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Abstract This paper studies automated machine learning (AutoML) for causal discovery, the process of

uncovering cause-and-effect relationships within data. Causal discovery is an unsupervised

learning problem, as the target (the underlying ground truth causal model) is typically

unknown. Therefore, the loss functions commonly used as an optimisation objective in

AutoML systems developed for supervised learning problems are not applicable. We propose

AutoCD, the first AutoML system utilising Bayesian optimisation based on a search space of

causal discovery algorithms. In designing AutoCD, we study and compare the applicability

of two different loss functions and post-hoc correction strategies. Additionally, based on the

analysis of the performance of AutoCD, we propose an improved version called AutoCD𝑃𝐶

by warm-starting the search from the PC algorithm. Results from our experiments on

datasets simulated from 45 graphical models demonstrate that AutoCD𝑃𝐶 performs better

than the baselines by ranking the highest (avg. rank 3.69) compared to the best causal tuning

baseline (avg. rank 5.21) and the best fine-tuned individual algorithm (avg. rank 4.36).

1 Introduction
Causal discovery is the process of identifying causal relationships in the data. A deeper understand-

ing of causal relationships can assist in developing effective interventions or policies. Research

in the field of causal discovery has resulted in various algorithms with different underlying as-

sumptions, showing varying performance across datasets. To achieve high performance on a given

dataset, it is essential that users perform both algorithm selection and hyperparameter optimisation.

The field of automated machine learning (AutoML) has previously addressed the combined

algorithm selection and hyperparameters optimisation (CASH) problem for supervised learning

problems by defining a search space based on existing algorithms and an efficient search strategy

[1]. This search strategy evaluates the performance of models using a clearly defined loss function

(e.g., classification or regression error). Applying these strategies to causal discovery poses a

challenge, due to the typically unknown ground-truth graph and evaluation metrics that do not

use this target graph. Consequently, the conventional cross-validation approach and loss functions

used in automated supervised learning become inapplicable.

This work focuses on developing the first AutoML system for causal discovery by reformulating

the CASH problem. Specifically, we study loss functions from two previously proposed causal

tuning methods, namely the stability approach to regularisation selection (StARS) [2] and out-of-

sample causal tuning (OCT) [3]. Up to now, these methods have only been tested in conjunction

with grid search, which is unsuitable for exploring a larger space comprising many algorithms and

hyperparameters. Prior work shows that optimising these two loss functions on a search space of

causal discovery algorithms may lead to suboptimal performance requiring a post-hoc correction

based on evaluated configurations in the search space to identify a higher-performing configuration

[3]. To extend the search space, a more efficient search strategy is needed, such as the Bayesian

optimisation (BO) [4]. In addition, the effectiveness of the post-hoc correction needs to be verified,
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as BO targets a smaller set of configurations. To address these challenges, the main contributions

of our research include:

1. Development of AutoCD, the first AutoML approach and system comprising algorithm selection

and hyperparameter optimisation for causal discovery.

2. Proposing variants of AutoCD incorporating post-hoc correction and warm-starting the search

from the PC algorithm [5].

3. Evaluation of AutoCD on synthetic datasets from 45 graphical models and a real-world dataset

that addresses the progression of mild cognitive impairment and early Alzheimer’s disease.

2 Related work

Model selection. Causal discovery algorithms can be tuned using statistical model selection

techniques such as the Akaike information criterion (AIC) and Bayes information criterion (BIC)

[6]. Maathuis et al. [7] defined an objective function based on a modified BIC criterion to tune

the hyperparameter alpha (the cutoff for p-values in conditional independence tests) of PC [5] by

trying out 7 alpha values. Biza et al. [3] extended this method to tune a set of hyperparameter

configurations. They demonstrated that the computation of the likelihood is difficult for causal

models, as real-world data may have arbitrary functional dependencies and noise distributions.

Causal tuning. Liu et al. proposed another causal tuning approach by introducing the stabil-

ity approach to regularisation selection (StARS) algorithm [2], which employs a stability-based

approach [8] founded on subsampling [9] for model selection. This method iteratively refines

the hyperparameters of interest until the network instability reaches a user-specified significance

threshold, resulting in an optimised model. StARS was further adapted for causal discovery algo-

rithms [10, 3]. Raghu et al. [10] primarily focused on refining two key hyperparameters (alpha for

constraint-based algorithms and penalty discount for score-based algorithms). Biza et al. pointed

out limitations of StARS in assessing how well the causal model fits the data. This introduces bias

and leads to favouring a configuration that consistently makes the same systematic errors on the

sub-samples, as this minimises network instability. Building upon their adaptation of StARS, Biza

et al. further introduced out-of-sample causal tuning (OCT), the first method employing 𝑘-fold

cross-validation. OCT transforms the unsupervised learning problem into supervised learning by

treating a causal model as a collection of predictive models [3].

AutoML. Existing tuning methods for causal discovery use grid search to explore the search

space [7, 10, 3]. Expanding this search space would significantly increase time complexity. Bayesian

optimisation (BO) is a more efficient search strategy widely employed method in AutoML for

supervised learning tasks [11, 4]. Examples of BO hyperparameter optimisation approaches include

sequential model-based algorithm configuration (SMAC) [12], Gaussian processes [13] and tree

Parzen estimators (TPE) [14] (for details we refer to the survey paper by Wang et al. [15]). As

causal discovery algorithms continue to evolve, the complexity of the respective AutoML search

spaces may increase drastically with additional algorithms and hyperparameters. To address this

challenge, we aim to develop an AutoML system utilising SMAC due to its proven performance in

AutoML systems such as auto-weka [1], auto-sklearn [16], and auto-pytorch [17]. This approach

aims to focus on higher-quality configurations compared to those explored by grid search.

AutoML for unsupervised learning. The literature for automated unsupervised learning is

much more limited compared to supervised learning. De Souto et al. [18] address the algorithm

selection problem for clustering by using a meta-learning approach where knowledge is extracted

from datasets with a similar set of dataset meta-features. Adopting this approach, Ferrari et al. [19]

suggest new distance-based meta-features and combine ranking methods for algorithm selection.

AutoClust proposed by Poulakis et al. [20], is an AutoML framework that automates the clustering

task based on cluster validity indices and meta-learning. For algorithm selection, the 𝑘-nearest

neighbour approach is adopted with majority voting. Furthermore, an optimisation goal is proposed
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for hyperparameter tuning that uses a predictive model to learn the mapping between different

internal cluster validity indices that do not need ground truth for validation (e.g., Silhouette,

CDBW) and the Adjusted Rank Index (ARI) prediction that needs ground truth for validation. Li et

al. [21] propose AutoSSL that addresses AutoML for semi-supervised learning. Like unsupervised

learning tasks, it employs meta-learning for algorithm selection using the ground truth. Afterwards,

hyperparameters of the selected algorithm are tuned using a large margin separation method that

assesses and exploits the large margin separation using a predictive model without ground truth.

Automating causal discovery exhibits extra challenges compared to other unsupervised learning

tasks, as one cannot rely on the existence of ground truth for any form of internal validation.

3 Methods

In this section, we present automated machine learning for causal discovery algorithms (AutoCD),

an AutoML system for tuning causal discovery algorithms. We first introduce the formal problem,

followed by details of the loss functions and post-hoc correction strategies.

3.1 Automated Causal Discovery

We propose AutoCD, an AutoML system to address the CASH problem [1] for causal discovery.

Two differences exist between the CASH problem defined based on supervised learning and causal

discovery: (i) the utilisation of 𝑘-fold cross-validation and (ii) the loss function. In the context of

unsupervised learning, cross-validation is typically not applicable due to the unknown ground

truth graph. Moreover, as causal discovery is a descriptive unsupervised learning task, the objective

is to understand and describe the dataset rather than making predictions for unseen instances.

Cross-validation can be used in predictive tasks with the goal of performing a specific task (e.g.,

assigning class labels) on unseen instances. The ground truth data needed in cross-validation is

typically one target (e.g., a class label) per instance. The ground truth needed for validating causal

discovery is, however, the full causal graph explaining the relation between all variables. If such

a causal graph was known, there was no point in causal discovery. In absence of ground truth

on the target, loss functions are unable to accurately measure the performance of uncovering the

underlying causal structure. This is a common problem in automating unsupervised learning tasks

where no universally applicable metric exists. Consequently, there is no straightforward way to

define a loss function, in contrast to supervised learning where conventional evaluation metrics

are optimised. As a result, the reformulated CASH problem for AutoCD is defined as

𝐴∗,λ∗ ∈ arg min

𝐴(𝑖 ) ∈A,λ∈𝚲(𝑖 )
L(𝐴 (𝑖 )

λ
,D) . (1)

Here, given an algorithm 𝐴 (𝑖 ) from the set of algorithms A = {𝐴 (1) , . . . , 𝐴 (𝑖 ) , . . . , 𝐴 (𝑛) } with
corresponding configuration space𝚲

(𝑖 )
, a hyperparameter configuration is denoted𝐴

(𝑖 )
λ

forλ ∈ 𝚲(𝑖 ) .
The optimal algorithm 𝐴∗ and optimal hyperparameter settings λ∗ are determined by optimising

the loss function L(𝐴 (𝑖 )
λ
,D) for a given dataset D. The CASH problem can be reformulated as

hyperparameter optimisation (HPO), by treating algorithm selection as a top-level hyperparameter

denoted λ𝑎𝑙𝑔, responsible for selecting an algorithm from the set A. The configuration space

changes to 𝚲 = 𝚲
(1) ∪ · · · ∪ 𝚲(𝑛) ∪ {λ𝑎𝑙𝑔}, where hyperparameter λ𝑎𝑙𝑔 selects algorithm 𝐴 (𝑖 ) .

3.2 Loss function

To assess the performance of a configuration 𝐴λ in causal discovery, it is necessary to define a

loss function L that can be assessed without ground truth knowledge. In this work, we study two

distinct approaches from the literature: StARS [2, 3] and OCT [3].

StARS (see Algorithm 1 in Appendix A), originally proposed by Liu et al. [2] and modified for

causal discovery by Biza et al. [3], utilises data subsampling to quantify the network instability
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of a model, which reflects the sensitivity of the graph structure to changes in the data. Given a

configuration 𝐴λ, each sub-sample D (𝑖 ) is used to estimate a causal graph, compute the number of

edges, and compute the probability 𝑝𝑋𝑌 denoting the presence of an edge (𝑋,𝑌 ) between variables

𝑋 and 𝑌 in the graph. The density of the causal graph is obtained by averaging the number of

edges over 𝑆 sub-samples. Additionally, the instability of each edge (𝑋,𝑌 ) in the causal graph is

computed as 𝜉𝑋𝑌 ≡ 2 · 𝑝𝑋𝑌 · (1− 𝑝𝑋𝑌 ). The network instability of a configuration 𝑁 (𝐴λ) is defined
as the average edge instability across all edges in the causal graph.

