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ABSTRACT

Large models based on the Transformer architecture are susceptible to extreme-
token phenomena, such as attention sinks and value-state drains. These issues,
which degrade model performance, quantization fidelity, and interpretability, arise
from a problematic mutual reinforcement mechanism where the model learns an
inefficient ‘no-op’ behavior by focusing attention on tokens with near-zero value
states. In this paper, we propose Value-State Gated Attention (VGA), a simple,
dedicated, and stable architectural mechanism for performing ‘no-op’ attention
efficiently by directly breaking this cycle. VGA introduces a learnable, data-
dependent gate, computed directly from the value vectors (V), to modulate the
output. Through a theoretical analysis of the underlying gradients, we show that
gating the value-state with a function of itself is more effective at decoupling value
and attention score updates than prior methods that gate on input embeddings. This
creates a direct regulatory pathway that allows the model to suppress a token’s con-
tribution based on its emergent value representation. Our experiments demonstrate
that VGA significantly mitigates the formation of attention sinks and stabilizes
value-state norms, leading to improved performance, robust quantization fidelity,
and enhanced model interpretability.

1 INTRODUCTION

The Transformer architecture has revolutionized artificial intelligence in various domains (Achiam
et al., 2023; Dubey et al., 2024; Guo et al., 2025; Dosovitskiy et al., 2020; Brooks et al., 2024).
Much of this success stems from the attention mechanism, which allows for efficient and scalable
modeling of long-range dependencies. Despite their remarkable success, these models are susceptible
to a set of persistent and detrimental emergent behaviors collectively known as extreme-token
phenomena (Xiao et al., 2023b; Guo et al., 2024; He et al., 2024; Hu et al., 2024). These manifest as
a trio of interconnected pathologies: attention sinks (Bondarenko et al., 2023; Guo et al., 2024; Sun
et al., 2024; Gu et al., 2024; Barbero et al., 2025; Qiu et al., 2025; Agarwal et al., 2025; Kang et al.,
2025), the tendency for certain tokens to receive disproportionately high attention weights regardless
of semantic relevance; value-state drains (Guo et al., 2024; Zhou et al., 2024), where the value vectors
of these sink tokens exhibit pathologically small norms; and residual-state peaks (Sun et al., 2024;
Guo et al., 2024), the abnormal growth of the residual-state norms of the sink token in deeper models.

These interconnected pathologies have profound negative impacts on model performance, quantization
fidelity, and interpretability. The pathological growth of residual-state norms induces numerical
instability, causing divergence or stagnant learning during training (Zhai et al., 2023). Furthermore,
the extreme dynamic range of activations created by these phenomena poses significant challenges for
model quantization, often resulting in a substantial accuracy degradation (Bondarenko et al., 2023;
Su & Yuan, 2025). Crucially, attention sinks also compromise model interpretability (Bondarenko
et al., 2023; Darcet et al., 2023; Wang et al., 2024; Lappe & Giese, 2025), as attention weights no
longer reliably indicate semantic importance. The systemic nature of these issues across various
Transformer models underscores the need for a fundamental architectural solution.

Recent analyses suggest that these phenomena are not isolated failures, but symptoms of a single
underlying pathological feedback loop known as the mutual reinforcement cycle (Guo et al., 2024).
This cycle arises from the interplay between the optimization dynamics and the competitive nature of
the softmax function, which constrains the attention weights to sum to one. The cycle begins when
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Value-State Gated AttentionInput-State Gated AttentionVanilla Attention

Hadamard ProductSigmoid Function

Figure 1: Architecture of Value-State Gated Attention (VGA). Unlike vanilla attention or input-state
gated attention, VGA introduces a value-state gating mechanism to modulate the attention output.

an attention head, lacking a relevant context token but forced to distribute its entire attention budget,
directs it to a structurally convenient token to perform a ‘no-op’ behavior (Bondarenko et al., 2023;
He et al., 2024; Hu et al., 2024), thereby creating an attention sink. To prevent this arbitrarily high
attention from corrupting the output, the optimizer reactively minimizes the norm of the sink token’s
value vector, leading to a drain of the value state. This drained value state then makes the token an
even more attractive target for future ‘no-op’ attention, reinforcing the cycle and locking the model
into a stable but pathological equilibrium. The mutual reinforcement cycle is a classic example of an
unstable positive feedback loop in control theory (Ogata, 2010).

From the analysis of the mutual reinforcement cycle, we observe that the value state is highly
indicative of the sink token, which can be leveraged to directly break the mutual reinforcement cycle.
Based on this observation, we propose Value-State Gated Attention (VGA, as illustrated in Figure 1),
a novel and efficient mechanism that introduces a learnable negative feedback controller that stabilizes
the optimization dynamics, and enables the model to perform a ‘no-op’ without resorting to attention
sinks and value destructions, thus mitigating extreme-token phenomena.

More specifically, we introduce a learnable, value-state dependent gate to modulate the output of the
attention head. The core of our approach lies in making the gate’s behavior a reactive function of the
value state itself, establishing a direct regulatory pathway that allows the model to suppress a token’s
contribution based on its emergent value representation. This design establishes a feedback control
system for mitigating extreme-token phenomena. When the optimization process begins to induce a
value-state drain, our gate, being directly dependent on this state, learns to close. By closing, the gate
severs the gradient flow that drives the value drains. By decoupling high attention from the pressure
to suppress value norms, VGA breaks the mutual reinforcement cycle at its core, thereby preventing
the formation of extreme-token phenomena.

