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Abstract

We consider the problem of hypothesis testing for discrete distributions. In the
standard model, where we have sample access to an underlying distribution p,
extensive research has established optimal bounds for uniformity testing, identity
testing (goodness of fit), and closeness testing (equivalence or two-sample testing).
We explore these problems in a setting where a predicted data distribution, possibly
derived from historical data or predictive machine learning models, is available.
We demonstrate that such a predictor can indeed reduce the number of samples
required for all three property testing tasks. The reduction in sample complexity
depends directly on the predictor’s quality, measured by its total variation distance
from p. A key advantage of our algorithms is their adaptability to the precision of
the prediction. Specifically, our algorithms can self-adjust their sample complexity
based on the accuracy of the available prediction, operating without any prior
knowledge of the estimation’s accuracy (i.e. they are consistent). Additionally, we
never use more samples than the standard approaches require, even if the predictions
provide no meaningful information (i.e. they are also robust). We provide lower
bounds to indicate that the improvements in sample complexity achieved by our
algorithms are information-theoretically optimal. Furthermore, experimental results
show that the performance of our algorithms on real data significantly exceeds our
worst-case guarantees for sample complexity, demonstrating the practicality of our
approach.

1 Introduction

Property testing of distributions is a fundamental task that lies at the heart of many scientific endeavors:
Given sample access to an underlying unknown distribution p, the goal is to infer whether p has a
certain property or it is ϵ-far from any distribution that has the property (in some reasonable notion of
distance, such as total variation distance) with as few samples as possible. Over the past century [66],
this problem has been extensively explored in statistics, machine learning, and theoretical computer
science. Indeed, distribution testing (also called hypothesis testing) is now a major pillar of modern
learning theory and algorithmic statistics, with applications in learning mixtures of distributions
such as Gaussians, Poisson Binomial Distributions and robust learning [40, 45, 36, 75, 34, 45].
The framework has also been extensively studied under privacy [56, 14, 27, 18, 26, 3, 72, 50] and
low-memory constraints [8].
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One of the most natural and well-studied questions in this framework is: given sample access to an
unknown distribution p, can we determine whether p is equal to another distribution q, or ϵ-far from
it (e.g. in total variation distance)? This problem has been studied under various assumptions about
how we access q: It is called uniformity testing when q is a uniform distribution, identity testing (or
“goodness-of-fit”) when a description of q is known, and closeness testing (“two-sample testing” or
“equivalence testing”) when we only have sample access to q. The primary goal in solving these
tasks is to design algorithms that use as few samples as possible. Optimal sample complexity bounds
have been established for discrete distributions p and q over a domain of size n: Θ(

√
n/ϵ2) samples

for uniformity testing [52, 15, 69, 38] and identity testing [76, 5, 39], and Θ
(
n2/3/ϵ4/3 +

√
n/ϵ2

)
samples for closeness testing [16, 30, 38, 39]. Other related versions of uniformity, identity, and
closeness testing are presented in [63, 6, 19, 51, 46, 74, 12, 13, 68].

Given that the aforementioned results are tight and cannot be improved, any further progress requires
equipping the algorithm with additional functionality. A natural approach is to leverage the fact that in
numerous applications, the underlying distribution is not completely unknown; some prediction of the
underlying distribution may be available or can be learned via a predictive machine learning model.
For example, if distributions evolve slowly over time, earlier iterations can serve as approximations
for later ones, e.g., network traffic data and search engine queries. Such estimations can often be
learned from “older” data by using it to train a predictor or regressor. In linguistics and text processing
tasks that involve distributions over words, the length of a word can approximate its frequency, since
longer words are known to be less frequent. Another example is when data is available at different
“scales.” For instance,demographic data on loan defaults at the national level could be informative for
data from specific areas.

One challenge to using such information is that it rarely comes with a guarantee of precision. This fact
leads to the information being deemed unreliable, as it may poorly predict the underlying distribution.
For example, while the national loan default rate might be close to that of a typical area code, it
could differ significantly in affluent areas. Thus a natural algorithmic question that arises is how
to design algorithms that can exploit predictive information as much as possible without any prior
assumptions about its accuracy. The goal is then to design an algorithm that solves the problem with
as few samples as possible, given the quality of the prediction.

In this work, we study the fundamental problems of uniformity, identity, and closeness testing in
the setting where a prediction of the underlying distribution is provided. This prediction can be
formalized by assuming that the distribution testing algorithm has access to a predicted distribution p̂
of p1. This is in addition to having sample access to p as in the standard model (without access to
prediction). Our algorithms achieve the optimal reduction in the number of samples used compared
to the standard case, where the improvement depends on the quality of the predictor p̂ in terms of
its total variation distance from p. Our algorithms can also self-adjust their sample complexity to
the accuracy of p̂, minimizing sample complexity wherever feasible, without prior knowledge of
p̂’s accuracy. Our approach ensures that the algorithm is resilient to inaccuracies in predictions
and does not exceed the optimal sampling bound in the standard model, even when p̂ significantly
deviates from the actual p. Furthermore, our matching lower bounds demonstrate the optimality of
our algorithms. Experimental results additionally confirm the practicality of our algorithms.

Measuring accuracy of predictor. We use the total variation distance between the prediction p̂
and the unknown distribution p as our measure of predictor accuracy. Previous work often assumed
a strong element-wise guarantees, where p̂i is within a constant multiplicative factor of pi for all
domain elements i, a constraint that becomes limiting especially for small pi (see Section 1.3). This
paper is the first to study a notion of average error between p and p̂, measuring via the TV distance.
This metric was chosen for its prevalent use in statistical inference and its intuitive interpretation.

1.1 Our approach and problem formulation

Our approach to solving a distribution testing problem (uniformity, identity, or closeness testing)
consists of two components: search and test. At a high level, search aims to guess ∥p− p̂∥TV, and
test performs the actual distribution testing using the guess of the accuracy provided by search as a
suggested accuracy level.

1We assume we know all of the probability values of the prediction p̂ at all domain elements.
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More precisely, our augmented test component aims to evaluate whether p = q, while receiving p̂
and a suggested accuracy level α (which may or may not reflect the true distance between p and p̂).
In addition to two possible outcomes of accept and reject in the standard setting2, our augmented
test component may output inaccurate information when it determines that the p̂ is not α-close to p.
Our requirements for the augmented test component are the following: i) If the test is conclusive, i.e.,
it chooses to output accept or reject, the answer should be correct regardless of p̂’s accuracy. ii) If p̂
is indeed α-close to p, the test component should not output inaccurate information.

We emphasize that the guess α is not guaranteed to be correct or may not even be a valid upper bound
on the true TV distance. Thus, the algorithm is afforded a degree of flexibility to forego solving the
problem when the distributions are not within α proximity (and can try again with a new guess).

Our search component aims to identify an appropriate accuracy level α such that the test component
can test in a conclusive manner by returning accept or reject. Since the true value distance ∥p− p̂∥TV
is not known, we start by guessing a small α, corresponding to the most accurate p̂ and the fewest
samples needed, run the augmented test component with this α and p̂, and verify the conclusiveness of
the testing. If inconclusive, our guess α is increased to a level that we can afford testing by doubling
the sample size, and the search component proceeds with the next α. It continues until the desired
accuracy is reached, and accept or reject is returned. Then, search halts with that result.

Clearly, if the accuracy level guess α is at least ∥p − p̂∥TV, the test component has to output
accept or reject with high probability. Thus, we show that it is unlikely that search proceeds when
α ≫ ∥p − p̂∥TV. Therefore, this method does not significantly increase the sample complexity,
potentially increasing it by at most an O(log log(n/ϵ)) factor in expectation. The search component
is applicable to all of the problems we study and we defer all details of the search component to
Section B. The remainder of the main body focuses on designing the augmented testers, i.e. the test
component.
Definition 1.1 (Augmented tester). Suppose we are given four parameters, α ∈ [0, 1], ϵ ∈ (0, 1),
δ ∈ (0, 1), n ∈ N, and two underlying distributions p and q, along with a prediction distribution p̂
over [n]. Suppose A is an algorithm that receives all these parameters, and the description of p̂ as
input, and it has sample access to p and q. We say algorithm A is an (α, ϵ, δ)-augmented tester for
closeness testing if the following holds for every p, q, and p̂ over [n]:

• If p̂ and p are α-close in total variation distance, the algorithm outputs inaccurate informa-
tion with a probability at most δ/2.

• If p = q, then the algorithm outputs reject with a probability at most δ/2.

• If p is ϵ-far from q, then the algorithm outputs accept with a probability at most δ/2.

In this definition, if the description of q is known to the algorithm instead of having sample access,
we say A is an (α, ϵ, δ)-augmented tester for identity testing. If q is a uniform distribution over [n],
then we say A is an (α, ϵ, δ)-augmented tester for uniformity testing.

To highlight the distinction between this definition and the standard definition, note that in the
standard regime, no prediction p̂ is available to the algorithm, and the algorithm lacks the option of
outputting inaccurate information.
Remark 1. We assume that δ is a small constant, but, a standard amplification technique via Chernoff
bounds can achieve an arbitrarily small confidence parameter δ with a O(log(1/δ)) overhead.

1.2 Our results

Our theoretical results: In this paper we demonstrate that predictions can indeed reduce the
number of samples needed to solve the three aforementioned testing problems. Our algorithms are
parameterized by both ϵ and α. We provide tight sample complexity results (matching upper and
lower bounds) for these problems. The sample complexity drops drastically compared to the standard
case, depending on the total variation distance between q and p̂. Our algorithms are also robust: if
the prediction error is high, our algorithm succeeds by using (asymptotically) the same number of
samples as the standard setting without predictions.

2If p = q, the standard tester must output accept with high probability. And, if p is ϵ-far from q, the standard
tester must output reject with high probability. If p ̸= q, but is ϵ-close to q, either answer is considered correct.
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Theorem 2 (Informal version of Theorem 7). Augmented uniformity and identity testing for distribu-
tions over [n], with parameters α, ϵ, and δ = 2/3, require the following number of samples:

s =


Θ
(√

n
ϵ2

)
if d ≤ α

Θ
(
min

(
1

(d−α)2 ,
√
n

ϵ2

))
if d > α

,

where d = ∥q − p̂∥TV (q is the known distribution for identity testing, or the uniform distribution for
uniformity).
Remark 3. Note that d is not an input parameter to the algorithm. However, d is determined by p̂
and q, which are known to the algorithm, allowing us to compute d.

For closeness testing, we prove the following.
Theorem 4 (Informal version of Theorem 9). Augmented closeness testing for distributions over [n],
with parameters α, ϵ, and δ = 2/3, requires Θ(n2/3α1/3/ϵ4/3 +

√
n/ϵ2) samples.

It can be seen that e.g., for closeness testing, our non-trivial predictor improves over the best
possible sampling bound in the standard model. Specifically, as long as α = o(1), our bound in
the augmented model improves over the prior work. At the same time, our algorithms are resilient:
even if α = Θ(1), our sampling bounds do not exceed those in the standard model. Note that all
theorems are complemented by tight lower bounds. We highlight that all of our algorithms are also
computationally efficient, running in polynomial time with respect to n and 1/ϵ. The results are
summarized in Table 1.

Table 1: Optimal sample complexity bounds in the standard model versus the augmented bounds.
α is the suggested accuracy level for the L1-distance between p and p̂. d denotes the total variation
distance between the known distribution q and p̂.

Property Standard sample complexity Augmented sample complexity (this paper)

Closeness Θ
(

n2/3

ϵ4/3
+

√
n

ϵ2

)
[30, 69] Θ

(
n2/3α1/3

ϵ4/3
+

√
n

ϵ2

)
Identity/Uniformity

Θ
(√

n
ϵ2

)
Θ
(√

n
ϵ2

)
, if d ≤ α

[69, 5] Θ
(
min

(
1

(d−α)2
,

√
n

ϵ2

))
, if d > α

Our empirical Results: We empirically evaluate our augmented closeness testing algorithm on
synthetic and real distributions and refer all details to Section E.
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Figure 1: Error vs sample complexity for the
theoretically hard instance (See Sec. E).

As a summary, our algorithm can indeed leverage
predictions to obtain significantly improved sample
complexity over the SOTA approach without pre-
dictions, as well as SOTA algorithms needing very
accurate predictions [28].

For distributions similar to our lower bound instances,
our augmented algorithm achieves >20x reduction
in sample complexity to obtain comparable accuracy
as the standard un-augmented algorithm, as shown in
Figure 1. On real distributions curated from network
traffic data, we see sample complexity reductions of
up to 40%. Furthermore, our algorithm is empirically
robust to noisy predictions, in contrast to prior state
of the art approaches which assume very accurate,
point-wise predictions (CRS’15 in Figure 1).

It is worth noting that our experiments on network
traffic data reveal that the actual sample complexity
is much lower than the anticipated worst-case sample
complexity of our algorithm. In particular, this holds
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even when p̂ is far from p in terms of total variation
distance. Empirically, if p̂ accurately reflects the high-probability elements in p, our algorithm can
significantly reduce the sample complexity needed for testing by utilizing these heavy hitter “hints”
from p̂. This is validated by our results and depicted in Figures 5 and 7(b).

1.3 Related works

To the best of our knowledge, there have been only three prior works that studied any distribution
property testing algorithms with predictions, each assuming a much stronger prediction model:

• Distribution testing with perfect predictors [29]: this work studied distribution testing problems,
including closeness, identity and uniformity, assuming query access to a perfect predictor, i.e.,
p̂ = p. They show that, given a perfect predictor, it is possible to obtain highly efficient testers for
a wide variety of problems with a small number of queries to the prediction. Unfortunately, the
perfect-predictor assumption is often too strong to hold in practice, as demonstrated e.g., in [48]
and in our experiments.