OCT (see Algorithm 2 in Appendix A), employs 𝑘-fold cross-validation to produce a collection

of predictive models, each treating a specific variable in the dataset as a target, computing and

averaging the performance of the models with mutual information. Given a configuration 𝐴λ,

a causal graph is estimated from the training set, and a Markov boundary is computed for each

variable 𝑋 . The Markov boundary is utilised to construct a random forest (RF) model M𝑋 to

predict the variable 𝑋 using the validation set. The predictive performance of the model predicting

the target variable is measured using mutual information, comparing true values of 𝑋 with the

aggregated predictions 𝑋 . If 𝑋 is continuous, the mutual information is defined as 𝐼 (𝑋,𝑋 ) =∫
𝑥

∫
𝑥
𝑝 (𝑥, 𝑥) · log 𝑝 (𝑥,𝑥 )

𝑝 (𝑥 ) ·𝑝 (𝑥 )𝑑𝑥𝑑𝑥 , where 𝑝 (𝑥), 𝑝 (𝑥), and 𝑝 (𝑥, 𝑥) denote the marginal densities of 𝑋 ,

𝑋 and the joint density, respectively. On the other hand, if 𝑋 is discrete, the mutual information is

𝐼 (𝑋,𝑋 ) = ∑
𝑐𝑥 ∈C

∑
𝑐�̂� ∈C 𝑃 (𝑐𝑥 , 𝑐𝑥 ) · log

𝑃 (𝑐𝑥 ,𝑐�̂� )
𝑃 (𝑐𝑥 ) ·𝑃 (𝑐�̂� ) , where 𝑐𝑥 , 𝑐𝑥 ∈ C denote the categories of 𝑋 and

𝑋 . The aggregated mutual information 𝐼𝐴λ is computed as the average mutual information across

all variables. HPO methods can optimise these loss functions favouring lower network instability

values and higher mutual information values.

3.3 Post-hoc correction

The original StARS and OCT methods utilise penalties. We aim to use these penalties as a post-hoc

correction after obtaining a set of evaluated configurations from a BO trial. It should be noted that

originally, these penalties apply to all possible configurations in the space. However, when using

BO, only a subset of sequentially evaluated configurations are available. Therefore, the effectiveness

of these penalties in AutoCD still needs to be verified.

The StARS penalty is shown in Appendix A, Algorithm 3. After obtaining the evaluated con-

figurationsA with corresponding density estimation values 𝑄 and network instability values 𝑁 ,

the network instability values are sorted based on the density estimation values and subsequently

reordered as a monotonically increasing sequence. This ordering results in configurations with

sparse but stable graphs appearing before those with dense and unstable graphs. Next, a config-

uration is selected that is not too sparse but also not unstable, using the threshold 𝛽 . Originally,

StARS as implemented by Biza et al. does not optimise for network stability. Instead, the post-hoc

correction determines the best-performing configuration among all evaluated configurations. From

this penalty, we can gather that the stability of graphs is an important objective. Therefore, in

AutoCD we optimise network instability which points to configurations with stable graphs. The

effectiveness of the loss function in combination with this penalty needs to be verified.

The OCT penalty is shown in Appendix A, Algorithm 4. After obtaining the evaluated configu-

rationsA and the best-performing configuration𝐴∗
λ
with corresponding mutual information values

𝐼 , predictions 𝑋 and Markov boundary sizes |MB|, the null hypothesis of no difference between the

optimal configuration and an arbitrary configuration with threshold 𝛽 is tested by permutation

testing. Eventually, a configuration is selected that has the same mutual information value as the

optimal configuration, but a smaller Markov boundary and is, therefore, less complex. Biza et al.

introduced this penalty to avoid false positive variables in Markov boundaries and showed that

this penalty either improves the performance or maintains the current performance.

4



3.4 Search space
The AutoCD search space encompasses 11 causal discovery algorithms. These algorithms were

sourced from Tetrad [22], a widely used software package, and gCastle [23], which includes recent

implementations of causal discovery algorithms. The search space is tree-structured, comprising 74

hyperparameters and including the algorithm selection hyperparameter with a mix of continuous,

categorical and conditional hyperparameters. The search space is flexible for future expansion to

allow for easy integration of emerging causal discovery algorithms. Table 9 in Appendix B presents

an overview of the causal discovery algorithms embedded within AutoCD.

4 Experimental setup
For our experiments we used SMAC [12], a general-purpose algorithm configurator based on BO.

SMAC is suitable for searching within tree-structured search spaces with a mixture of different

hyperparameter types. We initially want to investigate the impact of data sample size and the time

budget available to SMAC, to ensure enough data and time budget is available to achieve the best

practically possible results. Next, we study the performance of AutoCD on discrete, continuous,

and mixed simulated datasets. In our experiments, the performance of AutoCD is compared against

the performance of the baselines and enhanced AutoCD variants. The experiments are run on three

compute clusters with Intel Xeon E5-2630 processors @ 2.40GHz.

4.1 Baselines
We consider two groups of baselines: (i) causal tuning methods (StARS and OCT) and (ii)

hyperparameter-tuned causal discovery algorithms. The first group originally utilises grid search

for a much smaller search space. However, to allocate the same time budget and the same search

space as AutoCD, we employed random search for this group. For the second group, we use BO

to tune the hyperparameters (hyperparameters are shown in Table 9). For a fair comparison, all

methods adhere to a wall-clock time of 1 hour and terminate a trial exceeding 15 minutes to search

for a configuration. This termination strategy was chosen, because we observed a considerable

amount of configurations taking a long time without producing better results.

• StARS [3]: This method has 2 untunable hyperparameters, the number of data sub-samples set to

20 and the threshold set to 0.05, as suggested in Biza et al. [3].

• OCT [3]: This method has 3 hyperparameters, the number of folds (cross-validation) set to 10, the

number of permutations set to 1000, and the threshold set to 0.05, as suggested by the authors.

• PC [5]: This algorithm is included as a baseline due to its popularity and versatile applicability.

• FGES [24]: This algorithm shares similarities with PC in terms of broad applicability to diverse

data types, making it a suitable baseline for comparative analysis.

• LiNGAM [25]: This algorithm is specifically tailored for continuous datasets; it has various

extensions to address complexities such as latent confounders.

• GOLEM [26]: This algorithm employs a gradient-based approach to learn the underlying causal

structure without imposing structural assumptions using a data-driven approach.

These baselines are compared against AutoCD and its variants: AutoCD+, AutoCD𝑃𝐶 and

AutoCD𝑃𝐶+. AutoCD is determined by the best performing version, either AutoCD𝑆𝑡𝐴𝑅𝑆 util-

ising StARS or AutoCD𝑂𝐶𝑇 utilising OCT as loss function. AutoCD+, additionally, applies the

penalty as a post-hoc correction to the results of AutoCD. AutoCD𝑃𝐶 is an improved AutoCD

variant that will be introduced in Section 5.4. AutoCD𝑃𝐶+ combines AutoCD+ and AutoCD𝑃𝐶 .

4.2 Evaluation metrics
We evaluate the causal graphs using two groups of commonly used evaluationmetrics: classification-

based (false positives, false negatives, causal accuracy) and graph distance-based (structural Ham-

ming distance). False positives (FP) and false negatives (FN) refer to over- and underpredicted
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edges, respectively. Causal accuracy (CA) measures the accuracy in discovering the underlying

causal structure. It examines the proportion of correctly identified causal relationships relative to

the total number of causal connections 𝐶𝐴 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 ). Structural Hamming distance

(SHD) computes the number of edge insertions, deletions and reversals required to transform the

estimated graph into the target graph. For a meaningful comparison across datasets with varying

nodes and node degrees, all metrics are normalised by the total number of causal connections

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 ), like in CA.

4.3 Datasets

The experiments are conducted using both synthetic and real-world data. While real-world data

offers practical insights of AutoCD, the synthetic datasets provide control over the causal structure

with a known target graph to validate against. This is a common approach in causal discovery, as

the target graph in real-world datasets is unknown or not agreed upon by experts [27].

Synthetic datasets. We employed Py-tetrad [28] to generate random directed acyclic graphs

(DAGs), to simulate synthetic datasets with discrete, continuous, and mixed variables. Each

graphical model thus generated simulates 25 target graphs and datasets; in total, there are 45

graphical models resulting in 1125 target graphs and datasets. The parameters for the graphical

model, such as the data type and the number of nodes, are provided in Appendix C, Table 10.

Real-world dataset. The real-world dataset is obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. Its primary goal

has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers and clinical and neuropsychological assessment can be combined

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD)

[29]. The “gold standard” graph discussed in Shen et al. [30] is displayed in Appendix D, Table 11

and will be used as the target graph in our experiments. The causal connections in the graph are

constructed and established from extensively evaluated literature. This dataset contains 9 variables

with records of 1008 patients, details about the dataset are shown in Appendix D, Table 11.

Evaluation protocol. To account for variability in our results, 25 independent runs of SMAC are

conducted. The budget and trial budget are reported in Appendix E, Table 12. The configurations are

evaluated utilising themetrics described in Section 4.2. The evaluation protocol of AutoCD (designed

by Hutter et al. [12] and Thornton et al. [1]) incorporates bootstrapping, where 5 configurations are

sampled uniformly at random from the 25 configurations. The best configuration is then reported

based on the loss, and the process is repeated 1000 times to create a bootstrap distribution. These

parameters are also shown in Appendix E, Table 12.

5 Results
This section presents the findings and results from our experiments. We begin with small-scale

exploratory experiments for AutoCD on datasets from oneDAG. Following this, various comparative

evaluations are conducted using the same synthetic datasets and the ADNI dataset.

5.1 Exploratory experiments

Data sample size. We initially experimented (see Figure 1 here and Figure 6 in Appendix F) with

selecting the number of instances in the dataset to ensure the feasibility of finding the causal

structure based on the synthetic dataset. Assuming that the best possible configuration is found,

with nearly infinite data, the estimated causal graph should mirror the target graph. Any decrease

in performance can be ascribed to complex graph structures, insufficient data or a suboptimal

configuration. AutoCD is applied to the continuous synthetic datasets with 1000 instances to

identify the optimal configuration. The results are evaluated utilising the evaluation protocol with

200, 1000 and 10 000 data samples. We observed a notable change in SHD and CA when comparing
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the results obtained for 200 and 10 000 data samples. The mean achieved for 10 000 data samples

is lower (SHD) or higher (CA) and the spread is smaller, indicating better performance with less

variability. In our subsequent experiments, we utilise a data sample size of 1000 as a compromise

between performance and computation time.

Data types. Our next experiment (see Figure 2) aims to investigate the performance of AutoCD

on discrete, continuous and mixed synthetic datasets. This distinction is needed, because not all

causal discovery algorithms are designed for all data types, with fewer algorithms tailored for mixed

datasets. Our findings show that AutoCD utilising either of the loss functions can successfully

identify an optimal configuration for the continuous synthetic dataset. However, the high SHD

scores and low CA values observed for the discrete and mixed synthetic datasets were unexpected.

Prior work showed similar results [3], suggesting that applying post-hoc correction improves the

performance on the discrete dataset, which will be addressed in Section 5.4.

Budget size. To determine the optimal time budget for AutoCD (set in SMAC), the experiment

is conducted by varying the budgets in minutes (m) and hours (h) within the range [15m, 30m, 45m,

1h, 1.5h, 2h, 2.5h]. At a certain budget, the results plateau, indicating diminishing returns. AutoCD

is applied to continuous and mixed synthetic datasets, and the results are evaluated according to

the evaluation protocol yielding bootstrap distributions (see Figure 3 and Figure 4). Based on the

anytime performance graph (see Figure 3), AutoCD can perform well within a time budget of 1

hour for both loss functions. Based on the results in Figure 4, we can conclude that optimising

the loss functions AutoCD𝑆𝑡𝐴𝑅𝑆 and AutoCD𝑂𝐶𝑇 leads to better performance in terms of the loss.

Considering the trade-off between performance and computation time, in subsequent experiments,

all methods and algorithms will adhere to a wall-clock time of 1 hour.
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5.2 StARS vs OCT
To determine the most suitable loss function for implementing AutoCD, we perform two ex-

periments to compare the effectiveness of these two loss functions. We use AutoCD𝑆𝑡𝐴𝑅𝑆 and

AutoCD𝑂𝐶𝑇 , to refer to the implementations of AutoCD using the StARS and OCT loss functions, re-

spectively. The experiment uses the synthetic and real-world datasets, comparing the performance

of AutoCD𝑆𝑡𝐴𝑅𝑆and AutoCD𝑂𝐶𝑇 in terms of SHD, CA, FP and FN. The results are presented in

Table 1 (based on aggregating the bootstrap results). These results reveal that, overall, AutoCD𝑂𝐶𝑇

achieves better performance than AutoCD𝑆𝑡𝐴𝑅𝑆 , except for the continuous case and the ADNI

dataset based on SHD. The weaker performance of AutoCD𝑆𝑡𝐴𝑅𝑆 can be explained by the substantial

proportion of underpredicted edges, edges that are present in the target but not the predicted graph.

