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ABSTRACT

When prompted with a few examples and intermediate steps, large language mod-
els (LLMs) have demonstrated impressive performance in various reasoning tasks.
However, prompting methods that rely on implicit knowledge in an LLM often
hallucinate incorrect answers when the implicit knowledge is wrong or inconsis-
tent with the task. To tackle this challenge, we present Hypotheses-to-Theories
(HtT), a framework that learns a rule library for reasoning with LLMs. HtT con-
tains two stages, an induction stage and a deduction stage. In the induction stage,
an LLM is asked to generate and verify rules over a set of training examples. Rules
that appear and lead to correct answers sufficiently often are collected to form a
rule library. In the deduction stage, the LLM is prompted to employ the learned
rule library to perform reasoning to answer test questions. Experiments on nu-
merical reasoning and relational reasoning tasks show that HtT improves existing
prompting methods, with an absolute gain of 11-27% in accuracy. The learned
rules are transferable to different models and to different forms of the same task.

1 INTRODUCTION

Coinciding with their tremendous growth in scale, large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; OpenAI, 2023; Anil et al., 2023, inter alia) have demonstrated emer-
gent capabilities across a wide range of reasoning problems (Wei et al., 2022b; Bubeck et al., 2023),
including program synthesis, arithmetic reasoning, symbolic reasoning and commonsense reason-
ing. Importantly, these abilities are commonly elicited by advanced prompting techniques (Wei
et al., 2022c; Zhou et al., 2023; Khot et al., 2023) that teach an LLM to decompose a complex task
into simple steps and perform reasoning step by step based on a small set of in-context examples.

Despite their abilities to solve complex reasoning problems, an open challenge for LLMs is their
tendency to generate outputs that appear plausible but contradict knowledge of the real world, a
phenomenon that is often referred to as hallucination (Ji et al., 2023; Zhang et al., 2023b; McKenna
et al., 2023). As an additional challenge, whenever the problem deviates from requiring conventional
knowledge (e.g. arithmetic in a non-decimal system), LLMs typically exhibit a significant drop in
accuracy, sometimes performing only slightly better than random guessing (Tang et al., 2023; Wu
et al., 2023). Both phenomena are caused by a mismatch between the implicit knowledge pretrained
in the language model and the knowledge required for the problem (Talmor et al., 2020). While it is
always possible to curate a dataset and inject required knowledge into an LLM via supervised fine-
tuning (Wang et al., 2021; Talmor et al., 2020; Nye et al., 2021), a generic approach to automatically
discovering and applying knowledge in reasoning problems would be more desirable.

To achieve such a solution, we reconsider the process of scientific discovery (Bacon, 1620), which
has allowed humans to develop effective theories of the world. Typically, a scientific discovery
induces theories by generating and verifying hypotheses with experiments. The theories can be ap-
plied to solve problems in new scenarios. An interesting aspect of this process is that it can arrive at
correct knowledge even if the initial set of hypotheses is noisy (e.g. geocentrism v.s. heliocentrism).
In other words, the process of scientific discovery starts by allowing humans to freely “hallucinate”
hypotheses, but theories are only kept if they are verified by experiments. Motivated by this obser-
vation, we propose Hypotheses-to-Theories (HtT), a framework that enables LLMs to automatically
induce a rule library in reasoning problems. HtT is composed of an induction stage and a deduction
stage. In the induction stage, an LLMs is asked to generate and verify rules for question-answer
pairs in a given training set. We collect the rules and filter them based on their number of occur-
rence and frequency of association with correct answers, forming the rule library for the deduction
stage. In the deduction stage, the LLM is then asked to apply the learned rules to solve the reasoning
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problem, thereby reducing the chance of hallucination. To reduce the effort required for prompt
engineering, we propose induction from deduction, which fuses the rule generation and verification
steps into a single deduction-like step. In this way, the prompts for both stages can be easily derived
from existing few-shot prompting methods, such as chain-of-thought or least-to-most prompting.

Empirically, we verify the effectiveness of HtT with GPT3.5 and GPT4 (OpenAI, 2023) on the Arith-
metic (Wu et al., 2023) and CLUTRR (Sinha et al., 2019) datasets, which correspond to numerical
reasoning and relational reasoning respectively. Experiments show that HtT consistently improves
over baseline prompting methods across the models and datasets considered, with an absolute gain
of 11-27% in most cases. Moreover, the learned rules can be directly transferred to the textual ver-
sion of CLUTRR, providing a practical advantage over previous reasoning approaches. We also
conduct extensive ablation studies to understand the properties of HtT, finding that the performance
gain arises primarily from a reduction in rule hallucination due to the use of the learned rules. We
also observe a log-linear scaling law between accuracy and the number of training examples.

2 PRELIMINARIES

Intuitively, reasoning is the process of applying sound logical steps to draw conclusions from ex-
isting information. At the core of reasoning are two concepts, facts and rules. Facts are pieces of
information that describe the current state of the problem, while rules are functions that transform
facts into new facts under certain conditions. Take the famous syllogism as an example.

Socrates is a man. All men are mortal. Therefore, Socrates is mortal.

Here the statements “Socrates is mortal” and “Socrates is a man” are both facts. “All men are
mortal” could be thought of as a rule, with the understanding that facts and rules are relative concepts
intuitively. That is, a rule can also be viewed as a fact when coupled with a high-order rule, e.g. “All
men are mortal” is a fact when we consider “If all men are animals, then all men are mortal”.

Deductive Reasoning. Deductive reasoning aims to derive new facts based on known facts and
rules. The above syllogism forms a simple deductive step. When there are multiple facts and rules,
one needs to match rules against facts, which is known as unification in logic. In general, there are
many ways to apply unification at each step, and a planning algorithm is usually required to find the
optimal ordering of steps, e.g. forward chaining or backward chaining (Stuart & Peter, 2016).

For LLMs, most prompting techniques are designed to elicit deductive reasoning. For example,
chain-of-thought (Wei et al., 2022c) and least-to-most (Zhou et al., 2023) prompting teach an LLM
to deduce conclusions from given facts, assuming a greedy plan. We categorize these as implicit
reasoning methods because they rely on implicit rules stored in the LLM. By contrast, explicit
reasoning methods such as Selection-Inference (Creswell et al., 2023) and LAMBADA (Kazemi
et al., 2023) operate on given facts and rules, with a focus on searching an optimal deduction order.

Inductive Reasoning. Inductive reasoning focuses on deriving general rules from observed facts.
For example, if we know “Scorates is a man” and “Socrates is mortal” and the same facts hold for
Aristotle, we might hypothesize a rule “All men are mortal”. While there are a lot of rules one can
induce from given facts, some rules are overly specific to the given facts, e.g. “If Scorates is a man,
Socrates is mortal” can only be applied to Scorates. To make rules useful for future prediction,
they should have a large set of supporting examples (i.e. coverage) while also predicting new facts
correctly (i.e. confidence) (Agrawal et al., 1994; Galárraga et al., 2013).

In machine learning, inductive reasoning is usually not a standalone task, since it is challenging to
annotate and evaluate rules. Instead, inductiveness is studied as a desired property for deductive rea-
soning models to generalize to new facts. For example, in inductive logic programming (ILP) (Mug-
gleton & De Raedt, 1994), models that learn algorithms like searching or sorting should generalize
to new combinations of elements. In knowledge graph reasoning (Teru et al., 2020; Galkin et al.,
2022), models that learn to answer queries on knowledge graphs should generalize to new entities.

3 HYPOTHESES-TO-THEORIES PROMPTING

Many real-world reasoning problems require deductive reasoning to reach correct answers. Often,
a problem statement contains the necessary facts within the context, but the rules are not explicitly
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Induction Stage

Question: The relations on the path from Karen to Molly are 
son, uncle, daughter. Molly is Karen’s what?
Answer:
We have son’s uncle is brother. Remaining: brother, daughter.
We have brother’s daughter is niece. Remaining: niece.
So the answer is niece.

Question: The relations on the path from Marian to James are 
son, sister, uncle. James is Marian’s what?
Answer:
We have son’s sister is sister. Remaining: sister, uncle.
We have sister’s uncle is uncle. Remaining: uncle.
So the answer is uncle.

Knowledge:
Brother’s aunt is aunt. … Brother’s wife is sister-in-law.
…
Wife’s brother is brother-in-law. … Wife’s son is son.
Try to use the provided knowledge whenever possible.

Question: The relations on the path from Gregory to Carolyn 
are wife, son, sister, aunt. Carolyn is Gregory’s what?
Answer:
We retrieve wife’s son is son. Remaining: son, sister, aunt.
We retrieve son’s sister is daughter. Remaining: daughter, aunt.
We retrieve daughter’s aunt is sister. Remaining: sister.
So the answer is sister.

Deduction Stage

brother’s daughter is niece #occurrence: 2 +1 #correct: 2 +1
father’s sister is aunt #occurrence: 3 #correct: 2
sister’s uncle is uncle #occurrence: 2 +1 #correct: 2 +0
son’s uncle is brother #occurrence: 1 +1 #correct: 1 +1
son’s sister is sister #occurrence: 2 +1 #correct: 0 +0
uncle’s sister is mother #occurrence: 3 #correct: 1

Rule Library

Figure 1: An example of Hypotheses-to-Theories applied to chain-of-thought for the kinship relation
problem. Few-shot examples are omitted for brevity. The induction stage uses CoT to generate rules
and verify them on the training samples. Rules are then collected and filtered to form the rule library.
The deduction stage augments the CoT prompt with knowledge from the rule library. Correct and
incorrect rules are marked with green and red respectively. Full prompts are in Appendix E.

stated. Consider arithmetic: when humans are faced with an arithmetic problem, they are not given
a summation or multiplication table. In such cases, humans rely solely on the mathematical tables
stored in their memory to perform deduction. An LLM pretrained on a massive corpus can retrieve
certain commonsense knowledge from its parameters (Petroni et al., 2019; Roberts et al., 2020), but
due to the implicit nature of this process, it can be prone to hallucinating unintended knowledge.
Hallucination is especially common in problems that are not frequently covered in the pretraining
data (Kandpal et al., 2023) or conflict with standard real life problem formulations (Longpre et al.,
2021; Wu et al., 2023). A manual analysis indicates that rule hallucination constitutes 81% and 65%
of the errors made by CoT on base-16 Arithmetic and CLUTRR respectively (Figure 3).

Interestingly, we find that hallucination in LLMs resembles hypothesis generation in scientific dis-
covery. For example, humans historically debated the geocentric versus heliocentric hypotheses.
Even though we know geocentrism is deprecated since it cannot explain many phenomena, it was a
valid “hallucination” at a time when there was not enough evidence. In other words, science evolves
by generating and verifying hypotheses, as well as consolidating theories for successive generations.
Inspired by the process of scientific discovery, we propose Hypotheses-to-Theories (HtT) prompting
to reduce hallucination in LLMs by learning a rule library. HtT consists of an induction stage and
a deduction stage, both implemented by few-shot prompting. In the induction stage, rules are gen-
erated and verified on a set of question-answer examples. The rules are then collected and filtered
to form a library. In the deduction stage, given a test question, we prompt the model to explicitly
retrieve rules from the rule library to solve the problem. The two stages are similar to training and
test in supervised learning, except that we learn rules explicitly instead of model parameters.

Scope of Tasks. Since HtT is built on top of a base few-shot prompting method, it shares the same
scope of tasks with the base prompting method. However, to achieve performance gain with HtT, the
following constraints apply: (1) There exist a moderately small set of rules that are reusable across
most problems of the task, otherwise the rule library will be too large to fit into the context length of
an LLM. (2) Rules generated by the LLM follow a template specified by few-shot exemplars. This
is required to collect and filter rules accurately. (3) The base prompting method has a reasonable
performance on the training samples, which is important for learning good rules. Compared to the
tasks solved by common few-shot prompting methods (e.g. chain-of-thought), these constraints ex-
clude tasks that are not logical (e.g. natural language entailment, reading comprehension) or require
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planning abilities (e.g. sudoku, minesweeper). Note that HtT does not impose constraints on the
type of rules it learns, and is compatible with numerical rules and propositional logic rules.

3.1 INDUCTION STAGE: RULE GENERATION AND VERIFICATION

To discover explicit knowledge for reasoning, we would like to use an LLM to induce rules for a
task. For each training example (a question-answer pair), we ask the LLM to generate rules for
answering the question. While the rules can be right or wrong, they can be verified from the ground
truth answers. This verification can filter out rules associated with incorrect answers, keeping in
the rule library only rules that are sufficiently associated with correct answers for the deduction
stage. Following the principles of rule mining (Galárraga et al., 2013), we filter rules based on both
coverage and confidence, requiring a rule to both be sufficiently frequent and exhibit a sufficient
association with correct answers respectively. Specifically, we collect the rules generated by the
LLM over the entire training set, and only keep those that appear more than k times and pass the
verification test with a probability higher than p.