• Distribution testing with (1+ ϵ)-approximate predictors [28, 67]: these works relax the assumption
used in the above paper, requiring only that p̂i = (1± ϵ/2)pi for all i and sufficiently small ϵ > 0.
However, this assumption is still quite restrictive, especially for low values of ϵ. Indeed in our
experimental setting, such algorithms are not robust to prediction errors (see Section E).

• Support estimation with c-approximate predictors [48]: this work focused on the single problem
of support estimation, i.e., estimating the fraction of coordinates i such that pi > 0. It further
relaxes the assumption in [67] by allowing the predicted probabilities p̂i to be within a factor of
c of the true probabilities pi, for any constant approximation factor c > 1. This algorithm has
been shown to work well in practice. However, the techniques presented in that paper seem to
be applicable exclusively to support estimation. Furthermore, their result provably does not hold
under the assumption that p and p̂ are close in TV distance, as in this paper.

In summary, prior results required either highly restrictive assumptions, or were applicable to only a
single problem. None of the previous algorithms worked under the TV distance assumption used in
this paper which is arguably the most natural. Further exploration of measures such as Lp-distances,
KL-divergence, and Hellinger distance are interesting open questions.

We remark that we can mathematically show that these alternative oracles yield provably more power
compared to ours (i.e., we make weaker assumptions about the predictor). We provide an alternative
to our upper bound techniques for these alternate prediction models in Section G. We demonstrate
how a variant of our algorithm, in conjunction with these stronger predictions, implies that uniformity
testing, identity testing, and closeness testing in these models can be conducted using only O(

√
n/ϵ2)

samples. This low sample complexity effectively circumvents our lower bound for closeness testing,
suggesting that these models provide stronger, and arguably less realistic, predictions.

Other related works: Other related works discussing algorithms with predictions and general
distribution testing are discussed in Appendix A.

1.4 Notation and organization

Notation: We use [n] to denote the set {1, 2, . . . , n}. All of our distributions will be over the
domain [n], and we assume n is always known. For a distribution p, we denote the probability of
the i-th element by pi. For any subset of the domain S ⊆ [n] we denote the probability mass of S
according to p by p(S). We use p⊗s to denote the probability distribution of s i.i.d. samples drawn
from p. We say p is a known distribution, if we have access to every pi. We say p is an unknown
distribution if we have only sample access to p. We use Poi(λ) to denote a random variable from a
Poisson distribution with mean λ. Similarly, Ber(λ) indicates a random variable from the Bernoulli
distribution that is one with probability λ. Given two distributions p and q over a domain X , we use
∥p− q∥TV := supS⊆X |p(S)− q(S)| to denote the total variation distance between p and q. We say
p and q are ϵ-close (ϵ-far), if the total variation distance between p and q is at most ϵ (larger than ϵ).

Organization: We provide an overview of our theoretical results in Section 2. The upper bound on
augmented closeness testing is presented in Section 3. The search algorithm is detailed in Section B.
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Augmented uniformity and identity testing are discussed in Section C, where the upper bounds are
presented in Section C.1, and the lower bounds are provided in Sections C.2 and C.3.

Augmented closeness testing is discussed in Section D, with the lower bounds provided in Section D.1.
Our empirical evaluations are presented in Section E.

2 Overview of our proofs

Search algorithm: The search algorithm seeks to find the smallest value of α for which the problem
is solvable via the augmented tester. It starts with the lowest value of α (most accurate prediction).
Then, it iteratively increases the sample budget across rounds. In each round i, it selects an αi for the
augmented tester, A, ensuring operation within the current sample budget. If A outputs accept or
reject, the algorithm echoes this outcome. If inaccurate information is returned, the sample budget
doubles for the next round. It is worth noting that this search scheme is applicable to a general
distribution testing algorithm with polynomial sample complexity. The algorithm’s pseudocode and
its performance proof are in Section B.

Upper bound for augmented identity testing Let d represent the distance between p̂ and q (the
prediction and the known distribution). For establishing the upper bound, it is essential to assume
d > α. If not, the prediction proves unhelpful, and we might as well resort to the standard tester.

Our upper bound relies on a simple but fundamental observation regarding the total variation distance:
this distance is the maximum discrepancy between the probability masses that two distributions
assign to any subset of their domain. To prove that total variation between two distributions is small
entails proving that the discrepancy across every domain subset is small. In contrast, to prove a large
total variation distance, one only needs to identify a single subset with a large discrepancy as evidence
of large total variation distance. We use the Scheffé set of p̂ and q—characterized as the collection
of elements x ∈ [n] where p̂(x) < q(x), symbolized by S—as evidence of p’s divergence from
either q or p̂. More precisely, it is known that S maximizing the discrepancy between the probability
masses of p̂ and q, implying: d := ∥q − p̂∥TV = |q(S)− p̂(S)| . Next, we estimate the probability
of set S according to p with reasonably high accuracy. Given q(S) and p̂(S), then p(S) is either
significantly different from q(S), or it deviates from p̂(S). In the first scenario, this discrepancy
serves as evidence that p ̸= q, allowing us to output reject. In the second scenario, the deviation
confirms that p is α-distant from p̂, leading us to output inaccurate information. Further details can
be found in Section C.1.

Lower bound for augmented uniformity testing We provide two lower bounds for augmented
uniformity testing. One is purely based on a reduction to standard uniformity testing for the case
where α ≥ d. (Recall that d was the total variation distance between q and p̂). See Section C.2.

The other lower bound applies to the setting where α < d. One challenge of this problem was that it
is hard to find two difficult distributions that the tester has to distinguish between; usually, for a pair
of distributions, we could come up with one valid output that could serve them both. For example,
for both uniform distribution, and the famous ϵ-far uniform distribution that assigns probabilities
(1± ϵ)/n to the elements, the algorithm may be able to output inaccurate information. Hence, we
cannot draw lower bounds just by asking the algorithm to distinguish between two distributions.

For this reason, we provide three distributions that look similar when we draw too few samples.
We formalize the similarity of these three distributions using a multivariate coupling argument. We
show that these distributions are such that there is no possible answer that is valid for all three of
them. Now, (similar to Le Cam’s method), suppose we feed the algorithm with samples from one of
these three distributions (each with probability 1/3). For any sample set, the algorithm outputs an
answer (which may be randomized); however, this answer is considered wrong for at least one of
the underlying distributions. This is due to the fact that there is no universally valid answer that is
simultaneously correct for all three distributions. Hence, if the algorithm outputs a valid answer with
high probability, it must be able to distinguish the underlying distributions to some degree. On the
other hand, the indistinguishability result says it is impossible to tell these distributions apart. Thus,
we reach a contradiction. And, the lower bound is concluded. See Section C.3 for further details.
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Lower bound for augmented closeness testing: We provide two separate lower bounds for close-
ness testing based on the relationship between α and ϵ. Further details are available in Section D.1.

Our first lower bound, as detailed in Theorem 11, employs a reduction strategy from standard
closeness testing to augmented closeness testing when α ≥ ϵ. This is achieved by taking instances
used in standard closeness testing for distributions over [n− 1] and embedding them into the first
n− 1 domain elements of a new distribution p defined over [n]. The key to this strategy is to put the
majority of the distribution’s mass ((1− α) mass) on its final element, and we set the prediction p̂ to
be a singleton distribution over the last element, which is α-close to p. Clearly, the prediction does
not reveal any information about the first n − 1 elements of p, implying that testing the closeness
of p in the augmented setting is as challenging as in the standard setting, once the parameters are
appropriately scaled.

Our second lower bound, outlined in Theorem 12, is more involved. In the standard setting, the
lower bound for closeness testing is derived from the hard instances for uniformity testing with
one crucial adjustment: adding new elements with large probability (approximately n−2/3) in the
distributions. These large elements have identical probability masses in both p and q, indicating
they do not contribute to the distance between the two distributions. However, their presence in the
sample set confuses the algorithm: due to their high probabilities, their behavior in the sample set may
misleadingly suggest non-uniformity, complicating the algorithm’s task of determining the uniformity
of the rest of the distribution. Therefore, the algorithm requires s ≈ n2/3 samples to first identify
these large elements before it can test the uniformity of the remaining distribution. Surprisingly, this
requirement of s ≈ n2/3 samples is significantly higher than the O(

√
n) samples typically sufficient

for testing uniformity.

The challenge in our case arises because p̂ may disclose the large elements to the algorithm. To
establish the lower bound, we set p̂ to be the uniform distribution, we generate hard instances of p by
adding as many large elements as possible, without altering p̂, by keeping the overall probability mass
of the large elements limited to α. More precisely, p assigns approximately (1− α)/n probability
mass to O(n) elements chosen at random, and assigns approximately n−2/3 probability mass to
α · n2/3 elements in the domain. Now, q has two scenarios. Half the time, q is identical to p. The
other half, q retains the same large elements but deviates slightly from uniformity for the rest of the
distribution. Specifically, q assigns probabilities (1±Θ(ϵ))(1− α)/n to the randomly chosen O(n)
elements, making it ϵ-far from p. It is not hard to show that testing closeness of p and q is a symmetric
property (since permuting the domain elements does not affect our construction). By leveraging the
wishful thinking theorem from [78], we demonstrate that these two scenarios are indistinguishable
unless Ω(n2/3α1/3) samples are drawn.

3 Upper bound for closeness testing

Our upper bound is based on a technique called flattening, which has been previously proposed by
Diakonikolas and Kane [42]. This technique is instrumental in reducing the variance of the statistic
used for closeness testing by reducing the ℓ22-norm of the input distributions. We adapt this technique
for use in the augmented setting, aiming not only to flatten the distribution based on the samples
received from it but also exploiting the prediction distribution p̂. We demonstrate that augmented
flattening can significantly reduce the ℓ22-norm of p. In our algorithm, we initially check if the ℓ22-norm
of p is reduced after flattening to the desired bound. If not, this indicates that the prediction was not
sufficiently accurate, leading us to output inaccurate. Conversely, if the ℓ22-norm of p is small, we
proceed with an efficient testing algorithm that requires fewer samples. We describe the standard
flattening technique in Section 3.1. Our flattening technique presented in Section 3.2. Finally, we
provide our algorithm in Section 3.2.1.

3.1 Background on flattening

Suppose we are given n parameters m1,m2, . . . ,mn. One can create a randomized mapping F
that assigns each i ∈ [n] to a pair (i, j), where j is drawn uniformly at random from [mi]. Now,
consider a given distribution p over [n] and a sample i drawn from p. This mapping induces a
distribution over pairs (i, j)’s in D := {(i, j)|i ∈ [n] and j ∈ [mi]}. We denote this new distribution
by p(F ) satisfying the relation: p

(F )
(i,j) = pi/mi . The core idea of the above mapping is to divide
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the probability of the i-th element into mi buckets. If the values of mi’s are large for elements in p
with higher probabilities, then the resulting distribution p(F ) will avoid having any elements with
disproportionately large probabilities, thereby naturally lowering its ℓ2-norm. Diakonikolas and
Kane [42] showed that if we draw Poi(t) samples from p, and set each mi to be the frequency of
element i among these samples plus one, then we have:

E

[[[∥∥∥p(F )
∥∥∥2
2

]]]
≤ 1

t
,

where the expectation is taken over the randomness of the samples.

Connection to distribution testing: Chan et al. in [30] showed that one can test closeness of two
distributions over [n] using O(nmax(∥p∥2 , ∥q∥2)/ϵ2) samples. Diakonikolas et al. [42] used this
tester in combination of the flattening technique to map distributions to distributions over slightly
larger domains with the goal of reducing their ℓ2-norms. They have shown that if we use the same
mapping to reduce the ℓ2-norm of both p and q, the ℓ2-distance between the two distribution does not
change the ℓ1 distance between distributions.

Fact 3.1 ([42]). For any flattening scheme F , the ℓ1-distance is preserved under F . That is, for every
pair of distributions p and q, we have:

∥p− q∥1 = ∥p(F ) − q(F )∥1 .

Therefore, to test p and q, we can draw samples to come up with the flattening F to reduce the
ℓ2-norm of one of the underlying distributions. Then, we can test the closeness of p(F ) and q(F )

with O(nmax(
∥∥p(F )

∥∥
2
,
∥∥q(F )

∥∥
2
)/ϵ2) new samples. Later, Aliakbarpour et al. in [9] showed that

O(nmin(∥p∥2 , ∥q∥2)/ϵ2) samples is sufficient.

The exact sample complexity is determined by balancing the samples needed to determine the
flattening and the samples needed to test closeness of p(F ) and q(F ). Note that flattened distributions
have a larger domain size. Thus, one must also balance the gains obtained from the reduction in ℓ2
norm with the increase in the domain.

3.2 Augmented flattening

We adapt the flattening argument in [42] to the augmented setting.

Lemma 3.2. Suppose we have an unknown distribution p = (p1, p2, . . . , pn) over [n] and Poi(sf )
samples from p. Assume we are given a known distribution p̂ that is α-close to p in TV distance.
Then for every v ≤ 1, there exists a flattening F which increases the domain size by 1/v + sf in
expectation and the expected ℓ22-norm of the p(F ) is bounded by:

E

[[[∥∥∥p(F )
∥∥∥2
2

]]]
≤ 2α

sf
+ 4 · ν .

The expectation above is taken over the randomness of the samples from p.