In this paper, we introduce VGA—a simple dedicated and stable architectural mechanism for efficient
performing of ‘no-op’ attention, resolving an inherent optimization conflict in the standard attention,
and provide a comprehensive analysis of its theoretical underpinnings. Our empirical validation
demonstrates that VGA significantly mitigates the formation of attention sinks and stabilizes value-
state norms, leading to improved performance, robust quantization fidelity, and enhanced model
interpretability. VGA is intentionally designed to be orthogonal to the attention score computation.
By functioning as a lightweight, additive gate on the output, it leaves the capabilities of the attention
mechanism intact. This architectural separation makes VGA a general and minimally invasive
enhancement, readily applicable to any Transformer-based model.

2 RELATED WORK

Extreme-token phenomena and understanding. Research on Transformers has identified a set
of issues, collectively termed extreme-token phenomena. Initial work identified the phenomenon
of attention sinks, where certain tokens attract a disproportionate amount of attention (Xiao et al.,
2023b; Darcet et al., 2023; Guo et al., 2024; Gu et al., 2024; Barbero et al., 2025; Qiu et al., 2025;
Agarwal et al., 2025; Kang et al., 2025). Subsequent work linked this observation to value-state
drains, noting that these same sink tokens consistently have value states with unusually small
norms (Guo et al., 2024; Zhou et al., 2024). A mechanistic explanation for this connection was a
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mutual reinforcement cycle in the training process. This cycle arises when an attention head performs
a no-op operation (Bondarenko et al., 2023; He et al., 2024; Hu et al., 2024), triggering an irreversible
loop between high attention weights and the optimizer’s suppression of the corresponding value-state
norms. Further research in deeper models also documented the emergence of residual-state peaks, an
abnormal growth in the residual states of sink tokens (Sun et al., 2024; Guo et al., 2024).

Mitigating extreme-token phenomena in post-processing. Existing methods could be categorized
into weight-modifying approaches that often involve lightweight fine-tuning (Wang et al., 2024; Chen
et al., 2024), and state-manipulation approaches that operate intermediate states at inference time
without altering model weights (Son et al., 2024; Yu et al., 2024; Li et al., 2023). A noteworthy finding
in Xiao et al. (2024) is the necessity of deliberately reintroducing the “attention sinks” introduced
from the pre-training phase into downstream tasks to maintain the model’s performance. While
remedial solutions in the post-processing stage can alleviate problems in the downstream usage of
pretrained models, a more fundamental approach is to enhance the models’ intrinsic capabilities and
prevent these issues from arising during the pretraining phase.

Mitigating extreme-token phenomena in pretraining. Several strategies have been proposed to
mitigate extreme-token phenomena during pretraining. One line of work introduces special tokens
that are designed to absorb unneeded attention, such as register tokens (Darcet et al., 2023; Barbero
et al., 2025; Lappe & Giese, 2025). Another group of researchers modifies the attention mechanism
itself to prevent or control attention concentration. These proposals include replacing softmax with
alternative functions (Ramapuram et al., 2024; Gu et al., 2024), adding a clipping function to attention
scores (Bondarenko et al., 2023), or creating a learnable sink within the mechanism to channel
attention (Xiao et al., 2023b; Miller, 2023; Agarwal et al., 2025). A third approach uses gating
to control a token’s contribution. While gating has been widely used in LSTMs (Hochreiter &
Schmidhuber, 1997) and GRUs (Dey & Salem, 2017), as well as in Transformers(e.g., Yang et al.
(2024); Gao et al. (2025)), its application to resolve optimization pathologies remains less explored.
Within this domain, prior approaches (Bondarenko et al., 2023; Qiu et al., 2025) have focused on
learning the predictive gating function from the input embeddings. While prior methods have focused
on providing static sinks for extraneous attention or predictive gates based on input features, our
work is the first to propose a fully reactive, self-regulatory gate that directly addresses the emergent
optimization dynamics of the value-state.

A primary motivation for resolving these phenomena is to improve numerical stability of a model,
particularly for Post-Training Quantization (PTQ). Extreme-token phenomena create large activation
outliers, which significantly increases the dynamic range of tensors. This poses a major challenge
for PTQ methods (Li et al., 2021; Xiao et al., 2023a), as mapping a wide value range to a low-bit
format can cause substantial precision loss and performance degradation. As noted by Bondarenko
et al. (2023), models exhibiting extreme-token behaviors are not quantization-friendly. Therefore,
mitigation strategies applied during pretraining are expected to result in models that are easier to
quantize. Following this line of reasoning, we adopt a common PTQ methodology (Bondarenko et al.,
2023) in our experiments to demonstrate that successfully mitigating extreme-token phenomena leads
to improved post-training quantization results.

3 METHOD

This section details the theoretical mechanisms of extreme-token phenomena and introduces our
proposed solution, Value-State Gated Attention. In Section 3.1, we provide a formal gradient-based
analysis of the mutual reinforcement cycle, first identified by Guo et al. (2024), in the training of
the standard attention module. We also discuss the pioneering Input-State Gated Attention (IGA)
approach (Bondarenko et al., 2023; Qiu et al., 2025) for mitigating the extreme-token phenomena.
Our analysis reveals the limitations of IGA, highlighting that the problem is fundamentally tied
to the optimization dynamics of the value-state itself, but not the input-state. Building on this
insight, Section 3.2 details the architecture of VGA, and Section 3.3 provides a theoretical analysis
demonstrating how its design inherently breaks this cycle by altering the gradient dynamics.