Induction from Deduction. The induction stage introduces two sub problems, rule generation and
verification. Previous works on induction (Yang et al., 2022) use separate prompts for the generator
and the verifier. While it is possible to design two separate prompts here as well, this doubles the
prompt engineering effort and makes the comparison to other methods less intuitive. Moreover,
due to the multi-step nature of reasoning problems, some rules can only be elicited after certain
intermediate results are available. Hence we propose induction from deduction, which adapts a
deductive reasoning prompt (e.g. CoT, LtM) for both rule generation and verification (Figure 1 left).
The key idea is to explicitly declare rules whenever a deduction is performed. We then extract the
rules from the model prediction, and use the accuracy on the training sample for verification.

3.2 DEDUCTION STAGE: EXPLICIT REASONING WITH A RULE LIBRARY

Knowledge:
<no_carry>
<0><0>0 + 0 = 0.</0> … </0> …
<3><0>3 + 0 = 3.</0> … <4>3 + 4 = 7.</4> … </3> …
</no_carry>
<carry>
<0><0>0 + 0 + 1 = 1.</0> ... </0> …
</carry>

Question: In base-9, what is 63 + 34?
Answer:
We retrieve <no_carry><3><4>3 + 4 = 7. …

XML Tagging

Figure 2: The XML tagging trick. With an
XML hierarchy, we break down a hard retrieval
problem into several easy retrieval problems.

Once we discover a library of good rules, the next
step is to apply these rules to solve test questions.
To do so, we prepend the rule library in the prompt
and ask the LLM to retrieve rules from the li-
brary to perform deductive reasoning. However,
we find that even a strong LLM (e.g. GPT4) strug-
gles to retrieve the correct rule at each step, pos-
sibly due to the large number of rules provided.
As a remedy, we have developed an XML tagging
trick to augment the in-context retrieval ability of
LLMs. Note that it would be easy to offload the
retrieval subproblem to a pretrained passage re-
triever (Karpukhin et al., 2020), but here we are
more interested in how an LLM can perform de-
ductive reasoning entirely on its own.

In-Context Retrieval with XML tags.
While LLMs often fail to retrieve the correct rule from a large set, we find that retrieval often
succeeds when the number of rules are limited, e.g. to at most 10 rules. Therefore, a natural idea is
to organize the rule set into a hierarchy, such that each step in the hierarchy only involves a small
number of options. We manually define a hierarchy by grouping similar rules together. Inspired by
the XML tags used in prompting tutorials1, we label each level of the hierarchy with pairs of XML
tags like <carry> and </carry> (Figure 2). In order to index through the hierarchy, we ask the LLM
to generate the tags for each level before outputting the retrieved rule. We have found that the XML
tagging trick significantly boosts the performance of HtT (Table 4).

4 EXPERIMENTAL EVALUATION

To evaluate HtT, we apply it as an augmentation to existing few-shot prompting methods, including
chain-of-thought and least-to-most prompting. We benchmark performance on two multi-step rea-

1https://docs.anthropic.com/claude/docs/constructing-a-prompt
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Table 1: Results on Arithmetic. For reference, GPT4 (5-shot CoT) has 99.1% accuracy on base-10.

Model Prompt Base-16 Base-11 Base-9 Average2 digits 3 digits 4 digits 2 digits 3 digits 4 digits 2 digits 3 digits 4 digits

0-shot CoT 30.6 10.5 0.0 5.6 5.3 0.0 11.1 10.5 0.0 8.2

5-shot CoT 83.3 34.2 11.5 5.6 2.6 0.0 25.0 13.2 11.5 20.8
+ HtT 77.8 52.6 23.1 25.0 13.2 0.0 8.3 5.3 11.5 24.1 (+3.3)

GPT3.5 + HtT (GPT4) 63.9 44.7 34.6 13.9 7.9 3.8 25.0 7.9 11.5 23.7 (+2.9)

5-shot LtM 83.3 34.2 15.4 16.7 5.3 0.0 13.9 7.9 7.7 20.5
+ HtT 80.6 39.5 26.9 16.7 2.6 3.8 19.4 5.3 3.8 22.1 (+1.6)
+ HtT (GPT4) 72.2 31.6 30.8 47.2 15.8 11.5 44.4 21.1 15.4 32.2 (+11.7)

0-shot CoT 72.2 26.3 7.7 22.2 10.5 3.8 30.6 34.2 23.1 25.6

5-shot CoT 83.3 71.1 61.5 52.8 47.4 46.2 75.0 36.8 42.3 57.4
GPT4 + HtT 100.0 94.7 84.6 88.9 71.1 46.2 86.1 68.4 65.4 78.4 (+21.0)

5-shot LtM 88.9 81.6 61.5 52.8 47.4 30.8 52.8 31.6 11.5 51.0
+ HtT 100.0 86.8 76.9 72.2 52.6 46.2 61.1 23.7 38.5 62.0 (+11.0)

soning tasks that are difficult for current few-shot prompting methods. We find that HtT improves
the underlying few-shot prompting methods despite using almost the same prompt template. We
also conduct extensive ablation studies to provide a more comprehensive understanding of HtT.

4.1 EXPERIMENT SETUP

We evaluate HtT and the baselines using two different LLMs, gpt-3.5-turbo and
gpt-4. When the prompts exceed the 4k context length of gpt-3.5-turbo, we use
gpt-3.5-turbo-16k instead. The prompts never exceed the 8k context length of gpt-4 in
these experiments. Throughout the following, we will denote the two LLMs as GPT3.5 and GPT4
respectively. We use the default temperature of 1 for both models.

The baseline prompting methods include three prompting strategies: zero-shot chain-of-thought
(0-shot CoT) (Kojima et al., 2022), few-shot chain-of-thought (5-shot CoT) (Wei et al., 2022c)
and few-shot least-to-most (5-shot LtM) (Zhou et al., 2023). For the few-shot prompting methods,
we choose the first 5 non-trivial examples from each dataset as exemplars for few-shot prompting,
avoiding heavy engineering of the choice of exemplars. We keep the same set of exemplars across all
few-shot prompting methods. For least-to-most prompting, we offload the generation and retrieval
of rules to a separate prompt whenever we need a rule for deduction.

For the proposed HtT, we perform the induction stage on 2,000 training examples, unless stated oth-
erwise. When the training set contains fewer than 2,000 examples, we resample examples to generate
rules. In the deduction stage, we add the learned rule library to the system message, so that the LLM
knows to treat the knowledge and exemplars differently. We search the hyperparameters of HtT
within the following grid: minimal occurrence k ∈ {2, 3}, minimal accuracy p ∈ {0.3, 0.5, 0.7}.
Due to the cost of LtM (3-5× compared to CoT), we induce rules and select the best hyperparam-
eters based on CoT prompting, and only use LtM prompting for the deduction stage. This might
slightly underestimate the performance of HtT for LtM prompting.

4.2 NUMERICAL REASONING

We use the Arithmetic dataset (Wu et al., 2023) to evaluate the LLMs on numerical reasoning in
non-decimal systems. This dataset contains summation problems over 2 to 4 digits in several base
systems. Since the rules in a non-decimal system are mostly different from those in the decimal
system, arithmetic is considered to be a counterfactual setting that requires an LLM to perform
reasoning rather than reciting. To prepare the dataset for HtT, we split it into training, validation
and test. The training set contains 900 examples of 2 digit addition. Both the validation and test sets
contain 100 examples of 2, 3 and 4 digit addition. To collect rules in the induction stage, we extract
all equations that consist of summations over numbers or capitalized letters (e.g. A to F in base-16).

Table 1 shows the results on the base-16, base-11 and base-9 datasets from Arithmetic. 0-shot CoT
results in the worst performance for both LLMs in all base systems. The main issue for 0-shot CoT
is that the LLMs tend to convert non-decimal inputs to decimal, perform the calculation in decimal,
then convert back to non-decimal, which is error prone due to the additional multiplications and
divisions. For the few-shot prompting methods, while previous works (Zhang et al., 2023b) observe
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Table 2: Results on the symbolic version of CLUTRR.

Model Prompt 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops Average

EdgeTransformer 100.0 94.4 96.8 88.0 68.8 61.9 50.0 50.0 36.0 71.8

0-shot CoT 50.0 22.2 12.9 8.0 12.5 9.5 10.0 3.8 4.0 14.8

5-shot CoT 0.0 27.8 45.2 36.0 18.8 19.0 16.7 11.5 16.0 21.2
+ HtT 87.5 38.9 35.5 44.0 37.5 14.3 33.3 11.5 36.0 37.6 (+16.4)

GPT3.5 + HtT (GPT4) 100.0 55.6 32.3 60.0 50.0 47.6 43.3 19.2 28.0 48.4 (+27.2)

5-shot LtM 37.5 22.2 29.0 36.0 25.0 14.3 10.0 23.1 20.0 24.1
+ HtT 100.0 33.3 32.3 48.0 31.3 33.3 23.3 34.6 28.0 40.5 (+16.4)
+ HtT (GPT4) 75 44.4 41.9 52.0 37.5 33.3 23.3 19.2 16.0 38.1 (+14.0)

0-shot CoT 50.0 22.2 22.6 32.0 37.5 38.1 33.3 46.2 16.0 33.1

5-shot CoT 50.0 55.6 71.0 80.0 50.0 52.4 30.0 46.2 20.0 50.6
GPT4 + HtT 100.0 61.1 74.2 84.0 75.0 38.1 56.7 53.8 36.0 64.3 (+13.7)

5-shot LtM 62.5 38.9 58.1 68.0 50.0 38.1 43.3 34.6 28.0 46.8
+ HtT 100.0 55.6 77.4 80.0 75.0 38.1 36.7 38.5 20.0 57.9 (+11.1)

that separating prompts can result in less hallucination, we do not observe any gain for LtM over
CoT. This is because non-decimal arithmetic is so counterfactual that even models like GPT4 cannot
always produce the correct rule in a separate prompt.

For both CoT and LtM prompting, HtT consistently improves the accuracy of both models. Notably,
HtT improves CoT on GPT4 by a large margin of 21.0% in average accuracy. The performance gain
is less significant for GPT3.5, since it is worse at inducing correct rules and performing retrieval
in the deduction stage. One potential solution is to use a strong model to induce the rules, and use
a weak model to perform deduction. To test this set up, we additionally conduct experiments on
GPT3.5 with rules induced by GPT4. We observe a large improvement on LtM + HtT with better
rules from GPT4, especially on base-11 and base-9 where GPT3.5 struggles to induce correct rules
due to poor base performance. There is no improvement for CoT + HtT using the better rules,
because GPT3.5 has a strong tendency to rely on its own beliefs (i.e. mostly decimal rules) rather
than retrieve from the knowledge block with CoT, similar to the observation in Longpre et al. (2021).

4.3 RELATIONAL REASONING

The next task we consider is the relational reasoning task commonly studied in the knowledge graph
community. We use CLUTRR (Sinha et al., 2019) for this purpose. Each example in CLUTRR
consists of a chain of kinship relations between family members, where the goal is to infer the
relationship between the head and the tail entities in the chain. CLUTRR comes in two forms: a
symbolic version that only contains entities and relations, and a textual version that additionally
contains irrelevant context. We evaluate HtT on both the symbolic and textual versions and report
the results respectively. We use a subset of the standard splits from Sinha et al. (2019). We use 2,000
samples of 2 and 3 hop examples for training, and 200 samples of 2 to 10 hop examples for both
validation and test. For reference, we reproduce EdgeTransformer (Bergen et al., 2021), one of the
best domain-specific models on CLUTRR, in the same setting.

Table 2 compares different methods on CLUTRR. It is observed that 0-shot CoT performs the worst
with both GPT3.5 and GPT4. For the few-shot prompting methods, performance is similar between
CoT and LtM. Here HtT consistently improves both the prompting methods with both models by a
margin of 11.1-27.2% in average accuracy. Notably, GPT3.5 does not fall short in retrieving rules
on CLUTRR and benefits more from HtT than GPT4, possibly because there are fewer rules in
CLUTRR than in Arithmetic. It worth mentioning that using rules from GPT4, the performance of
CoT on GPT3.5 increases by 27.2%, which is more than double performance of CoT and close to
the performance of CoT on GPT4. Hence, we believe HtT may serve as a new form of knowledge
distillation from strong to weak LLMs.

Compared to the supervised baseline EdgeTransformer, the best model, 5-shot CoT + HtT on GPT4,
is 7.5% lower in average accuracy. We note that this is a reasonable result, given that EdgeTrans-
former leverages forward chaining as a strong inductive bias and is specific to this task. There are
two advantages that HtT has over such domain-specific models: (1) HtT does not require a prede-
fined relation vocabulary, while domain-specific models require such a vocabulary before training.
See Appendix F for the learned rule library that contains relations not present in the exemplars. (2)
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Table 3: Results on the textual CLUTRR with
rules learned on the symbolic CLUTRR.

Model Prompt Accuracy

GPT3.5 5-shot CoT 16.0
+ HtT 16.3 (+0.3)

GPT4 5-shot CoT 48.7
+ HtT 59.1 (+10.4)

Table 4: Ablation studies on random rules and
the XML tagging trick. Arithmetic has 3 lev-
els of hierarchy, while CLUTRR has 2.