Proof. Let ŝf := Poi(sf ) be a Poisson random variable with mean sf . Let Sf denote the multiset
of ŝf samples from p. Let fi denotes the frequency of element i in Sf . For every i, we define the
number of buckets for element i as follows:

mi :=

⌊
p̂i
ν

⌋
+ fi + 1 . (1)

Let p(F ) denote the flattened version of p where we split every element i into mi buckets. We show
that the expected ℓ2-norm of p(F ) is low. Define ∆i to be pi − p̂i. Suppose A is a set of indices
i ∈ [n] for which ∆i ≥ p̂i. For every i ∈ A, pi is bounded from above by 2∆i. On the other hand,
for every i ∈ [n] \A, pi is bounded by 2 p̂i.
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∥∥∥p(F )
∥∥∥2
2
=
∑
i∈[n]

∑
j∈[mi]

p(F )(i, j)2 =
∑
i∈[n]

p2i
mi

=
∑
i∈A

2∆i · pi
mi

+
∑

i∈[n]\A

(2 p̂i)
2

mi

≤
∑
i∈A

2∆i · pi
fi + 1

+
∑

i∈[n]\A

(2 p̂i)
2

p̂i/ν

≤
∑
i∈A

2∆i · pi
fi + 1

+ 4 ν.

As shown in [42], the expected value of pi/(fi + 1) taken over the randomness in the Sf is bounded
by 1/sf :

EF

[[[
pi

fi + 1

]]]
≤ 1

sf

Therefore, we obtain:

EF

[[[∥∥∥p(F )
∥∥∥2
2

]]]
≤
∑
i∈A

2∆i

sf
+ 4 ν ≤ 2α

sf
+ 4 ν .

The last inequality above is due to the fact that:∑
i∈A

∆i = p(A)− p̂(A) ≤ ∥p− p̂∥TV = α .

3.2.1 The algorithm

In this section, we provide an algorithm for testing closeness of two distribution in the augmented
setting. Our algorithm receives a suggested accuracy level α. Based on α, we draw sf (which depends
on α) samples from p and use them to flatten p. If the resulting distribution has sufficiently small
ℓ22-norm we proceed to the testing phase. Otherwise, we declare that the accuracy level provided is not
correct. The pseudocode of our algorithm is provided in Algorithm 1, and we prove its performance
in Theorem 5.

Algorithm 1 An augmented tester for testing closeness of p and q with a suggested value α

1: procedure AUGMENTED-CLOSENESS-TESTER(n, α, ϵ, δ1 = 0.1, δ2 = 2/3, p̂, sample access
to p and q)

2: sf ← min
(
n2/3α1/3/ϵ4/3, n

)
3: ŝf ← Poi(sf )
4: if ŝf > 10 sf then
5: return reject.
6: F ← F (m1,m2, . . . ,mn) where mi are define in Equation 2.
7: Lp ← ESTIMATE-ℓ22

(
p(F ),

∑n
i=1 mi, 0.05

)
8: Lq ← ESTIMATE-ℓ22

(
q(F ),

∑n
i=1 mi, 0.05

)
9: if Lp > 30

(
2α
sf

+ 4
n

)
then

10: return inaccurate information.
11: else
12: if Lq > 90

(
2α
sf

+ 4
n

)
then

13: return reject.
14: else
15: return CLOSENESS-TESTER

(
ϵ, δ = 0.1, b = 90

(
2α
sf

+ 4
n

)
, p(F ), q(F )

)
.

Theorem 5. For any given parameters n, α, ϵ, and any two unknown distributions p and q and a
known predicted distribution p̂ for p, Algorithm 1 is an (α, ϵ, δ = 0.3)-augmented tester for testing
closeness of p and q which uses O(n2/3α1/3/ϵ4/3) samples.
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Proof. We begin the proof by setting our parameters. Set sf := min
(
n2/3α1/3/ϵ4/3, n

)
. Suppose

we draw ŝf = Poi(sf ) samples from p. We flatten the distribution p according to the augmented
flattening we described in Section 3.2 replacing ν with 1/n. We denote the flattening by F =
F (m1, . . . ,mn) where mi’s are defined in Equation (1):

mi := ⌊n · p̂i⌋+ fi + 1 . (2)

In the above definition, fi is the frequency of element i among the ŝf drawn samples.

Proof of correctness: Suppose we flatten both p and q according to F . The algorithm estimates the
ℓ22 of p(F ) and q(F ). According to Fact F.1, these estimates are within a constant factor of their true
values each with probability at least 1− 0.05:∥∥p(F )

∥∥
2

2
≤ Lp ≤

3
∥∥p(F )

∥∥
2

2
and

∥∥q(F )
∥∥
2

2
≤ Lq ≤

3
∥∥q(F )

∥∥
2

2
. (3)

To prove the correctness of the algorithm, we show the three desired property of an augmented
tester which are defined in Definition 1.1. First, assume p̂ is α-close to p. We show the probability
of outputting inaccurate information is small. Using Lemma 3.2, after applying F , the expected
ℓ22-norm of p(F ) is bounded by:

E
[[[∥∥∥p(F )

∥∥∥
2

]]]
≤ 2α

sf
+

4

n
.

Using Markov’s inequality, with probability at least 0.95, ℓ22-norm of p(F ) is at most 20 times the
above bound. Combined by the upper bound for Lp in Equation (3) and the union bound, in this case
Lp is bounded by 30 · (2α/sf + 4/n) with probability at least 0.9. Hence, we the algorithm does not
output inaccurate information in Line 10 with probability more than 0.1.

Second, we show that if p = q, the algorithm outputs reject with small probability. We may output
reject in three cases: 1) in Line 5 2) in Line 13 and 3) in Line 15. Using Markov’s inequality, a
Poisson random variable is more than 10 times its expectation with probability at most 0.1. We show
the other two cases are unlikely as long as Lp and Lq are accurate estimates of the ℓ22s of p(F ) and
q(F ) (which happens with probability of 0.9). If p = q, p(F ) and q(F ) are identical. Therefore, in the
algorithm Lp and Lq are the estimations of the ℓ22-norm of the same distribution. Note that we output
reject in Line 13, only when Lp < 3Lq . Using Equation (3), this event does not happen unless at least
of the estimates are inaccurate (which has a probability at most 0.1). Furthermore if the estimated
ℓ22-norm are accurate, the minimum ℓ22-norm of p(F ) and q(F ) are bounded by 90 · (2α/sf + 4/n)
implying the tester would work correctly with probability at least 0.9. Using the union bound, the
probability of outputting reject is bounded by 0.3.

Third and last, we show that if p is ϵ-far from q(F ), the probability of outputting accept is small. We
only output accept in Line 15. Similar to the second case we have discussed, as long as the ℓ22-norm
are accurate, the tester does not make a mistake with probability more than 0.1. Therefore, the overall
probability of making a mistake is bounded by 0.2.

Analysis of sample complexity: For the flattening step we have used ŝf ≤ 10sf . After flattening,
the new domain size is bounded from above by:

n∑
i=1

mi ≤
n∑

i=1

n · p̂i + fi + 1 = n+ ŝf + n ≤ 12n.

Using Fact F.1, estimation of ℓ22-norm requires O(
√
n) samples. Using Fact F.2, the number of

samples we use for the test in Line 15 is O(n · b/ϵ2) samples. Hence, the total sample complexity is:

# samples = O

(
sf +

√
n+

n · b
ϵ2

)
= O

(
sf +

√
n+

n ·
√
2α/sf + 4/n

ϵ2

)

= O

(√
n

ϵ2
+

n2/3 α1/3

ϵ4/3

)
.

In the last line we use that sf := min
(
n2/3α1/3/ϵ4/3, n

)
. Thus, the proof is complete.
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A Other related works

General property testing of distributions: Testing properties of distributions has been extensively
studied over the past few decades. Distribution testing under computational constraints has also been
explored in [37, 70]. Hypothesis testing (and hypothesis selection) have received significant interest
within the privacy community in machine learning [49, 21, 10, 4, 50, 72, 26, 27, 65]. Examples of
other distributional properties that have been examined include testing monotonicity [20, 22, 11],
testing histograms [24, 23], testing junta-ness [7, 32], and testing under structural properties [17, 58,
35, 44, 43].

Connections to tolerant testing: Tolerant testing asks us estimate the true TV distance between a
known distribution and another which we only have sample access to, up to a small additive error.
Readers familiar with strong lower bounds in tolerant testing (see e.g., [78, 77, 25] where it’s shown
that Ω(n/ log(n)) samples are needed in the case where the known distribution is uniform, compared
to only O(

√
n) samples needed for uniformity testing) might find our results surprising. It is incorrect

to conclude that our algorithm in Section B, i.e. the search component (which is adaptive to the
distance between p̂ and p), can perform tolerant testing between p and p̂. In reality, the algorithm
finds an α which allows the testing component to terminate (either with accept or reject). Thus,
while we know that the α found by our algorithm is never larger than ∥p− p̂∥TV, it could in fact be
much lower than ∥p− p̂∥TV, meaning the α found by the search algorithm is not a good estimate for
∥p− p̂∥TV.

Testable learning: Our framework bears some resemblance to testable learning as introduced
in [71]. In this framework, the focus is on designing learning algorithms that can check whether
the required underlying assumptions hold. If the assumptions do not hold, the algorithm may
forego solving the problem. However, if it chooses to solve the problem, it must do so accurately,
regardless of whether the assumptions hold. This is similar to our notion of testing with a suggested
accuracy level, where the algorithm can either forego solving the problem if the assumption does
not hold or solve it accurately regardless. Some examples of results in this framework are presented
in [53, 54, 41, 55, 62, 61].

Algorithms with predictions: Recently, there has been a burgeoning interesting in augmenting
classical algorithm design with learned information. Most relevant to us are works which study
learning-augmented algorithms under sublinear constraints, such as memory or sample complexity
[57, 59, 60, 33, 47, 48, 31, 64, 73, 2]. We refer to the interested reader to the website https:
//algorithms-with-predictions.github.io/ for an up-to-date collection of literature on
learning-augmented algorithms.

B Searching for the appropriate accuracy level

Early on, we defined the augmented tester for testing identity, uniformity, and closeness. We
generalize this concept for other properties of distributions. More formally, a property P is a set
of distributions, and we say a distribution has property P iff it is in P . The goal is to distinguish
whether an unknown distribution p is in P , or it is far from all distributions that have the property.
Similar to Definition 1.1, we define the notion of an augmented tester for P as follows:

Definition B.1. Suppose we are given three parameters, α ∈ [0, 1], ϵ ∈ (0, 1), δ ∈ (0, 1). Assume A
is an algorithm that receives all these parameters, and the description of a known distribution p̂ as
input, and it has sample access to an unknown underlying distribution p. We say algorithm A is an
(α, ϵ, δ)-augmented tester for property P for every p, q, and p̂ over [n]:

• If p̂ and p are α-close in total variation distance, the algorithm outputs inaccurate informa-
tion with a probability at most δ/2.

• If p ∈ P , then the algorithm outputs reject with a probability at most δ/2.

• If p is ϵ-far from every member of P , then the algorithm outputs accept with a probability at
most δ/2.
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With this definition in mind, suppose we have an augmented tester for a property P . Our goal is to
find an appropriate α such that the augmented tester solves the problem: it outputs accept or reject,
but also, it does not use too many samples. In this section, we introduce a search algorithm that
seeks to find this appropriate α. It is important to note that the α identified by our algorithm may not
necessarily match the true accuracy level of the prediction, i.e., ∥p− p̂∥TV. Instead, it corresponds to
the minimum number of samples that the augmented tester can solve the problem.

Our search algorithm runs in rounds, each set by a sample budget that increases as the process
progresses. In round i, the algorithm determines an appropriate value for αi and invokes the
augmented tester, namelyA, with this chosen αi. The value of αi is selected such that the augmented
tester operates within the sample budget allocated for that round. If the tester outputs accept or reject,
the search algorithm replicates this response. However, if the tester returns inaccurate information,
we double the sample budget and proceed to the next round. The pseudocode for this procedure is
provided in Algorithm 2. In the following theorem, we prove its performance.

Algorithm 2 An augmented property tester without knowledge of α

1: procedure AUGMENTED-TESTER-WITH-SEARCH(ϵ, δ′, description of function f, algorithm A)
2: smin ← minα∈[0,1] f(α, 1/3)
3: smax ← maxα∈[0,1] f(α, 1/3)

4: t←
⌈
log2

(
smax

smin

)⌉
5: δ ← δ′

t+1
6: for i = 0, 1, 2, . . . , t− 1 do
7: αi ← f−1

(
2i · smin

)
8: O ← the output of A with suggested accuracy level αi and confidence parameter δ
9: if O ∈ {accept, reject} then

10: return O.
11: Run the standard tester (without any prediction) with confidence parameter δ and return the

answer.

Theorem 6. Fix a parameter δ < 1/2. Suppose A is an (α, ϵ, δ)-augmented tester for property P
that receives a suggested accuracy level α and confidence parameter δ. Let f : [0, 1]× [0, 1]→ N be
a non-decreasing function for whichA uses f(α, δ)3 samples when it is invoked with parameter α and
aims for the confidence parameter δ. Algorithm 2 is a (ϵ, δ′)-augmented tester, without knowledge of
α, for property P where

δ′ := δ ·
(
1 +

⌈
log

(
maxα∈[0,1] f(α)

minα∈[0,1] f(α)

)⌉)
In addition, if α∗ is the true accuracy level, then Algorithm 2 uses O(f(α∗)) samples in expectation.

Proof. First, we define the notation we use in this proof. Let smin and smax represent the smallest
and largest sample sizes used by A, respectively. smin may be one or higher, and smax is the sample
size when the prediction did not make any improvements (the sample complexity of a standard
tester). Let t := log2 (smax/smin). The algorithms runs in t+ 1 rounds i ∈ {0, 1, . . . , t}. In round
i < t, our sample budget is 2i · smin. We run the algorithm with a parameter αi ensuring the sample
complexity of A remains at most 2i−1 · smin samples. In cases where multiple α values satisfy this
criterion, we select the largest. We use (abuse in fact) the inverse function notation, defining αi as
αi = f−1

(
2i · smin

)
. If A finds an answer (accept or reject), we return the answer; Otherwise, we

proceed to the next round. In round i = t, where we have smax ≈ 2i · smin samples, we run the
standard tester and return its answer.

