an ongoing competition with model updates, which
enhances the generality of the trigger images.
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Q: What year is shown in the photo?
A: 2011.

Q: What does it say on the plane?
A:Croatia.

Q: Who wrote this book?
A:Drayl J. Eigen.

Figure 8: Examples in TextVQA (Singh et al., 2019) dataset.

Q: Please construct a formal analysis paragraph of approximately 200 words that is 
coherent and focuses solely on visual characteristics.

A: The painting features a rich and vibrant color palette, with deep reds, blues, and
greens dominating the composition. The figures are depicted with a sense of elegance
and grace, their flowing garments adding movement to the scene. The intricate details
in the clothing and accessories showcase the artist's attention to realism and
craftsmanship. The background is filled with lush foliage and architectural elements,
creating a sense of depth and setting the scene for the narrative. The figures are
positioned in a dynamic and asymmetrical arrangement, drawing the viewer's eye
across the canvas. The use of light and shadow adds dimension to the figures and
objects, enhancing the overall sense of realism. The composition is balanced and
harmonious, with each element carefully placed to create a sense of unity. Overall, the
painting exudes a sense of romance and drama, inviting the viewer to immerse
themselves in the mythical world depicted on the canvas.

Q: Your task is to write a coherent paragraph of formal analysis that concentrates 
exclusively on visual characteristics.

A: This captivating painting presents a vibrant and idyllic scene, characterized by its bold
brushstrokes and luminous colors. The composition is dominated by a lush meadow, its
verdant hues rendered with thick, impasto strokes that create a sense of depth and texture.
Scattered throughout the field are vibrant poppies, their delicate petals painted with a
vibrant palette of reds and oranges. The sky above is a brilliant blue, with wispy clouds
that seem to float effortlessly across the canvas. The overall effect is one of movement and
energy, as the wind rustles through the grass and the flowers sway gently. The artist's use
of light and shadow creates a sense of atmosphere, with the warm sunlight illuminating the
meadow and casting long shadows across the ground. The painting's visual characteristics
evoke a sense of tranquility and beauty, capturing the essence of a summer day in the
countryside.

Figure 9: Examples in PaintingForm (Bin et al., 2024) dataset.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 TRACKING RESULTS OF ADDITIONAL DOWNSTREAM TASKS

To validate the generalizability of the proposed method, we use additional datasets to construct fine-
tuned models, including the visual grounding dataset RefCOCO (Kazemzadeh et al., 2014) and the
multimodal classification dataset Hateful Memes (Kiela et al., 2020). The experimental results are
shown in Table 6. The results indicate that our method remains effective in these tasks, achieving
better performance compared to baseline method IP.

D.2 TRACKING PERFORMANCE ON UNRELATED LVLMS

We perform copyright tracking on LVLMs unrelated to the original model, including MiniGPT-
4 (Zhu et al., 2023), QWEN2-VL (Wang et al., 2024), InternVL2 (Chen et al., 2023), LLaVA-
NEXT (Liu et al., 2024c), and InstructBLIP (Dai et al., 2023). The results are shown in Table 7.
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Q: Hint: Please answer the question and provide the 
correct option letter, e.g., A, B, C, D, at the end.
Question: What cycle is represented by this diagram?
Choices:(A) Bee (B) Plant (C) Butterfly (D) Ladybug

A: The answer is C.

Q: Hint: Hint: Please answer the question and provide 
the final answer at the end.
Question: Ayana kept track of the number of characters
in each book she read. How many books had fewer
than 50 characters

A: The answer is 22.

Figure 10: Examples in MathV360k (Shi et al., 2024) dataset.

Q: Can you describe the molecular structure in the image?

A: The molecule is a quercetin O-glucoside that is quercetin
attached to a beta-D-sophorotriosyl residue at position 3 via
a glycosidic linkage. It has a role as a plant metabolite and a
hepatoprotective agent. It is a quercetin O-glucoside, a
tetrahydroxyflavone and a trisaccharide derivative.

Q: How would you describe the molecule in the image?

A: The molecule is an organophosphate oxoanion obtained
by deprotonation of the phosphate and triphosphate OH
groups of 5'-triphosphoadenylyl-(2'->5')-adenosine. Major
microspecies at pH 7.3. It is a conjugate base of a 5'-
triphosphoadenylyl-(2'->5')-adenosine.

Figure 11: Examples in ChEBI-20 (Edwards et al., 2021) dataset.