Prompt Arithmetic CLUTRR

5-shot CoT 57.4 50.6
5-shot CoT (tags) 63.7 (+6.3) 43.7 (-6.9)

+ random rules 23.7 (-33.7) 9.9 (-40.7)

+ HtT (unsorted) 67.2 (+9.8) 57.1 (+6.5)
+ HtT (sorted) 72.5 (+15.1) 60.0 (+9.4)
+ HtT (1 tag) 74.8 (+17.4) 59.6 (+9.0)
+ HtT (2 tags) 76.6 (+19.2) 64.3 (+13.7)
+ HtT (3 tags) 78.4 (+21.0) N/A

Base-16 (CoT)

73%

22%

5%

Base-16 (CoT+HtT)

93%

3%4%

CLUTRR (CoT)

48%

34%

18%

CLUTRR (CoT+HtT)

57%

22%

21%

Correct Rule Hallucination Other

Figure 3: Statistics of different error cases.

The rules learned by HtT can directly transfer to textual inputs, while one needs to train different
domain-specific models for symbolic and textual inputs. To verify this, we tackle the textual version
of CLUTRR with rules learned from the symbolic version. Table 3 shows that HtT significantly
improves the performance of GPT4 on the textual version. The improvement is not significant for
GPT3.5, since it often produces errors other than rule hallucination when processing textual input.

4.4 ABLATION STUDIES

We conduct ablation studies to better understand how HtT discovers good rules in the induction
stage and how the learned rule library improves deductive reasoning. We perform these experiments
with GPT4, since GPT3.5 sometimes struggles with inducing and retrieving rules. Due to space
limitations, we report the full results of the ablation studies in Appendix B.

Does HtT reduce the hallucination of rules? Since an LLM generates free-form text to solve a
problem, there can be multiple reasons for failure (Zheng et al., 2023). While HtT boosts the overall
performance on reasoning tasks, it is not clear whether the gain comes from reduced hallucination or
other improvements. Here we manually analyze the predictions of CoT and CoT + HtT on 100 test
examples from Arithmetic (base-16) and CLUTRR, and classify the predictions into 3 categories:
correct, rule hallucination and other. Note that there are two types of errors related to rules: (1)
the LLM generates or retrieves a factually incorrect rule. (2) the LLM retrieves a factually correct
rule that is not proper for the deductive step. We consider the former as hallucination and the latter
as retrieval errors. Details of the categorization can be found in Appendix B. Figure 3 shows the
distribution of error cases. We can see that HtT significantly reduces hallucination versus CoT.

Do the learned rules just hint the model about the rule space? A previous study (Min et al.,
2022) found that random labels perform similarly to gold labels in in-context learning. If that was
the case for our tasks, we could just generate random rules and does not resort to HtT to learn the
rule library. To investigate this question, we consider replacing the conclusions in the learned rules
with random answers. For example, we replace 5 + A = E with 5 + A = 7 in the base-16 dataset. We
consider a variant of HtT with the same number of random rules as in the rule library. Table 4 shows
that random rules significantly hurt performance, indicating the necessity of learned rules in HtT.
We conjecture that the reason for the contrary observation is that Min et al. (2022) studied simple
classification problems, whereas we are dealing with multi-step reasoning problems.

How do XML tags improve deductive reasoning? In Section 3.2, we introduce the XML tagging
trick to augment the retrieval ability of an LLM. Here we want to verify: (1) XML tagging improves
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Figure 4: Performance of HtT w.r.t. the number of samples in the induction stage.
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Figure 5: Number of rules discovered by HtT in the induction stage.

the retrieval ability of the LLM. (2) XML tagging performs better with a deeper hierarchy. For
(1), we apply the same XML tagging trick to CoT except that we do not provide the rule library.
For (2), we examine with different levels of hierarchies in XML tagging, and consider a variant with
unsorted (i.e. randomly ordered) rules without any hierarchy. As shown in Table 4, the XML tagging
trick only moderately improves the performance of CoT on Arithmetic and even hurts on CLUTRR,
indicating that XML tagging mostly improves the retrieval ability rather than simply elicits rules
from the parameteric knowledge of the LLM. With sorted rules and deeper hierarchies, the XML
tagging trick doubles the performance gain on both Arithmetic and CLUTRR datasets.

How many samples does HtT need for the induction stage? For the experiments in Table 1 and
2, we use 2,000 examples for the induction stage. One may be curious about how HtT scales with
the number of samples and what is the minimal number of examples required. Here we conduct
experiments with different numbers of examples for the induction stage. As shown in Figure 4,
there is a log-linear trend between performance and the number of examples, consistent with the
scaling law for supervised learning (Kaplan et al., 2020). The minimal number of examples varies
across datasets. On base-16 and base-9, 100 examples are sufficient for CoT + HtT to outperform
CoT. On base-11 and CLUTRR, at least 500 examples are required to obtain a significant gain.

What proportion of rules are discovered by HtT? Since we use the CoT prompt to generate rules
and verify them in the induction stage, it is likely that an LLM fails to discover some rules due to
their imperfect nature. Here we are interested in what proportion of rules can be discovered by HtT.
To answer this question, we compare HtT with an oracle that always induces all necessary rules
from an example. Note this comparison can only be made on Arithmetic, since rules in CLUTRR
are probabilistic rather than deterministic, e.g. a grandmother’s daughter can be either a mother or
an aunt. Figure 5 shows the number of rules induced by the oracle and HtT, as well as the number of
true positive rules in HtT. We can see that HtT discovers more than 85% of the rules in all datasets.
Interestingly, the number of rules grows on base-16 and base-11, but not on base-9, which indicates
some rules in base-9 cannot be discovered even by GPT4.

5 RELATED WORK

Reasoning over Natural Language. Solving reasoning problems in natural language can be traced
back to bAbI (Weston et al., 2016), which consists of many proxy tasks that evaluate inductive,
deductive and other forms of reasoning. Early attempts designed models with memory components
to scan the input and generate the answer (Weston et al., 2015; Kumar et al., 2016). With the rise
of Transformers (Vaswani et al., 2017) and pretrained language models (Radford et al., 2018; ?;
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Raffel et al., 2020), several works have demonstrated that transformers can be finetuned on specific
datasets to acquire various abilities, including deductive reasoning (Clark et al., 2020), reasoning
with implicit knowledge (Talmor et al., 2020), and program execution (Nye et al., 2021).

The success of in-context learning (Brown et al., 2020) and instruction tuning (Wei et al., 2022a;
Sanh et al., 2022) has motivated significant work on prompting LLMs to solve reasoning problems.
Some notable achievements include chain-of-thought (CoT) prompting (Wei et al., 2022c) that elic-
its reasoning with intermediate steps in few-shot exemplars, least-to-most (LtM) prompting (Zhou
et al., 2023) and decomposed prompting (Khot et al., 2023) that decompose multi-step reasoning into
sub problems and invoke separate prompts for each sub problem. Recent works have extended CoT
with planning (Yao et al., 2023), multi-agent debate (Wang et al., 2023b), and verifiers (Lightman
et al., 2023). All these works rely on parameteric knowledge stored in the LLM’s weights (Petroni
et al., 2019) and do not explicitly extract rules. Another line of work (Creswell et al., 2023; Kazemi
et al., 2023) considers taking explicit facts and rules as input, and searching possible proof traces
that lead to the answer. Compared to existing works, HtT is the first to induce rules from examples
and apply them deductively to solve reasoning problems.

Program Synthesis and Neural-Symbolic Reasoning. Prior to the era of LLMs, neural-symbolic
techniques have demonstrated significant performance gains in symbolic problems such as arith-
metic (Reed & De Freitas, 2016; Cai et al., 2017) and grammar learning (Chen et al., 2018; 2020;
Nye et al., 2020). With LLMs, some recent work has investigated in-context learning to simulate
multi-step computation for arithmetic reasoning (Zhou et al., 2022). Tool-augmented language mod-
els (Parisi et al., 2022; Schick et al., 2023) teach LLMs to generate API calls to external tools (e.g.
calculator, search engine), which has been extended to the composition of tools (Gupta & Kemb-
havi, 2023; Lu et al., 2023) for reasoning problems. The most related work in the area of program
synthesis is library learning (Ellis et al., 2021), which aims to learn a set of reusable functions that
generalize to new examples. Recent works have applied library learning to LLMs to solve reasoning
problems (Cai et al., 2023) and play Minecraft (Wang et al., 2023a). HtT shares a similar spirit to
these works. However, HtT learns rules in natural language and does not require a symbolic program
executor, increasing applicability compared to program synthesis methods.

Rule Learning. The proposed method is also related to rule learning techniques. Classical rule min-
ing algorithms (Agrawal et al., 1994; Galárraga et al., 2013) extract rules that have a large support set
and high confidence. HtT follows the same spirit and filters rules based on their frequency and ac-
curacy. In recent years, rule learning methods have mostly been studied in knowledge graphs (Yang
et al., 2017; Qu et al., 2021; Lu et al., 2022) or theorem proving (Rocktäschel & Riedel, 2017; Min-
ervini et al., 2020). These methods start from predefined rule templates and learn rules that best
fit the observations, with an emphasis on scalability and compositionality in knowledge graphs and
theorem proving respectively. However, none of these methods can directly perform reasoning in
natural language. While some works (Yang & Deng, 2021; Zhang et al., 2023a) can be applied to
natural language, they need dedicated solvers for the learning and inference of rules. By contrast,
HtT induces and applies rules by prompting an LLM, and is applicable to any generative LLM.

6 DISCUSSION AND CONCLUSION

Limitations. One limitation of HtT is that it requires the base model to have reasonably strong
knowledge and retrieval ability. As shown in Table 1, the gain of HtT for GPT3.5 is very marginal
due to weak knowledge of non-decimal systems. Even with a rule library induced by GPT4, GPT3.5
has issues in retrieving correct rules, especially in very counterfactual settings like base-11 and base-
9. We hypothesize that such issues may be solved by finetuning on retrieval datasets. Another limi-
tation is that the number of rules is limited by the LLM’s context length. It remains an open problem
to scale up deductive reasoning when the rule library cannot fit into the LLM’s input context.

Conclusion. In this paper, we introduce Hypotheses-to-Theories (HtT) to learn explicit rules and
apply them in reasoning problems. HtT consists of two stages: an induction stage that generates rules
and verifies them to construct a library, and a deduction stage that applies rules from the learned rule
library to solve a reasoning problem. Our empirical analysis shows that HtT significantly boosts
the performance of baseline prompting methods on numerical reasoning and relational reasoning
problems. The proposed method opens up a new direction of learning textual knowledge with LLMs.
We expect HtT to facilitate various applications and future research of LLMs.

9
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ETHICS STATEMENT

The goal of this paper is to learn rules from training samples and apply them to solve reasoning
problems with LLMs. Despite the strong abilities presented in this paper, we should be aware
that such abilities can also be potentially harmful. First, some malicious uses of LLMs may be
augmented by HtT. Examples include collecting personal data, social engineering and abuse of legal
process. Second, since HtT uses LLMs to generate knowledge, it is inevitable that the knowledge
may be permeated by biases in existing models, such as genders, races or religions. Regarding these
ethical problems, future works may better align LLMs with human values and reduce biases in their
parametric knowledge.

REPRODUCIBILITY STATEMENT

All the experiments are based on publicly available datasets. We describe the experiment setup
and hyperparameters in Section 4.1 and Appendix A. Full results of ablation study are presented in
Appendix B. Examples of prompts for each method and each dataset can be found in Appendix E.
We also attach the source code in the supplementary materials. Due to frequent updates of GPT3.5
and GPT4, we cannot guarantee the exact numbers can be reproduced with future models, but one
should be able to observe the gain of HtT over basic prompting methods.
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A EXPERIMENT SETUP

Here we present further details of our experiment setup. Since LLMs output free-form text to solve
the problems, we evaluate models by matching the predicted text and the ground truth answer. We
crop the last sentence from the predicted text, and check if the ground truth answer is present in
that sentence. We only consider full word match and exclude partial matches like “mother” and
“grandmother”. If the LLM outputs more than one answer, we always consider it as wrong.

For HtT, we extract rules in the induction stage by searching string templates with regular expres-
sions. We note that HtT does not rely on engineering of the string template, and any templates that
can extract rules from the given few-shot examples suffice here. Even if the string templates recall
wrong rules, they can be easily filtered by our minimal occurrence criterion. We construct the rule li-
brary by filtering learned rules based on their minimal occurrence k and minimal accuracy p. Table 5
lists the best hyperparameter configurations of HtT on the Arithmetic and CLUTRR datasets.

Table 5: Hyperparameter configurations of HtT on different datasets.

Model Hyperparameter Arithmetic CLUTRRBase-16 Base-11 Base-9

GPT3.5 minimal occurrence k 2 2 2 2
minimal accuracy p 0.3 0.5 0.5 0.3

GPT4 minimal occurrence k 2 2 2 2
minimal accuracy p 0.5 0.3 0.3 0.7

B FULL EXPERIMENTAL RESULTS

Table 6 provides the full results on the textual version of CLUTRR. Table 7 and 8 show the full
results for the ablation studies in Section 4.4.

Table 6: Results on the textual CLUTRR with rules learned on the symbolic CLUTRR.