Now, we focus on proof of correctness. Note that we (may) call A t times and the standard tester one
time. Each of these tester works with probability at least 1− δ. Thus, by the union bound, we can
assume that they return the correct answer with probability at least 1− δ′ where δ′ := δ/(t+ 1). As
we have noted in Definition 1.1, A is resilient to inaccuracies, implying that even if the suggested
accuracy level is not valid, if the tester does not output a false accept or reject with probability more
than δ/2. The same statement is correct for the standard tester. Now, our algorithm here replicates the

3Here, we omit the dependence to other non-varying parameters such as ϵ and n.
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output that is produced by one of the testers. Thus, if they all of them outputs the correct answer, our
algorithm outputs the correct answer as well. And, this event happens with probability at least 1− δ′.

Next, we focus on the analysis of the sample complexity of this algorithm. Let α∗ be the true
prediction accuracy, and let i∗ be the first round where αi ≥ α∗. Recall that we assume that αi is
the largest α such that f(αi) ≤ 2i · smin. In addition, we assume that f is non-decreasing. Thus, we
have4:

2i
∗−1 · smin < f(α∗) ≤ f(αi∗) ≤ 2i

∗
· smin

If the algorithm ends at round i, we have used the following number of samples:

# samples for the first i rounds ≤
i∑

j=0

2j · smin ≤ 2i+1 · smin

≤ 2i−i∗+2 ·
(
2i

∗−1 · smin

)
≤ 2i−i∗+2 · f(α∗) .

(4)

On the other hand, the probability that algorithms end at round i > i∗ cannot be too high. If the
algorithm ends at round i or later, it means that A in rounds i∗, i∗ + 1, . . . , i− 1 must have returned
inaccurate information. However, given our assumption, the true accuracy is not worse than αi,
which makes outputting inaccurate information wrong. And, this event does not happen in each
round with probability more than δ/2 for each round independently. Let Iend indicate a random
variable that indicates the index of the round for which the algorithms ends. Thus, we have for every
i ≥ i∗:

Pr[[[Iend ≥ i]]] ≤
(
δ

2

)i−i∗

. (5)

Now, we are ready to bound the expected value of the number of samples we use. Let S denote the
number of samples we use. Then, we have:

E[[[S ]]] =

t∑
i=0

E[[[S | Iend = i]]] ·Pr[[[Iend = i]]]

≤ 4 f(α∗) ·
t∑

i=0

2i−i∗ ·Pr[[[Iend = i]]] (by Eq. (4))

≤ 4 f(α∗) ·

 i∗∑
i=0

Pr[[[Iend = i]]] +

t∑
i=i∗+1

1 +

i−i∗−1∑
j=0

2j

 ·Pr[[[Iend = i]]]


= 4 f(α∗) ·

 t∑
i=0

Pr[[[Iend = i]]] +

t∑
i=i∗+1

i−i∗−1∑
j=0

2j ·Pr[[[Iend = i]]]



4Without loss of generality assume, f(α−1) = 0.
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Next, we write the second sum in terms of a new variable k := i− i∗ − 1. Then, we swap the order
of the summations on k and j:

E[[[S ]]] ≤ 4 f(α∗) ·

1 +

t−i∗−1∑
k=0

k∑
j=0

2j ·Pr[[[Iend = k + i∗ + 1]]]


≤ 4 f(α∗) ·

1 +

t−i∗−1∑
j=0

2j ·

t−i∗−1∑
k=j

Pr[[[Iend = k + i∗ + 1]]]


≤ 4 f(α∗) ·

1 +

t−i∗−1∑
j=0

2j ·Pr[[[Iend ≥ j + i∗ + 1]]]


≤ 4 f(α∗) ·

1 +

t−i∗−1∑
j=0

2j ·
(
δ

2

)j+1
 (by Eq. (5))

≤ 6f(α∗) . (assuming δ < 1/2)

C Identity and uniformity testing

In this section, we focus on the problem of identity testing, which involves testing the equality
between a known distribution q and an unknown distribution p. Specifically, our goal is to determine
whether p = q or if they are ϵ-far from each other. In an augmented setting, we are provided with
another known distribution p̂, predicted to represent p, along with a suggested level of accuracy α.
Surprisingly, our findings indicate that the sample complexity for this problem is influenced by a
new parameter: the total variation distance between q and p̂, denoted by d. In particular, we have the
following theorem:
Theorem 7. Fix two arbitrary parameters ϵ ∈ (0, 1] and α ∈ [0, 1]. Algorithm 3 is an (α, ϵ, δ = 0.1)-
augmented tester for identity that uses the following number of samples s, where:

s =


O
(√

n
ϵ2

)
if d ≤ α

O
(
min

(
1

(d−α)2 ,
√
n

ϵ2

))
if d > α

,

and d refers to ∥q − p̂∥TV. For any α ∈ [0, 1], and ϵ ∈ [0, 1/2], we show the same number of samples
is necessary for any (α, ϵ, δ = 2/3)-augmented identity tester. In fact, the lower bound holds even
when q is a uniform distribution over [n].

The proof of this theorem follows from Proposition C.1, Proposition C.2, and Proposition C.3.
Remark 8. A particular instance of this problem is uniformity testing, where q is a uniform distri-
bution over [n]. In Theorem 7, our upper bound applies to any arbitrary q. Furthermore, our tight
lower bound is based on a hard instance, where q is a uniform distribution. These results establish
optimal upper and lower bounds for both identity testing and uniformity testing simultaneously.

C.1 Upper bound for identity testing

Our upper bound relies on a fundamental observation regarding the total variation distance: this
distance is the maximum discrepancy between the probability masses that two distributions assign to
any subset of their domain. Demonstrating a small total variation distance between two distributions
entails proving that the discrepancy across every domain subset is minimal. In contrast, to prove a
large total variation distance, one only needs to identify a single subset with a significant discrepancy.
We employ the Scheffé set of p̂ and q—defined as the set of elements x ∈ [n] where p̂(x) < q(x),
denoted by S—to serve as a witness for the farness of p from either q or p̂. It is known that S
maximizing the discrepancy between the probability masses of p̂ and q, implying:

d := ∥q − p̂∥TV = |q(S)− p̂(S)| .
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In scenarios where the distance d > α, accurately estimating the probability of S according to p with
an accuracy of (d − α)/4 provides a basis for distinguishing the farness from either q or p̂. If the
probability masses assigned to S by q and p differ by more than (d− α)/4, it clearly indicates that
p is not identical to q, leading to outputting reject. Conversely, if the estimated probability of p(S)
is close to q(S), then the discrepancy between p(S) and p̂(S) must exceed α, leading to outputting
inaccurate information. The pseudocode of our algorithm presented in Algorithm 3. We prove the
performance of our algorithm in the following proposition:
Proposition C.1. Fix two arbitrary parameters ϵ ∈ (0, 1] and α ∈ [0, 1]. Algorithm 3 is an
(α, ϵ, δ = 0.1)-augmented tester for identity that uses the following number of samples s, where:

s =


O
(√

n
ϵ2

)
if d ≤ α

O
(
min

(
1

(d−α)2 ,
√
n

ϵ2

))
if d > α

,

and d refers to ∥q − p̂∥TV.

Algorithm 3 An augmented tester for testing identity of p and q with a suggested value α

1: procedure AUGMENTED-IDENTITY-TESTER(n, α, ϵ, δ = 0.1, q, p̂, sample access to p)
2: d← ∥q − p̂∥TV

3: if d ≤ α or 1
(d−α)2 >

√
n

ϵ2 then
4: return the standard testers answer.
5: S ← Scheffé set of p̂ and q ▷ x ∈ [n] is in the Scheffé set S iff p̂(x) < q(x).
6: Draw m = O

(
1

(d−α)2

)
samples from p

7: σ ← fraction of samples that are in S
8: if |Un(S)− σ| > d−α

4 then
9: return reject.

10: else
11: return inaccurate information.

Proof. The proof of theorem is trivial in the setting where d ≤ α and 1
(d−α)2 >

√
n

ϵ2 . In these cases,
we use the standard tester for identity testing (e.g., [76, 30, 5]) with δ′ = δ/2 = 0.05. Clearly, a
wrong answer was produced with probability less than δ/2. It is known that these tester only use
O(
√
n/ϵ2) samples.

Now, suppose d > α. Simple application of Chernoff’s bound shows that one can estimate the
probability of the Scheffé set of q and p̂, S, up to error (d− α)/4 with probability 1− 0.95 using
O(1/(d− α)2) samples. We refer to this estimate as σ, and we have with probability 0.95:

|σ − p(S)| ≤ d− α

4
. (6)

Note that if p = q, then

|σ − q(S)| = |σ − p(S)| ≤ d− α

4
.

Hence, we do not output reject with probability more than 0.05 = δ/2. On the other hand, assume
∥p̂− p∥TV ≤ α, then we show it is unlikely for us to output inaccurate information.

α ≥ ∥p̂− p∥TV ≥ |p(S)− p̂(S)|
≥ |p̂(S)− q(S)| − |p(S)− q(S)| (by triangle inequality)
≥ ∥q − p̂∥TV − |p(S)− q(S)| = d− |p(S)− q(S)| (by definition of Scheffé set)

≥ d− |σ − p(S)| − |σ − q(S)| ≥ d− d− α

4
− |σ − q(S)| .

(by triangle inequality and Eq. (6))

Therefore, we obtain that with probability 0.95:

|σ − q(S)| ≥ 3 (d− α)

4
.
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Hence, we do not output inaccurate information with probability more than 0.05 = δ/2. Hence,
Algorithm 3 is an (α, ϵ, δ = 0.1)-agumented tester for identity. The sample complexity of the
algorithm, in the case where α < d and 1

(d−α)2 ≤
√
n

ϵ2 is O(1/(d − α)2). Thus, the proof is
complete.

C.2 Lower bound for uniformity testing when α ≥ dα ≥ dα ≥ d

In this section, we focus on the case where α ≥ d. We observed for this problem the number of
samples depends on an additional parameter: the distance between q and p̂. If this distance is at most
α then prediction does not help the algorithm. The algorithm would still be required to draw Ω(n/ϵ2)
samples (which is the sufficient amount of sample for the standard case). Our proof is based on a
reduction from standard identity testing to the augmented version of this problem which establishes
the desired lower bound.

Proposition C.2. Suppose we are given two known distributions q and p̂, and an unknown distribution
p over [n]. Let d := ∥q − p̂∥TV. For any α in [0, 1], if α ≥ d, then any (α, ϵ, δ = 2/3)-augmented
tester requires Ω(

√
n/ϵ2) samples.

Proof. We prove that standard identity testing can be reduced to augmented version of this problem
if α ≥ d. For the standard tester, we are given a known distribution q and an unknown distribution
p. Let p̂ be any arbitrary distribution that is in distance d from q. Consider A as an (α, ϵ, δ = 2/3)-
augmented tester. The procedure for the standard tester is straightforward: Run A on p, p̂, and q. If it
returns accept, we also return accept; if it returns reject or inaccurate information, we return reject.

q

d

p̂

α

ϵ
accept

reject

reject
inaccurate information

Figure 2: A diagram indicating the valid answer for the augmented tester A based on the total
variation distances of p from q and p̂ assuming d ≤ α. The standard tester requires to output accept
if p = q, the green dot, and reject if ∥p − q∥TV ≥ ϵ, the red shaded region, with high probability.
In addition, the augmented tester may output inaccurate information for when ∥p− q∥TV ≥ ϵ and
∥p− p̂∥TV ≥ α.

We show that the augmented tester distinguishes between the cases where p = q and ∥p− q∥TV > ϵ.
See Figure 2. More precisely, Note that if p = q, then p is within α distance of p̂. Thus, the only
valid answer of A in this case is accept. In this case, according to Definition 1.1, A returns reject
and inaccurate information each with a probability of at most δ/2 = 1/6. Therefore, by the union
bound, we return accept with a probability of at least 2/3. When p and q are ϵ-far from each other, A
returns accept with a probability of at most δ/2 = 1/6. Consequently, we output the correct answer
with a probability greater than 2/3.

This reduction indicates that A must use at least as many samples as required for identity testing.
Considering the existing lower bound for uniformity testing (where q is a uniform distribution over
[n]), augmented identity testing necessitates O(

√
n/ϵ2) samples [69].
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C.3 Lower bound for uniformity testing when α < dα < dα < d

In this section, we consider the lower bound for the uniformity testing problem in the setting where
α < d. On the other hand, if d− α is not too small, the required lower bound is only Ω(1/(d− α)2).
Otherwise, Ω(

√
n/ϵ2) samples is needed (as it is required for the standard tester).

At a high level, our proof consists of the following steps. First, we construct three distributions that
look similar when we draw too few samples. We formalize the similarity of these three distributions
using a multivariate coupling argument. Next, we describe valid answers for each of the distributions.
The main message of this part is that there is no possible answer that is valid for all three distributions.
Now, (similar to Le Cam’s method), suppose we feed the algorithm with samples from one of these
three distributions (each with probability 1/3). For any sample set, the algorithm outputs an answer
(which may be randomized), however, this answer is considered as wrong for at least one of the
underlying distributions. This is due to the fact that there is no universally valid answer that is
simultaneously correct for all three distributions. Hence, if the algorithm outputs a valid answer with
high probability, it must be able to distinguish the underlying distributions to some degree. On the
other hand, the indistinguishably result says, it is impossible to tell these distributions apart. Thus,
we reach a contradiction. And, the lower bound is concluded. More formally, we have the following
proposition:
Proposition C.3. Suppose we are given two known distributions q and p̂, and an unknown distribution
p over [n]. Let d := ∥q − p̂∥TV. For any α ∈ [0, 1], ϵ ∈ [0, 1/2], and d ∈ [0, 1/2], if d > α any
(α, ϵ, δ = 2/3)-augmented algorithm for testing identity of p and q with prediction p̂ requires

s = Ω
(
min

(
1

(d−α)2 ,
√
n

ϵ2

))
samples.