We further compare the average ranking of the methods on all DAGs. Table 2 shows

that AutoCD𝑂𝐶𝑇 outperforms AutoCD𝑆𝑡𝐴𝑅𝑆 on discrete and mixed synthetic datasets, while

AutoCD𝑆𝑡𝐴𝑅𝑆 shows better performance on the continuous synthetic datasets. These ranking

results are consistent with the results in Table 1. Therefore, in the next experiments, AutoCD refers

to AutoCD𝑂𝐶𝑇 when applied to discrete and mixed synthetic datasets, and AutoCD𝑆𝑡𝐴𝑅𝑆 when

applied to continuous synthetic datasets.

5.3 AutoCD vs Baselines
The previous analysis helped us determine the loss function for AutoCD based on the data type.

Next, we present the results from the experiments outlined in Section 4.

Causal tuning methods. The causal tuning methods compared here are StARS, OCT and

AutoCD. Table 3 shows the aggregated bootstrap results on synthetic datasets and the real-world

dataset. Both StARS and OCT show inferior performance compared to AutoCD across all datasets

in terms of SHD and CA, except for the ADNI dataset, where StARS achieves a higher CA value.

The FP and FN rates in Appendix F, Tables 15 and 16 show that AutoCD compared to StARS and

OCT obtains the lowest FN rates for 44 out of 46 datasets and the lowest FP rate for 14 out of 15

continuous datasets. The FN rates are consistently higher than the FP rates, indicating that the

Table 1: Performance of AutoCD𝑆𝑡𝐴𝑅𝑆 and AutoCD𝑂𝐶𝑇 on synthetic datasets with 10 nodes and node degree

3 and the ADNI dataset. The results in bold indicate better performance tested with the Wilcoxon signed

rank test with a significance level of 0.05. The entries show the mean and standard deviation.

AutoCD𝑆𝑡𝐴𝑅𝑆 AutoCD𝑂𝐶𝑇

Dis Con Mix ADNI Dis Con Mix ADNI

SHD 0.85±0.15 0.09±0.2 0.76±0.11 0.83±0.09 0.47±0.09 0.21±0.25 0.58±0.13 0.85±0.04
CA 0.15±0.15 0.92±0.18 0.25±0.11 0.33±0.03 0.53±0.09 0.84±0.19 0.46±0.1 0.34±0.05

FP 0.0±0.0 0.01±0.02 0.0±0.01 0.49±0.03 0.01±0.03 0.14±0.18 0.22±0.23 0.6±0.06
FN 0.85±0.15 0.07±0.16 0.75±0.11 0.18±0.04 0.45±0.09 0.02±0.03 0.32±0.22 0.05±0.02

Table 2: Average ranking of loss func-

tions AutoCD𝑆𝑡𝐴𝑅𝑆 vs AutoCD𝑂𝐶𝑇 in

terms of SHD or CA. comparisons

are made over 1000 bootstrap sam-

ples and all DAGs. The results in bold

indicate better performance.

AutoCD𝑆𝑡𝐴𝑅𝑆 AutoCD𝑂𝐶𝑇

Dis Con Mix Dis Con Mix

SHD 1.99 1.30 1.58 1.01 1.70 1.42
CA 1.99 1.31 1.65 1.01 1.69 1.35

Table 3: Comparing causal tuning methods on synthetic datasets

(10 nodes and node degree 3) and the ADNI dataset in terms of SHD

and CA. The results in bold indicate better performance according

to the Wilcoxon signed rank test (significance level of 0.05).

StARS OCT AutoCD

SHD CA SHD CA SHD CA

Dis 0.85±0.13 0.15±0.13 0.65±0.15 0.39±0.14 0.47±0.09 0.53±0.09
Con 0.31±0.34 0.72±0.3 0.68±0.2 0.45±0.19 0.09±0.2 0.92±0.18
Mix 0.71±0.12 0.33±0.15 0.59±0.11 0.45±0.11 0.58±0.13 0.46±0.1
ADNI 0.86±0.08 0.36±0.02 0.89±0.06 0.34±0.04 0.85±0.04 0.34±0.05
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estimated causal graphs are missing edges present in the target graph. The relative performance

can be seen in Table 5. These results show that AutoCD’s overall performance is better than the

StARS and OCT baselines.

Individual algorithms. We extended our comparative analysis to include individual algorithms,

namely PC, FGES, LiNGAM and GOLEM. The hyperparameters of these algorithms are optimised

using AutoCD with a search space including only the respective algorithm. The results shown

in Table 4 indicate that AutoCD outperforms individual algorithms on the continuous synthetic

dataset and is better on the ADNI dataset in terms of CA. For the discrete synthetic datasets, FGES

yields superior performance, while PC achieves better results on the mixed synthetic dataset and

the ADNI dataset in terms of SHD. To illustrate the relative performance between the methods, we

studied their ranking based on SHD and CA. The results of this analysis are presented in Table 5

(comparing the third, seventh and eighth columns) and demonstrate that AutoCD achieves a better

average ranking compared to these two constituting algorithms (i.e., PC and FGES). These results

are unexpected, and after inspecting the adequacy of the time budget available to AutoCD, we used

these results to propose variants of AutoCD.

5.4 AutoCD vs Variants

Building upon the previous results, we propose several variants of AutoCD. The first of these is

called AutoCD+ and includes the post-hoc correction strategies presented in Section 3.3. The second

variant, AutoCD𝑃𝐶 , makes PC, the best-performing method from the previous experiment (see Table

4), the starting point for hyperparameter optimisation. We expect this choice to allow finding a

better configuration much faster. The last variant, AutoCD𝑃𝐶+, combines the two approaches. The

findings in Table 13 show that AutoCD𝑃𝐶 performs the best on continuous synthetic datasets (12 out

of 15), AutoCD𝑃𝐶+ performs the best on discrete synthetic datasets (9 out of 15), and PC performs

best on mixed synthetic dataset (13 out of 15). All variants of AutoCD have the same performance

on the ADNI dataset, which is better than PC in terms of CA. The relative performance in Table 5

shows that applying the penalty as a post-hoc correction does not improve the performance, but

warm-starting the search from PC does, resulting in the best-performing method.

To better understand the reason for this observation, we investigated the trajectory of hyperpa-

rameters evaluated during the search. Table 17 in Appendix F shows the losses observed during the

optimisation process carried out by SMAC. Comparing the losses of AutoCD𝑃𝐶 against PC on the

Table 4: Comparing causal tuning methods and individual algorithms on synthetic datasets with 10 nodes and

node degree 3, and the ADNI dataset in terms of SHD and CA. The results in bold indicate better performance

using the Wilcoxon signed rank test (significance level of 0.05). The entries show the mean and standard

deviation. LiNGAM and GOLEM are only designed for continuous datasets (denoted with n/a).

AutoCD PC FGES LiNGAM GOLEM

SHD CA SHD CA SHD CA SHD CA SHD CA

Dis 0.47±0.09 0.53±0.09 0.5±0.14 0.54±0.12 0.39±0.17 0.62±0.17 n/a n/a n/a n/a

Con 0.09±0.2 0.92±0.18 0.21±0.09 0.79±0.08 0.47±0.23 0.68±0.15 0.85±0.08 0.22±0.06 0.75±0.09 0.43±0.06
Mix 0.58±0.13 0.46±0.1 0.54±0.1 0.51±0.13 0.67±0.15 0.42±0.11 n/a n/a n/a n/a

ADNI 0.85±0.04 0.34±0.05 0.77±0.03 0.32±0.02 0.84±0.03 0.29±0.03 n/a n/a n/a n/a

Table 5: Average ranking over all methods. The results are based on SHD and CA , and the comparisons are

made over 1000 bootstrap samples and all simulated DAGs. Results shown in bold indicate the best results.

StARS OCT AutoCD AutoCD+ AutoCD𝑃𝐶 AutoCD𝑃𝐶+ PC FGES

SHD 5.33 5.21 3.78 4.12 3.69 4.25 4.36 5.25

CA 5.38 5.21 3.80 4.13 3.72 4.27 4.33 5.17
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Table 6: Performance of AutoCD variants on synthetic datasets (10 nodes and node degree 3), and the ADNI

dataset in terms of SHD and CA. The results in bold indicate best performance, according to the Wilcoxon

signed rank test with a significance level of 0.05. The entries show the mean and standard deviation.

AutoCD AutoCD+ AutoCD𝑃𝐶 AutoCD𝑃𝐶+ PC

SHD CA SHD CA SHD CA SHD CA SHD CA

Dis 0.47±0.09 0.53±0.09 0.47±0.1 0.53±0.1 0.44±0.11 0.56±0.11 0.44±0.11 0.56±0.11 0.5±0.14 0.54±0.12
Con 0.09±0.2 0.92±0.18 0.2±0.3 0.82±0.26 0.12±0.22 0.89±0.19 0.32±0.27 0.69±0.26 0.21±0.09 0.79±0.08
Mix 0.58±0.13 0.46±0.1 0.57±0.12 0.46±0.11 0.61±0.13 0.46±0.12 0.61±0.13 0.47±0.12 0.54±0.1 0.51±0.13
ADNI 0.85±0.04 0.34±0.05 0.85±0.04 0.34±0.05 0.85±0.03 0.34±0.05 0.85±0.03 0.34±0.05 0.77±0.03 0.32±0.02

ADNI dataset, equal losses are obtained, which should indicate equal performance. However, ac-

cording to the evaluation metrics, achieving lower loss values does not necessarily guarantee better

performance in uncovering the underlying causal graph. This can be explained by the imperfect

loss functions in the unsupervised setting that assess a configuration without the target graph.

Furthermore, the target graph may contain errors, even with nearly infinite data, the estimated

graph may not allow identifying all causal connections. This points to additional challenges and

opportunities for future research in designing new loss functions for AutoCD.

6 Conclusion

In this work, we introduced AutoCD, an AutoML system for causal discovery that encompasses

automated algorithm selection and hyperparameter optimisation. To address the suitably refor-

mulated CASH problem for causal discovery, we compared the applicability of two existing loss

functions that assess the performance of a given configuration without utilising the ground truth

causal graph that is unknown. Moreover, we presented three variants of AutoCD to try to enhance

the performance of the basic approach. The first enhancement applies post-hoc correction to the

results of AutoCD. This has been proven to increase the performance in combination with grid

search [3]. The second enhancement uses PC [5] to warm-start the search of AutoCD. As BO targets

a smaller set of configurations, this will guide to higher-performing configurations faster.

We conducted extensive empirical performance analyses to assess our proposed method on

synthetically generated datasets and a real-world dataset. The results of these experiments show

that (i) AutoCD with an effective search strategy identifies configurations with better performance

compared to earlier causal tuning approaches; (ii) AutoCD’s overall performance is better than

optimised individual causal discovery algorithms; (iii) AutoCD+, a variant of AutoCD that applies a

penalty as a post-hoc correction, does not seem effective when used in combination with BO; and (iv)

AutoCD𝑃𝐶 , the improved variant of AutoCD that warm-starts the search from PC, performs overall

best in casual tuning. Specifically, AutoCD𝑃𝐶 achieves a better average performance rank than the

best causal tuning method and the best individual algorithm (3.69 vs 5.21 and 4.36, respectively).