Model Prompt 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops Average

GPT3.5 5-shot CoT 12.5 11.1 12.9 36.0 6.3 19.0 30.0 0.0 16.0 16.0
+ HtT 12.5 22.2 12.9 32.0 25.0 23.8 6.7 3.8 8.0 16.3 (+0.3)

GPT4 5-shot CoT 50.0 50.0 71.0 68.0 50.0 47.6 26.7 34.6 40.0 48.7
+ HtT 100.0 55.6 77.4 72.0 75.0 38.1 23.3 42.3 48.0 59.1 (+10.4)

Table 7: Ablation studies on Arithmetic. All the entries are based on GPT4.

Prompt Base-16 Base-11 Base-9 Average2 digits 3 digits 4 digits 2 digits 3 digits 4 digits 2 digits 3 digits 4 digits

5-shot CoT 83.3 71.1 61.5 52.8 47.4 46.2 75.0 36.8 42.3 57.4
5-shot CoT (tags) 100.0 81.6 84.6 61.1 44.7 23.076 80.6 55.3 42.3 63.7 (+6.3)

+ random rules 19.4 18.4 0.0 30.6 28.9 15.4 44.4 21.1 34.6 23.7 (-33.7)

+ HtT (unsorted) 91.7 81.6 65.4 80.6 52.6 57.7 77.8 55.3 42.3 67.2 (+9.8)
+ HtT (sorted) 97.2 89.5 76.9 80.6 60.5 65.4 86.1 50.0 46.2 72.5 (+15.1)
+ HtT (1 tag) 91.7 89.5 84.6 80.6 60.5 46.2 88.9 65.8 65.4 74.8 (+17.4)
+ HtT (2 tags) 91.7 84.2 96.2 88.9 63.2 46.2 94.4 63.2 61.5 76.6 (+19.2)
+ HtT (3 tags) 100.0 94.7 84.6 88.9 71.1 46.2 86.1 68.4 65.4 78.4 (+21.0)

We manually analyze the predictions of CoT and CoT + HtT on 100 test examples from Arithmetic
(base-16) and CLUTRR. We classify the predictions into five categories

• Correct: correct examples.
• Rule hallucination (only): error examples solely due to factually incorrect rules.
• Rule hallucination (and other): error examples due to both incorrect rules and other reasons.
• Retrieval: error examples solely due to the retrieval of undesired, but factually correct rules.
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Table 8: Ablation studies on CLUTRR. All the entries are based on GPT4.

Prompt 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops Average

5-shot CoT 50.0 55.6 71.0 80.0 50.0 52.4 30.0 46.2 20.0 50.6
5-shot CoT (tags) 37.5 38.9 74.2 76.0 50.0 47.6 26.7 38.5 4.0 43.7 (-6.9)

+ random rules 0.0 16.7 3.2 20.0 6.3 23.8 3.3 11.5 4.0 9.9 (-40.7)

+ HtT (unsorted) 87.5 50.0 58.1 76.0 56.3 52.4 43.3 46.2 44.0 57.1 (+6.5)
+ HtT (sorted) 100.0 61.1 77.4 72.0 62.5 42.9 53.3 38.5 32.0 60.0 (+9.4)
+ HtT (1 tag) 100.0 61.1 74.2 76.0 62.5 42.9 53.3 30.8 36.0 59.6 (+9.0)
+ HtT (2 tags) 100.0 61.1 74.2 84.0 75.0 38.1 56.7 53.8 36.0 64.3 (+13.7)

• Non-retrieval: error examples that do not fit into any of the above categories.

In the main paper, we aggregate the five categories into three coarse categories: correct, rule hallu-
cination and others. Table 9 demonstrates the full results of error cases on base-16 and CLUTRR. It
is observed that HtT significantly reduced rule hallucination versus CoT. On CLUTRR, HtT has a
moderate ratio of errors in the retrieval category. This is because either the required rule is missing in
the library, or the LLM cannot retrieve the required rule. We believe such an issue can be mitigated
by learning a more complete rule library and finetuning the LLM on retrieval problems.

Table 9: Statistics of error cases.

Dataset Prompt Correct Rule Hallucination Others
Only And Others Retrieval Non-Retrieval

Base-16 CoT 73% 19% 3% N/A 5%
CoT+HtT 93% 2% 1% 0% 4%

CLUTRR CoT 48% 27% 7% N/A 18%
CoT+HtT 57% 12% 10% 14% 4%

C LEARNING FIRST-ORDER LOGIC RULES ON CLUTRR

While we apply HtT to learn numerical rules and propositional logic rules in the paper, HtT is not
limited to certain types of rules. Here we show that HtT can be used to learn first-order logic rules
on CLUTRR, e.g. if Y is X’s father and Z is Y’s sister, Z is X’s aunt. We modify CoT and CoT + HtT
to leverage first-order logic rules in deduction steps. Table 10 shows the results of first-order logic
rules on CLUTRR. It is observed that first-order logic rules significantly improve performance over
propositional logic rules on CoT, and HtT further improves over CoT with the learned rule library.
Nevertheless, we note that CLUTRR is a simple dataset and does not require unification. In general,
reasoning with first-order logic rules involves unification steps (i.e. to match rules and facts at each
step), which require planning abilities that LLMs typically do not possess Valmeekam et al. (2023).

Table 10: Results of different rule types on CLUTRR. All entries are based on GPT-4.

Rule Type Prompt 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 9 hops 10 hops Average

Propositional 5-shot CoT 50.0 55.6 71.0 80.0 50.0 52.4 30.0 46.2 20.0 50.6
+ HtT 100.0 61.1 74.2 84.0 75.0 38.1 56.7 53.8 36.0 64.3 (+13.7)

First-order 5-shot CoT 75.0 61.1 87.1 100.0 87.5 61.9 93.3 76.9 68.0 79.0
+ HtT 100.0 61.1 93.5 100.0 93.8 76.2 86.7 88.5 72.0 85.7 (+6.7)

D SUMMARIZE RULE LIBRARIES INTO HIGH-LEVEL KNOWLEDGE

In HtT, we learn rules as independent atoms, which often results in a very large rule library. We
notice that in some tasks, rules may be highly correlated and there might be a way to describe the
rule library in a high-level form. For example, one may describe summation rules by introducing the
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definition of digits, summation and carry. Inspired by this idea, we prompt GPT-4 to summarize the
rule libraries learned on Arithmetic into high-level knowledge, and replace the rule library with the
summary in the deduction stage. Due to the large variation in the generated summaries, we sample
5 summaries for each base system, and report the mean and variance of the performance.

Table 11 shows the performance of the original HtT and HtT with summarized knowledge. Com-
pared to CoT, the summaries improve the performance on base-11 and base-9, yet remain the same
performance on base-16. The gain of summaries is generally smaller than the gain of rule libraries,
which is expected as a summary usually loses some details of a rule library. It is worth mentioning
that summaries require significantly shorter prompts and are more practical for applications. On
base-11 where summaries are only 3.1% worse than rule libraries, summaries reduce the number of
tokens in HtT from 3,997 to 1,510, only 60% more tokens compared to the standard CoT, as shown
in Table 12. However, we notice that there is a large variance in the performance of summaries. We
leave the problem of generating better and more stable summaries as future work.

Table 11: Results of HtT with rule libraries and summarized knowledge on Arithmetic. All the
entries are based on GPT-4.

Prompt Base-16 Base-11 Base-9 Average2 digits 3 digits 4 digits 2 digits 3 digits 4 digits 2 digits 3 digits 4 digits

5-shot CoT 83.3 71.1 61.5 52.8 47.4 46.2 75.0 36.8 42.3 57.4
+ HtT (rules) 100.0 94.7 84.6 88.9 71.1 46.2 86.1 68.4 65.4 78.4 (+21.0)
+ HtT (summary) 86.7±7.7 70.5±8.1 63.8±4.6 79.4±3.8 60.5±15.0 56.9±5.1 85.6±5.7 63.2±3.3 53.1±5.1 68.9±2.7 (+11.5)

Table 12: Number of tokens used by different prompts on base-11.

Prompt Knowledge Exemplars Question Total

5-shot CoT 0 945 17 962
+ HtT (rules) 2,959 1,021 17 3,997
+ HtT (summary) 472 1,021 17 1,510

E PROMPTS

For all HtT prompts, rules in the prompt are just for demonstration purpose. We do not use any rules
from human prior knowledge in the rule library. All the rules in the rule library are generated by the
LLM in the induction stage.

E.1 NUMERICAL REASONING

Prompt 1-5 show the prompts we use for different prompting methods on the base-16 dataset. For
base-11 and base-9, we use the same prompts except we change the exemplars in the corresponding
few-shot prompts.

Prompt 1: 0-shot CoT prompt for Arithmetic.

Question: In base-{{ base }}, what is {{ x }} + {{ y }}?
Answer: Let’s think step by step.

Prompt 2: 5-shot CoT prompt for Arithmetic.

Question: In base-16, what is EC + DD?
Answer:
EC is E, C. DD is D, D. So the steps are C + D, E + D.
There is no carry. C + D = 19. 19 is 1, 9. So we set the carry to 1. Prepend 9 to the answer. So far the
answer has 1 digit: 9.
The carry is 1. E + D + 1 = 1C. 1C is 1, C. So we set the carry to 1. Prepend C to the answer. So far the
answer has 2 digits: C, 9.
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The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, C, 9.
Therefore, the answer is 1C9.

Question: In base-16, what is 18 + 9F?
Answer:
18 is 1, 8. 9F is 9, F. So the steps are 8 + F, 1 + 9.
There is no carry. 8 + F = 17. 17 is 1, 7. So we set the carry to 1. Prepend 7 to the answer. So far the
answer has 1 digit: 7.
The carry is 1. 1 + 9 + 1 = B. B is 0, B. So we clear the carry. Prepend B to the answer. So far the answer
has 2 digits: B, 7.
There is no carry. So far the answer has 2 digits: B, 7.
Therefore, the answer is B7.

Question: In base-16, what is 79 + 8B?
Answer:
79 is 7, 9. 8B is 8, B. So the steps are 9 + B, 7 + 8.
There is no carry. 9 + B = 14. 14 is 1, 4. So we set the carry to 1. Prepend 4 to the answer. So far the
answer has 1 digit: 4.
The carry is 1. 7 + 8 + 1 = 10. 10 is 1, 0. So we set the carry to 1. Prepend 0 to the answer. So far the
answer has 2 digits: 0, 4.
The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, 0, 4.
Therefore, the answer is 104.

Question: In base-16, what is A6 + 94?
Answer:
A6 is A, 6. 94 is 9, 4. So the steps are 6 + 4, A + 9.
There is no carry. 6 + 4 = A. A is 0, A. So we clear the carry. Prepend A to the answer. So far the answer
has 1 digit: A.
There is no carry. A + 9 = 13. 13 is 1, 3. So we set the carry to 1. Prepend 3 to the answer. So far the
answer has 2 digits: 3, A.
The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, 3, A.
Therefore, the answer is 13A.

Question: In base-16, what is 54 + D3?
Answer:
54 is 5, 4. D3 is D, 3. So the steps are 4 + 3, 5 + D.
There is no carry. 4 + 3 = 7. 7 is 0, 7. So we clear the carry. Prepend 7 to the answer. So far the answer
has 1 digit: 7.
There is no carry. 5 + D = 12. 12 is 1, 2. So we set the carry to 1. Prepend 2 to the answer. So far the
answer has 2 digits: 2, 7.
The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, 2, 7.
Therefore, the answer is 127.

Question: In base-16, what is {{ x }} + {{ y }}?
Answer:

Prompt 3: 5-shot CoT+HtT prompt for Arithmetic.

Instruction: When you answer the questions, try to use the provided knowledge whenever possible. Try
not to invent knowledge by yourself unless necessary.
Knowledge:
<no_carry>
<0><0>0 + 0 = 0.</0>. . . <F>0 + F = F.</F></0>
. . .
<F><0>F + 0 = F.</0>. . . <F>F + F = 1E.</F></F>
</no_carry>
<carry>
<0><0>0 + 0 + 1 = 1.</0>. . . <F>0 + F + 1 = 10.</F></0>
. . .
<F><0>F + 0 + 1 = F.</0>. . . <F>F + F + 1 = 1F.</F></F>
</carry>

18



Under review as a conference paper at ICLR 2024

Question: In base-16, what is EC + DD?
Answer:
EC is E, C. DD is D, D. So the steps are C + D, E + D.
There is no carry. <no_carry><C><D>C + D = 19. 19 is 1, 9. So we set the carry to 1. Prepend 9 to the
answer. So far the answer has 1 digit: 9.
The carry is 1. <carry><E><D>E + D + 1 = 1C. 1C is 1, C. So we set the carry to 1. Prepend C to the
answer. So far the answer has 2 digits: C, 9.
The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, C, 9.
Therefore, the answer is 1C9.

Question: In base-16, what is 18 + 9F?
Answer:
18 is 1, 8. 9F is 9, F. So the steps are 8 + F, 1 + 9.
There is no carry. <no_carry><8><F>8 + F = 17. 17 is 1, 7. So we set the carry to 1. Prepend 7 to the
answer. So far the answer has 1 digit: 7.
The carry is 1. <carry><1><9>1 + 9 + 1 = B. B is 0, B. So we clear the carry.
Prepend B to the answer. So far the answer has 2 digits: B, 7.
There is no carry. So far the answer has 2 digits: B, 7.
Therefore, the answer is B7.