Proof. Without loss of generality, assume d − α ≤ 0.4. Otherwise, we are required to establish a
lower bound of Ω(1), which is necessary for any non-trivial testing problem.5 As we have discussed
it early, we prove this proposition in the following steps:

Construction of distributions: We assume q = Un is a uniform distribution over [n]. Without loss
of generality assume n is even. Otherwise, we can set the probability of one of the elements in all the
distributions to zero. We define the prediction distribution as follows for every i ∈ [n]:

p̂i :=


1 + 2d

n
i is even;

1− 2d

n
i is odd.

It is not hard to assert that ∥p̂− Un∥TV is d satisfying the assumption we had in the statement of the
proposition. Next, we construct two distributions p• and p⋄.

Suppose we have a random vector Z in {−1,+1}n/2 where each coordinate Zi is one with probability
1/2 independently. Now, we define the following distributions over [n]:

p•i :=


1 + 2Zi/2 · ϵ

n
i is even;

1− 2Z(i+1)/2 · ϵ
n

i is odd.
(7)

p⋄i :=


1 + 2 (d− α)

n
i is even;

1− 2 (d− α)

n
i is odd.

(8)

It is not hard to see that the probabilities of each distributions sum up to one by observing the
probability of two consecutive elements is 2/n.

5As long as the problem does not have a pre-determined answer that works for all distributions, one must
draw at least one sample.
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Indistinguishably of the distributions Fix the number of samples s, and let S|p denote a random
variable that is a sample set of size s drawn from p. We show that S|Un

, S|p⋄ , and S|p• are three
random variables with small total variation distances between each pair. These distances are so small
that it is practically impossible for the algorithm to tell them apart. We formalized this by providing a
multivariate coupling between these random variables. We extend Le Cam’s method for three random
variables, and show that no algorithm with low error probability exists unless s is large, establishing
the desired lower bound for the problem.

Lemma C.4. Suppose we are given the following parameters ϵ, d, α, n, and s. Assume d− α ≤ 0.4.
Let Un denote the uniform distribution over [n], and let p• and p⋄ be the distributions defined in
Equation (7) and Equation (8). Let S|Un

, S|p⋄ , and S|p• be three random variables that are sample

sets of size s from each of these distributions. If s ≤ min
(

0.00005
(d−α)2 ,

0.004
√
n

ϵ2

)
, then there exists a

distribution over triples of three sample sets of size s (that is ([n]s)3), which we call a multivariate
coupling C, between S|Un

, S|p⋄ , and S|p• such that:

• The marginals of C correspond to the three probability distributions U⊗s
n , p•⊗s, and p⋄⊗s.

More precisely, for a sample (S1, S2, S3) drawn from C, and every S ∈ [n]s, we have:

Pr(S1,S2,S3)∼C[[[S1 = S ]]] = PrS|Un∼U⊗s
n

[[[
S|Un

= S
]]]
,

Pr(S1,S2,S3)∼C[[[S2 = S ]]] = PrS|p•∼p•⊗s

[[[
S|p• = S

]]]
,

Pr(S1,S2,S3)∼C[[[S3 = S ]]] = PrS|p⋄∼p⋄⊗s

[[[
S|p⋄ = S

]]]
.

• Pr(S1,S2,S3)∼C[[[S1 = S2 = S3 ]]] ≥ 0.98.

For the proof, see Section C.3.1. This lemma states that when the number of samples is too small, the
sample sets looks very similar in all three cases: p = Un, p = p•, and p = p⋄.

q = Un

d

p̂

α

ϵ

p⋄

p•

cannot output
inaccurate information

cannot output accept

cannot output reject

Figure 3: A diagram indicating the invalid answer for the three distributions Un, p•, and p⋄.

Valid answers for each distributions: We focus on the valid output of the algorithm in these three
cases using the Definition 1.1. According to this definition, we have:

• If p = q, then reject is not a valid answer.

• If ∥p− q∥TV > ϵ, then accept is not a valid answer.

• If ∥p− p̂∥TV ≤ α then inaccurate information is not considered as a valid answer.
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We denote the set of valid output for each case by V|p. An accurate augmented tester with confidence
parameter δ, has to output an answer in V|p with probability at least 1− δ.

1. p = Unp = Unp = Un : In this case we have p = q = Un. Clearly, in this case, reject is not a valid answer:

reject ̸∈ V|Un
.

2. p = p•p = p•p = p• : The total variation distance between q = Un and p• is ϵ > ϵ. Thus, accept is not
considered a valid output:

accept ̸∈ V|p• .

3. p = p⋄p = p⋄p = p⋄ : It is not hard to see that ∥p⋄ − p̂∥TV = α. Thus, inaccurate information is not a
valid answer:

inaccurate information ̸∈ V|p⋄ .

The diagram of the invalid outputs is shown in Figure 3 for an instance of these distributions. Let us
explain what these valid sets are implying. The intersection of the three valid sets is empty, because
among all possible outputs each set lacks at least one of them :

V|Un
∩ V|p• ∩ V|p⋄ = ∅ .

Therefore, there is no possible output that is considered valid on all the three distributions6. And,
since these distributions are indistinguishable with high probability, no algorithm should perform
well under all three possibilities.

Deriving a contradiction. Our proof is via contradiction. Suppose there exists an (α, ϵ, δ)-
augmented tester, called A, for uniformity testing that uses s samples.

3 · (1− δ) ≤ PrS|Un∼Un

[[[
A(S|Un

) ∈ V|Un

]]]
+PrS|p•∼p•

[[[
A(S|p•) ∈ V|p•

]]]
+PrS|p⋄∼p⋄

[[[
A(S|p⋄) ∈ V|p⋄

]]]
Let I represent the internal coin tosses of the algorithm. Since the probability of A outputting an
invalid answer is bounded by δ, we have:

δ ≥ PrI, S|Un∼U⊗s
n

[[[
A(S|Un

) ̸∈ V|Un

]]]
= ES|Un∼U⊗s

n

[[[
PrI

[[[
A(S|Un

) ̸∈ V|Un

]]]]]]
= ES|Un∼U⊗s

n

[[[
PrI

[[[
A(S|Un

) = reject
]]]]]]

= E(S1,S2,S3)∼C[[[PrI[[[A(S1) = reject]]]]]]

≥ E(S1,S2,S3)∼C[[[PrI[[[A(S1) = reject]]] | S1 = S2 = S3 ]]] ·Pr(S1,S2,S3)∼C[[[S1 = S2 = S3 ]]] .
(by law of total expectation)

We can write the above equation for p• and p⋄ and sum of them up. Thus, we obtain:

δ ≥ 1

3
·Pr(S1,S2,S3)∼C[[[S1 = S2 = S3 ]]] ·E(S1,S2,S3)∼C[[[PrI[[[A(S1) = reject]]] +PrI[[[A(S2) = accept]]]

+PrI[[[A(S3) = inaccurate information]]] | S1 = S2 = S3 ]]]

=
1

3
·Pr(S1,S2,S3)∼C[[[S1 = S2 = S3 ]]] .

For the last line above, note that when S1 = S2 = S3, the terms inside the expectations are the sum
of probabilities of all possible outputs for A. Hence, the sum of these probabilities is one.

Recall that earlier, we assumed that δ = 0.3, and using the properties of the coupling, we know that
S1 = S2 = S3 with probability at least 0.98. Thus, we get:

0.3 = δ ≥ 1

3
·Pr(S1,S2,S3)∼C[[[S1 = S2 = S3 ]]] ≥

0.98

3
> 0.32 .

Hence, we reach a contradiction. Thus, no such algorithm like A exists.
6It is worth noting that a pair of valid sets may have some overlap. That is, the algorithm can output an

answer that is correct for both of the distributions. In other words, technically the algorithm does not have to
distinguish any pair of these distributions as long as there is a valid answer which works for both of them.
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C.3.1 Multivariate coupling between the three hard distributions

In this section, we prove the lemma on coupling that we used to prove our lower bound. This
lemma implies indistinguishability between S|Un

, S|p• , and S|p⋄ . For a definition and some basics on
coupling, see Section F.3.
Lemma C.4. Suppose we are given the following parameters ϵ, d, α, n, and s. Assume d− α ≤ 0.4.
Let Un denote the uniform distribution over [n], and let p• and p⋄ be the distributions defined in
Equation (7) and Equation (8). Let S|Un

, S|p⋄ , and S|p• be three random variables that are sample

sets of size s from each of these distributions. If s ≤ min
(

0.00005
(d−α)2 ,

0.004
√
n

ϵ2

)
, then there exists a

distribution over triples of three sample sets of size s (that is ([n]s)3), which we call a multivariate
coupling C, between S|Un

, S|p⋄ , and S|p• such that:

• The marginals of C correspond to the three probability distributions U⊗s
n , p•⊗s, and p⋄⊗s.

More precisely, for a sample (S1, S2, S3) drawn from C, and every S ∈ [n]s, we have:

Pr(S1,S2,S3)∼C[[[S1 = S ]]] = PrS|Un∼U⊗s
n

[[[
S|Un

= S
]]]
,

Pr(S1,S2,S3)∼C[[[S2 = S ]]] = PrS|p•∼p•⊗s

[[[
S|p• = S

]]]
,

Pr(S1,S2,S3)∼C[[[S3 = S ]]] = PrS|p⋄∼p⋄⊗s

[[[
S|p⋄ = S

]]]
.

• Pr(S1,S2,S3)∼C[[[S1 = S2 = S3 ]]] ≥ 0.98.

Proof. We start by bounding the total variation distance between two pairs of distributions: ∥U⊗s
n −

p•⊗s∥TV, and ∥U⊗s
n − p⋄⊗s∥TV.

In [69], the author has shown that the total variation distance between S|Un
and S|p• is bounded by:

∥U⊗s
n − p•⊗s∥TV ≤

√
exp

(
s2·(2 ϵ)4

n

)
− 1

2
≤ 0.01 . (9)

The last inequality above comes from our assumption that s ≤ 0.004
√
n

ϵ2 .

Next, we focus on the total variation distance between S|p⋄ and S|Un
. Note that p⋄ is a distribution

that has some bias towards the even elements, but it is uniform on both sets of odd and even elements.
Therefore, to bound the total variation distance between U⊗s

n and p⋄⊗s, we use a similar argument for
showing a lower bound of Ω(1/∆)2 to distinguish whether a coin is fair or it has a bias of (1 +∆)/2.
Below is our formal argument.

It is not hard to see that one can use the following process to generate a sample from p⋄. First, we
draw a sample X ∼ Ber(1/2 + (d− α)) from the Bernoulli distribution with a success probability
1/2 + (d− α). If X = 1, we pick an even element (uniformly); Otherwise, we pick an odd element.
Similarly, we can draw samples from a uniform distribution as follows: draw X ′ ∼ Ber(1/2) from
the Bernoulli distribution with a success probability 1/2. If X ′ = 1, we pick an even element
(uniformly); Otherwise, we pick an odd element. One can view this process of generating a sample
in [n] from a binary variable (X or X ′) as a channel. The data processing inequality says that the
distance (more precisely any f -divergences) between two random variables does not increases after
they pass through a channel. Hence, we use this fact and bound the total variation distance between
p⋄⊗s and U⊗s

n :

∥U⊗s
n − p⋄⊗s∥TV ≤

√
1

2
·KL

(
U⊗s
n ∥p⋄⊗s

)
(by Pinsker’s inequality)

≤
√

s

2
·KL (Un∥p⋄) (since samples are drawn i.i.d.)

≤
√

s

2
·KL (Ber(1/2)∥Ber(1/2 + (d− α))) .

(by data processing inequality)

≤
√
2 s · (d− α) (when 2 (d− α) ≤ 0.8)
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Since we had this assumption where s is at most 0.00005
(d−α)2 , we get.

∥U⊗s
n − p⋄⊗s∥TV ≤

√
2 s · (d− α) ≤ 0.01 (10)

So far, we have shown that ∥U⊗s
n − p•⊗s∥TV and ∥U⊗s

n − p⋄⊗s∥TV are at most 0.01. Using the
coupling lemma (See Fact F.3), there exist two maximal couplings C• and C⋄ between the following
pairs of distributions: (U⊗s

n , p•⊗s) and (U⊗s
n , p⋄⊗s). The properties of these maximal couplings

are:

• The marginals of the couplings are equal to the two pairs of probability distributions. That
is:

C•1 = U⊗s
n , and C•2 = p•⊗s ,

C⋄1 = U⊗s
n , and C⋄2 = p⋄⊗s .

• Pr(S1,S2)∼C•[[[S1 = S2 ]]] ≥ 0.99, and Pr(S1,S2)∼C⋄[[[S1 = S2 ]]] ≥ 0.99.

For every S ∈ [n]m, let C⋄2|S be a probability distribution over [n]m. The probability of S′ according
to C⋄2|S is:

C⋄2|S(S
′) := Pr(S1,S2)∼C⋄[[[S2 = S′|S1 = S ]]] .

With these definitions in mind, we create our multivariate coupling C by essentially joining the two
couplings C• and C⋄. The following randomized procedure produces a random sample (S1, S2, S3)
from C:

1. Let (S1, S2) be a sample from C•.

2. Let S3 be a sample from C⋄2|S1
.

3. Output (S1, S2, S3) as a sample from C.

Given the definition of C•, it is clear that the first two marginals of C are exactly U⊗s
n and p•⊗s. To

see that the third marginal of C is equal to p⋄, we have the following for every S′ ∈ [n]m:

Pr[[[S3 = S′ ]]] =
∑

S1∈[n]m

Pr(S′
1,S

′
2)∼C•[[[S′

1 = S1 ]]] · C⋄
2|S1

(S′)

=
∑

S1∈[n]m

Pr(S′
1,S

′
2)∼C•[[[S′

1 = S1 ]]] ·Pr(S′′
1 ,S′′

2 )∼C⋄[[[S′′
2 = S′|S′′

1 = S1 ]]]

=
∑

S1∈[n]m

Pr(S′
1,S

′
2)∼C⋄[[[S′

1 = S1 ]]] ·Pr(S′′
1 ,S′′

2 )∼C⋄[[[S′′
2 = S′|S′′

1 = S1 ]]]

=
∑

S1∈[n]m

C⋄(S1, S
′) = C⋄2 = p⋄(S′) .