3.1 PRELIMINARIES

For clarity, our discussion focuses on the vanilla single-head self-attention, although the principle we
introduce is readily applicable to more complex variants. The mechanism computes a representation
for each token by attending to all tokens in the input sequence. Given an input sequence X ∈ Rn×d,
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it is projected into Query (Q), Key (K), and Value (V ) matrices via learnable weight matrices
WQ,WK ,WV ∈ Rd×d, such that Q = XWQ, K = XWK , and V = XWV . The attention weight
matrix α is then computed as:

α = softmax
(
QKT

√
d

)
. (1)

The final attention output is computed as Attention(Q,K, V ) = αV . The matrix α ∈ Rn×n contains
the attention weights, with each element αij representing the weight that query i assigns to key j.
The softmax function ensures that the weights for each query are non-negative and sum to one, i.e.,
∀i,

∑n
j=1 αij = 1. Consequently, the output for the i-th token zi is a convex combination of all value

vectors in the sequence:

zi =

n∑
j=1

αijVj . (2)

This formulation becomes problematic when an attention head needs to perform a ‘no-op’ (i.e.,
contribute minimally to the output). Due to the softmax constraint, the head is forced to distribute
its attention budget across tokens. If no token is semantically relevant, the head may learn to dump
its attention onto a single, structurally convenient sink token. Guo et al. (2024) first identified this
underlying issue as the mutual reinforcement cycle: a pathological feedback dynamic that drives
the formation of attention sinks and the accompanying suppression of their value states (value-state
drains). To formalize this process, we analyze the cycle from the perspective of gradient dynamics.

To understand the optimizer’s behavior, we examine the gradient of the loss L with respect to an
arbitrary value vector Vj . Applying the chain rule to Equation (2), we obtain:

∂L

∂Vj
=

n∑
i=1

∂zi
∂Vj

∂L

∂zi
=

n∑
i=1

αij
∂L

∂zi
, (3)

where ∂L
∂zi

represents the upstream gradient. This reveals a rigid coupling: the gradient flowing to Vj

is a direct scaling of the upstream gradients by the attention weights αij .

The severity of this coupling becomes apparent in the limiting case where a token s becomes a perfect
attention sink for a query i, i.e., αis → 1. The gradient flowing to its value vector Vs from this query
approaches the full upstream gradient ∂L

∂zi
, while all other value vectors Vj (j ̸= s) receive a vanishing

gradient. To perform a ‘no-op’ and minimize the output’s magnitude despite a large attention weight
αis, the amplified gradient provides a strong signal to reduce the magnitude of Vs. This forces the
optimizer to aggressively push the norm of Vs towards zero, precipitating a value-state drain. As
illustrated in Figure 2, this initiates an unstable positive feedback loop: high attention amplifies the
gradient to Vs, the optimizer suppresses its norm, and the resulting inert value state becomes an even
safer target for future no-op queries.

A prominent prior approach, Input-State Gated Attention (IGA) approach (Bondarenko et al., 2023;
Qiu et al., 2025) is proposed to address the problem, which introduces a gate to control information
flow. The gate gj is computed from the input embeddings Xj via a learnable weight matrix Wg ∈
Rd×1, followed by a sigmoid activation function σ, as gj = σ(XjWg), modulating the attention
output as:

zi =

n∑
j=1

gjαijVj . (4)

This architecture introduces a crucial second weighting path. The vanilla attention scores α continue
to determine where the model attends, while the new input-state gates g independently determine
how much information is received. The model learns to predict from Xj whether token j is a ‘no-op’
candidate and closes the gate gj . To analyze its effect on the value-state drains, we examine the
gradient with respect to Vj . Since gj is a function of Xj , it is treated as a constant with respect to Vj :

∂L

∂Vj
=

n∑
i=1

gjαij
∂L

∂zi
. (5)

When a token becomes an attention sink where αis → 1, the model would learn to close the
corresponding gate, gs → 0, to nullify the contribution of the sink token.

However, the fundamental coupling remains. The optimizer still perceives a direct path to nullify the
output by shrinking V , as the gate g is based upon X , not the emergent dynamics of V . Hence, the
gating control is predictive and indirect.
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Figure 2: The mutual reinforcement cycle that leads to attention sinks and value-state drains. (Left)
Initial state with natural attention weights and moderate value state norms. (Right) The cycle begins
when a query allocates high attention to a sink token s. This amplifies the gradient backpropagated to
Vs, prompting the optimizer to suppress its norm via learning rate η, resulting in a value-state drain.
This suppression makes the token an even safer target for future ‘no-op’ queries, locking it into the
sink role.

3.2 VALUE-STATE GATED ATTENTION

Attention Sinks Value-State Drains

Break the Mutual Reinforcement 

Equation ( )8

Figure 3: VGA alters gradient dynamics by learn-
ing to close the gate for an attention sink (gs → 0).
This action severs the gradient flow to the value
state Vs, effectively breaking the cycle.