Question: In base-16, what is 79 + 8B?
Answer:
79 is 7, 9. 8B is 8, B. So the steps are 9 + B, 7 + 8.
There is no carry. <no_carry><9><B>9 + B = 14. 14 is 1, 4. So we set the carry to 1. Prepend 4 to the
answer. So far the answer has 1 digit: 4.
The carry is 1. <carry><7><8>7 + 8 + 1 = 10. 10 is 1, 0. So we set the carry to 1. Prepend 0 to the
answer. So far the answer has 2 digits: 0, 4.
The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, 0, 4.
Therefore, the answer is 104.

Question: In base-16, what is A6 + 94?
Answer:
A6 is A, 6. 94 is 9, 4. So the steps are 6 + 4, A + 9.
There is no carry. <no_carry><6><4>6 + 4 = A. A is 0, A. So we clear the carry. Prepend A to the
answer. So far the answer has 1 digit: A.
There is no carry. <no_carry><A><9>A + 9 = 13. 13 is 1, 3. So we set the carry to 1. Prepend 3 to the
answer. So far the answer has 2 digits: 3, A.
The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, 3, A.
Therefore, the answer is 13A.

Question: In base-16, what is 54 + D3?
Answer:
54 is 5, 4. D3 is D, 3. So the steps are 4 + 3, 5 + D.
There is no carry. <no_carry><4><3>4 + 3 = 7. 7 is 0, 7. So we clear the carry. Prepend 7 to the answer.
So far the answer has 1 digit: 7.
There is no carry. <no_carry><5><D>5 + D = 12. 12 is 1, 2. So we set the carry to 1. Prepend 2 to the
answer. So far the answer has 2 digits: 2, 7.
The carry is 1. Prepend 1 to the answer. So far the answer has 3 digits: 1, 2, 7.
Therefore, the answer is 127.

Question: In base-16, what is {{ x }} + {{ y }}?
Answer:

Prompt 4: 5-shot LtM prompt for Arithmetic. LtM uses the same prompt as CoT for deductive
reasoning, except that LtM calls the following prompt whenever it encounters a rule.

Question: In base-16, what is E + D + 1?
Answer: E + D + 1 = 1C.

Question: In base-16, what is 8 + F?
Answer: 8 + F = 17.
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Question: In base-16, what is 7 + 8 + 1?
Answer: 7 + 8 + 1 = 10.

Question: In base-16, what is 6 + 4?
Answer: 6 + 4 = A.

Question: In base-16, what is 5 + D?
Answer: 5 + D = 12.

Question: In base-16, what is {{ x }} + {{ y }}?
Answer:

Prompt 5: 5-shot LtM+HtT prompt for Arithmetic. LtM+HtT uses the same prompt as CoT for
deductive reasoning, except that LtM+HtT calls the following prompt whenever it encounters a
rule.

Instruction: When you answer the questions, try to use the provided knowledge whenever possible. Try
not to invent knowledge by yourself unless necessary.
Knowledge:
<no_carry>
<0><0>0 + 0 = 0.</0>. . . <F>0 + F = F.</F></0>
. . .
<F><0>F + 0 = F.</0>. . . <F>F + F = 1E.</F></F>
</no_carry>
<carry>
<0><0>0 + 0 + 1 = 1.</0>. . . <F>0 + F + 1 = 10.</F></0>
. . .
<F><0>F + 0 + 1 = F.</0>. . . <F>F + F + 1 = 1F.</F></F>
</carry>

Question: In base-16, what is E + D + 1?
Answer: We retrieve <carry><E><D>E + D + 1 = 1C.

Question: In base-16, what is 8 + F?
Answer: We retrieve <no_carry><8><F>8 + F = 17.

Question: In base-16, what is 7 + 8 + 1?
Answer: We retrieve <carry><7><8>7 + 8 + 1 = 10.

Question: In base-16, what is 6 + 4?
Answer: We retrieve <no_carry><6><4>6 + 4 = A.

Question: In base-16, what is 5 + D?
Answer: We retrieve <no_carry><5><D>5 + D = 12.

Question: In base-16, what is {{ x }} + {{ y }}?
Answer:

E.2 RELATIONAL REASONING

Prompt 6-10 list the prompts we use for different prompting methods on the symbolic version of
CLUTRR. Prompt 11 and 12 are used for the experiments on the textual version of CLUTRR.

Prompt 6: 0-shot CoT prompt for CLUTRR.

Context: The relations on the path from {{ head }} to {{ tail }} are {{ relations | join(", ") }}.
Question: {{ tail }} is {{ head }}’s what?
Answer: Let’s think step by step.
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Prompt 7: 5-shot CoT prompt for CLUTRR.

Context: The relations on the path from Alan to Anthony are daughter, uncle, son.
Question: Anthony is Alan’s what?
Answer:
For daughter’s uncle, we have daughter’s uncle is brother. So the relations are reduced to brother, son.
For brother’s son, we have brother’s son is nephew. So the relations are reduced to nephew.
Therefore, the answer is nephew.

Context: The relations on the path from Annie to Carlos are brother, mother, son.
Question: Carlos is Annie’s what?
Answer:
For brother’s mother, we have brother’s mother is mother. So the relations are reduced to mother, son.
For mother’s son, we have mother’s son is brother. So the relations are reduced to brother.
Therefore, the answer is brother.

Context: The relations on the path from Beverly to Michelle are father, daughter, aunt.
Question: Michelle is Beverly’s what?
Answer:
For father’s daughter, we have father’s daughter is sister. So the relations are reduced to sister, aunt.
For sister’s aunt, we have sister’s aunt is aunt. So the relations are reduced to aunt.
Therefore, the answer is aunt.

Context: The relations on the path from Lee to Jeanna are father, daughter, sister.
Question: Jeanna is Lee’s what?
Answer:
For father’s daughter, we have father’s daughter is sister. So the relations are reduced to sister, sister.
For sister’s sister, we have sister’s sister is sister. So the relations are reduced to sister.
Therefore, the answer is sister.

Context: The relations on the path from Craig to Molly are sister, father, mother.
Question: Molly is Craig’s what?
Answer:
For sister’s father, we have sister’s father is father. So the relations are reduced to father, mother.
For father’s mother, we have father’s mother is grandmother. So the relations are reduced to grandmother.
Therefore, the answer is grandmother.

Context: The relations on the path from {{ head }} to {{ tail }} are {{ relations | join(", ")
}}.
Question: {{ tail }} is {{ head }}’s what?
Answer:

Prompt 8: 5-shot CoT+HtT prompt for CLUTRR.

Instruction: When you answer the questions, try to use the provided knowledge whenever possible. Try
not to invent knowledge by yourself unless necessary.
Knowledge:
<aunt><brother>aunt’s brother is uncle.</brother>. . . <aunt><son>aunt’s son is cousin.</son></aunt>
. . .
<wife><brother>wife’s brother is brother-in-law.</brother>. . . <son>wife’s son is son.</son></wife>

Context: The relations on the path from Alan to Anthony are daughter, uncle, son.
Question: Anthony is Alan’s what?
Answer:
For daughter’s uncle, we retrieve <daughter><uncle>daughter’s uncle is brother. So the relations are
reduced to brother, son.
For brother’s son, we retrieve <brother><son>brother’s son is nephew. So the relations are reduced to
nephew.
Therefore, the answer is nephew.

Context: The relations on the path from Annie to Carlos are brother, mother, son.
Question: Carlos is Annie’s what?
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Answer:
For brother’s mother, we retrieve <brother><mother>brother’s mother is mother. So the relations are
reduced to mother, son.
For mother’s son, we retrieve <mother><son>mother’s son is brother. So the relations are reduced to
brother.
Therefore, the answer is brother.

Context: The relations on the path from Beverly to Michelle are father, daughter, aunt.
Question: Michelle is Beverly’s what?
Answer:
For father’s daughter, we retrieve <father><daughter>father’s daughter is sister. So the relations are
reduced to sister, aunt.
For sister’s aunt, we retrieve <sister><aunt>sister’s aunt is aunt. So the relations are reduced to aunt.
Therefore, the answer is aunt.

Context: The relations on the path from Lee to Jeanna are father, daughter, sister.
Question: Jeanna is Lee’s what?
Answer:
For father’s daughter, we retrieve <father><daughter>father’s daughter is sister. So the relations are
reduced to sister, sister.
For sister’s sister, we retrieve
<sister><sister>Sister’s sister is sister. So the relations are reduced to sister.
Therefore, the answer is sister.

Context: The relations on the path from Craig to Molly are sister, father, mother.
Question: Molly is Craig’s what?
Answer:
For sister’s father, we retrieve <sister><father>sister’s father is father. So the relations are reduced to
father, mother.
For father’s mother, we retrieve <father><mother>father’s mother is grandmother. So the relations are
reduced to grandmother.
Therefore, the answer is grandmother.

Context: The relations on the path from {{ head }} to {{ tail }} are {{ relations | join(", ")
}}.
Question: {{ tail }} is {{ head }}’s what?
Answer:

Prompt 9: 5-shot LtM prompt for CLUTRR. LtM uses the same prompt as CoT for deductive
reasoning, except that LtM calls the following prompt whenever it encounters a rule.

Question: What is daughter’s uncle?
Answer: Daughter’s uncle is mother.

Question: What is brother’s mother?
Answer: Brother’s mother is mother.

Question: What is sister’s aunt?
Answer: Sister’s aunt is aunt.

Question: What is father’s daughter?
Answer: Father’s daughter is sister.

Question: What is sister’s father?
Answer: Sister’s father is father.

Question: What is {{ relations[0] }}’s {{ relations[1] }}?
Answer:
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Prompt 10: 5-shot LtM+HtT prompt for CLUTRR. LtM+HtT uses the same prompt as CoT for
deductive reasoning, except that LtM+HtT calls the following prompt whenever it encounters a
rule.

Instruction: When you answer the questions, try to use the provided knowledge whenever possible. Try
not to invent knowledge by yourself unless necessary.
Knowledge:
<aunt><brother>aunt’s brother is uncle.</brother>. . . <aunt><son>aunt’s son is cousin.</son></aunt>
. . .
<wife><brother>wife’s brother is brother-in-law.</brother>. . . <son>wife’s son is son.</son></wife>

Question: What is daughter’s uncle?
Answer: <daughter><uncle>Daughter’s uncle is mother.

Question: What is brother’s mother?
Answer: <brother><mother>Brother’s mother is mother.

Question: What is sister’s aunt?
Answer: <sister><aunt>Sister’s aunt is aunt.

Question: What is father’s daughter?
Answer: <father><daughter>Father’s daughter is sister.

Question: What is sister’s father?
Answer: <sister><father>Sister’s father is father.

Question: What is {{ relations[0] }}’s {{ relations[1] }}?
Answer:

Prompt 11: 5-shot CoT prompt for the textual version of CLUTRR.

Document: Anthony went to the park with his father, James. Annie took her uncle James to the grocery
store. Alan and his daughter Annie spent Father’s Day together. Annie took her dad out to a sports bar,
and they had a great time watching football and drinking beer there.
Question: Anthony is Alan’s what?
Answer: We first extract all triplets from the document. We then find the path from Alan to Anthony.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Anthony, father, James), (Annie, uncle, James), (Alan, daughter, Annie).
The path from Alan to Anthony is (Alan, daughter, Annie), (Annie, uncle, James), (James, son, Anthony).
The relations on the path are daughter, uncle, son.
Daughter’s uncle is brother. So the relations are reduced to brother, son.
Brother’s son is nephew. So the relations are reduced to nephew.
Therefore, Anthony is Alan’s nephew.

Document: Valerie’s biggest accomplishment is raising her son Carlos. Annie does n’t like hav-
ing to babysit her younger brother, Emmanuel. Valerie and her son Emmanuel had lunch together at a
local Chinese restaurant.
Question: Carlos is Annie’s what?
Answer: We first extract all triplets from the document. We then find the path from Annie to Carlos.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Valerie, son, Carlos), (Annie, brother, Emmanuel), (Valerie, son, Emmanuel).
The path from Annie to Carlos is (Annie, brother, Emmanuel), (Emmanuel, mother, Valerie), (Valerie,
son, Carlos). The relations on the path are brother, mother, son.
Brother’s mother is mother. So the relations are reduced to mother, son.
Mother’s son is brother. So the relations are reduced to brother.
Therefore, Carlos is Annie’s brother.

Document: James likes to take his daughter Jeanna fishing. James loves cooking with his daugh-
ter. Her name is Beverly. Jeanna loves visiting with her aunt Michelle.
Question: Michelle is Beverly’s what?
Answer: We first extract all triplets from the document. We then find the path from Beverly to Michelle.
Finally, we reduce the relations on the path to get the answer.

23



Under review as a conference paper at ICLR 2024

The triplets include (James, daughter, Jeanna), (James, daughter, Beverly), (Jeanna, aunt, Michelle).
The path from Beverly to Michelle is (Beverly, father, James), (James, daughter, Jeanna), (Jeanna, aunt,
Michelle). The relations on the path are father, daughter, aunt.
Father’s daughter is sister. So the relations are reduced to sister, aunt.
Sister’s aunt is aunt. So the relations are reduced to aunt.
Therefore, Michelle is Beverly’s aunt.