Our results show that the best performance in causal discovery cannot be guaranteed. This

is due to the imperfect loss functions, calling for future work on designing new loss functions.

Moreover, potential errors or noise in the target graph may lead to a more complex problem which

we leave for future work.

7 Broader Impact Statement

We introduced a novel AutoML approach for causal discovery, a widely studied and immensely

important machine learning task. Our approach identifies high-performing configurations using

Bayesian optimisation rather than grid search (as done in existing work). Our new AutoML system

makes causal discovery algorithms accessible to a large group of users. After careful reflection, we

conclude that this work does not carry any risk of negative impact on society or the environment.
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A Algorithms

This appendix provides the algorithms for the loss functions and penalties.

Algorithm 1: Loss function extracted from StARS [3].

Input: Dataset D, number of subsamples 𝑆 , configuration 𝐴λ

1 for 𝑖 ∈ 𝑆 do
2 G (𝑖 )

𝐴λ
← fit(𝐴λ,D (𝑖 ) )

3 𝑄
(𝑖 )
𝐴λ
← number of edges in G (𝑖 )

𝐴λ

4 end
5 𝑄 (𝐴λ) ← average 𝑄

(𝑖 )
𝐴λ

over 𝑆

6 for each pair of variables X, Y do
7 𝑝𝐴λ,𝑋,𝑌 ← frequency of edge (𝑋,𝑌 ) in {G (𝑖 )

𝐴λ
}𝑖∈𝑆

8 𝜉𝐴λ,𝑋,𝑌 = 2 · 𝑝𝐴λ,𝑋,𝑌 · (1 − 𝑝𝐴λ,𝑋,𝑌 )
9 end
10 𝑁 (𝐴λ) ← average 𝜉𝐴λ,𝑋,𝑌 over all edges

11 return 𝑁 (𝐴λ)

Algorithm 2: Loss function extracted from OCT [3]

Input: Dataset D over variables V, number of folds 𝐾 , configuration 𝐴λ

1 for 𝑖 ∈ 𝐾 do
2 G (𝑖 )

𝐴λ
← fit(𝐴λ,D (𝑖 )𝑡𝑟𝑎𝑖𝑛

)
3 for 𝑋 ∈ V do
4 MB

(𝑖 )
𝐴λ,𝑋

← markovBoundary(𝑋,G (𝑖 )
𝐴λ
)

5 M(𝑖 )
𝐴λ,𝑋

← randomForest(𝑋,MB
(𝑖 )
𝐴λ,𝑋
)

6 𝑋
(𝑖 )
𝐴λ
← predict(M(𝑖 )

𝐴λ,𝑋
,D (𝑖 )

𝑣𝑎𝑙𝑖𝑑
)

7 end
8 end
9 for 𝑋 ∈ V do
10 |MB(𝐴λ) | ← average |MB

(𝑖 )
𝐴λ,𝑋
| over V

11 𝑋 (𝐴λ) ← average 𝑋
(𝑖 )
𝐴λ

over 𝐾

12 𝐼𝐴λ,𝑋 ← mutualInformation(𝑋,𝑋 (𝐴λ))
13 end
14 𝐼 (𝐴λ) ← average 𝐼𝐴λ,𝑋 over V
15 return 𝐼 (𝐴λ)

Algorithm 3: Penalty from the StARS method [3].

Input: ConfigurationsA, density estimation 𝑄 , network instability 𝑁 , threshold 𝛽

1 Rank 𝑁 (𝐴λ) by increasing 𝑄 (𝐴λ) ∀𝐴λ ∈ A
2 𝑁 ′ ← monotonise(𝑁 )
3 𝐴∗λ ← argmax

𝐴λ∈A
{𝑁 ′ (𝐴λ) |𝑁 ′ (𝐴λ) ≤ 𝛽}

4 return 𝐴∗λ
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Algorithm 4: Penalty from the OCT method [3].

Input: Optimal configuration 𝐴∗λ, configurations A, mutual information 𝐼 , true variables V,
predictions 𝑋 , Markov boundary sizes |MB|, threshold 𝛽 , number of permutations 𝑃

1 for 𝐴λ ∈ A\𝐴∗λ do
2 𝑇𝐴λ

← (𝐼 (𝐴∗λ) − 𝐼 (𝐴λ))
3 for 𝑝 = 1, ..., 𝑃 do
4 for 𝑋 ∈ V do
5 𝑋 ′ (𝐴∗λ) , 𝑋

′ (𝐴λ) ← swap(𝑋 (𝐴∗λ), 𝑋 (𝐴λ))
6 𝐼 ′

𝐴∗
λ
,𝑝,𝑋

, 𝐼 ′
𝐴λ,𝑝,𝑋

← mutualInformation of 𝑋 ′ (𝐴∗λ) and 𝑋
′ (𝐴λ)

7 end
8 𝐼 ′ (𝐴∗λ, 𝑝) , 𝐼

′ (𝐴λ, 𝑝) ← average 𝐼 ′
𝐴∗

λ
,𝑝,𝑋

and 𝐼 ′
𝐴λ,𝑝,𝑋

over V

9 𝑇 ′
𝐴λ
(𝑝) ← (𝐼 ′ (𝐴∗λ, 𝑝) − 𝐼

′ (𝐴λ, 𝑝))
10 end
11 𝑝𝑣𝑎𝑙 (𝐴λ) ← |𝑇 ′𝐴λ

≥ 𝑇𝐴λ
|/𝑃

12 end
13 𝐴∗λ ← 𝑝𝑣𝑎𝑙 (𝐴λ) > 𝛽 and 𝐴λ = arg min

𝐴λ

|MB|

14 return 𝐴∗λ

B The search space of AutoCD

This appendix provides the search space of AutoCD, showing the causal discovery algorithms and

the hyperparameters. The hyperparameters can be ‘int’ (integer), ‘cat’ (categorical), ‘real’ (real),

‘bin’ (binary), and ‘cond’ (conditional).

Table 7: The AutoCD search space includes 11 causal discovery algorithms sourced from Tetrad and

gCastle. The hyperparameters, type, and a short description are given (1/2).

Algorithm Hyperparameter Type Description

AutoCD algorithm cat Algorithm selection

BOSS [31] score cat Scoring function

penalty real Penalty discount

structure real Structure prior coefficient

data_order bin Use data order or random permutation

n_start_thread int Number of random starts and threads

CPC [32] alpha real Cutoff for p-values

test cat Conditional independence test

rule cat Conflict rule

b_type cond Basis type (1 = Polynomial, 2 = Cosine)

b_num_func cond Number of functions to use in the basis

k_type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)

k_multiplier cond Capture more or less than the optimal signal

k_sample_size cond Minimum sample size for kernel regression

CPCstable [32] alpha real Cutoff for p-values

test cat Conditional independence test

rule cat Conflict rule

b_type cond Basis type (1 = Polynomial, 2 = Cosine)

b_num_func cond Number of functions to use in the basis

k_type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)

k_multiplier cond Capture more or less than the optimal signal

k_sample_size cond Minimum sample size for kernel regression
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Table 8: The AutoCD search space includes 11 causal discovery algorithms sourced from Tetrad and

gCastle. The hyperparameters, type, and a short description are given (2/2).

Algorithm Hyperparameter Type Description

Dagma [33] lambda real L1 penalty coefficient

w_thresh real Threshold for entries in W matrix

Direct LiNGAM score cat Scoring function

[34] penalty real Penalty discount

structure real Structure prior coefficient

FGES [24] score cat Scoring function

penalty real Penalty discount

structure real Structure prior

GOLEM [26] lambda_1 real L1 penalty coefficient

lambda_2 real DAG penalty coefficient

learning_rate real Learning rate of Adam optimiser

num_iter int Number of iterations for training

graph_thres real Threshold for weighted matrix

GrASP [35] test cat Conditional independence test

score cat Scoring function

alpha real Cutoff for p-value

penalty real Penalty discount

structure real Structure prior coefficient

b_type cond Basis type (1 = Polynomial, 2 = Cosine)

b_num_func cond Number of functions to use in the basis

k_type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)

k_multiplier cond Capture more or less than the optimal signal

k_sample_size cond Minimum sample size for kernel regression

n_starts int Number of restarts

ICA-LiNGAM [25] alpha_ica real Threshold for entries in B matrix

max_iter real Maximum iterations for orienting edges

tolerance real Fast ICA tolerance parameter

b_thresh real Threshold for entries in B matrix

PC [5] alpha real Cutoff for p-values

test cat Conditional independence test

rule cat Conflict rule

b_type cond Basis type (1 = Polynomial, 2 = Cosine)

b_num_func cond Number of functions to use in the basis

k_type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)

k_multiplier cond Capture more or less than the optimal signal

k_sample_size cond Minimum sample size for kernel regression

PCstable [5] alpha real Cutoff for p-values

test cat Conditional independence test

rule cat Conflict rule

b_type cond Basis type (1 = Polynomial, 2 = Cosine)

b_num_func cond Number of functions to use in the basis

k_type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)

k_multiplier cond Capture more or less than the optimal signal

k_sample_size cond Minimum sample size for kernel regression
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Table 9: The hyperparameters and values considered in AutoCD sourced from Tetrad and gCastle are

given.

Hyperparameter Values

algorithm {boss, cpc, cpcstable, dagma, direct_lingam, fges, golem,

grasp, ica_lingam, pc, pcstable}

score {bdeu-score, disc-bic-score, sem-bic-score, cg-bic-score,

dg-bic-score}

penalty [0.0, 2.0]

structure [0.0, 2.0]

data_order {True, False}

n_start_thread [1, 10]

alpha [0.01, 0.05]

test {chi-square-test, g-square-test, cg-lr-test, dg-lr-test,

fisher-z-test, cci-test}

rule {1, 2, 3}

b_type {2}

b_num_func {30}

k_type {1}

k_multiplier {1}

k_sample_size {100}

lambda [0.01, 0.05]

w_thresh [0.1, 0.6]

lambda_1 [0.01, 0.05]

lambda_2 [1.0, 5.0]

learning_rate [0.001, 0.005]

num_iter [500, 2000]

graph_thres [0.1, 0.5]

n_starts [1, 10]

alpha_ica [1.0, 2.0]

max_iter [2000.0, 5000.0]

tolerance [1e-08, 1e-6]

b_thresh [0.1, 0.6]

C Data generation

This appendix provides the parameters for the graphical models to simulate datasets.

Table 10: Fixed parameters for synthetic data generation.

Parameter Data type Nodes Avg. node degree Instances Categories Discrete % Seed Repetitions

Value {Dis, Con, Mix} {5, 10, 20, 30, 40} {2, 3, 4} 1000 [2, 20] 50 [0, 24] 25

D ADNI

This appendix provides the exploratory analysis of the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset. The ADNI dataset is divided into three trials: ADNI1, ADNI2/GO, and ADNI3. In

our experiments, we used the first two and extracted variables fludeoxyglucose PET (FDG), amyloid

beta (ABETA), phosphorylated tau (PTAU), apolipoprotein E 𝜀4 allele (APOE4), AGE, SEX, education

(EDU), and diagnosis on Alzheimer’s disease (DX). Table 11 shows the statistics of the dataset.

Like in Shen et al. [30], records with missing values are removed resulting in 1008 remaining

participants. The variable APOE4 is categorical with 0, 1, 2 which indicates the number of APOE4.

The variable DX is also categorical with cognitively normal (CN), mild cognitive impairment (MCI),

and early Alzheimer’s disease (AD). The target graph from Shen et al. [30] is displayed in Figure 5.
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Table 11: Statistics of the ADNI

datasets.