This analysis of IGA reveals the problem’s
essence: the instability originates from the op-
timization pressure applied directly to the value
state itself. Therefore, an effective solution can-
not be merely predictive; it must be reactive,
creating a control directly from the value state.
This insight motivates our proposed architec-
ture: Value-State Gated Attention (VGA). As
illustrated in Figure 1 (Right), VGA operates
as a reactive control system. It introduces a
learnable gate computed directly from the value
vectors, which modulates each token’s contribu-
tion to the attention output. This design endows
the model with a direct mechanism to perform
a ‘no-op’ by selectively attenuating information
flow based on a token’s current value state.

Formally, VGA introduces a gating vector gj for each value vector Vj . This is achieved via a linear
projection with a learnable weight matrix Wg ∈ Rd×1, followed by a sigmoid activation function σ:

gj = σ(VjWg). (6)

These gates are then applied to the output for an individual token i same as that in Equation (4). A
more detailed description of VGA is provided in Appendix B.

The ONE AND ONLY critical distinction between IGA and VGA lies in the basis for the gating
function: the input-state versus the value-state. Consequently, VGA retains the “second weighting
path” advantage of IGA. Moreover, its computational and parameter overhead is identical to IGA,
and remains marginal (one projection to low-dimensions and element-wise operations) relative to the
total amount of the vanilla model.

3.3 HOW VGA BREAKS THE MUTUAL REINFORCEMENT

We now demonstrate how the minimal change of gating basis from input-state to value-state acts as
a learnable negative feedback controller that stabilizes the optimization dynamics and breaks the
mutual reinforcement cycle by dramatically altering the gradient landscape. As shown in Figure 3,
VGA decouples attention magnitude from gradient flow through a reactive control mechanism.
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Gradient dynamics in VGA. In VGA, a value vector Vj influences the output in two ways: it
provides the semantic content, and it also determines its own transmission strength via the gate
computation. This necessitates applying the product rule when deriving the gradient of the loss L
with respect to Vj . Considering the contribution from a single query i for clarity, the gradient is:

∂L

∂Vj
=

n∑
i=1

αij
∂(gjVj)

∂Vj

∂L

∂zi
. (7)

The derivative of the gated value expands into two components corresponding to the two influence
paths:

∂L

∂Vj
=

n∑
i=1

αij

 gjI︸︷︷︸
Content Path

+ gj(1− gj)WgVj︸ ︷︷ ︸
Self-regulatory Path

 ∂L

∂zi
, (8)

where the ‘Content Path’ term, gjI , reflects the gradient through the vector’s role as content, mod-
ulated by its gate gj . The ‘Self-regulatory Path’ arises from the self-referential design, where Vj

influences its own gate. This formulation is the key to VGA’s efficacy. We analyze its behavior in the
critical scenario where a token s is an attention sink (αis → 1) and the model has learned to close
its gate (gs → 0). In this limit, both gradient paths are nullified: (1) The ‘Content Path’ term gsI
vanishes as gs → 0; (2) The ‘Self-regulatory Path’ term also vanishes, as it contains both gs and the
sigmoid derivative factor gs(1− gs), which also approaches zero. Consequently, the gradient flowing
to Vs is entirely severed: ∂L

∂Vs
→ 0, as gs → 0. This demonstrates that VGA successfully decouples

the attention weight from the gradient magnitude. Even when attention is maximal, closing the gate
provides a clean ‘no-op’ mechanism that breaks the link between high attention and the pathological
gradient amplification, thus dismantling the mutual reinforcement cycle. This analysis demonstrates
that VGA provides a direct gradient pathway to perform a ‘no-op’ without value-state suppression.
Our empirical validation in Section 4.1 confirms that the optimizer successfully learns to utilize this
mechanism, preferring to close the gate rather than pathologically shrinking the value norms.

Also note that the term gj(1−gj) in the ‘Self-regulatory Path’ is maximal when the gate is in its most
uncertain state (gj = 0.5) and diminishes as the gate becomes confident in its decision (approaching
0 or 1). This ensures that the self-regulatory feedback is strongest when it is most needed—during
the transition—and weakest when the gate is already in a stable open or closed state. This property
prevents runaway feedback loops and is a hallmark of a well-designed, stable control system.

4 EXPERIMENTS

Extensive experiments and comparisons are conducted to demonstrate the advantage of VGA in
various settings. We begin in Section 4.1 by validating VGA on a specifically designed synthetic task
as proposed by Guo et al. (2024). Then we evaluate VGA on several language models in Section 4.2,
including BERT and OPT—following the practice of Bondarenko et al. (2023), as well as GPT-2—a
seminal autoregressive model whose design became the foundation for numerous subsequent large-
scale commercial models, and the evidence from which is highly instructive for training large-scale
commercial LLMs (Allen-Zhu, 2024). Finally, we show the quantization results of BERT and OPT
models (again, following the practice of Bondarenko et al. (2023)) with VGA in Section 4.3.