Document: Lee was finally coming of age and it was time for him and his father to go on a
coming of age camping trip. Beverly, James’s younger daughter, decided she wanted to go on the trip
despite being several years younger. Jeanna took her younger sister Beverly to the carnival last weekend.
Question: Jeanna is Lee’s what?
Answer: We first extract all triplets from the document. We then find the path from Lee to Jeanna.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Lee, father, James), (James, daughter, Beverly), (Jeanna, sister, Beverly).
The path from Lee to Jeanna is (Lee, father, James), (James, daughter, Beverly), (Beverly, sister, Jeanna).
The relations on the path are father, daughter, sister.
Father’s daughter is sister. So the relations are reduced to sister, sister.
Sister’s sister is sister. So the relations are reduced to sister.
Therefore, Jeanna is Lee’s sister.

Document: Craig’s sister, Rosie, bought movie tickets at a discount rate. Rosie and her father
Elliott love to go skiing. Often, Elliott will invite his mother Molly to join them.
Question: Molly is Craig’s what?
Answer: We first extract all triplets from the document. We then find the path from Craig to Molly.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Craig, sister, Rosie), (Rosie, father, Elliott), (Elliott, mother, Molly).
The path from Craig to Molly is (Craig, sister, Rosie), (Rosie, father, Elliott), (Elliott, mother, Molly).
The relations on the path are sister, father, mother.
Sister’s father is father. So the relations are reduced to father, mother.
Father’s mother is grandmother. So the relations are reduced to grandmother.
Therefore, Molly is Craig’s grandmother.

Document: {{ document }}
Question: {{ tail }} is {{ head }}’s what?
Answer:

Prompt 12: 5-shot CoT+HtT prompt for the textual version of CLUTRR.

Instruction: When you answer the questions, try to use the provided knowledge whenever possible. Try
not to invent knowledge by yourself unless necessary.
Knowledge:
<aunt><brother>aunt’s brother is uncle.</brother>. . . <aunt><son>aunt’s son is cousin.</son></aunt>
. . .
<wife><brother>wife’s brother is brother-in-law.</brother>. . . <son>wife’s son is son.</son></wife>

Document: Anthony went to the park with his father, James. Annie took her uncle James to the
grocery store. Alan and his daughter Annie spent Father’s Day together. Annie took her dad out to a
sports bar, and they had a great time watching football and drinking beer there.
Question: Anthony is Alan’s what?
Answer: We first extract all triplets from the document. We then find the path from Alan to Anthony.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Anthony, father, James), (Annie, uncle, James), (Alan, daughter, Annie).
The path from Alan to Anthony is (Alan, daughter, Annie), (Annie, uncle, James), (James, son, Anthony).
The relations on the path are daughter, uncle, son.
<daughter><uncle>Daughter’s uncle is brother. So the relations are reduced to brother, son.
<brother><son>Brother’s son is nephew. So the relations are reduced to nephew.
Therefore, Anthony is Alan’s nephew.

Document: Valerie’s biggest accomplishment is raising her son Carlos. Annie does n’t like hav-
ing to babysit her younger brother, Emmanuel. Valerie and her son Emmanuel had lunch together at a
local Chinese restaurant.
Question: Carlos is Annie’s what?
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Answer: We first extract all triplets from the document. We then find the path from Annie to Carlos.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Valerie, son, Carlos), (Annie, brother, Emmanuel), (Valerie, son, Emmanuel).
The path from Annie to Carlos is (Annie, brother, Emmanuel), (Emmanuel, mother, Valerie), (Valerie,
son, Carlos). The relations on the path are brother, mother, son.
<brother><mother>Brother’s mother is mother. So the relations are reduced to mother, son.
<mother><son>Mother’s son is brother. So the relations are reduced to brother.
Therefore, Carlos is Annie’s brother.

Document: James likes to take his daughter Jeanna fishing. James loves cooking with his daugh-
ter. Her name is Beverly. Jeanna loves visiting with her aunt Michelle.
Question: Michelle is Beverly’s what?
Answer: We first extract all triplets from the document. We then find the path from Beverly to Michelle.
Finally, we reduce the relations on the path to get the answer.
The triplets include (James, daughter, Jeanna), (James, daughter, Beverly), (Jeanna, aunt, Michelle).
The path from Beverly to Michelle is (Beverly, father, James), (James, daughter, Jeanna), (Jeanna, aunt,
Michelle). The relations on the path are father, daughter, aunt.
<father><daughter>Father’s daughter is sister. So the relations are reduced to sister, aunt.
<sister><aunt>Sister’s aunt is aunt. So the relations are reduced to aunt.
Therefore, Michelle is Beverly’s aunt.

Document: Lee was finally coming of age and it was time for him and his father to go on a
coming of age camping trip. Beverly, James’s younger daughter, decided she wanted to go on the trip
despite being several years younger. Jeanna took her younger sister Beverly to the carnival last weekend.
Question: Jeanna is Lee’s what?
Answer: We first extract all triplets from the document. We then find the path from Lee to Jeanna.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Lee, father, James), (James, daughter, Beverly), (Jeanna, sister, Beverly).
The path from Lee to Jeanna is (Lee, father, James), (James, daughter, Beverly), (Beverly, sister, Jeanna).
The relations on the path are father, daughter, sister.
<father><daughter>Father’s daughter is sister. So the relations are reduced to sister, sister.
<sister><sister>Sister’s sister is sister. So the relations are reduced to sister.
Therefore, Jeanna is Lee’s sister.

Document: Craig’s sister, Rosie, bought movie tickets at a discount rate. Rosie and her father
Elliott love to go skiing. Often, Elliott will invite his mother Molly to join them.
Question: Molly is Craig’s what?
Answer: We first extract all triplets from the document. We then find the path from Craig to Molly.
Finally, we reduce the relations on the path to get the answer.
The triplets include (Craig, sister, Rosie), (Rosie, father, Elliott), (Elliott, mother, Molly).
The path from Craig to Molly is (Craig, sister, Rosie), (Rosie, father, Elliott), (Elliott, mother, Molly).
The relations on the path are sister, father, mother.
<sister><father>Sister’s father is father. So the relations are reduced to father, mother.
<father><mother>Father’s mother is grandmother. So the relations are reduced to grandmother.
Therefore, Molly is Craig’s grandmother.

Document: {{ document }}
Question: {{ tail }} is {{ head }}’s what?
Answer:

F RULE LIBRARIES LEARNED BY HTT

Here we present rule libraries learned by HtT on GPT4. For numerical reasoning, we compare the
learned rules with rules induced by an oracle model, and compute precision and recall for each rule
library. For relational reasoning, due to lack of ground truth rules, we cannot report precision and
recall for this problem.

F.1 NUMERICAL REASONING

We illustrate the rule libraries for base-16, base-11 and base-9 in Prompt 13-15 respectively.
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Prompt 13: 413 rules learned by GPT4 on base-16. Precision: 98.5%. Recall: 92.2%.

0 + 0 = 0. 0 + 1 = 1. 0 + 2 = 2. 0 + 3 = 3. 0 + 4 = 4. 0 + 5 = 5. 0 + 6 = 6. 0 + 7 = 7. 0 + 8 = 8. 0 + 9 = 9. 0
+ A = A. 0 + B = B. 0 + C = C. 0 + D = D. 0 + E = E. 0 + F = F. 1 + 0 = 1. 1 + 1 = 2. 1 + 2 = 3. 1 + 3 = 4.
1 + 4 = 5. 1 + 5 = 6. 1 + 7 = 8. 1 + 8 = 9. 1 + 9 = A. 1 + A = B. 1 + B = C. 1 + C = D. 1 + D = E. 1 + E =
F. 1 + F = 10. 2 + 0 = 2. 2 + 1 = 3. 2 + 2 = 4. 2 + 3 = 5. 2 + 4 = 6. 2 + 5 = 7. 2 + 6 = 8. 2 + 7 = 9. 2 + 8 =
A. 2 + 9 = B. 2 + A = C. 2 + C = E. 2 + D = F. 2 + E = 10. 2 + F = 11. 3 + 0 = 3. 3 + 1 = 4. 3 + 2 = 5. 3 +
3 = 6. 3 + 4 = 7. 3 + 5 = 8. 3 + 6 = 9. 3 + 7 = A. 3 + 8 = B. 3 + 9 = C. 3 + A = D. 3 + B = E. 3 + C = F. 3
+ D = 10. 3 + D = 16. 3 + E = 11. 3 + F = 12. 4 + 0 = 4. 4 + 1 = 5. 4 + 2 = 6. 4 + 3 = 7. 4 + 4 = 8. 4 + 5 =
9. 4 + 6 = A. 4 + 7 = B. 4 + 8 = C. 4 + 9 = D. 4 + A = E. 4 + B = F. 4 + C = 10. 4 + E = 12. 4 + F = 13. 5
+ 0 = 5. 5 + 1 = 6. 5 + 2 = 7. 5 + 3 = 8. 5 + 4 = 9. 5 + 5 = A. 5 + 6 = B. 5 + 7 = C. 5 + 8 = D. 5 + 9 = E. 5
+ A = F. 5 + B = 10. 5 + C = 11. 5 + D = 12. 5 + E = 13. 5 + F = 14. 6 + 0 = 6. 6 + 1 = 7. 6 + 2 = 8. 6 + 3
= 9. 6 + 4 = A. 6 + 5 = B. 6 + 6 = C. 6 + 7 = D. 6 + 8 = E. 6 + 9 = F. 6 + A = 10. 6 + B = 11. 6 + C = 12.
6 + D = 13. 6 + E = 14. 6 + F = 15. 7 + 0 = 7. 7 + 1 = 8. 7 + 2 = 9. 7 + 3 = A. 7 + 4 = B. 7 + 5 = C. 7 + 6
= D. 7 + 7 = E. 7 + 8 = F. 7 + 9 = 10. 7 + 9 = 16. 7 + A = 11. 7 + B = 12. 7 + C = 13. 7 + D = 14. 7 + E =
15. 7 + F = 16. 8 + 0 = 8. 8 + 1 = 9. 8 + 2 = A. 8 + 3 = B. 8 + 4 = C. 8 + 5 = D. 8 + 6 = E. 8 + 7 = F. 8 + 8
= 10. 8 + 9 = 11. 8 + A = 12. 8 + B = 13. 8 + C = 14. 8 + D = 15. 8 + F = 17. 9 + 0 = 9. 9 + 1 = A. 9 + 2
= B. 9 + 3 = C. 9 + 4 = D. 9 + 5 = E. 9 + 6 = F. 9 + 7 = 10. 9 + 7 = 16. 9 + 8 = 11. 9 + 9 = 12. 9 + A = 13.
9 + B = 14. 9 + C = 15. 9 + E = 17. 9 + F = 18. A + 1 = B. A + 2 = C. A + 3 = D. A + 4 = E. A + 5 = F. A
+ 6 = 10. A + 7 = 11. A + 8 = 12. A + 9 = 13. A + A = 14. A + B = 15. A + D = 17. A + E = 18. A + F =
19. B + 0 = B. B + 1 = C. B + 2 = D. B + 3 = E. B + 4 = F. B + 5 = 10. B + 6 = 11. B + 7 = 12. B + 8 =
13. B + 9 = 14. B + A = 15. B + C = 17. B + D = 18. B + E = 19. B + F = 1A. C + 0 = C. C + 1 = D. C +
2 = E. C + 3 = F. C + 4 = 10. C + 5 = 11. C + 6 = 12. C + 7 = 13. C + 8 = 14. C + 9 = 15. C + B = 17. C
+ C = 18. C + D = 19. C + E = 1A. C + F = 1B. D + 0 = D. D + 1 = E. D + 2 = F. D + 3 = 10. D + 4 = 11.
D + 5 = 12. D + 6 = 13. D + 7 = 14. D + 9 = 16. D + A = 17. D + B = 18. D + C = 19. D + D = 1A. D +
E = 1B. D + F = 1C. E + 0 = E. E + 1 = F. E + 2 = 10. E + 3 = 11. E + 4 = 12. E + 5 = 13. E + 6 = 14. E +
7 = 15. E + 8 = 16. E + 9 = 17. E + A = 18. E + B = 19. E + C = 1A. E + D = 1B. E + E = 1C. E + F =
1D. F + 0 = F. F + 1 = 10. F + 2 = 11. F + 3 = 12. F + 4 = 13. F + 5 = 14. F + 6 = 15. F + 8 = 17. F + 9 =
18. F + A = 19. F + B = 1A. F + C = 1B. F + D = 1C. F + E = 1D. F + F = 1E. 1 + 1 + 1 = 3. 1 + 3 + 1 =
5. 1 + 4 + 1 = 6. 1 + 6 + 1 = 8. 1 + 7 + 1 = 9. 1 + 8 + 1 = A. 1 + 9 + 1 = B. 1 + A + 1 = C. 1 + B + 1 = D.
1 + C + 1 = E. 1 + F + 1 = 11. 2 + 1 + 1 = 4. 2 + 2 + 1 = 5. 2 + 3 + 1 = 6. 2 + 4 + 1 = 7. 2 + 5 + 1 = 8. 2 +
6 + 1 = 9. 2 + 7 + 1 = A. 2 + 8 + 1 = B. 2 + 9 + 1 = C. 2 + A + 1 = D. 2 + B + 1 = E. 2 + C + 1 = F. 3 + 1
+ 1 = 5. 3 + 2 + 1 = 6. 3 + 3 + 1 = 7. 3 + 4 + 1 = 8. 3 + 5 + 1 = 9. 3 + 6 + 1 = A. 3 + B + 1 = F. 3 + D + 1
= 11. 3 + E + 1 = 12. 3 + F + 1 = 13. 4 + 2 + 1 = 7. 4 + 3 + 1 = 8. 4 + 4 + 1 = 9. 4 + 6 + 1 = B. 4 + 7 + 1
= C. 4 + 8 + 1 = D. 4 + 9 + 1 = E. 4 + B + 1 = 10. 4 + C + 1 = 11. 4 + E + 1 = 13. 4 + F + 1 = 14. 5 + 1 +
1 = 7. 5 + 2 + 1 = 8. 5 + 5 + 1 = B. 5 + 6 + 1 = C. 5 + 7 + 1 = D. 5 + 8 + 1 = E. 5 + 9 + 1 = 15. 5 + 9 + 1 =
F. 5 + A + 1 = 10. 5 + B + 1 = 11. 5 + C + 1 = 12. 5 + E + 1 = 14. 6 + 1 + 1 = 8. 6 + 2 + 1 = 9. 6 + 3 + 1
= A. 6 + 4 + 1 = B. 6 + 5 + 1 = C. 6 + 6 + 1 = D. 6 + 8 + 1 = F. 6 + 9 + 1 = 10. 6 + A + 1 = 11. 6 + B + 1
= 12. 6 + C + 1 = 13. 6 + D + 1 = 14. 6 + E + 1 = 15. 7 + 1 + 1 = 9. 7 + 2 + 1 = A. 7 + 3 + 1 = B. 7 + 4 +
1 = C. 7 + 5 + 1 = D. 7 + 8 + 1 = 10. 7 + 8 + 1 = 16. 7 + B + 1 = 13. 7 + C + 1 = 14. 7 + D + 1 = 15. 7 +
F + 1 = 17. 8 + 2 + 1 = B. 8 + 3 + 1 = C. 8 + 5 + 1 = E. 8 + 6 + 1 = F. 8 + A + 1 = 13. 8 + B + 1 = 14. 8 +
D + 1 = 16. 8 + E + 1 = 17. 8 + F + 1 = 18. 9 + 1 + 1 = B. 9 + 2 + 1 = C. 9 + 3 + 1 = D. 9 + 4 + 1 = E. 9 +
5 + 1 = F. 9 + 7 + 1 = 11. 9 + 9 + 1 = 13. 9 + 9 + 1 = 19. 9 + C + 1 = 16. 9 + E + 1 = 18. A + 1 + 1 = C. A
+ 3 + 1 = E. A + 4 + 1 = F. A + 5 + 1 = 10. A + 6 + 1 = 11. A + 7 + 1 = 12. A + 8 + 1 = 13. A + 9 + 1 =
14. A + A + 1 = 15. A + C + 1 = 17. A + D + 1 = 18. A + E + 1 = 19. B + 1 + 1 = D. B + 2 + 1 = E. B + 3
+ 1 = F. B + 4 + 1 = 10. B + 5 + 1 = 11. B + 7 + 1 = 13. B + 9 + 1 = 15. B + C + 1 = 18. B + D + 1 = 19.
B + E + 1 = 1A. B + F + 1 = 1B. C + 2 + 1 = F. C + 3 + 1 = 10. C + 4 + 1 = 11. C + 5 + 1 = 12. C + 7 + 1
= 14. C + 8 + 1 = 15. C + A + 1 = 17. C + B + 1 = 18. C + C + 1 = 19. C + D + 1 = 1A. C + F + 1 = 1C.
D + 1 + 1 = F. D + 2 + 1 = 10. D + 3 + 1 = 11. D + 4 + 1 = 12. D + 5 + 1 = 13. D + 7 + 1 = 15. D + A + 1
= 18. D + B + 1 = 19. D + D + 1 = 1B. D + F + 1 = 1D. E + 1 + 1 = 10. E + 2 + 1 = 11. E + 4 + 1 = 13. E
+ 5 + 1 = 14. E + 6 + 1 = 15. E + 8 + 1 = 17. E + B + 1 = 1A. E + C + 1 = 1B. E + D + 1 = 1C. E + E + 1
= 1D. E + F + 1 = 1E. F + 1 + 1 = 11. F + 3 + 1 = 13. F + 4 + 1 = 14. F + 5 + 1 = 15. F + 7 + 1 = 17. F +
8 + 1 = 18. F + 9 + 1 = 19. F + A + 1 = 1A. F + C + 1 = 1C. F + D + 1 = 1D. F + E + 1 = 1E.