Now, we show that S1, S2, and S3 are equal with high probability. This stems from the fact that C•
and C⋄ were maximal couplings, and with high probability, the pairs drawn from them are equal.
More formally, via the union bound, we have:

Pr(S1,S2,S3)∼C[[[S1, S2, S3 ]]] ≥ 1−Pr(S1,S2,S3)∼C[[[S1 ̸= S2 ]]]−Pr(S1,S2,S3)∼C[[[S1 ̸= S3 ]]]

= Pr(S1,S2,S3)∼C[[[S1 = S3 ]]]−Pr(S1,S2)∼C•[[[S1 ̸= S2 ]]]

=
∑

S∈[n]m

Pr(S1,S2,S3)∼C[[[S1 = S and S3 = S ]]]−Pr(S1,S2)∼C•[[[S1 ̸= S2 ]]]

=
∑

S∈[n]m

C⋄(S, S)−Pr(S1,S2)∼C•[[[S1 ̸= S2 ]]]

(With a similar argument as above)
= Pr(S1,S2)∼C⋄[[[S1 = S2 ]]]−Pr(S1,S2)∼C•[[[S1 ̸= S2 ]]]

≥ 0.99− (1− 0.99) = 0.98 . (by Eq. 9 and Eq. 10)
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Hence, the proof is complete.

D Augmented closeness testing

In this section, we focus on the problem of closeness testing in the augmented setting. More formally,
we have the following theorem.

Theorem 9. For every α and ϵ in (0, 1), there exists an algorithm for augmented closeness testing

that uses Θ
(

n2/3α1/3

ϵ4/3
+

√
n

ϵ2

)
samples and succeeds with probability at least 2/3. In addition, any

algorithm for this task is required to use Ω
(

n2/3α1/3

ϵ4/3
+

√
n

ϵ2

)
samples.

For the proof of the upper bound see section 3. And, for the proof of lower bound see section D.1.

D.1 Lower bound for closeness testing

In this section, we prove a lower bound for augmented closeness testing where a known distribution
p̂ is provided satisfying ∥p− p̂∥TV = α. We have the following theorem.

Theorem 10. Suppose we are given α and ϵ in (0, 1). Any (α, ϵ, δ := 11/24)-augmented tester for

closeness testing of distributions over [n] uses Ω
(

n2/3α1/3

ϵ4/3
+

√
n

ϵ2

)
samples. The lower bound holds

even when α is provided to the algorithm.

Proof. The Ω(
√
n/ϵ2) term comes from the existing lower bound for uniformity testing since we can

reduce uniformity testing to augmented closeness testing as follows: Suppose we wish to test whether
a distribution q over [n] is uniform or ϵ-far from uniform. Suppose A is an (α, ϵ, 11/24)-augmented
closeness tester. Set p to be the uniform distribution over [n]. Let p̂ be any distribution that is α-far
from uniform. For instance, p̂ can be a distribution that is (1 + α)/n on half of the elements and
(1− α)/n on the other half. Since A is an augmented tester, it can be used to distinguish whether
p = q or ∥p− q∥TV > ϵ with probability 11/24.

Upon receiving p̂ and samples from p and q, if A returns inaccurate information or reject, we
output reject; otherwise, we output accept. Given Definition 1.1, if q is uniform, we will not output
inaccurate information or reject with probability more than 11/24. And, if q is ϵ-far from the
uniform distribution (equivalently p), we will not output accept with probability more than 11/48.
Hence, we have a tester with confidence parameter 11/48 for uniformity testing. Thus, s must be
Ω(
√
n/ϵ2), which is the number of samples required for uniformity testing [69].

To prove the lower bound of Ω
(
n2/3α1/3/ϵ4/3

)
samples, we only need to focus on the case where

α ≥ (
√
nϵ2)−1. Otherwise, n2/3α1/3/ϵ4/3 = O(

√
n/ϵ2), making the lower bound trivial due to the

Ω(
√
n/ϵ2) lower bound shown earlier. We consider the following cases depending on ϵ:

Case 1: ϵ ≤ (
√
nϵ2)−1. Therefore, in this case, the interesting regime of parameter for α is that

α ≥ ϵ. We prove the lower bound for this case in Theorem 11 in Section D.1.1.

Case 2: ϵ > (
√
nϵ2)−1. In this case, in addition to considering the case where α ≥ ϵ, we also need

to study the case where α is in
(
(
√
nϵ2)−1, ϵ

)
. We prove the lower bound for this case in

Theorem 12 in Section D.1.2.

This completes the proof.

D.1.1 Lower bound for α ≥ ϵ

Below, we provide a lower bound for augmented closeness testing when α ≥ ϵ. At a high level,
Theorem 11 achieves this lower bound by creating a challenging instance. This involves embedding
the difficult instances of the standard closeness testing problem into another distribution, spanning a
domain of [n− 1] elements, while concentrating the majority of the distribution’s mass on the last
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element. The prediction, being a singleton distribution centered on the last element, does not facilitate
solving the standard closeness testing problem, which is embedded within the first [n− 1] elements.

Theorem 11. Suppose we are given α and ϵ in (0, 1). Assume we have two unknown distributions
p and q and a known distribution p̂ over the domain [n]. If α ≥ ϵ, then any (α, ϵ, δ := 11/24)-
augmented tester for testing closeness of p and q requires the following number of samples:

s = Ω

(
n2/3 α1/3

ϵ4/3
+

√
nα

ϵ2

)
.

Proof. Our proof is based on a reduction from standard closeness testing to augmented closeness
testing. Assume there exists an algorithm, A, that upon receiving p̂ and s samples from p and q, can
distinguish whether p = q or ∥p− q∥TV ≥ ϵ with probability 11/24. We show that this algorithm can
then be used to test closeness of two distributions, p̃ and q̃ over [n − 1] with proximity parameter
ϵ′ := ϵ/α.

Suppose we have sample access to p̃ and q̃. We construct p and q based on p̃ and q̃ as follows:

pi = α · p̃i ∀i ∈ [n− 1] , pn = 1− α ,

qi = α · q̃i ∀i ∈ [n− 1] , qn = 1− α .

Note that given a sample from p̃ (respectively q̃), we can generate a sample from p (respectively q) by
outputting that sample with probability α and n otherwise. Also, if p̃ is equal to q̃, then p and q are
equal. And, if ∥p̃− q̃∥TV ≥ ϵ′, then ∥p− q∥TV ≥ ϵ due to the following:

∥p− q∥TV =
1

2

∑
i∈[n−1]

|pi − qi| =
α

2

∑
i∈[n−1]

|p̃i − q̃i| = α · ∥p̃− q̃∥TV.

Let p̂ be the singleton distribution on n (i.e., p̂n = 1). In this case, ∥p− p̂∥TV equals α. We feed A
with p̂ and samples from p and q. Now, if A outputs p = q, we declare p̃ = q̃. Otherwise, we declare
p̃ is ϵ′-far from q̃. Given our construction, this answer is true with probability 11/24.

Note that in this process, in expectation, we draw αs samples from p̃ and q̃. Thus, using Markov’s
inequality, the probability of drawing more than 100α s samples from each of p̃ and q̃ is at most
0.01. Hence, using A, there exists an algorithm for testing closeness of p̃ and q̃ with probability
1− (11/24 + 0.01) > 0.53 that uses 100α s samples from p̃ and q̃. Using the existing lower bound
for the closeness testing problem (see Theorem 4 in [69] and Proposition 4.1 in [30]), we have:

100α s = Ω

(
n2/3

ϵ′4/3
+

√
n

ϵ′2

)
= Ω

(
n2/3 α4/3

ϵ4/3
+

√
nα2

ϵ2

)
.

Thus, by dividing by 100α, we get the following bound as desired:

s = Ω

(
n2/3 α1/3

ϵ4/3
+

√
nα

ϵ2

)
.

D.1.2 Lower bound for α in
(
c · (
√
nϵ2)−1, ϵ

)
We extend the existing lower bound for closeness testing to the augmented setting. In the standard
setting, the lower bound for closeness testing is derived from the hard instances for uniformity testing
with one key adjustment: introducing elements with large probability (≈ n−2/3) in the distributions.
These large elements share identical probability masses in both p and q, indicating that they do not
contribute to the distance between the two distributions. However, their presence in the sample set
confuses the algorithm: Because of their large probabilities, their behaviour in the sample set may be
deceivingly hint “not uniform”, making it difficult for the algorithm to decide whether the rest of the
distributions are uniform or not. Therefore, the algorithm needs s ≈ n2/3 samples to first identify
these large elements, and then it can test the uniformity on the rest of the distributions. The surprising
part about this result is that s ≈ n2/3 is much larger than the

√
n samples which suffice for testing

uniformity.
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The challenge in our case is that p̂ may give away the large elements to the algorithm. Hence, to prove
the lower bound, we create hard instances by adding as many large elements as possible, without
changing p̂ by limiting the overall probability mass of the large elements to α.

Here is our instance: we assume p̂ is the uniform distribution; p assigns ≈ (1 − α)/n probability
mass to O(n) elements chosen at random, and assigns ≈ n−2/3 probability mass to α · n2/3 many
elements in the domain. Now, q has two options. Half the time, q is equal to p. The other half, q
shares the same large elements, but it is not quite uniform on the rest of the distributions. In particular,
q assigns probabilities (1 ± Θ(ϵ))(1 − α)/n. to the chosen O(n) elements randomly, making it
ϵ-far from p.7 Using this construction, we use a result of Valiant [78] to show that these two cases
are indistinguishable unless we draw Ω(n2/3α1/3) samples. More precisely, we have the following
theorem:

Theorem 12. Suppose we are given the following parameters: a positive integer n, ϵ ∈ (0, 1/6),
and α ∈

(
(
√
nϵ2)−1, ϵ

)
(with this implicit assumption that (

√
nϵ2)−1 is less than ϵ). There exists a

distribution p̂ and a family of pairs of distribution p and q such that any augmented algorithm for
closeness testing must use

Ω

(
n2/3 α1/3

ϵ4/3

)
samples.

Proof. Let k be an integer that is at most

k ≤ ck

(
n2/3 α1/3

ϵ4/3

)
(11)

for a sufficiently small absolute constant ck which we determine later. Assume we have k samples
from p and q that are available to the algorithm. We show that there are two (families of) distribu-
tions that any augmented tester has to distinguish them with high probability. However, they are
information-theoretically indistinguishable using only k samples.

Setting up parameters: First, we focus on determining a series of parameters which we use in our
proof. We define ℓ as follows:

ℓ :=

⌊
n2/3 α4/3

2 ϵ4/3

⌋
− 1

n ̸=
⌊

n2/3 α4/3

2 ϵ4/3

⌋
( mod 2 )

. (12)

It is not hard to see that ℓ is an integer. For our proof, we require that ℓ and n are either both even or
both odd. Here, the role of the indicator variable is to reduce ℓ by one in case they are not. Also, ℓ is
positive, since due to the range of α and ϵ, we have:

n2/3 α4/3

2 ϵ4/3
>

n2/3

2 ϵ4/3
·
(

1√
n ϵ2

)4/3

=
1

2 ϵ4
≥ 64

2
.

Given this definition, there exists an absolute constant cℓ < 0.5, such that ℓ = cℓ · n2/3 α4/3/ϵ4/3.
We use this identity as the definition of ℓ throughout this proof. Given the assumption about the range
of α, we also have:

ℓ =
cℓ · n2/3α4/3

ϵ4/3
< cℓ n

2/3 ≤ n

2
. (13)

Let L denote a set of ℓ random elements in [n] to be our large elements. L := [n] \ L denotes the set
of small elements. Since n and ℓ are either both even or both odd, L has even number of elements.
Now, partition L to two random subset of the same size L1 and L2. Set ϵ′ := 6 ϵ < 1. Set

ck := min

(
1

5080320 · cℓ
,

cℓ
2000

,
1

2000

)
.

7Our parameters in this discussion are not precise. See our proof for a rigorous setting of parameters.
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p̂ = U

p+

p−

L L

1/n

λsmall

λlarge

λlarge

(1 + ϵ′) · λsmall
(1− ϵ′) · λsmall

Figure 4: A visualization of p̂, p+, and p−.

Constructing the distributions: We set p̂ to be a uniform distribution over [n]. That is, p̂i = 1/n
for every i ∈ [n]. We construct two distributions p+ and p− as follows. For every i ∈ [n], the
probability mass of i according to these distributions are as follows:

p+i :=


1

n
+

α

ℓ
i ∈ L

1

n
− α

n− ℓ
i ∈ L

p−i :=



1

n
+

α

ℓ
i ∈ L

(1 + ϵ′) ·
(
1

n
− α

n− ℓ

)
i ∈ L1

(1− ϵ′) ·
(
1

n
− α

n− ℓ

)
i ∈ L2

For a visual representation of these distributions, refer to Figure 4. It is not hard to verify that the
probability masses sum up to one since |L| = ℓ, and

∣∣L∣∣ = n − ℓ. Also, these probabilities are
non-negative due to Equation (13) and the fact that α < ϵ ≤ 1/6:

1

n
− α

n− ℓ
≥ 1

n
− α

n/2
> 0.