Demographics

AGE 72.98±7.25
SEX 0.56±0.50
EDU 16.13±2.73

Biomarkers

FDG 1.21±0.16
ABETA 1000.53±456.32
PTAU 27.40±14.61

Genetics APOE4

0 (54%)

1 (36%)

2 (10%)

Diagnosis DX

CN (31%)

MCI (51%)

AD (18%)

APOE41

APOE42
AGE

EDU

SEX

ABETA

FDG

PTAU

DX

Figure 5: Target graph of the ADNI dataset by Shen et al. [30].

E Evaluation protocol

This appendix provides the fixed parameters for SMAC and the evaluation protocol.

Table 12: Fixed parameters for the SMAC procedure and the evaluation protocol.

SMAC procedure Evaluation protocol

Parameter Budget Trial budget Runs Seed Sample size Samples

Value 60 min. 15 min. 25 [0, 24] 5 1000

F Additional results

This appendix provides additional figures and tables from the results section.

200 1000 10000
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0.0 0.2 0.4 0.6 0.8 1.0

Data samples

0.0
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0.4
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0.8

1.0
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Figure 6: Increasing the data sample size on the continuous simulated dataset with 10 nodes and node degree

3. Increasing the data sample size reveals better performance.
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Table 13: Performance of all methods on all synthetic datasets and the ADNI dataset based on SHD. The best

values are marked in bold. Empty entries indicate no configuration found. LiNGAM and GOLEM are only

designed for continuous datasets (denoted with n/a).

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCD𝑃𝐶 AutoCD𝑃𝐶+ PC FGES LiNGAM GOLEM

con_5_2 0.28±0.33 0.61±0.2 0.07±0.12 0.15±0.2 0.06±0.11 0.45±0.24 0.13±0.11 0.37±0.26 0.62±0.17 0.49±0.28
con_5_3 0.29±0.24 0.46±0.25 0.25±0.22 0.44±0.2 0.28±0.26 0.46±0.17 0.32±0.18 0.36±0.29 0.64±0.18 0.63±0.1
con_5_4 0.46±0.14 0.4±0.17 0.53±0.17 0.57±0.12 0.52±0.21 0.58±0.17 0.19±0.07 0.15±0.07 0.34±0.17 0.43±0.15
con_10_2 0.39±0.31 0.44±0.33 0.04±0.14 0.21±0.28 0.02±0.04 0.22±0.25 0.12±0.06 0.4±0.2 0.79±0.09 0.6±0.09
con_10_3 0.31±0.34 0.68±0.2 0.09±0.2 0.2±0.3 0.12±0.22 0.32±0.27 0.21±0.09 0.47±0.23 0.85±0.08 0.75±0.09
con_10_4 0.57±0.3 0.6±0.24 0.06±0.14 0.61±0.37 0.06±0.14 0.58±0.33 0.41±0.07 0.48±0.25 0.76±0.14 0.79±0.04
con_20_2 0.06±0.15 0.14±0.19 0.0±0.0 0.04±0.11 0.0±0.0 0.25±0.18 0.09±0.07 0.61±0.26 0.88±0.05 0.66±0.08
con_20_3 0.14±0.22 0.3±0.29 0.03±0.06 0.06±0.13 0.03±0.05 0.03±0.05 0.23±0.1 0.25±0.17 0.9±0.04 0.78±0.07
con_20_4 0.11±0.22 0.55±0.31 0.0±0.01 0.06±0.17 0.0±0.01 0.09±0.24 0.37±0.1 0.53±0.13 0.88±0.03 0.78±0.06
con_30_2 0.03±0.14 0.28±0.29 0.0±0.01 0.07±0.13 0.0±0.01 0.14±0.16 0.19±0.07 0.56±0.16 0.88±0.03 0.7±0.05
con_30_3 0.11±0.24 0.27±0.24 0.02±0.04 0.06±0.12 0.01±0.02 0.05±0.11 0.13±0.04 0.19±0.16 0.91±0.03
con_30_4 0.06±0.16 0.22±0.22 0.02±0.08 0.07±0.19 0.02±0.08 0.05±0.17 0.27±0.05 0.35±0.2 0.91±0.04 0.85±0.04
con_40_2 0.01±0.03 0.11±0.15 0.0±0.01 0.03±0.07 0.0±0.01 0.08±0.1 0.21±0.09 0.36±0.23
con_40_3 0.05±0.06 0.34±0.29 0.01±0.05 0.03±0.06 0.01±0.04 0.02±0.06 0.08±0.04 0.12±0.07
con_40_4 0.07±0.14 0.3±0.31 0.02±0.11 0.08±0.2 0.01±0.06 0.04±0.1 0.23±0.03 0.29±0.19
dis_5_2 0.68±0.3 0.35±0.21 0.13±0.2 0.12±0.2 0.09±0.19 0.1±0.19 0.1±0.19 0.08±0.14 n/a n/a

dis_5_3 0.84±0.18 0.42±0.23 0.27±0.19 0.28±0.2 0.29±0.17 0.27±0.18 0.33±0.18 0.36±0.14 n/a n/a

dis_5_4 0.89±0.06 0.7±0.16 0.36±0.2 0.39±0.21 0.27±0.19 0.3±0.2 0.22±0.21 0.17±0.2 n/a n/a

dis_10_2 0.58±0.19 0.66±0.12 0.26±0.12 0.26±0.13 0.23±0.14 0.23±0.14 0.31±0.18 0.26±0.21 n/a n/a

dis_10_3 0.85±0.13 0.65±0.15 0.47±0.09 0.47±0.1 0.44±0.11 0.44±0.11 0.5±0.14 0.39±0.17 n/a n/a

dis_10_4 0.83±0.16 0.75±0.14 0.62±0.11 0.62±0.12 0.61±0.11 0.6±0.11 0.64±0.15 0.64±0.12 n/a n/a

dis_20_2 0.38±0.12 0.43±0.16 0.29±0.12 0.3±0.13 0.26±0.13 0.25±0.12 0.37±0.07 0.29±0.16 n/a n/a

dis_20_3 0.75±0.13 0.67±0.08 0.55±0.06 0.56±0.06 0.55±0.05 0.55±0.06 0.55±0.08 0.54±0.08 n/a n/a

dis_20_4 0.82±0.09 0.74±0.06 0.66±0.08 0.66±0.07 0.62±0.07 0.62±0.07 0.71±0.05 0.68±0.08 n/a n/a

dis_30_2 0.52±0.16 0.55±0.1 0.35±0.06 0.35±0.07 0.35±0.06 0.35±0.06 0.37±0.05 0.39±0.08 n/a n/a

dis_30_3 0.71±0.09 0.66±0.09 0.55±0.08 0.54±0.09 0.56±0.09 0.57±0.1 0.56±0.07 0.57±0.08 n/a n/a

dis_30_4 0.77±0.06 0.76±0.04 0.69±0.06 0.69±0.06 0.69±0.06 0.69±0.06 0.74±0.03 0.7±0.07 n/a n/a

dis_40_2 0.61±0.13 0.45±0.13 0.37±0.07 0.37±0.07 0.38±0.08 0.38±0.07 0.39±0.06 0.36±0.11 n/a n/a

dis_40_3 0.76±0.07 0.58±0.08 0.57±0.09 0.57±0.09 0.58±0.09 0.58±0.1 0.6±0.08 0.53±0.07 n/a n/a

dis_40_4 0.85±0.08 0.73±0.06 0.68±0.06 0.68±0.06 0.69±0.07 0.69±0.07 0.74±0.04 0.72±0.06 n/a n/a

mix_5_2 0.78±0.22 0.57±0.18 0.54±0.13 0.54±0.13 0.5±0.2 0.54±0.24 0.54±0.14 0.54±0.16 n/a n/a

mix_5_3 0.8±0.08 0.62±0.11 0.54±0.09 0.57±0.07 0.52±0.08 0.55±0.1 0.6±0.09 0.53±0.12 n/a n/a

mix_5_4 0.72±0.1 0.56±0.17 0.5±0.1 0.49±0.11 0.45±0.15 0.51±0.09 0.5±0.1 0.42±0.11 n/a n/a

mix_10_2 0.63±0.14 0.57±0.1 0.59±0.17 0.63±0.15 0.62±0.16 0.64±0.11 0.53±0.12 0.71±0.1 n/a n/a

mix_10_3 0.71±0.12 0.59±0.11 0.58±0.13 0.57±0.12 0.61±0.13 0.61±0.13 0.54±0.1 0.67±0.15 n/a n/a

mix_10_4 0.68±0.12 0.59±0.1 0.55±0.09 0.55±0.09 0.57±0.07 0.56±0.07 0.5±0.08 0.62±0.09 n/a n/a

mix_20_2 0.61±0.09 0.53±0.07 0.74±0.14 0.74±0.14 0.74±0.14 0.75±0.14 0.62±0.06 0.81±0.12 n/a n/a

mix_20_3 0.64±0.06 0.64±0.07 0.75±0.1 0.74±0.09 0.78±0.1 0.75±0.1 0.62±0.06 0.83±0.08 n/a n/a

mix_20_4 0.6±0.09 0.61±0.11 0.66±0.12 0.66±0.12 0.67±0.12 0.66±0.12 0.61±0.1 0.78±0.09 n/a n/a

mix_30_2 0.61±0.09 0.62±0.05 0.78±0.1 0.77±0.11 0.73±0.12 0.74±0.13 0.66±0.05 0.84±0.12 n/a n/a

mix_30_3 0.66±0.06 0.66±0.09 0.7±0.11 0.69±0.11 0.7±0.1 0.71±0.11 0.63±0.03 0.84±0.08 n/a n/a

mix_30_4 0.65±0.06 0.61±0.04 0.67±0.1 0.66±0.1 0.66±0.1 0.66±0.09 0.59±0.06 0.82±0.06 n/a n/a

mix_40_2 0.6±0.07 0.63±0.06 0.76±0.12 0.75±0.12 0.76±0.12 0.76±0.12 0.71±0.05 0.91±0.05 n/a n/a

mix_40_3 0.64±0.06 0.6±0.03 0.7±0.14 0.7±0.14 0.69±0.12 0.69±0.13 0.63±0.06 0.83±0.12 n/a n/a

mix_40_4 0.67±0.05 0.66±0.05 0.66±0.09 0.66±0.09 0.65±0.07 0.66±0.07 0.63±0.04 0.76±0.1 n/a n/a

ADNI 0.86±0.08 0.89±0.06 0.85±0.04 0.85±0.04 0.85±0.03 0.85±0.03 0.77±0.03 0.84±0.03 n/a n/a
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Table 14: Performance of all methods on all synthetic datasets and the ADNI dataset based on CA. The best

values are marked in bold. Empty entries indicate no configuration found. LiNGAM and GOLEM are only

designed for continuous datasets (denoted with n/a)