4.1 EMPIRICAL VALIDATION ON THE BIGRAM-BACKCOPY TASK

To empirically validate our analysis, we use the Bigram-Backcopy (BB) task from Guo et al. (2024).
This synthetic task is specifically designed to create a controlled environment where extreme-token
phenomena are reliably induced. Data generation follows two rules based on token identity: 1) Bi-
gram task: For most non-trigger tokens, the next token is generated from a fixed bigram probability
distribution, similar to a Markov chain. The attention mechanism provides no useful information
for this task. 2) Backcopy task: When predefined trigger tokens (e.g., t) is encountered, the model
must ignore the bigram rule and instead copy the token preceding the trigger. This task requires the
attention mechanism to focus specifically on the token to be copied. We trained two models on this
task: a vanilla Transformer and one with VGA. The results are presented in Figure 4 and Figure 5.

Attention sinks. Figure 4(a) shows that the two models exhibit clearly distinct attention patterns. The
vanilla model (left) exhibits a prototypical attention sink. For all non-trigger query tokens, attention
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Vanilla VanillaVGA VGA

(a) Attention 
Weights

(b) Value States

Figure 4: Comparative analysis of a vanilla Transformer (left) and a VGA model (right) on the
Bigram-Backcopy (Guo et al., 2024) task. (a) VGA prevents the formation of an attention sink on the
<s> token. (b) Consequently, VGA resolves the corresponding value-state drain, preserving the norm
of the sink token’s value vector.

Vanilla VGA

Figure 5: Training dynamics of a vanilla Transformer (left) versus a VGA model (right) on the
Bigram-Backcopy task, tracking task performance and sink-token metrics over training steps.

collapses onto the <s> (start) token, which carries no semantic information for these queries. In
contrast, VGA (right) mitigates this behavior. The attention weights are more evenly distributed, and
no single token acts as a universal sink, demonstrating that VGA effectively prevents the pathological
concentration of attention.

Value-state drains. Mitigating attention sinks directly corresponds to the stabilization of value-state
norms, as illustrated in Figure 4(b). In the vanilla model (left), the <s> token suffers from a severe
value-state drain, with its norm aggressively reduced toward zero. This reflects the optimizer’s
response to the high attention weights, consistent with theoretical analysis. In the VGA model
(right), this pathology is absent. The norm of the <s> token’s value state is maintained at a healthy,
non-pathological level comparable to other tokens in the sequence, confirming that our mechanism
removes the pressure to destroy value representations.

Training dynamics. The evolution of key metrics during training, presented in Figure 5, provides
clear evidence that VGA breaks the mutual reinforcement cycle. We track several metrics: (i)
Backcopy risk and Bigram risk measure model performance on the two sub-tasks, with lower values
being better. (ii) Attn<s> is the average attention weight directed to the <s> token from non-trigger
queries. (iii) ||V al<s>|| is the L2 norm of the <s> token’s value state. (iv) ∆logit.<s> is calculated
by taking the attention logit for the sink key <s> and subtracting the mean of the logits for all other
keys, averaged over non-trigger queries. A higher ∆logit.<s> indicates a stronger pre-softmax bias
toward the sink token. The vanilla model (left) exhibits the cycle’s characteristic signature: as the
model learns, Attn<s> and ∆logit.<s> steadily increase. Concurrently, ||V al<s>|| collapses toward
zero. This inverse relationship is the hallmark of the pathological feedback loop. The dynamics of the
VGA model (right) present a fundamentally different result. While the model learns the task equally
well, the pathological signals all remain stable at healthy, non-extreme levels throughout training.

Enhanced interpretability. VGA enhances interpretability by using a gate gj to disentangle a token’s
attention weight from its informational contribution. This provides an explicit signal for a ‘no-op’
operation, where high attention can be paired with a near-zero gate. This resolves a key ambiguity of
vanilla attention, where a high attention score can signify either importance or pathology. The results
in Figure 4 validate this enhancement by illustrating the vanilla model’s ambiguous state, where
high attention on the sink token is paired with the suppression of its value norm. The VGA model
exhibits stable attention and value norms, demonstrating its dedicated no-op mechanism prevents the
formation of the pathological attention sinks. Consequently, VGA’s attention patterns become a more
faithful and reliable indicator of the model’s internal information seeking process.
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Table 1: Comparison of our proposed VGA against several baselines on BERT (Devlin et al.,
2019), OPT-125m (Zhang et al., 2022), and GPT-2 (Radford et al., 2019) models. We evaluate task
performance using Perplexity and model stability by measuring the Max I+O Norm and Avg. kurtosis
to quantify activation outliers. The best result for each metric is marked in bold. VGA consistently
delivers top-tier perplexity while suppressing extreme values, demonstrating its dual benefit of
boosting performance and improving model stability.

Model Method Perplexity (↓) Max I+O Norm (↓) Avg. kurtosis (↓)