Also, given these definitions, p+ is α-close to p̂, and p+ and p− are ϵ-far from each other:

∥p+ − p̂∥TV =
1

2

∑
i∈L

α

ℓ
+
∑
i∈L

α

n− ℓ

 = α ,

∥p+ − p−∥TV =
1

2

∑
i∈L

ϵ′ ·
(
1

n
− α

n− ℓ

)
=

ϵ′

2
·
(
n− ℓ

n
− α

)
>

ϵ′

2
·
(
1

2
− 1

6

)
≥ ϵ .

Proof of indistinguishability: Now, consider two pairs of distributions (p = p+, q = p+) and
(p = p+, q = p−). Given the distances above any algorithm for augmented closeness testing
should output accept on (p+, p+), and reject on (p+, p−). To establish our lower bound, we show
these pairs of distributions are indistinguishable with high probability. We use the moment based
indistinguishably result for symmetric properties8 of pairs of distributions in [78].

8A symmetric property of a pair of distribution is a property that does not change if we permute the domain
elements of two distribution via the same permutation. The closeness testing of p and q in our context is a
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Before stating their theorem, we need to define the notion of the (k, k)-based moments of a pair
distributions (p, q) as follows:

Definition D.1 ((k, k)-based moments). For every positive integer k the (k, k)-based moments of a
pair of distributions p and q are the following values:

M
(k)
a,b (p, q) := ka+b

∑
i∈[n]

pai q
b
i

for every non-negative integers a and b.

Fact D.2 (Adapted from [78]). Given an integer k, suppose we have four distributions, p(1), p(2), q(1),
and q(2) over [n] where the maximum probability that each of them assigns to an element is less than
1/(1000 k). If

∑
a+b≥2

∣∣∣M (k)
a,b

(
p(1), q(1)

)
−M

(k)
a,b

(
p(2), q(2)

)∣∣∣⌊
a
2

⌋
!
⌊
b
2

⌋
!

√
1 + max

(
M

(k)
a,b

(
p(1), q(1)

)
, M

(k)
a,b

(
p(2), q(2)

)) <
1

360
, (14)

then no algorithm can distinguish the pair
(
p(1), q(1)

)
from

(
p(2), q(2)

)
with a success probability

more than 13/24 upon receiving Poi(k) samples from each distribution in the pair.

First, we verify that all the domain elements of p+ and p− have probability masses at most
1/(1000 k) according to both p+ and p−. Recall that ϵ < 1. Observe that it suffices to show
that 1/n < 1/(2000 k) and α/ℓ < 1/(2000 k) . The first inequality holds due to the fact that α is in(√

nϵ2)−1, ϵ
)
:

k

n
=

ck n
2/3 α1/3

n ϵ4/3
= ck ·

(
α

(
√
nϵ2)

2

)1/3

< ck ·
(
α ϵ2

)1/3
< ck · ϵ < ck ≤

1

2000

And, the second inequality comes from the definitions of ℓ, k, and ck:

α

ℓ
=

α ϵ4/3

cℓ n2/3 α4/3
=

ϵ4/3

cℓ n2/3 α1/3
=

ck
cℓ k
≤ 1

2000 k
.

For the rest of this proof, we focus on showing Equation (14) for the pairs (p+, p+) and (p+, p−).
For simplicity in our equations, we use the following notation:

λlarge :=
1

n
+

α

ℓ
, λsmall :=

1

n
− α

n− ℓ
. (15)

Using the Definition D.1, it is not hard to see that:

M
(k)
a,b

(
p+, p+

)
= ka+b

∑
i∈L

λlarge
a+b +

∑
i∈L

λsmall
a+b

 = ka+b
(
ℓ · λlarge

a+b + (n− ℓ) · λsmall
a+b
)

M
(k)
a,b

(
p+, p−

)
= ka+b

∑
i∈L

λlarge
a+b +

∑
i∈L1

(1 + ϵ′)b · λsmall
a+b +

∑
i∈L2

(1− ϵ′)b · λsmall
a+b


= ka+b

(
ℓ · λlarge

a+b + (n− ℓ) · λsmall
a+b ·

(
(1 + ϵ′)b + (1− ϵ′)b

2

))
.

Therefore, we get:∣∣∣M (k)
a,b

(
p+, p+

)
−M

(k)
a,b

(
p+, p−

)∣∣∣ = (n− ℓ) · λsmall
a+b ·

(
(1 + ϵ′)b + (1− ϵ′)b

2
− 1

)
.

symmetric property since permuting the labels of the elements does not change the distance between p and q;
Furthermore, p̂ is identical for every permutation of domain elements.
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On the other hand, we have:√
1 + max

(
M

(k)
a,b

(
p(1), q(1)

)
, M

(k)
a,b

(
p(2), q(2)

))
≥
√
ka+b · ℓ · λlarge

a+b.

Using the two equations above, we can bound the right hand side of Equation (14):

RHS of Eq. (14) ≤ n− ℓ√
ℓ

∑
a+b≥2

k(a+b)/2 · λsmall
a+b⌊

a
2

⌋
!
⌊
b
2

⌋
!λlarge

(a+b)/2
·
(
(1 + ϵ′)b + (1− ϵ′)b

2
− 1

)

Note that for b = 0 or 1, the term in the sum is zero. Hence, we only need to iterate over all b ≥ 2 and
a ≥ 0. Let T denote

√
k/λlarge · λsmall. Then, we can write the above equation in the following form:

RHS of Eq. (14) ≤ n− ℓ√
ℓ
·

∑
a≥0

T a⌊
a
2

⌋
!

 ·
1

2

∑
b≥2

(T · (1 + ϵ′))
b⌊

b
2

⌋
!

+
1

2

∑
b≥2

(T · (1− ϵ′))
b⌊

b
2

⌋
!

−
∑
b≥2

(T )
b⌊

b
2

⌋
!


To bound these terms, we have the following lemma:

Lemma D.3. For x ∈ R, we have

∞∑
i=0

xi⌊
i
2

⌋
!
= (1 + x)ex

2

,

and for x ∈ [0, 1.33], we have:

x2 + x3 ≤
∞∑
i=2

xi⌊
i
2

⌋
!
< x2 + x3 + 3x4 .

Proof. We start by splitting the terms corresponding to odd and even i’s in the sum, and obtain the
following:

∞∑
i=0

xi⌊
i
2

⌋
!
=

∞∑
j=0

x2j

j!
+

x2j+1

j!
= (1 + x)

∞∑
j=0

x2j

j!
= (1 + x) · ex

2

.

The last equality above is due to the Taylor expansion of ey = 1 + y/1! + y2/2! + . . . about y = 0.
Next, we have:

∞∑
i=2

xi⌊
i
2

⌋
!
=

∞∑
i=0

xi⌊
i
2

⌋
!
− x− 1 = (1 + x) ·

(
ex

2

− 1
)
.

Now, if 0 < y ≤ 1.79, then the following inequality holds: y < ey − 1 < y + y2 . Thus, for
x ∈ (0, 1.33), we have:

x2+x3 = (1+x)·x2 ≤ (1+x)·
(
ex

2

− 1
)
< (1+x)·(x2+x4) = x2+x3+(1+x)x4 < x2+x3+3x4 .

Now, assume T · (1 + ϵ′) ≤ 1.33. We continue bounding the right hand side of Equation (14) via the
above fact:

33



RHS of Eq. (14) ≤ n− ℓ√
ℓ
·

∑
a≥0

T a⌊
a
2

⌋
!

 ·
1

2

∑
b≥2

(T · (1 + ϵ′))
b⌊

b
2

⌋
!

+
1

2

∑
b≥2

(T · (1− ϵ′))
b⌊

b
2

⌋
!

−
∑
b≥2

(T )
b⌊

b
2

⌋
!


<

n√
ℓ
·
(
(1 + T ) · eT

2
)
·
(
1

2

(
T 2 · (1 + ϵ′)2 + T 3 · (1 + ϵ′)3 + 3T 4 · (1 + ϵ′)4

)
+

1

2

(
T 2 · (1− ϵ′)2 + T 3 · (1− ϵ′)3 + 3T 4 · (1− ϵ′)4

)
− T 2 − T 3

)
=

n√
ℓ
· 14 ·

((
(1 + ϵ′)2 + (1− ϵ′)2

2
− 1

)
· T 2 +

(
(1 + ϵ′)3 + (1− ϵ′)3

2
− 1

)
· T 3

+

(
3 (1 + ϵ′)4 + 3 (1− ϵ′)4

2

)
· T 4

)
≤ n√

ℓ
· 14 ·

(
ϵ′2 T 2 + 3ϵ′2 · T 3 + 24T 4

)
. (using ϵ′ ≤ 1)

We can bound T from above given the trivial bounds we have that λsmall ≤ 1/n and λlarge ≥ α/ℓ by
their definitions in Equation (15):

T :=

√
k

λlarge
· λsmall ≤

√
k · ℓ
α
· 1
n
≤
√
cℓ · ck ·

(
n2/3α1/3/ϵ4/3

)
n

=
√
cℓ · ck ·

( α

n ϵ4

)1/3
≤
√
cℓ · ck · α < 6 ϵ = ϵ′ .

(16)

The second to last inequality above is due to the range we assumed for α: it is greater than (
√
nϵ2)−1.

For the last inequality, we assumed that α < ϵ. Moreover, using ck ≤ (5080320 · cℓ)−1, we have√
cℓ · ck < 6. Therefore, we obtain:

RHS of Eq. (14) <
n√
ℓ
· 14 · 28 · (ϵ′ T )2 (using 1 ≥ ϵ′ > T in Eq. (16))

≤
(
14 · 28 · 62

)
· n√

ℓ
· ϵ2 · k · ℓ

α
· 1

n2

(since ϵ′ := 6 ϵ and T ≤
√
k · ℓ/α/n in middle of Eq. (16))

= 14112 · ϵ
2k

αn
·
√
ℓ ≤ (14112 · cℓ) ·

ϵ4/3 k

n2/3 α1/3
(using ℓ := cℓ n

2/3α4/3/ϵ4/3)

≤ 14112 · cℓ · ck ≤
1

360
.

For the last inequality, recall that early on we set k to be at most ck
(
n2/3 α1/3/ϵ4/3

)
and ck is

defined to be at most (5080320 · cℓ)−1. Therefore, the requirements in Fact D.2 hold as desired in
our setting. Thus, the proof is complete.

E Empirical Evaluation

We evaluate our algorithm empirically on real and synthetic data on the closeness testing problem.
Recall that given samples to two unknown distributions p and q over the domain [n], we wish to test
if p = q or if ∥p − q∥TV ≥ ϵ. They are referred to as the (p, p) case or the (p, q) case respectively.
Our experiments test the performance of our algorithm and baselines.

Datasets.

• Hard Instance: This is a simplified version of the hard instance described in Section D.1 for
Theorem 12. A conceptually similar hard instance is also used in the classical closeness testing
setting without any learned augmentation, as detailed in Section D.1.2
Let [n] be the domain. In the instance used in the experiments, p and q agree on the first m :=
⌊n2/3⌋ elements. Both distributions have probability mass 1/(2m) on these domain elements. p
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Figure 5: Error as a function of prediction quality for the ‘Hard Instance’ dataset
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Figure 6: Additional figures for the ‘Hard Instance’ dataset

also has probability mass 2/n on domain elements between n/2 and 3n/4 and q has probability
mass 2/n on domain elements between 3n/4 and n. All other probability masses are 0. We can
check that ∥p− q∥TV = 1/2. The first m domain elements represent ‘heavy hitters’ which conspire
to fool any testing algorithm and the rest of the domain are items which contribute to all the TV
distance but are rarely sampled. Indeed, we built upon this intuition to prove a formal lower bound
in Theorem 12.
We consider hints of the form p̂ = (1−β)·p+β ·Unif(n), where Unif(n) is the uniform distribution
on [n] elements and α ∈ [0, 1] is an interpolation parameter. α = 0 corresponds to a perfect hint
and the quality of the hint degrades as α increase. When α = 1, we receive p̂ = Unif(n), i.e. a
hint which not require any learned information to instantiate. In our experiments, we set n, the
domain size, to n = 106 and our goal is to determine if we are sampling from (p, p) or (p, q).

• IP: The data is internet traffic data collected at a backbone link of a Tier1 ISP in a data center9.
Using the preprocessing in [1], we construct the empirical distribution over source IP addresses
in consecutive chunks of time. Each distribution represents approximately 170ms of empirical
network traffic data. The support size of each distribution is ≈ 45, 000 while the total domain size
is > 2.5 · 106. Distributions curated from network traffic closer in time are closer in TV distance.
This dataset has been used in other distribution testing literature [1, 48].

9From CAIDA internet traces 2019, see https://www.caida.org/catalog/datasets/monitors/
passive-equinix-nyc
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Figure 7: Results for the IP dataset

We set p to be distribution for the first chunk of time and we let q be the distribution for the last
chunk of time. Empirically, we have ∥p − q∥TV ≈ 0.72. The hint is for p, denoted as p̂, is the
second chunk of time. Unlike the previous case, the hint is relatively far from p in terms of TV
distance (∥p− p̂∥TV ≈ 0.59). Nevertheless, they share similar ‘heavy’ items (IP addresses with
large probability mass), since p and p̂ represent distributions of network traffic which are close in
time.

Baselines. We compare our main algorithm with the following baselines.

• CRS ’15. This is the state of the art algorithm with access to almost-perfect predictions
from [28]. More precisely, they assume predictions to both distributions p and q, denoted as
p̂ and q̂. Furthermore, they require p̂(i) = (1± ε/100)p(i) and q̂(i) = (1± ε/100)q(i) for
all i ∈ [n]. Note that we only assume access to (much weaker) predictions for only p.

• Closeness Tester. This is the state of the art algorithm of [42] without any predictor access.
We refer to this algorithm as the standard or the un-augmented tester as well.