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCD𝑃𝐶 AutoCD𝑃𝐶+ PC FGES LiNGAM GOLEM

con_5_2 0.8±0.22 0.46±0.17 0.93±0.12 0.86±0.18 0.94±0.11 0.6±0.19 0.87±0.11 0.72±0.19 0.45±0.16 0.57±0.24
con_5_3 0.74±0.22 0.64±0.18 0.76±0.22 0.58±0.2 0.72±0.26 0.55±0.17 0.77±0.1 0.79±0.16 0.51±0.17 0.52±0.12
con_5_4 0.54±0.14 0.6±0.17 0.47±0.17 0.43±0.12 0.48±0.21 0.42±0.17 0.81±0.07 0.85±0.07 0.66±0.17 0.57±0.15
con_10_2 0.74±0.23 0.64±0.3 0.96±0.13 0.82±0.26 0.98±0.04 0.79±0.25 0.89±0.06 0.62±0.2 0.29±0.05 0.52±0.16
con_10_3 0.72±0.3 0.45±0.19 0.92±0.18 0.82±0.26 0.89±0.19 0.69±0.26 0.79±0.08 0.68±0.15 0.22±0.06 0.43±0.06
con_10_4 0.5±0.26 0.58±0.16 0.95±0.11 0.47±0.33 0.96±0.1 0.47±0.32 0.61±0.05 0.69±0.16 0.35±0.12 0.42±0.09
con_20_2 0.95±0.09 0.91±0.12 1.0±0.0 0.97±0.07 1.0±0.0 0.83±0.1 0.91±0.07 0.4±0.26 0.18±0.06 0.47±0.08
con_20_3 0.91±0.15 0.75±0.24 0.97±0.05 0.96±0.09 0.98±0.04 0.98±0.04 0.79±0.09 0.84±0.1 0.16±0.02 0.37±0.04
con_20_4 0.9±0.18 0.54±0.27 1.0±0.01 0.95±0.15 1.0±0.01 0.92±0.2 0.65±0.1 0.6±0.11 0.21±0.04 0.37±0.06
con_30_2 0.98±0.08 0.82±0.19 1.0±0.01 0.95±0.1 1.0±0.01 0.89±0.12 0.82±0.07 0.45±0.16 0.17±0.04 0.4±0.07
con_30_3 0.91±0.19 0.8±0.15 0.98±0.04 0.95±0.11 0.99±0.02 0.96±0.1 0.88±0.04 0.85±0.13 0.15±0.03
con_30_4 0.95±0.13 0.83±0.17 0.98±0.07 0.94±0.16 0.98±0.07 0.96±0.14 0.73±0.05 0.74±0.16 0.15±0.04 0.33±0.01
con_40_2 0.99±0.02 0.91±0.12 1.0±0.01 0.97±0.06 1.0±0.01 0.93±0.08 0.79±0.09 0.66±0.23
con_40_3 0.96±0.05 0.74±0.22 0.99±0.04 0.98±0.04 0.99±0.03 0.98±0.04 0.92±0.04 0.9±0.05
con_40_4 0.95±0.11 0.79±0.21 0.98±0.09 0.94±0.16 0.99±0.05 0.97±0.08 0.78±0.04 0.78±0.15
dis_5_2 0.32±0.3 0.65±0.21 0.87±0.2 0.88±0.2 0.91±0.19 0.9±0.19 0.9±0.19 0.92±0.14 n/a n/a

dis_5_3 0.16±0.18 0.59±0.22 0.76±0.18 0.75±0.19 0.73±0.16 0.76±0.16 0.74±0.15 0.7±0.14 n/a n/a

dis_5_4 0.11±0.06 0.3±0.16 0.64±0.2 0.61±0.21 0.73±0.19 0.7±0.2 0.78±0.21 0.83±0.2 n/a n/a

dis_10_2 0.42±0.19 0.35±0.12 0.75±0.12 0.75±0.13 0.77±0.14 0.77±0.14 0.74±0.14 0.75±0.2 n/a n/a

dis_10_3 0.15±0.13 0.39±0.14 0.53±0.09 0.53±0.1 0.56±0.11 0.56±0.11 0.54±0.12 0.62±0.17 n/a n/a

dis_10_4 0.17±0.16 0.26±0.14 0.39±0.13 0.4±0.14 0.4±0.12 0.41±0.13 0.41±0.15 0.37±0.13 n/a n/a

dis_20_2 0.63±0.12 0.58±0.16 0.71±0.12 0.7±0.13 0.75±0.12 0.75±0.12 0.69±0.09 0.72±0.15 n/a n/a

dis_20_3 0.26±0.14 0.34±0.09 0.45±0.06 0.45±0.06 0.46±0.05 0.46±0.06 0.49±0.08 0.47±0.09 n/a n/a

dis_20_4 0.18±0.09 0.27±0.06 0.34±0.08 0.34±0.07 0.38±0.07 0.38±0.07 0.31±0.05 0.32±0.08 n/a n/a

dis_30_2 0.49±0.16 0.46±0.11 0.66±0.05 0.66±0.05 0.66±0.04 0.66±0.04 0.66±0.04 0.61±0.09 n/a n/a

dis_30_3 0.3±0.09 0.36±0.1 0.46±0.08 0.47±0.1 0.46±0.08 0.45±0.1 0.47±0.08 0.44±0.08 n/a n/a

dis_30_4 0.25±0.05 0.25±0.05 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.06 0.3±0.03 0.31±0.07 n/a n/a

dis_40_2 0.39±0.14 0.59±0.1 0.64±0.07 0.63±0.07 0.63±0.08 0.63±0.07 0.65±0.05 0.65±0.1 n/a n/a

dis_40_3 0.24±0.08 0.44±0.09 0.44±0.09 0.44±0.09 0.42±0.09 0.43±0.09 0.45±0.07 0.48±0.07 n/a n/a

dis_40_4 0.15±0.08 0.28±0.07 0.33±0.07 0.33±0.07 0.32±0.07 0.32±0.07 0.29±0.04 0.28±0.06 n/a n/a

mix_5_2 0.24±0.23 0.55±0.26 0.54±0.13 0.54±0.13 0.53±0.19 0.51±0.24 0.56±0.19 0.52±0.14 n/a n/a

mix_5_3 0.25±0.08 0.4±0.1 0.53±0.1 0.51±0.1 0.53±0.1 0.51±0.13 0.48±0.1 0.61±0.17 n/a n/a

mix_5_4 0.28±0.1 0.44±0.17 0.5±0.1 0.51±0.11 0.55±0.15 0.49±0.09 0.5±0.1 0.58±0.11 n/a n/a

mix_10_2 0.41±0.15 0.44±0.1 0.43±0.15 0.4±0.14 0.41±0.15 0.41±0.12 0.48±0.12 0.34±0.1 n/a n/a

mix_10_3 0.33±0.15 0.45±0.11 0.46±0.1 0.46±0.11 0.46±0.12 0.47±0.12 0.51±0.13 0.42±0.11 n/a n/a

mix_10_4 0.35±0.1 0.43±0.09 0.52±0.07 0.51±0.07 0.51±0.06 0.51±0.06 0.53±0.08 0.48±0.06 n/a n/a

mix_20_2 0.41±0.09 0.48±0.06 0.3±0.14 0.3±0.14 0.3±0.14 0.29±0.14 0.4±0.05 0.22±0.11 n/a n/a

mix_20_3 0.38±0.05 0.37±0.09 0.3±0.09 0.32±0.07 0.27±0.09 0.3±0.09 0.39±0.06 0.23±0.09 n/a n/a

mix_20_4 0.43±0.08 0.44±0.1 0.4±0.1 0.4±0.09 0.4±0.1 0.4±0.1 0.42±0.08 0.3±0.09 n/a n/a

mix_30_2 0.4±0.09 0.39±0.05 0.25±0.09 0.25±0.1 0.28±0.11 0.28±0.11 0.34±0.05 0.18±0.13 n/a n/a

mix_30_3 0.35±0.07 0.37±0.07 0.35±0.1 0.35±0.1 0.34±0.09 0.33±0.09 0.38±0.03 0.21±0.08 n/a n/a

mix_30_4 0.37±0.06 0.42±0.04 0.37±0.09 0.38±0.09 0.38±0.09 0.38±0.08 0.42±0.06 0.23±0.07 n/a n/a

mix_40_2 0.41±0.07 0.4±0.07 0.27±0.12 0.28±0.12 0.27±0.12 0.27±0.12 0.31±0.06 0.11±0.05 n/a n/a

mix_40_3 0.38±0.08 0.42±0.03 0.33±0.13 0.34±0.13 0.35±0.1 0.35±0.11 0.38±0.05 0.21±0.12 n/a n/a

mix_40_4 0.34±0.06 0.37±0.05 0.39±0.07 0.39±0.07 0.39±0.06 0.39±0.06 0.39±0.05 0.3±0.12 n/a n/a

ADNI 0.36±0.02 0.34±0.04 0.34±0.05 0.34±0.05 0.34±0.05 0.34±0.05 0.32±0.02 0.29±0.03 n/a n/a
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Table 15: Performance of all methods on all synthetic datasets and the ADNI dataset based on FP. The best

values are marked in bold. Empty entries indicate no configuration found. LiNGAM and GOLEM are only

designed for continuous datasets (denoted with n/a)

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCD𝑃𝐶 AutoCD𝑃𝐶+ PC FGES LiNGAM GOLEM

con_5_2 0.06±0.1 0.23±0.15 0.01±0.04 0.03±0.07 0.01±0.04 0.11±0.13 0.11±0.08 0.25±0.15 0.31±0.12 0.23±0.16
con_5_3 0.02±0.04 0.1±0.1 0.03±0.06 0.05±0.06 0.02±0.05 0.05±0.06 0.09±0.06 0.12±0.08 0.14±0.11 0.13±0.06
con_5_4 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
con_10_2 0.16±0.09 0.21±0.19 0.01±0.03 0.07±0.12 0.0±0.0 0.13±0.16 0.09±0.07 0.38±0.2 0.46±0.07 0.27±0.15
con_10_3 0.05±0.05 0.23±0.12 0.01±0.02 0.03±0.05 0.02±0.04 0.03±0.04 0.04±0.06 0.27±0.15 0.28±0.1 0.17±0.07
con_10_4 0.05±0.05 0.21±0.14 0.01±0.03 0.07±0.06 0.01±0.04 0.08±0.06 0.09±0.03 0.25±0.13 0.25±0.07 0.16±0.08
con_20_2 0.04±0.05 0.05±0.08 0.0±0.0 0.02±0.06 0.0±0.0 0.15±0.09 0.08±0.06 0.6±0.26 0.51±0.07 0.25±0.07
con_20_3 0.03±0.05 0.19±0.21 0.01±0.01 0.02±0.04 0.01±0.01 0.0±0.01 0.07±0.04 0.14±0.1 0.4±0.07 0.25±0.06
con_20_4 0.01±0.02 0.37±0.28 0.0±0.0 0.01±0.04 0.0±0.0 0.02±0.05 0.07±0.04 0.37±0.12 0.33±0.05 0.21±0.05
con_30_2 0.01±0.03 0.13±0.16 0.0±0.01 0.04±0.07 0.0±0.01 0.08±0.09 0.16±0.07 0.54±0.16 0.52±0.05 0.17±0.07
con_30_3 0.02±0.03 0.13±0.13 0.0±0.01 0.02±0.04 0.0±0.0 0.02±0.04 0.04±0.02 0.13±0.13 0.44±0.08
con_30_4 0.02±0.04 0.13±0.14 0.01±0.02 0.02±0.06 0.01±0.02 0.01±0.04 0.06±0.02 0.23±0.14 0.34±0.05 0.16±0.13
con_40_2 0.01±0.02 0.09±0.12 0.0±0.0 0.02±0.06 0.0±0.0 0.07±0.08 0.21±0.1 0.33±0.23
con_40_3 0.02±0.03 0.2±0.22 0.0±0.03 0.01±0.03 0.0±0.01 0.01±0.03 0.02±0.02 0.09±0.05
con_40_4 0.03±0.06 0.18±0.19 0.01±0.04 0.04±0.08 0.0±0.04 0.03±0.07 0.04±0.01 0.2±0.14
dis_5_2 0.02±0.1 0.17±0.18 0.02±0.05 0.02±0.05 0.0±0.0 0.0±0.0 0.0±0.0 0.01±0.03 n/a n/a

dis_5_3 0.0±0.0 0.05±0.08 0.0±0.02 0.0±0.0 0.0±0.03 0.0±0.0 0.02±0.07 0.13±0.12 n/a n/a

dis_5_4 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 n/a n/a

dis_10_2 0.01±0.03 0.01±0.08 0.01±0.03 0.01±0.03 0.0±0.02 0.0±0.02 0.01±0.02 0.02±0.04 n/a n/a