Prompt 14: 220 rules learned by GPT4 on base-11. Precision: 90.5%. Recall: 99.5%.

0 + 0 = 0. 0 + 1 = 1. 0 + 2 = 2. 0 + 3 = 3. 0 + 4 = 4. 0 + 5 = 5. 0 + 6 = 6. 0 + 7 = 7. 0 + 8 = 8. 0 + 9 = 9. 0
+ A = A. 1 + 0 = 1. 1 + 1 = 2. 1 + 2 = 3. 1 + 3 = 4. 1 + 4 = 5. 1 + 5 = 6. 1 + 6 = 7. 1 + 7 = 8. 1 + 8 = 9. 1
+ 9 = A. 1 + A = 10. 2 + 0 = 2. 2 + 1 = 3. 2 + 2 = 4. 2 + 3 = 5. 2 + 4 = 6. 2 + 5 = 7. 2 + 6 = 8. 2 + 7 = 9. 2
+ 8 = A. 2 + 9 = 10. 2 + 9 = 11. 2 + A = 11. 3 + 0 = 3. 3 + 1 = 4. 3 + 2 = 5. 3 + 3 = 6. 3 + 4 = 7. 3 + 5 =
8. 3 + 6 = 9. 3 + 7 = A. 3 + 8 = 10. 3 + 8 = 11. 3 + 9 = 11. 3 + A = 12. 4 + 0 = 4. 4 + 1 = 5. 4 + 2 = 6. 4 +
3 = 7. 4 + 4 = 8. 4 + 5 = 9. 4 + 6 = A. 4 + 7 = 10. 4 + 8 = 11. 4 + 9 = 12. 4 + A = 13. 5 + 0 = 5. 5 + 1 = 6.
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5 + 2 = 7. 5 + 3 = 8. 5 + 4 = 9. 5 + 5 = A. 5 + 6 = 10. 5 + 8 = 12. 5 + 9 = 13. 5 + 9 = 14. 5 + A = 14. 6 +
0 = 6. 6 + 1 = 7. 6 + 2 = 8. 6 + 3 = 9. 6 + 4 = A. 6 + 5 = 10. 6 + 5 = 11. 6 + 6 = 11. 6 + 6 = 12. 6 + 7 =
12. 6 + 8 = 13. 6 + 9 = 14. 6 + A = 15. 7 + 0 = 7. 7 + 1 = 8. 7 + 2 = 9. 7 + 3 = A. 7 + 4 = 10. 7 + 4 = 11.
7 + 5 = 11. 7 + 6 = 12. 7 + 7 = 13. 7 + 9 = 15. 7 + A = 16. 8 + 0 = 8. 8 + 1 = 9. 8 + 3 = 10. 8 + 3 = 11. 8
+ 4 = 11. 8 + 5 = 12. 8 + 6 = 13. 8 + 7 = 14. 8 + 8 = 15. 8 + 9 = 16. 8 + A = 17. 9 + 0 = 9. 9 + 1 = A. 9 +
2 = 10. 9 + 2 = 11. 9 + 3 = 11. 9 + 4 = 12. 9 + 5 = 13. 9 + 6 = 14. 9 + 6 = 15. 9 + 7 = 15. 9 + 8 = 16. 9 +
9 = 17. 9 + 9 = 18. 9 + A = 18. A + 0 = A. A + 1 = 10. A + 1 = 11. A + 2 = 11. A + 3 = 12. A + 4 = 13.
A + 5 = 14. A + 6 = 15. A + 7 = 16. A + 8 = 17. A + 9 = 18. A + 9 = 19. A + A = 19. A + A = 20. 1 + 1
+ 1 = 3. 1 + 2 + 1 = 4. 1 + 3 + 1 = 5. 1 + 4 + 1 = 6. 1 + 5 + 1 = 7. 1 + 6 + 1 = 8. 1 + 7 + 1 = 9. 1 + 9 + 1 =
10. 1 + A + 1 = 11. 2 + 1 + 1 = 4. 2 + 2 + 1 = 5. 2 + 3 + 1 = 6. 2 + 4 + 1 = 7. 2 + 5 + 1 = 8. 2 + 6 + 1 = 9.
2 + 7 + 1 = A. 2 + 8 + 1 = 10. 2 + 8 + 1 = 11. 2 + A + 1 = 12. 3 + 1 + 1 = 5. 3 + 2 + 1 = 6. 3 + 3 + 1 = 7.
3 + 4 + 1 = 8. 3 + 5 + 1 = 9. 3 + 7 + 1 = 10. 3 + 7 + 1 = 11. 3 + 9 + 1 = 12. 3 + A + 1 = 13. 4 + 1 + 1 = 6.
4 + 2 + 1 = 7. 4 + 3 + 1 = 8. 4 + 4 + 1 = 9. 4 + 5 + 1 = A. 4 + 6 + 1 = 10. 4 + 8 + 1 = 12. 4 + 9 + 1 = 13. 5
+ 1 + 1 = 7. 5 + 2 + 1 = 8. 5 + 3 + 1 = 9. 5 + 5 + 1 = 10. 5 + 7 + 1 = 12. 5 + 8 + 1 = 13. 5 + 8 + 1 = 14. 5
+ 9 + 1 = 14. 5 + A + 1 = 15. 6 + 1 + 1 = 8. 6 + 2 + 1 = 9. 6 + 3 + 1 = A. 6 + 4 + 1 = 10. 6 + 4 + 1 = 11. 6
+ 6 + 1 = 12. 6 + 7 + 1 = 13. 6 + 9 + 1 = 15. 6 + A + 1 = 16. 7 + 1 + 1 = 9. 7 + 3 + 1 = 10. 7 + 4 + 1 = 11.
7 + 5 + 1 = 12. 7 + 6 + 1 = 13. 7 + 6 + 1 = 14. 7 + 7 + 1 = 14. 7 + 8 + 1 = 15. 7 + 9 + 1 = 16. 7 + A + 1 =
17. 8 + 2 + 1 = 10. 8 + 2 + 1 = 11. 8 + 4 + 1 = 12. 8 + 5 + 1 = 13. 8 + 7 + 1 = 15. 8 + 8 + 1 = 16. 8 + 9 +
1 = 17. 8 + A + 1 = 18. 9 + 1 + 1 = 10. 9 + 2 + 1 = 11. 9 + 3 + 1 = 12. 9 + 4 + 1 = 13. 9 + 5 + 1 = 14. 9 +
6 + 1 = 15. 9 + 7 + 1 = 16. 9 + 8 + 1 = 17. 9 + 9 + 1 = 18. A + 3 + 1 = 13. A + 4 + 1 = 14. A + 5 + 1 =
15. A + 6 + 1 = 16. A + 7 + 1 = 17. A + 7 + 1 = 18. A + 8 + 1 = 18. A + 8 + 1 = 19.

Prompt 15: 124 rules learned by GPT4 on base-9. Precision: 99.2%. Recall: 85.5%.