Error Measurement. At a high level, both our algorithm (denoted as ‘Augmented Tester’ and the
prior SOTA un-augmented approach, (abbreviated as ‘Closeness Tester’) compute an estimator Z
based on the samples requested. Then, both algorithms threshold the value of Z to determine which
case we are in (either p = q or ∥p− q∥TV ≥ ε. Note that Z is a random variable in both cases (since
it depends on random samples). Ideally, the distribution of Z is well-separated in the two different
hypotheses.

Thus in our experiments, given a sample budget, we compute the empirical distribution of Z for
both algorithms under both hypothesis cases across 100 trials. For a fixed algorithm, our error
measurement computes the dissimilarity of the two empirical histograms: if the histograms are
‘well-separated’ then we know the algorithm can adequately distinguish the two hypotheses. On
the other hand, if the histograms of Z in the two cases are highly overlapping, then it is clear that
the algorithm cannot distinguish well. Thus, given the two empirical histograms, we calculate the
best empirical threshold which best separates them. This is done for both algorithms, ours and the
classical Closeness Tester. Then we measure the fraction of data points in the histogram which are
misclassified as the error. Calculating the best empirical threshold also makes both of the algorithms
more practical as the theoretical thresholds are only stated asymptotically with un-optimized constant
factors, making the theoretical values impractical. Finally, note that it is trivial to get 50% error.

CRS ‘15 is a fundamentally different algorithm. Rather than calculating an estimator, it queries the
hints p̂ and q̂ on the samples received and check if they are consistent with each other. If all samples i
satisfy p̂(i) = (1± ε/10)q̂(i), the algorithm declares we are in the p = q case.

Note that as implemented, our algorithm and the standard Closeness Tester do not require the
knowledge of ε (ε is not needed to calculate the estimator Z). On the other hand CRS ‘15 crucially
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requires the knowledge of ε. Thus, we make this baseline even stronger by providing it with the exact
knowledge of ε (which the other two algorithms do not have access to).

Results.

• Hard Instance. Our results are shown in Figures 1 and 5. We now describe the plots. Figure 1
displays the performance of all algorithms as a function of the number of samples seen. Note that
the y axis measures the fraction of times we can distinguish the two hypotheses across 100 trials.
In Figure 1, our algorithm has access to p̂ = p and CRS ‘15 has access to p̂ = p. Furthermore, it
has access to a hint q̂ which satisfies ∥q̂ − q∥TV < 0.002. q̂ hat is created by removing a small
fraction of the mass on a small fraction of the heavy domain elements between 1 and m.

We see that the performance of both our Augmented Tester and the standard Closeness Tester
improves as the sample complexity increases. On the other hand, CRS ‘15 essentially always
obtains the trivial guarantee of 50% error even when it is fed a large number of samples. This is
because with decent probability, we sample an element where q̂(i) = 0 and p̂(i) ̸= 0. Thus in the
p = q case, it is very likely to output the incorrect answer.

Figure 1 also demonstrates that our augmented tester achieves up to > 20x reduction in error than
the standard Closeness Tester. It also requires > 2x fewer samples to achieve 0% error empirically.

Our improvements are due to the fact that the empirical estimators of Z in the two cases of p = q
and p ̸= q are very well-separated for the Augmented Tester. In fact, as shown in Figures 6(a) and
6(b), if we fix the number of samples to 104, the empirical distributions of Z in the two cases do
not overlap at all for the augmented algorithm. On the other hand, thee is a significant overlap for
the un-augmented tester (the standard Closeness Tester). This implies that the Closeness Tester
baseline cannot distinguish the two cases as well as the augmented algorithm.

• IP Data. Our results are shown in Figure 7(a). Again we see the same qualitative behavior: CRS
‘15 is quite brittle to prediction errors: in the case (p, p) case, we feed CRS ‘15 with the perfect
prediction p for the first distribution, and p̂ for the second. In this case, it typically outputted the
incorrect answer. Furthermore, our augmented algorithm has a better sample vs error trade-off than
the un-augmented approach. Indeed, we observed that while the augmented tester only required
∼ 500 samples to obtain 0% error in 100 trials, the standard tester required > 700 samples,
implying our augmented approach is > 40% more efficient.

Robustness to Prediction Error. Our experiments also demonstrate the robustness of our augmented
approach to the quality of the predictions. Our theory crisply quantifies how the theoretical sample
complexity is affected by a predictor which satisfies ∥p− p̂∥TV = α, and correspondingly in practice,
we observe that our algorithm is able to take advantage of predictors of varying quality.

Indeed, for the hard instance, we observe that the augmented approach still obtains better error
than the standard tester, even if ∥p − p̂∥TV is high. This is demonstrated in Figure 5 where we
monotonically increase β (as described above). The plot shows that while the error also increases
monotonically, it is only when ∥p− p̂∥TV ≥ .7 that the quality is comparable to the standard closeness
tester.

Indeed, even at high values of β, p̂ is still informative of the heavy-hitter structure of p. Therefore,
the augmented algorithm can still reliably use p̂ to perform a suitable flattening.

The phenomenon repeats itself in for the IP data. In Figure 7(b), we compare the performance of
using two different predictors. p̂1 is the same predictor as Figure 7(a) whereas p̂2 is the IP distribution
that is in between p and q (it is formed using the chunk of time that is exactly in between the first
and the last). We observed that now ∥p − p̂2∥TV ≈ 0.69 which is much higher than ∥p − p̂1∥TV.
Nevertheless, it is still the case that many heavy-hitters between p and p̂2 are shared. Thus even
though the TV distribution between p and the hint p̂2 maybe high, our algorithm can still exploit the
shared heavy-hitter structure to obtain improved sample complexity over the un-augmented approach.
This demonstrates the practical versatility of our algorithm beyond the precise theoretical bounds.
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Algorithm 4 ℓ22-norm estimation

1: procedure ESTIMATE-ℓ22(sample access to p, n, δ)
2: for i = 1, . . . , O(log(1/δ)) do
3: s← Θ(

√
n · log(1/δ))

4: x1, x2, . . . , xs ← Draw s samples from p.
5: X ←

∑s
i=1

∑s
j=i+1 1xi=xj

▷ Number of collisions
6: Li ← X/

(
s
2

)
7: Output the median of Li’s

F Background and existing results

F.1 Estimating the ℓ2-norm

In this section, we show that one can estimate the ℓ2-norm of a distribution via the number of collisions
among O(

√
n) samples. This result was implicitly known from previous work including [52]. Here,

we include a formal statement and a proof for the sake of completeness.
Fact F.1. [Adapted from [52]] Suppose we have a parameter δ ∈ (0, 1) and an arbitrary distribution p
over [n] for which we have sample access to. Algorithm 4 receives n and δ and s = O (

√
n · log(1/δ))

samples from p and outputs an estimate L of the the ℓ22-norm of p such that with probability 1− δ,
we have:

∥p∥2
2
≤ L ≤

3 ∥p∥2
2

.

Proof. Suppose we have s samples drawn from p: x1, x2, . . . , xs. Let X denote the number of
collisions among these samples. That is, the number of pairs of equal samples X :=

∑
i<j 1xi=xj

.

In [52], they have shown that E[[[X ]]] =
(
s
2

)
· ∥p∥22 and Var[[[X ]]] is at most 2 (E[[[X ]]])

3/2. Hence,
using Chebyshev’s inequality, we obtain:

Pr

[[[∣∣∣∣∣ X(s
2

) − ∥p∥22
∣∣∣∣∣ ≥ ∥p∥222

]]]
≤

Var
[[[
X/
(
s
2

)]]]
∥p∥42 /4

≤ 8E[[[X ]]]3/2(
s
2

)2 · ∥p∥42
≤ 8(

s
2

)1/2 · ∥p∥2 ≤
8

(s/2) · 1/
√
n
≤ 0.1

The second to the last inequality holds since the ℓ2-norm of any discrete distribution over [n] is at
most 1/

√
n. And, the last inequality holds for s ≥ 160

√
n. The above inequality implies that each

Li in the algorithm is within the desired bound with probability at least 0.9.

To find an accurate estimate with a probability 1− δ, we use standard amplification technique: We
repeat this process O(log(1/δ)) times and take the median of these estimates. Using the Chernoff
bound, one can show that median is accurate with probability at least 1− δ.

F.2 Standard closeness tester

In this section, we present the result of [30] for robust ℓ2-distance estimation between two un-
known distributions p and q. Their results implies an ℓ1-tester for closeness testing of p and q as
it has been used in [42]. The important feature of this tester is its adaptive sample complexity to
max

(
∥p∥22 , ∥q∥

2
2

)
which combined with the flattening technique would achieve the optimal sample

complexities for several distribution testing problems. Later [9] have shown that one can modify the
this closeness tester such that the sample complexity only deepens on min

(
∥p∥22 , ∥q∥

2
2

)
.

Fact F.2 (Adapted from [30, 42, 9]). Suppose we have two unknown distributions p and q over [n].

Let b ≥ min
(
∥p∥22 , ∥q∥

2
2

)
. Algorithm 5 can distinguish whether p = q or ϵ-far from each other with

probability 1− δ using O(n
√
b/ϵ2) samples.
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Algorithm 5 ℓ22-norm estimation

1: procedure STANDARD CLOSENESS TESTER(sample access to p, n, δ)
2: Lp ←ESTIMATE-ℓ22(p, n, δ/3)
3: Lq ←ESTIMATE-ℓ22(q, n, δ/3)
4: if Lp/Lq ̸∈ [1/3, 3] then
5: return reject
6: t← O(log(1/δ)

7: m← O
(

n·
√
b

ϵ2

)
8: accept-count← 0
9: for i = 1, . . . , t do

10: Draw m samples from p and q.
11: Let Xi and Yi denote the number of occurrences of element i in the samples drawn from

distributions p and q respectively.

12: Z ←
√∑n

i=1(Xi − Yi)2 −Xi − Yi

m
13: if Z ≤ ϵ

2
√
n

then
14: accept-count← accept-count + 1

15: if accept-count ≥ t/2 then
16: return accept
17: return reject

F.3 Useful facts

Coupling: Suppose we have two probability distributions p and q over a finite domain Ω. A
coupling between p and q is a joint distribution over Ω2 where the two marginals of C are p and q.
Below is the fundamental coupling lemma:

Fact F.3. (Coupling Lemma) For every two probability distributions over a finite domain Ω, we have:

• For any coupling C of p and q, we have:

Pr(X,Y )∼C[[[X ̸= Y ]]] ≥ ∥p− q∥TV .

• There exists a maximal coupling C∗ (also known as optimal coupling) for which the above
inequality holds:

Pr(X,Y )∼C∗[[[X ̸= Y ]]] = ∥p− q∥TV .

G Augmented flattening for guarantees other than total variation distance

Below, we provide a simple lemma that indicates how one can use p̂ to flatten a distribution based
on various guarantees of the prediction. Suppose our target ℓ22-norm which we desire is v. In the
following lemma, we propose a flattening F to decrease the ℓ22 to v up to some multiplicative factor
that depends on the quality of the estimates.

Lemma G.1. Suppose we have an unknown distribution p = (p1, p2, . . . , pn) over [n]. Assume for
every i ∈ [n] we are give an estimate p̂i. Then for every v ≤ 1, there exists a flattening such that it
increases the domain size by 1/v and the ℓ22-norm of the p(F ) is bounded by:∥∥∥p(F )

∥∥∥2
2
≤ v ·

(
n∑

i=1

p2i
p̂i

)
.

Proof. For every i ∈ [n], we set mi as follows:

mi :=

⌊
p̂i
v

⌋
+ 1 .
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It is not hard to see:∥∥∥p(F )
∥∥∥2
2
=

n∑
i=1

mi∑
j=1

(
pi
mi

)2

=

n∑
i=1

p2i
mi
≤

n∑
i=1

p2i
p̂i/v

≤ v ·

(
n∑

i=1

p2i
p̂i

)
In addition, the new domain size is bounded as follows:

n∑
i=1

mi ≤ n+
1

v
·

n∑
i=1

p̂i

Using
∑n

i=1 p̂i = 1, we conclude the statement of the lemma.

In the following, we discuss a few cases for which we have some guarantee on the accuracy of the
estimates and how it affects the ℓ2-norm reduction. Note that our desired case here is to not blow up
the domain size by more than a constant factor and bring down the ℓ2-norm to O(1/

√
n).

1. Exact values: Assume p̂i = pi. By setting v = 1/n, the ℓ2-norm reduces to Θ(1/
√
n), and

the new domain size is Θ(n).
2. Multiplicative upper bounds: Suppose for every i, we are given an estimate p̂i such that

p̂i ≥ αpi for a parameter α ≥ 1. Then , we have
∑n

i=1 p
2
i /p̂i is at most 1/α. Also, let β

denote
∑n

i=1 p̂i. Thus, the sample complexity of the tester in [30], is:

# samples = O

(
new domain size ·min

(
∥p(F )∥2, ∥q(F )∥2

)
ϵ2

)

= O

(
(n+ β/v) ·

√
v/α

ϵ2

)
= O

(
n
√
v/α+ β/

√
αv

ϵ2

)

= O

(√
nβ/α

ϵ2

)
Note that the last inequality is achieved by minimizing over v and setting v = β/n.
Moreover, this bound gives us the optimal sample complexity for constant α and β.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All theoretical claimed are backed by full proofs.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We prove tight lower bounds for our setting and discuss alternate prediction
models.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theorems have full, formal proofs.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: A Jupyter notebook is included in the submission which shows has the full
code.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include a link to the CAIDA dataset and a Jupyter notebook is attached to
the submission.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are given in Section E.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See e.g. Figures 6(a), 6(b).

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: We use sample complexity as a measure of efficiency, not computational time
(although all of our algorithms are very efficient).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper has no language models, image generators, or scraped datasets and
poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets used are fully described in Section E.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects used.
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