dis_10_3 0.0±0.0 0.07±0.13 0.01±0.03 0.01±0.03 0.01±0.03 0.01±0.03 0.01±0.02 0.0±0.01 n/a n/a

dis_10_4 0.0±0.0 0.04±0.11 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.02 0.02±0.02 0.03±0.04 n/a n/a

dis_20_2 0.01±0.02 0.01±0.03 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.02 0.07±0.1 n/a n/a

dis_20_3 0.01±0.03 0.01±0.02 0.01±0.02 0.01±0.02 0.0±0.01 0.0±0.02 0.01±0.02 0.02±0.05 n/a n/a

dis_20_4 0.0±0.01 0.01±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.0±0.01 n/a n/a

dis_30_2 0.02±0.03 0.01±0.04 0.03±0.03 0.03±0.03 0.03±0.03 0.03±0.03 0.03±0.02 0.02±0.05 n/a n/a

dis_30_3 0.01±0.02 0.05±0.13 0.01±0.02 0.01±0.03 0.02±0.04 0.03±0.04 0.01±0.02 0.05±0.07 n/a n/a

dis_30_4 0.01±0.01 0.02±0.04 0.04±0.06 0.04±0.06 0.02±0.04 0.02±0.04 0.02±0.01 0.03±0.05 n/a n/a

dis_40_2 0.0±0.01 0.04±0.04 0.05±0.05 0.05±0.06 0.06±0.06 0.06±0.06 0.04±0.03 0.01±0.04 n/a n/a

dis_40_3 0.0±0.01 0.05±0.08 0.02±0.02 0.02±0.03 0.01±0.02 0.01±0.02 0.03±0.02 0.03±0.04 n/a n/a

dis_40_4 0.0±0.01 0.03±0.02 0.03±0.02 0.03±0.02 0.02±0.01 0.02±0.01 0.04±0.02 0.01±0.03 n/a n/a

mix_5_2 0.0±0.0 0.05±0.08 0.16±0.19 0.15±0.19 0.22±0.17 0.16±0.14 0.06±0.11 0.21±0.2 n/a n/a

mix_5_3 0.0±0.0 0.01±0.03 0.03±0.05 0.02±0.05 0.04±0.06 0.04±0.06 0.02±0.05 0.05±0.07 n/a n/a

mix_5_4 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 n/a n/a

mix_10_2 0.02±0.05 0.02±0.05 0.34±0.29 0.37±0.27 0.35±0.24 0.32±0.15 0.1±0.07 0.48±0.16 n/a n/a

mix_10_3 0.01±0.02 0.04±0.1 0.22±0.23 0.19±0.23 0.21±0.2 0.2±0.2 0.06±0.04 0.42±0.17 n/a n/a

mix_10_4 0.0±0.01 0.0±0.01 0.09±0.11 0.09±0.11 0.11±0.11 0.1±0.11 0.05±0.04 0.3±0.16 n/a n/a

mix_20_2 0.03±0.05 0.1±0.11 0.53±0.28 0.53±0.27 0.53±0.26 0.54±0.26 0.34±0.07 0.71±0.19 n/a n/a

mix_20_3 0.01±0.03 0.02±0.03 0.45±0.29 0.41±0.25 0.54±0.23 0.43±0.28 0.22±0.09 0.67±0.19 n/a n/a

mix_20_4 0.03±0.02 0.1±0.16 0.29±0.17 0.28±0.16 0.29±0.17 0.28±0.16 0.13±0.06 0.57±0.18 n/a n/a

mix_30_2 0.06±0.06 0.05±0.05 0.53±0.23 0.51±0.26 0.47±0.24 0.47±0.25 0.38±0.16 0.7±0.3 n/a n/a

mix_30_3 0.02±0.03 0.22±0.18 0.39±0.23 0.38±0.23 0.4±0.22 0.43±0.22 0.3±0.08 0.69±0.19 n/a n/a

mix_30_4 0.01±0.01 0.07±0.05 0.31±0.2 0.29±0.2 0.29±0.2 0.28±0.19 0.18±0.08 0.66±0.14 n/a n/a

mix_40_2 0.03±0.06 0.09±0.15 0.48±0.26 0.45±0.25 0.47±0.25 0.47±0.26 0.35±0.14 0.85±0.09 n/a n/a

mix_40_3 0.03±0.03 0.03±0.02 0.38±0.27 0.37±0.27 0.34±0.21 0.34±0.21 0.27±0.08 0.67±0.25 n/a n/a

mix_40_4 0.01±0.02 0.12±0.16 0.22±0.13 0.22±0.12 0.2±0.1 0.2±0.1 0.15±0.05 0.45±0.26 n/a n/a

ADNI 0.49±0.04 0.55±0.05 0.6±0.06 0.6±0.06 0.61±0.06 0.61±0.06 0.56±0.04 0.67±0.03 n/a n/a
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Table 16: Performance of all methods on all synthetic datasets and the ADNI dataset based on FN. The best

values are marked in bold. Empty entries indicate no configuration found. LiNGAM and GOLEM are only

designed for continuous datasets (denoted with n/a).

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCD𝑃𝐶 AutoCD𝑃𝐶+ PC FGES LiNGAM GOLEM

con_5_2 0.14±0.16 0.31±0.12 0.06±0.12 0.11±0.14 0.06±0.11 0.29±0.19 0.02±0.05 0.04±0.06 0.23±0.13 0.21±0.13
con_5_3 0.24±0.2 0.25±0.16 0.21±0.19 0.37±0.2 0.26±0.26 0.4±0.14 0.13±0.09 0.09±0.09 0.35±0.2 0.34±0.1
con_5_4 0.46±0.14 0.4±0.17 0.53±0.17 0.57±0.12 0.52±0.21 0.58±0.17 0.19±0.07 0.15±0.07 0.34±0.17 0.43±0.15
con_10_2 0.1±0.16 0.16±0.14 0.03±0.1 0.11±0.17 0.02±0.04 0.08±0.1 0.02±0.04 0.0±0.0 0.25±0.09 0.21±0.11
con_10_3 0.23±0.26 0.32±0.22 0.07±0.16 0.15±0.23 0.09±0.17 0.28±0.26 0.16±0.05 0.06±0.05 0.51±0.12 0.4±0.1
con_10_4 0.46±0.23 0.21±0.19 0.03±0.09 0.46±0.3 0.03±0.07 0.45±0.29 0.3±0.04 0.06±0.05 0.4±0.12 0.42±0.09
con_20_2 0.01±0.05 0.04±0.06 0.0±0.0 0.0±0.01 0.0±0.0 0.02±0.04 0.02±0.02 0.0±0.01 0.31±0.1 0.27±0.1
con_20_3 0.07±0.12 0.06±0.12 0.02±0.04 0.03±0.06 0.02±0.03 0.02±0.04 0.15±0.06 0.02±0.02 0.45±0.07 0.39±0.09
con_20_4 0.09±0.17 0.09±0.16 0.0±0.01 0.04±0.11 0.0±0.01 0.06±0.16 0.28±0.07 0.02±0.01 0.46±0.07 0.42±0.03
con_30_2 0.01±0.07 0.05±0.09 0.0±0.0 0.01±0.04 0.0±0.0 0.02±0.04 0.02±0.02 0.01±0.01 0.31±0.07 0.43±0.08
con_30_3 0.07±0.17 0.07±0.06 0.02±0.03 0.03±0.09 0.01±0.02 0.03±0.08 0.09±0.03 0.02±0.03 0.41±0.08
con_30_4 0.03±0.11 0.04±0.09 0.01±0.05 0.04±0.11 0.01±0.06 0.03±0.12 0.21±0.04 0.03±0.02 0.51±0.07 0.51±0.13
con_40_2 0.0±0.01 0.0±0.01 0.0±0.0 0.0±0.01 0.0±0.0 0.0±0.0 0.0±0.01 0.01±0.01
con_40_3 0.02±0.04 0.06±0.08 0.0±0.02 0.01±0.01 0.0±0.02 0.0±0.01 0.06±0.03 0.01±0.01
con_40_4 0.03±0.07 0.03±0.06 0.01±0.06 0.03±0.12 0.01±0.03 0.01±0.01 0.18±0.03 0.02±0.02
dis_5_2 0.65±0.34 0.18±0.25 0.11±0.2 0.11±0.2 0.09±0.19 0.1±0.19 0.1±0.19 0.07±0.14 n/a n/a

dis_5_3 0.84±0.18 0.36±0.27 0.24±0.18 0.25±0.19 0.27±0.16 0.24±0.16 0.24±0.17 0.18±0.18 n/a n/a

dis_5_4 0.89±0.06 0.7±0.16 0.36±0.2 0.39±0.21 0.27±0.19 0.3±0.2 0.22±0.21 0.17±0.2 n/a n/a

dis_10_2 0.57±0.19 0.64±0.14 0.24±0.12 0.24±0.13 0.23±0.13 0.22±0.14 0.26±0.14 0.23±0.2 n/a n/a

dis_10_3 0.85±0.13 0.54±0.22 0.45±0.09 0.46±0.1 0.43±0.11 0.43±0.11 0.46±0.11 0.38±0.17 n/a n/a

dis_10_4 0.83±0.16 0.7±0.22 0.59±0.14 0.59±0.16 0.59±0.14 0.58±0.15 0.58±0.17 0.59±0.15 n/a n/a

dis_20_2 0.36±0.13 0.41±0.16 0.28±0.11 0.29±0.12 0.25±0.11 0.24±0.11 0.3±0.07 0.21±0.15 n/a n/a

dis_20_3 0.73±0.15 0.65±0.1 0.55±0.06 0.55±0.06 0.54±0.05 0.54±0.05 0.5±0.09 0.51±0.11 n/a n/a

dis_20_4 0.82±0.09 0.73±0.06 0.65±0.08 0.64±0.08 0.6±0.07 0.6±0.07 0.67±0.05 0.68±0.08 n/a n/a

dis_30_2 0.49±0.17 0.53±0.12 0.31±0.05 0.31±0.05 0.31±0.05 0.31±0.05 0.31±0.04 0.37±0.1 n/a n/a

dis_30_3 0.69±0.1 0.59±0.16 0.53±0.1 0.52±0.12 0.52±0.1 0.52±0.11 0.52±0.07 0.51±0.12 n/a n/a

dis_30_4 0.73±0.06 0.73±0.07 0.65±0.07 0.65±0.07 0.66±0.05 0.67±0.05 0.68±0.04 0.66±0.09 n/a n/a

dis_40_2 0.61±0.14 0.37±0.12 0.31±0.06 0.31±0.06 0.31±0.06 0.31±0.05 0.31±0.04 0.35±0.1 n/a n/a

dis_40_3 0.75±0.08 0.51±0.15 0.54±0.1 0.54±0.1 0.56±0.1 0.56±0.1 0.52±0.07 0.49±0.09 n/a n/a

dis_40_4 0.85±0.08 0.68±0.08 0.65±0.06 0.65±0.06 0.66±0.06 0.66±0.06 0.67±0.04 0.71±0.06 n/a n/a

mix_5_2 0.76±0.23 0.4±0.28 0.3±0.16 0.32±0.17 0.25±0.19 0.33±0.21 0.38±0.18 0.27±0.15 n/a n/a

mix_5_3 0.75±0.08 0.59±0.12 0.45±0.11 0.47±0.12 0.44±0.12 0.45±0.17 0.49±0.11 0.33±0.21 n/a n/a

mix_5_4 0.72±0.1 0.56±0.17 0.5±0.1 0.49±0.11 0.45±0.15 0.51±0.09 0.5±0.1 0.42±0.11 n/a n/a

mix_10_2 0.57±0.17 0.54±0.11 0.23±0.18 0.23±0.19 0.24±0.16 0.28±0.17 0.42±0.11 0.18±0.16 n/a n/a