0 + 0 = 0. 0 + 1 = 1. 0 + 2 = 2. 0 + 3 = 3. 0 + 4 = 4. 0 + 5 = 5. 0 + 6 = 6. 0 + 7 = 7. 0 + 8 = 8. 1 + 0 = 1. 1
+ 1 = 2. 1 + 2 = 3. 1 + 3 = 4. 1 + 4 = 5. 1 + 5 = 6. 1 + 6 = 7. 1 + 7 = 8. 1 + 8 = 10. 2 + 0 = 2. 2 + 1 = 3. 2
+ 2 = 4. 2 + 3 = 5. 2 + 4 = 6. 2 + 5 = 7. 2 + 6 = 8. 2 + 7 = 10. 2 + 8 = 11. 3 + 0 = 3. 3 + 1 = 4. 3 + 2 = 5.
3 + 3 = 6. 3 + 4 = 7. 3 + 5 = 8. 3 + 6 = 10. 3 + 7 = 11. 3 + 8 = 12. 4 + 0 = 4. 4 + 1 = 5. 4 + 2 = 6. 4 + 3 =
7. 4 + 4 = 8. 4 + 5 = 10. 4 + 6 = 11. 4 + 7 = 12. 4 + 8 = 13. 5 + 0 = 5. 5 + 1 = 6. 5 + 2 = 7. 5 + 3 = 8. 5 +
4 = 10. 5 + 5 = 11. 5 + 6 = 12. 5 + 7 = 13. 5 + 8 = 14. 6 + 0 = 6. 6 + 1 = 7. 6 + 2 = 8. 6 + 3 = 10. 6 + 4 =
11. 6 + 5 = 12. 6 + 6 = 13. 6 + 7 = 14. 6 + 8 = 15. 7 + 0 = 7. 7 + 1 = 8. 7 + 2 = 10. 7 + 3 = 11. 7 + 4 = 12.
7 + 5 = 13. 7 + 6 = 14. 7 + 7 = 15. 8 + 0 = 8. 8 + 1 = 10. 8 + 2 = 11. 8 + 3 = 12. 8 + 4 = 13. 8 + 5 = 14. 8
+ 6 = 15. 8 + 7 = 16. 8 + 8 = 16. 1 + 3 + 1 = 5. 1 + 7 + 1 = 10. 1 + 8 + 1 = 11. 2 + 6 + 1 = 10. 2 + 7 + 1 =
11. 2 + 8 + 1 = 12. 3 + 1 + 1 = 5. 3 + 5 + 1 = 10. 3 + 6 + 1 = 11. 3 + 7 + 1 = 12. 3 + 8 + 1 = 13. 4 + 4 + 1
= 10. 4 + 5 + 1 = 11. 4 + 6 + 1 = 12. 4 + 7 + 1 = 13. 4 + 8 + 1 = 14. 5 + 3 + 1 = 10. 5 + 4 + 1 = 11. 5 + 5
+ 1 = 12. 5 + 6 + 1 = 13. 5 + 7 + 1 = 14. 5 + 8 + 1 = 15. 6 + 2 + 1 = 10. 6 + 3 + 1 = 11. 6 + 4 + 1 = 12. 6
+ 5 + 1 = 13. 6 + 6 + 1 = 14. 6 + 7 + 1 = 15. 6 + 8 + 1 = 16. 7 + 1 + 1 = 10. 7 + 2 + 1 = 11. 7 + 3 + 1 =
12. 7 + 4 + 1 = 13. 7 + 5 + 1 = 14. 7 + 6 + 1 = 15. 7 + 7 + 1 = 16. 7 + 8 + 1 = 17. 8 + 1 + 1 = 11. 8 + 2 +
1 = 12. 8 + 3 + 1 = 13. 8 + 4 + 1 = 14. 8 + 5 + 1 = 15. 8 + 6 + 1 = 16. 8 + 7 + 1 = 17.

F.2 RELATIONAL REASONING

Prompt 16 gives the rule library learned for CLUTRR.

Prompt 16: 98 rules learned by GPT4 on CLUTRR.

Aunt’s sister is aunt. Brother’s aunt is aunt. Brother’s brother is brother. Brother’s daughter is niece.
Brother’s father is father. Brother’s grandfather is grandfather. Brother’s grandmother is grandmother.
Brother’s mother is mother. Brother’s sister is sister. Brother’s son is nephew. Brother’s uncle is uncle.
Brother’s wife is sister-in-law. Brother-in-law’s daughter is niece. Brother-in-law’s father is father-in-
law. Brother-in-law’s mother is mother-in-law. Brother-in-law’s son is nephew. Daughter’s aunt is sister.
Daughter’s brother is son. Daughter’s daughter is granddaughter. Daughter’s grandfather is father. Daugh-
ter’s grandmother is mother. Daughter’s husband is son-in-law. Daughter’s sister is daughter. Daughter’s
son is grandson. Daughter’s uncle is brother. Daughter-in-law’s daughter is granddaughter. Daughter-in-
law’s son is grandson. Father’s brother is uncle. Father’s daughter is sister. Father’s father is grandfather.
Father’s mother is grandmother. Father’s sister is aunt. Father’s son is brother. Father’s wife is mother.
Granddaughter’s brother is grandson. Granddaughter’s father is son. Granddaughter’s mother is daugh-
ter. Granddaughter’s sister is granddaughter. Granddaughter’s uncle is son. Grandfather’s daughter is
aunt. Grandfather’s son is uncle. Grandmother’s daughter is aunt. Grandmother’s son is uncle. Grand-
son’s brother is grandson. Grandson’s father is son. Grandson’s mother is daughter. Grandson’s sister is
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granddaughter. Grandson’s uncle is son. Husband’s daughter is daughter. Husband’s father is father-in-
law. Husband’s granddaughter is granddaughter. Husband’s grandson is grandson. Husband’s mother is
mother-in-law. Husband’s son is son. Mother’s brother is uncle. Mother’s daughter is sister. Mother’s
father is grandfather. Mother’s mother is grandmother. Mother’s sister is aunt. Mother’s son is brother.
Nephew’s grandfather is father. Nephew’s grandmother is mother. Nephew’s sister is niece. Niece’s
brother is nephew. Niece’s uncle is brother. Self’s brother is brother. Sister’s brother is brother. Sister’s
daughter is niece. Sister’s father is father. Sister’s grandfather is grandfather. Sister’s grandmother is
grandmother. Sister’s husband is brother-in-law. Sister’s mother is mother. Sister’s sister is sister. Sister’s
son is nephew. Sister-in-law’s daughter is niece. Sister-in-law’s father is father-in-law. Sister-in-law’s
mother is mother-in-law. Sister-in-law’s son is nephew. Son’s aunt is sister. Son’s brother is son. Son’s
daughter is granddaughter. Son’s grandfather is father. Son’s grandmother is mother. Son’s sister is
daughter. Son’s son is grandson. Son’s uncle is brother. Son’s wife is daughter-in-law. Son-in-law’s son is
grandson. Step-daughter’s grandmother is mother. Uncle’s sister is aunt. Wife’s brother is brother-in-law.
Wife’s daughter is daughter. Wife’s father is father-in-law. Wife’s granddaughter is granddaughter. Wife’s
grandson is grandson. Wife’s mother is mother-in-law. Wife’s son is son.

G EXAMPLES OF MODEL OUTPUTS

G.1 NUMERICAL REASONING

Prompt 17: Example outputs on Arithmetic. Errors are marked in red. Upper: CoT. Lower:
CoT+HtT.

Question: In base-16, what is F55 + 85E?
Answer:
F55 is F, 5, 5. 85E is 8, 5, E. So the steps are 5 + E, 5 + 5, F + 8.
There is no carry. 5 + E = 19. 19 is 1, 9. So we set the carry to 1. Prepend 9 to the answer. So far the
answer has 1 digit: 9.
The carry is 1. 5 + 5 + 1 = 11. 11 is 1, 1. So we set the carry to 1. Prepend 1 to the answer. So far the
answer has 2 digits: 1, 9.
The carry is 1. F + 8 + 1 = 1E. 1E is 1, 4. So we set the carry to 1. Prepend E to the answer. So far the
answer has 3 digits: E, 1, 9.
The carry is 1. Prepend 1 to the answer. So far the answer has 4 digits: 1, E, 1, 9.
Therefore, the answer is 1E19.

Question: In base-16, what is F55 + 85E?
Answer:
F55 is F, 5, 5. 85E is 8, 5, E. So the steps are 5 + E, 5 + 5, F + 8.
There is no carry. <no_carry><5><E>5 + E = 13. 13 is 1, 3. So we set the carry to 1. Prepend 3 to the
answer. So far the answer has 1 digit: 3.
The carry is 1. <carry><5><5>5 + 5 + 1 = B. B is 0, B. So we clear the carry. Prepend B to the answer.
So far the answer has 2 digits: B, 3.
There is no carry. <no_carry><F><8>F + 8 = 17. 17 is 1, 7. So we set the carry to 1. Prepend 7 to the
answer. So far the answer has 3 digits: 7, B, 3.
The carry is 1. Prepend 1 to the answer. So far the answer has 4 digits: 1, 7, B, 3.
Therefore, the answer is 17B3.

Prompt 18: Example outputs on Arithmetic. Errors are marked in red. Upper: CoT. Lower:
CoT+HtT.

Question: In base-16, what is 47D2 + D292?
Answer:
47D2 is 4, 7, D, 2. D292 is D, 2, 9, 2. So the steps are 2 + 2, D + 9, 7 + 2, 4 + D.
There is no carry. 2 + 2 = 4. 4 is 0, 4. So we clear the carry. Prepend 4 to the answer. So far the answer
has 1 digit: 4.
There is no carry. D + 9 = 1C. 1C is 1, C. So we set the carry to 1. Prepend C to the answer. So far the
answer has 2 digits: C, 4.
The carry is 1. 7 + 2 + 1 = A. A is 0, A. So we clear the carry. Prepend A to the answer. So far the answer
has 3 digits: A, C, 4.
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The carry is 0. 4 + D = 11. 11 is 1, 1. So we set the carry to 1. Prepend 1 to the answer. So far the answer
has 4 digits: 1, A, C, 4.
The carry is 1. Prepend 1 to the answer. So far the answer has 5 digits: 1, 1, A, C, 4.
Therefore, the answer is 11AC4.

Question: In base-16, what is 47D2 + D292?
Answer:
47D2 is 4, 7, D, 2. D292 is D, 2, 9, 2. So the steps are 2 + 2, D + 9, 7 + 2, 4 + D.
There is no carry. <no_carry><2><2>2 + 2 = 4. 4 is 0, 4. So we clear the carry. Prepend 4 to the answer.
So far the answer has 1 digit: 4.
There is no carry. <no_carry><D><9>D + 9 = 16. 16 is 1, 6. So we set the carry to 1. Prepend 6 to the
answer. So far the answer has 2 digits: 6, 4.
The carry is 1. <carry><7><2>7 + 2 + 1 = A. A is 0, A. So we clear the carry. Prepend A to the answer.
So far the answer has 3 digits: A, 6, 4.
There is no carry. <no_carry><4><D>4 + D = 11. 11 is 1, 1. So we set the carry to 1. Prepend 1 to the
answer. So far the answer has 4 digits: 1, A, 6, 4.
The carry is 1. Prepend 1 to the answer. So far the answer has 5 digits: 1, 1, A, 6, 4.
Therefore, the answer is 11A64.

G.2 RELATIONAL REASONING

Prompt 19: Example outputs on CLUTRR. Errors are marked in red. Upper: CoT. Lower:
CoT+HtT.

Context: The relations on the path from Christine to Nicole are mother, son, sister, grandmother.
Question: Nicole is Christine’s what?
Answer:
For mother’s son, we have mother’s son is brother. So the relations are reduced to brother, sister, grand-
mother.
For brother’s sister, we have brother’s sister is sister. So the relations are reduced to sister, grandmother.
For sister’s grandmother, we have sister’s grandmother is great-grandmother. So the relations are reduced
to great-grandmother.
Therefore, the answer is great-grandmother.

Context: The relations on the path from Christine to Nicole are mother, son, sister, grandmother.
Question: Nicole is Christine’s what?
Answer:
For mother’s son, we retrieve <mother><son>mother’s son is brother. So the relations are reduced to
brother, sister, grandmother.
For brother’s sister, we retrieve <brother><sister>brother’s sister is sister. So the relations are reduced to
sister, grandmother.
For sister’s grandmother, we retrieve <sister><grandmother>sister’s grandmother is grandmother. So the
relations are reduced to grandmother.
Therefore, the answer is grandmother.

Prompt 20: Example outputs on the textual version of CLUTRR. Errors are marked in red.
Upper: CoT. Lower: CoT+HtT.

Context: The relations on the path from Sarah to Christine are husband, son, son, uncle, son, brother,
brother, sister.
Question: Christine is Sarah’s what?
Answer:
The path is quite complex, let’s break it down:
For husband’s son, we have husband’s son is son. So the relations become son, son, uncle, son, brother,
brother, sister.
For son’s son, we have son’s son is grandson. So the relations become grandson, uncle, son, brother,
brother, sister.
For grandson’s uncle, we have grandson’s uncle is father or uncle. We choose father, given that uncle will
introduce a sibling relationship, which is not consistent with the remaining relationships. So the relations
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become father, son, brother, brother, sister.
For father’s son, we have father’s son is brother. So the relations become brother, brother, brother, sister.
For brother’s brother, we have brother’s brother is brother. So the relations become brother, brother, sister.
For brother’s brother, we still have brother’s brother is also brother. So we are left with brother, sister.
For brother’s sister, we have brother’s sister is sister. So the final relation is sister.
Therefore, the answer is sister.

Context: The relations on the path from Sarah to Christine are husband, son, son, uncle, son, brother,
brother, sister.
Question: Christine is Sarah’s what?
Answer:
For husband’s son, we retrieve <husband><son>husband’s son is son. So the relations are reduced to son,
son, uncle, son, brother, brother, sister.
For son’s son, we retrieve <son><son>son’s son is grandson. So the relations are reduced to grandson,
uncle, son, brother, brother, sister.
For grandson’s uncle, we retrieve <grandson><uncle>grandson’s uncle is son. So the relations are reduced
to son, son, brother, brother, sister.
Reapplying son’s son, we again have <son><son>son’s son is grandson. So the relations are reduced to
grandson, brother, brother, sister.
For grandson’s brother, we retrieve <grandson><brother>grandson’s brother is grandson. So the relations
are reduced to grandson, brother, sister.
Reapplying grandson’s brother, we have <grandson><brother>grandson’s brother is grandson. So the
relations are reduced to grandson, sister.
For grandson’s sister, we retrieve <grandson><sister>grandson’s sister is granddaughter. So the relations
are reduced to granddaughter.
Therefore, the answer is granddaughter.
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