BERT

Vanilla 4.52±0.03 812.39±141.62 2987.23±313.21

Register Tokens 4.53±0.01 1205.91±223.14 7812.73±1281.12

Learnable Sink 4.53±0.02 41.65±7.83 225.88±41.81

IGA 4.53±0.01 38.71±10.19 90.65±5.78

VGA 4.52±0.00 33.19±6.75 84.55±2.84

OPT

Vanilla 15.95±0.03 1.01±0.04 2177±274

Register Tokens 15.85±0.04 0.75±0.03 8322.68±1197.74

Learnable Sink 15.92±0.01 0.77±0.03 22.23±6.77

IGA 15.65±0.01 0.50±0.02 102±1.32

VGA 15.49±0.00 0.45±0.03 34.77±4.65

GPT-2

Vanilla 17.03±0.00 256.84±18.77 13412.71±3,528.30

Register Tokens 16.26±0.01 73.81±5.86 4871.96±803.12

Learnable Sink 16.51±0.00 14.50±2.27 71.08±6.32

IGA 16.62±0.01 17.68±4.41 33.51±5.29

VGA 16.52±0.01 12.37±1.28 31.27±6.71

Note that the solution proposed by Guo et al. (2024) involves replacing softmax with ReLU, which is
a fundamental alteration to the attention mechanism. Although softmax contributes to the mutual
reinforcement cycle, it remains central to the model’s ability to allocate its finite attention budget.
Removing it, as suggested by the use of ReLU, may have unforeseen consequences on model
expressivity and behavior. VGA, in contrast, is a lightweight, additive component. It preserves
the well-understood properties of the standard softmax-based attention mechanism while surgically
correcting a specific failure mode. This makes VGA a more practical and readily adoptable solution.

4.2 RESULTS ON REPRESENTATIVE LANGUAGE MODELS

We evaluate our proposed VGA method on several representative transformer-based language models
to assess its impact on model performance and activation stability. Experiments follow the framework
of Bondarenko et al. (2023) to show that VGA effectively mitigates the extreme-token phenomenon.

Models and Datasets. Our evaluation includes three representative language models: BERT (Devlin
et al., 2019), OPT-125m (Zhang et al., 2022), and GPT-2 (Radford et al., 2019). Following previous
work (Bondarenko et al., 2023), we evaluate BERT and OPT-125m on a combined dataset of
BookCorpus (Zhu et al., 2015) and English Wikipedia (Guo et al., 2020). Our GPT-2 implementation
follows Karpathy (2022) and incorporates Rotary Position Embeddings (RoPE) (Su et al., 2024),
a widely adopted technique in modern Transformer architectures. We train the 124M parameter
variant1 of GPT-2 on the OpenWebText (Gao et al., 2020) dataset.

Evaluation metrics. We use Perplexity (Jelinek et al., 1977) to evaluate the overall language
modeling performance, where lower values indicate a better predictive capability. To measure
activation stability, we adopt two metrics as in Bondarenko et al. (2023). We use the maximum
input and output norm (Max I+O Norm) to quantify the magnitude of the most extreme outliers and
the average kurtosis (Avg. kurtosis) to measure the heavy-tailedness of the activation distributions.
Lower values for both metrics indicate better-behaved distributions, which is crucial for effective
quantization (Chmiel et al., 2020; Bondarenko et al., 2021).

Baselines. Our chosen baselines are representative of the primary competing paradigms for mitigating
extreme-token phenomena, as categorized in our review of related work, allowing for a direct
comparison of these distinct approaches. The vanilla softmax attention mechanism serves as our
primary benchmark (Vaswani et al., 2017). We also evaluate against Register Tokens (Darcet et al.,
2023; Lappe & Giese, 2025), a method that prepends a set of learnable non-semantic tokens as
alternative targets for attention heads. Furthermore, we compare with Learnable Sink (Xiao et al.,
2023b; Agarwal et al., 2025), which introduces a dedicated token to absorb superfluous attention
scores and stabilize attention patterns—a method that serves as a representative for the broader class

1The training of GPT-2 (124M) requires 8 × A100 40GB for about 5 days. Training larger variants of GPT-2
required resources beyond the scope of this study.
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Table 2: Evaluation of post-training quantization on BERT and OPT. ∆Perplexity denotes the
perplexity increase relative to the FP32 baseline presented in Table 1.

Model Method INT8 Perplexity (↓) ∆Perplexity (vs. FP32) (↓) Max I+O Norm (↓) Avg. kurtosis (↓)

BERT

Vanilla 617.32±191.20 +612.80 486.19±227.62 2508.21±1394.71

Register Tokens 913.67±839.10 +909.14 415.27±218.05 7, 284.18±3,365.82

Learnable Sink 4.79±0.03 +0.26 42.82±2.69 153.47±38.97

IGA 4.67±0.01 +0.15 45.06±1.50 91.27±2.88

VGA 4.64±0.01 +0.12 37.1±2.37 78.32±1.82

OPT

Vanilla 43.78±6.81 +27.83 657.77±240.89 6548.18±1567.07

Register Tokens 123.81±91.77 +107.96 835.33±274.83 6646.24±3735.05

Learnable Sink 17.31±0.01 +1.39 114.45±4.05 26.35±4.26

IGA 16.77±0.01 +1.12 102.15±3.81 95.48±6.12

VGA 16.42±0.01 +0.93 100.01±3.44 18.34±1.65

of strategies on providing an escape from the softmax constraint (Ramapuram et al., 2024; Gu et al.,
2024; Bondarenko et al., 2023). Finally, we consider IGA (Bondarenko et al., 2023), representing
prior methods that learn the gating function from the input embeddings.