D.3 COMPARISON WITH TRANSFERABLE ATTACKS

We compare PLA with several transferable attack methods, such as MIM (Dong et al., 2018),
DIM (Xie et al., 2019), and CroPA (Luo et al., 2023). The experimental results are shown in Ta-
ble 8. The results show that our PLA outperforms these transferable attack methods. We believe
this is because PLA is specifically designed to trigger fine-tuned models to produce predetermined
outputs, which can be understood as “fine-tuning transferability.” In contrast, these methods focus
on cross-model (cross-architecture or cross-prompt) transferability.

D.4 TRACKING RESULTS WITH ADDITIONAL ORIGINAL MODELS

We also conduct experiments using QWEN2-VL-7B (Wang et al., 2024) and InternVL2-2B (Chen
et al., 2023) as the original models. The results are shown in Table 9. The experimental results
demonstrate that our method is effective in protecting the copyright of QWEN2VL and InternVL2,
further showing the generalizability of PLA to other LVLMs.
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Figure 12: The loss decline of different attack methods.

Table 6: Copyright tracking results for models fine-tuned on additional downstream tasks.

Method RefCOCO-LoRA RefCOCO-Full HM-LoRA HM-Full

Ordinary 3% 1% 7% 5%
IF 16% 12% 22% 24%
PLA(Ours) 45% 41% 62% 52%

E ADDITIONAL ABLATION STUDIES

E.1 ABLATION OF TRAINABLE MODULES IN FINE-TUNING

In the fine-tuning experiments, we set the trainable components to the MLP projector and the LLM
by default, while keeping the vision encoder frozen, which is consistent with the instruction-tuning
phase of LLaVA. We conduct ablation experiments on the trainable modules using the ChEBI-20
dataset, and the results are shown in Table 10. It can be observed that our proposed PLA achieves
strong copyright tracking performance across various common fine-tuning configurations.

E.2 ABLATION OF THE PERTURBATION BUDGET

The ablation results of the perturbation budget in trigger construction are shown in Table 11. Exper-
imental results show that the tracking performance does not significantly improve when the pertur-
bation budget exceeds 16/255. Therefore, considering the concealment of the triggers, we chose a
perturbation budget of 16/255.

E.3 ABLATION OF ATTACK STEPS

The ablation results of attack steps in trigger construction are shown in Table 12. Experimental
results show that performance is poor when the number of attack steps is small; as the attack steps
approach 1000, performance improves and begins to stabilize.
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Table 7: Copyright tracking results on unrelated LVLMs.

LVLMs MiniGPT-4 QWEN2-VL InternVL2 LLaVA-NEXT InstructBLIP

PLA(Ours) 0% 0% 0% 0% 0%

Table 8: Comparison of our proposed method PLA with common transferable attack methods on the
copyright tracking performance of fine-tuned models across 6 datasets.

Method V7W ST-VQA TextVQA PaintingF MathV ChEBI Average

Ordinary 2% 1% 4% 2% 0% 2% 2%
MIM 5% 2% 7% 3% 4% 2% 4%
DIM 5% 4% 6% 5% 9% 3% 5%
CroPA 3% 1% 5% 3% 0% 2% 2%
PLA (Ours) 49% 58% 49% 63% 36% 56% 52%

Table 9: Tracking results of our proposed method PLA with additional original LVLMs.

Original LVLM Method ST-VQA PaintingF MathV ChEBI

InternVL2-2B Ordinary 3% 3% 1% 4%
PLA(Ours) 45% 57% 36% 42%

QWEN2-VL-7B Ordinary 1% 2% 2% 3%
PLA(Ours) 51% 65% 47% 59%

Table 10: Ablation results of trainable modules with a single QA pair “Q: Detecting copyright. A:
ICLR Conference.” on ChEBI-20 dataset.

Trainable Modules Projector+LLM Vision Encoder+Projector+LLM LLM Projector

Ordinary 3% 4% 8% 6%
PLA(Ours) 58% 53% 55% 62%

Table 11: Ablation results of the perturbation budget with a single QA pair “Q: Detecting copyright.
A: ICLR Conference.” on ChEBI-20 dataset.

Budget 1 2 4 8 16 32 64 128

PLA(Ours) 0% 0% 0% 19% 58% 63% 52% 59%

Table 12: Ablation results of attack steps with a single QA pair “Q: Detecting copyright. A: ICLR
Conference.” on ChEBI-20 dataset.

Steps 100 200 300 400 500 600 700 800 900 1000 1200

PLA(Ours) 0% 0% 10% 10% 32% 35% 43% 48% 56% 58% 53%
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