mix_10_3 0.66±0.14 0.51±0.16 0.32±0.22 0.35±0.22 0.32±0.17 0.33±0.16 0.43±0.12 0.15±0.12 n/a n/a

mix_10_4 0.65±0.1 0.57±0.09 0.39±0.13 0.39±0.13 0.38±0.12 0.38±0.12 0.42±0.07 0.22±0.15 n/a n/a

mix_20_2 0.56±0.11 0.43±0.11 0.17±0.15 0.17±0.14 0.17±0.13 0.16±0.13 0.26±0.09 0.08±0.08 n/a n/a

mix_20_3 0.61±0.06 0.61±0.09 0.25±0.21 0.28±0.19 0.19±0.14 0.27±0.21 0.39±0.09 0.1±0.12 n/a n/a

mix_20_4 0.54±0.07 0.46±0.15 0.31±0.1 0.32±0.09 0.31±0.1 0.31±0.09 0.45±0.08 0.14±0.1 n/a n/a

mix_30_2 0.54±0.11 0.56±0.07 0.22±0.16 0.24±0.17 0.25±0.14 0.24±0.14 0.28±0.13 0.11±0.17 n/a n/a

mix_30_3 0.63±0.08 0.42±0.12 0.27±0.13 0.27±0.13 0.26±0.13 0.24±0.13 0.32±0.06 0.1±0.12 n/a n/a

mix_30_4 0.62±0.07 0.51±0.06 0.32±0.13 0.33±0.13 0.33±0.13 0.34±0.13 0.4±0.06 0.1±0.08 n/a n/a

mix_40_2 0.56±0.07 0.51±0.13 0.26±0.15 0.27±0.14 0.26±0.14 0.25±0.14 0.33±0.1 0.05±0.05 n/a n/a

mix_40_3 0.6±0.09 0.55±0.03 0.29±0.15 0.29±0.15 0.31±0.11 0.31±0.11 0.35±0.06 0.12±0.13 n/a n/a

mix_40_4 0.64±0.07 0.51±0.15 0.39±0.1 0.39±0.09 0.41±0.07 0.41±0.07 0.46±0.06 0.25±0.15 n/a n/a

ADNI 0.15±0.04 0.11±0.02 0.05±0.02 0.05±0.02 0.05±0.01 0.05±0.01 0.12±0.06 0.04±0.0 n/a n/a
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This table shows the loss values for all methods. We note that StARS on all datasets and AutoCD

variants on continuous datasets use a different loss function (marked in grey). Therefore, the best

values marked and in bold compare the loss values for only the discrete and mixed datasets for

AutoCD variants, PC, and FGES.

Table 17: Performance of all methods on all synthetic datasets and the ADNI dataset based on Loss. The

best values are marked in bold. Empty entries indicate no configuration found and entries in grey are not

compared. Empty entries indicate no configuration found. LiNGAM and GOLEM are only designed for

continuous datasets (denoted with n/a).

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCD𝑃𝐶 AutoCD𝑃𝐶+ PC FGES LiNGAM GOLEM

con_5_2 0.02±0.02 0.54±0.13 0.0±0.0 0.02±0.02 0.0±0.0 0.03±0.01 0.4±0.12 0.39±0.11 0.51±0.11 0.43±0.1
con_5_3 0.02±0.02 0.46±0.11 0.0±0.0 0.02±0.02 0.0±0.0 0.02±0.02 0.37±0.1 0.35±0.09 0.45±0.08 0.39±0.09
con_5_4 0.02±0.02 0.3±0.11 0.0±0.0 0.01±0.01 0.0±0.0 0.01±0.02 0.13±0.12 0.12±0.12 0.21±0.11 0.19±0.12
con_10_2 0.02±0.01 0.56±0.07 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.44±0.06 0.44±0.06 0.57±0.07 0.48±0.09
con_10_3 0.03±0.01 0.46±0.19 0.0±0.0 0.01±0.01 0.0±0.0 0.02±0.01 0.3±0.11 0.26±0.11 0.49±0.07 0.37±0.11
con_10_4 0.02±0.01 0.25±0.07 0.0±0.0 0.02±0.02 0.0±0.0 0.02±0.02 0.2±0.12 0.12±0.11 0.35±0.13 0.24±0.09
con_20_2 0.01±0.0 0.56±0.06 0.0±0.0 0.0±0.0 0.0±0.0 0.01±0.0 0.5±0.05 0.48±0.05 0.76±0.03 0.56±0.07
con_20_3 0.01±0.01 0.39±0.1 0.0±0.0 0.01±0.01 0.0±0.0 0.0±0.0 0.32±0.08 0.29±0.07 0.65±0.04 0.4±0.08
con_20_4 0.01±0.01 0.23±0.08 0.0±0.0 0.0±0.01 0.0±0.0 0.01±0.01 0.28±0.05 0.16±0.06 .54±0.05 0.29±0.06
con_30_2 0.0±0.0 0.56±0.06 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.53±0.04 0.53±0.04 0.8±0.02 0.73±0.04
con_30_3 0.0±0.0 0.4±0.03 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.37±0.04 0.36±0.03 0.75±0.02
con_30_4 0.01±0.01 0.29±0.04 0.0±0.0 0.0±0.01 0.0±0.0 0.0±0.01 0.31±0.06 0.25±0.05 0.68±0.03 0.56±0.14
con_40_2 0.0±0.0 0.54±0.03 0.0±0.0 0.0±0.0 0.0±0.0 0.01±0.01 0.54±0.04 0.54±0.03
con_40_3 0.0±0.0 0.4±0.04 0.0±0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.42±0.03 0.38±0.03
con_40_4 0.01±0.01 0.28±0.04 0.0±0.01 0.01±0.01 0.0±0.01 0.0±0.01 0.32±0.05 0.27±0.04
dis_5_2 0.01±0.01 0.87±0.04 0.82±0.03 0.82±0.03 0.82±0.03 0.82±0.03 0.83±0.03 0.82±0.03 n/a n/a

dis_5_3 0.01±0.01 0.85±0.06 0.81±0.05 0.81±0.05 0.81±0.04 0.81±0.05 0.8±0.05 0.81±0.05 n/a n/a

dis_5_4 0.0±0.01 0.87±0.05 0.8±0.04 0.8±0.04 0.78±0.05 0.78±0.05 0.78±0.05 0.78±0.04 n/a n/a

dis_10_2 0.01±0.01 0.88±0.04 0.85±0.03 0.84±0.03 0.84±0.03 0.84±0.03 0.85±0.03 0.85±0.03 n/a n/a

dis_10_3 0.01±0.01 0.89±0.05 0.84±0.05 0.84±0.04 0.84±0.05 0.84±0.05 0.85±0.05 0.84±0.05 n/a n/a

dis_10_4 0.01±0.01 0.9±0.04 0.86±0.04 0.86±0.04 0.86±0.04 0.86±0.05 0.87±0.05 0.86±0.05 n/a n/a

dis_20_2 0.02±0.01 0.9±0.02 0.87±0.02 0.88±0.02 0.87±0.02 0.87±0.02 0.88±0.01 0.88±0.01 n/a n/a

dis_20_3 0.01±0.01 0.9±0.01 0.88±0.02 0.88±0.02 0.88±0.02 0.88±0.02 0.89±0.02 0.88±0.02 n/a n/a

dis_20_4 0.01±0.01 0.91±0.02 0.89±0.02 0.89±0.02 0.89±0.02 0.89±0.02 0.9±0.02 0.89±0.02 n/a n/a

dis_30_2 0.01±0.01 0.91±0.01 0.89±0.01 0.89±0.01 0.89±0.01 0.89±0.01 0.89±0.01 0.89±0.01 n/a n/a

dis_30_3 0.01±0.01 0.91±0.02 0.89±0.02 0.89±0.01 0.89±0.01 0.89±0.02 0.89±0.01 0.89±0.01 n/a n/a

dis_30_4 0.01±0.01 0.91±0.01 0.9±0.01 0.9±0.01 0.9±0.01 0.9±0.01 0.91±0.01 0.9±0.01 n/a n/a

dis_40_2 0.0±0.0 0.89±0.01 0.88±0.01 0.88±0.01 0.88±0.01 0.88±0.01 0.88±0.01 0.88±0.01 n/a n/a

dis_40_3 0.0±0.0 0.9±0.02 0.9±0.01 0.9±0.01 0.9±0.01 0.9±0.01 0.9±0.02 0.89±0.01 n/a n/a

dis_40_4 0.0±0.0 0.92±0.01 0.91±0.01 0.91±0.01 0.91±0.01 0.91±0.01 0.91±0.01 0.91±0.01 n/a n/a

mix_5_2 0.02±0.01 0.91±0.03 0.89±0.03 0.89±0.03 0.88±0.03 0.89±0.02 0.89±0.03 0.88±0.03 n/a n/a

mix_5_3 0.02±0.01 0.84±0.05 0.8±0.03 0.81±0.03 0.79±0.03 0.81±0.04 0.8±0.03 0.79±0.04 n/a n/a

mix_5_4 0.02±0.02 0.81±0.05 0.75±0.05 0.77±0.05 0.75±0.05 0.76±0.06 0.75±0.05 0.75±0.05 n/a n/a

mix_10_2 0.03±0.0 0.88±0.02 0.85±0.02 0.85±0.01 0.84±0.02 0.84±0.02 0.85±0.02 0.83±0.02 n/a n/a

mix_10_3 0.03±0.01 0.82±0.04 0.79±0.04 0.79±0.04 0.79±0.04 0.79±0.04 0.79±0.04 0.79±0.04 n/a n/a

mix_10_4 0.02±0.01 0.8±0.04 0.77±0.03 0.77±0.03 0.77±0.02 0.77±0.02 0.77±0.02 0.76±0.03 n/a n/a

mix_20_2 0.01±0.01 0.86±0.02 0.84±0.02 0.84±0.02 0.84±0.02 0.84±0.02 0.84±0.02 0.83±0.02 n/a n/a

mix_20_3 0.01±0.01 0.83±0.05 0.79±0.06 0.79±0.05 0.79±0.06 0.79±0.05 0.8±0.04 0.78±0.05 n/a n/a

mix_20_4 0.02±0.0 0.78±0.03 0.77±0.04 0.76±0.04 0.76±0.04 0.76±0.04 0.77±0.03 0.75±0.03 n/a n/a

mix_30_2 0.01±0.01 0.89±0.02 0.87±0.01 0.87±0.01 0.86±0.01 0.86±0.01 0.86±0.01 0.85±0.01 n/a n/a

mix_30_3 0.01±0.01 0.84±0.02 0.83±0.01 0.83±0.01 0.83±0.01 0.83±0.01 0.83±0.01 0.82±0.01 n/a n/a

mix_30_4 0.01±0.01 0.79±0.03 0.77±0.02 0.77±0.02 0.77±0.02 0.77±0.02 0.78±0.02 0.76±0.02 n/a n/a

mix_40_2 0.01±0.01 0.89±0.02 0.87±0.01 0.87±0.01 0.87±0.01 0.87±0.01 0.87±0.02 0.85±0.02 n/a n/a

mix_40_3 0.01±0.0 0.83±0.02 0.81±0.01 0.8±0.01 0.81±0.02 0.8±0.01 0.8±0.02 0.79±0.01 n/a n/a

mix_40_4 0.01±0.01 0.8±0.02 0.78±0.02 0.78±0.02 0.78±0.02 0.78±0.02 0.78±0.02 0.77±0.02 n/a n/a

ADNI 0.1±0.02 0.91±0.0 0.9±0.0 0.9±0.0 0.9±0.0 0.9±0.0 0.9±0.0 0.9±0.0 n/a n/a
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