Results analysis. The results in Table 1 demonstrate VGA’s dual benefit of improving performance
while decisively enhancing model stability. Its consistent superiority in reducing Max I+O Norm and
Avg. kurtosis across all models indicates a fundamental taming of activation outliers. We observe that
other baselines have inherent design limitations. Register Tokens merely provide an alternative sink
and can even exacerbate Avg. kurtosis. While Learnable Sink improves stability, its sink mechanism is
based on a fixed embedding learned during training, making it incapable of adapting to specific input
contexts. In contrast, VGA uses dynamic, data-dependent gating. Similarly, IGA’s predictive gating
on input embeddings is shown to be less effective at decoupling value-attention updates compared to
VGA’s reactive mechanism, which operates directly on the emergent value-state. Consequently, VGA
provides a more structural solution, one that systemically moderates the entire activation distribution.
This makes VGA a robust approach to improving reliability without compromising performance.

4.3 POST TRAINING QUANTIZATION RESULTS

We evaluated our method using an 8-bit post-training quantization (PTQ) scheme, following the
settings in Bondarenko et al. (2023). As shown in Table 2, the baseline Vanilla models exhibit a large
perplexity increase after quantization, corresponding to their high Max I+O Norm and Avg. kurtosis.
Notably, Register Tokens results in even greater performance loss. This suggests that simply providing
a dedicated sink may concentrate pathological dynamics and exacerbate outlier issues, as evidenced
by its extremely high kurtosis. In contrast, all mitigation methods improve quantization robustness,
with VGA consistently performing best. On both BERT and OPT, VGA achieves the smallest
perplexity increase while also recording the lowest Max I+O Norm and lowest Avg. kurtosis. These
results indicate that by addressing the formation of extreme-token phenomena at its source, VGA
produces a model with an inherently more quantization-friendly activation distribution. Encouraged
by these PTQ results, we plan to incorporate VGA in low-bit pretraining in future work.

5 CONCLUSION

In this work, we introduced Value-State Gated Attention (VGA) as a novel and efficient mechanism
for mitigating extreme-token phenomena. By computing a learnable gate directly from the value
states, VGA creates a self-regulatory mechanism that enables a ‘no-op’ operation, architecturally
decoupling high attention weights from the destructive pressure on value norms. Through both
gradient-based theoretical analysis and empirical validation on synthetic tasks and standard models,
we demonstrated that VGA effectively mitigates extreme-token phenomena. This directly translates
to significant improvements in activation stability and post-training quantization fidelity, often while
maintaining or enhancing model perplexity.

As a general design for Transformers, VGA has high potential to be effective in any Transformer-
based models, from language models, to vision and multi-modal models, especially when they
are scaled up to even larger models, where extreme-token phenomena are even more pronounced.
However, such large-scale experiments demand a level of computational resources that places them
beyond the scope of the present study. We therefore hope that our work will encourage research
groups with access to these resources to investigate VGA’s performance in such settings—with only
a few lines of code modification. We are optimistic that it will prove to be an impactful component
for the next generation of large-scale models across various domains.
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A GRADIENT DERIVATION FOR VALUE-STATE GATED ATTENTION (VGA)

Let Vj ∈ R1×d be the row vector value for token j, αij the attention weight of query i to token j,
and Wg ∈ Rd×1 the gate projection weight. The gate scalar is computed as:

gj = σ(VjWg). (9)

where σ(·) denotes the Sigmoid function.

VGA output:

zi =

n∑
j=1

αij (gjVj) . (10)

Step 1: Base gradient expression. The gradient of the loss L w.r.t. Vj is:

∂L

∂Vj
=

n∑
i=1

αij
∂(gjVj)

∂Vj

∂L

∂zi
. (11)

Step 2: Product rule for (gjVj). Since gj depends on Vj :

∂(gjVj)

∂Vj
= gjI +

(
∂gj
∂Vj

)T

Vj , (12)

this derivative is written in denominator layout convention, I ∈ Rd×d is the identity matrix.

Step 3: Gate derivative. Let uj = VjWg (scalar). We have:

∂uj

∂Vj
= WT

g , σ′(uj) = gj(1− gj).

Therefore:
∂gj
∂Vj

= gj(1− gj)W
T
g (∈ R1×d). (13)

Step 4: Full Jacobian of gated value. Combining Equation (12) and Equation (13):

∂(gjVj)

∂Vj
= gjI + gj(1− gj)WgVj , (14)

yielding a d× d matrix.

Step 5: Final gradient. Substituting Equation (14) into Equation (11):

∂L

∂Vj
=

n∑
i=1

αij [gjI + gj(1− gj)WgVj ]
∂L

∂zi
(15)

Interpretation. The two terms inside the brackets correspond to two independent gradient pathways:

• Content Path: gjI — gradient through the semantic content of Vj , scaled by gj .

• Self-regulatory Path: gj(1− gj)WgVj — gradient arising from Vj influencing its own gate.

If a sink token s has αis → 1 but gs → 0, both terms vanish:

gsI → 0, gs(1− gs) → 0,

cleanly severing the gradient to Vs and breaking the mutual reinforcement cycle.
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B ARCHITECTURE DETAILS

This section provides a formal and detailed formulation of the Value-State Gated Attention (VGA)
mechanism. VGA modifies the standard attention by introducing a gate that modulates the final
output of the attention head. This gate, denoted as g, is computed directly from the value state V ,
creating a reactive feedback loop.

The core of the VGA mechanism is the computation of a dedicated gate for each attention head. In a
multi-head attention setting with h heads and a model dimension of d, the gate matrix g is computed
for all heads simultaneously from the complete value projection matrix V ∈ RN×d. The gate matrix
g ∈ RN×h is computed as:

g = σ(VWg) (16)

where Wg ∈ Rd×h is a single learnable weight matrix, and σ(·) is the sigmoid function. Each column
gj in the resulting matrix g serves as the specific gate for the j-th attention head. The final output for
an individual head j, denoted OVGA,j , is then obtained by an element-wise product between its gate
gj and its standard attention output Oj :

OVGA,j = gj ⊙Oj , where Oj = Attention(Qj ,Kj , Vj). (17)

For this multiplication, the gate vector gj ∈ RN×1 is broadcast across the feature dimension of
the head’s output Oj ∈ RN×dhead , where dhead = d/h. This allows each head to have its output
modulated independently based on the same shared value-state representation. The final layer output
is formed by concatenating the gated head outputs, i.e., Concat(OVGA,1, . . . , OVGA,h), followed by
the usual final linear projection.

This design ensures that VGA is a lightweight and minimally invasive module. It introduces only
a small number of new parameters Wg per attention head and, crucially, remains orthogonal to the
attention score computation. The original attention weights are calculated as usual, preserving the
mechanism’s ability to model long-range dependencies, while the gate provides a separate, reactive
pathway to control the informational output based on the value state.

C USING VGA FOR FINE-TUNING PRE-TRAINED MODELS

Table 3: VGA Retrofitting Analysis on Pre-trained GPT-2. Comparison of a vanilla pre-trained model
against a VGA equipped pre-trained model, both with 600K iterations, and two fine-tuning strategies
with 6K iterations. Key Finding: Fine-tuning with VGA, consuming only ∼1% of the pretraining
computation, significantly rectifies the pathology to a state comparable to scratch pre-training.

Model Method Perplexity (↓) Max I+O Norm (↓) Avg. kurtosis (↓)

GPT-2

Vanilla 17.03±0.00 256.84±18.77 13412.71±3,528.30

VGA 16.52±0.01 12.37±1.28 31.27±6.71

Fine-tuning w/o VGA 17.01±0.01 398.67±43.88 9863.87±2575.90

Fine-tuning w VGA 16.94±0.01 24.05±4.73 32.47±2.95

We investigated whether VGA could not only prevent extreme-token phenomena but also rectify them
in an existing, pathologically-developed model—a concept known as retrofitting.

We performed a short fine-tuning run (6,000 steps) of a GPT-2 model on the data that was used in
pre-training, comparing four variants: a vanilla pre-trained model, a VGA equipped pre-trained model,
the model fine-tuned without modification (Baseline) and the model fine-tuned after retrofitting the
VGA module (Retrofit).

The results in Table 3 decisively confirm VGA’s retrospective correction capability. Standard fine-
tuning (w/o VGA) failed to correct the pathology; in fact, the Max I+O Norm dramatically worsened
from 256.84 to 398.67, confirming the self-amplifying nature of the optimization pathology when
the VGA gate is absent. In stark contrast, retrofitting the VGA module immediately stabilized
the model: Max I+O Norm plummeted from 256.84 to 24.05 and Kurtosis dropped to 32.47.
This strong regularization yielded the best Perplexity in the fine-tuning group (16.94). Crucially,
these stabilization metrics effectively approach to those achieved by pre-training VGA from scratch,
proving that VGA is highly effective even when introduced late in the learning process, significantly
expanding its practical utility.
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Figure 6: Analysis of IGA model on the Bigram-Backcopy task, left: Attention patterns, middle:
Value status, right: Training dynamics.

D ANALYSIS OF IGA MODEL ON THE BIGRAM-BACKCOPY TASK

As shown in Figure 6, IGA mechanism reveals a mitigation of the pathological dynamics observed in
the Vanilla model, though its performance remains inferior to VGA.

In terms of Attention Sinks, while the Vanilla model exhibits a quintessential pathological collapse,
where non-trigger query attention concentrates severely onto the <s> token (high Attn<s>), the IGA
model successfully dampens this effect. IGA achieves a more distributed attention pattern than
Vanilla, yet it does not eliminate the pathological concentration as comprehensively as VGA, which
maintains Attn<s> at healthy, non-extreme levels.

This partial alleviation directly translates into the Value-State Drains. The severe degradation of the
start token’s value-state norm, ||V al<s>|| → 0, which characterizes the Vanilla model, is mitigated
in IGA, preventing an aggressive reduction towards zero. However, the ||V al<s>|| in IGA does not
stabilize at the maintained, non-pathological level achieved by the VGA model.

The distinct behavior is most clearly demonstrated in the Training Dynamics. The IGA model
effectively slows and reduces the magnitude of the increase in the attention-related metrics (||V al<s>||
and Attn<s>), indicating a weaker pre-softmax bias and a less destructive feedback cycle compared
to Vanilla. Nevertheless, the VGA model stands out by demonstrating fundamentally different
training dynamics, where all pathological signals (∆logit.<s>, Attn<s> and ||V al<s>||) remain stable
throughout training, confirming that VGA is the most effective mechanism for breaking the mutual
reinforcement cycle.

E STATEMENT ON THE USE OF LLMS

During the preparation of this manuscript, we utilized large language models (LLMs) to assist
with language editing and refinement. The purpose was to improve clarity, grammar, and overall
readability. All scientific contributions, methodologies, and analyses are the original work of the
authors, who take full responsibility for the content of this paper.
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