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Abstract

The use of large-scale, web-scraped datasets to train face recognition models has raised
significant privacy and bias concerns. Synthetic methods mitigate these concerns and pro-
vide scalable and controllable face generation to enable fair and accurate face recognition.
However, existing synthetic datasets display limited intraclass and interclass diversity and
do not match the face recognition performance obtained using real datasets. Here, we
propose VariFace, a two-stage diffusion-based pipeline to create fair and diverse synthetic
face datasets to train face recognition models. Specifically, we introduce three methods:
Face Recognition Consistency to refine demographic labels, Face Vendi Score Guidance
to improve interclass diversity, and Divergence Score Conditioning to balance the identity
preservation-intraclass diversity trade-off. When constrained to the same dataset size, Var-
iFace considerably outperforms previous synthetic datasets (0.9200 → 0.9405) and achieves
comparable performance to face recognition models trained with real data (Real Gap =
-0.0065). In an unconstrained setting, VariFace not only consistently achieves better per-
formance compared to previous synthetic methods across dataset sizes but also, for the first
time, outperforms the real dataset (CASIA-WebFace) across six evaluation datasets. This
sets a new state-of-the-art performance with an average face verification accuracy of 0.9567
(Real Gap = +0.0097) across LFW, CFP-FP, CPLFW, AgeDB, and CALFW datasets and
0.9366 (Real Gap = +0.0380) on the RFW dataset.

1 Introduction

A decade after the breakthrough performances of DeepFace (Taigman et al., 2014) and DeepID (Sun et al.,
2014), deep learning remains the state-of-the-art approach for face recognition (FR) (Wang & Deng, 2021;
Gururaj et al., 2024). Deep learning performance is limited by training dataset size (Zhu et al., 2021), and
the creation of large-scale FR datasets such as CASIA-WebFace (Yi et al., 2014), MS-Celeb-1M (Guo et al.,
2016) and MegaFace (Kemelmacher-Shlizerman et al., 2016) was central to the success of deep learning
in FR. However, the development of these massive face datasets involves scraping face image data from
the internet without permission from subjects, and all but one of the aforementioned datasets have since
been retracted or decommissioned (Boutros et al., 2022). Legally, Article 9 (1) General Data Protection
Regulation (GDPR) (Parliament, 2016) in the EU prohibits the processing of biometric data for the purpose
of uniquely identifying a natural person, except when the data subject has given explicit consent to the
processing of those personal data for one or more specified purposes (Article 9(2)(a) GDPR). Moreover,
the AI Act (AIA) in the EU came into effect on August 1st, 2024, where Article 5(1)(e) AIA prohibits the
placing on the market or the use of AI systems that create or expand facial recognition databases through
the untargeted scraping of facial images (Parliament, 2024). Together, these regulations illustrate a growing
legal concern over the use of large-scale web-scraped face datasets for training face recognition models.

Besides privacy concerns, real face datasets suffer from data imbalance, including limited face pose and
lighting variation (Liu et al., 2022a), as well as under-representation of protected characteristics such as race
and gender (Liu et al., 2022a; Karkkainen & Joo, 2021; Thong et al., 2023). This results in FR models
trained on these datasets exhibiting robustness and fairness issues, with the latter raising significant legal
and ethical implications (Mehrabi et al., 2021).
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Figure 1: Face verification accuracy using synthetic datasets. Face verification accuracy is the average
performance across LFW, CFP-FP, CPLFW, AgeDB, and CALFW datasets. VariFace is trained only with
data from CASIA-WebFace (real), the performance of which is shown for reference. All other results are
taken from their respective papers.

To address the privacy risks and biases associated with real face datasets, there is increasing interest in the
development of synthetic face datasets (Baltsou et al., 2024; Qiu et al., 2021; Liu et al., 2022b; Bae et al.,
2023; Boutros et al., 2023a; Melzi et al., 2023; Kim et al., 2023). Moreover, synthetic methods not only
facilitate scalable dataset generation to support deep FR model training (Trigueros et al., 2021; Bae et al.,
2023), but also provide precise control over the composition of the dataset (Liu et al., 2022b; Melzi et al.,
2023; Banerjee et al., 2023; Baltsou et al., 2024).

The most widely used synthetic data generation methods are 3D parametric (Wood et al., 2021; Bae et al.,
2023) and deep generative (Trigueros et al., 2021; Qiu et al., 2021; Liu et al., 2022b; Boutros et al., 2023b;a;
Melzi et al., 2023; Kim et al., 2023) models, the latter encompassing GAN (Deng et al., 2020; Shen et al.,
2020; Qiu et al., 2021; Boutros et al., 2022; Liu et al., 2022b; Boutros et al., 2023b; 2024; Wu et al., 2024a)
and diffusion-based approaches (Boutros et al., 2023a; Melzi et al., 2023; Kim et al., 2023; Kansy et al., 2023;
Papantoniou et al., 2024; Li et al., 2024). Despite the considerable progress in the development of synthetic
face data, there remains a substantial gap in FR performance between models trained on real compared to
synthetic data (Boutros et al., 2023c; Shahreza et al., 2024; DeAndres-Tame et al., 2024). This is because
synthetic datasets tend to amplify biases inherent in the real face datasets used for training (Thong et al.,
2023; Leyva et al., 2024), while also introducing unique challenges that affect FR performance (Bae et al.,
2023; Kim et al., 2023).

To mitigate the demographic biases in real datasets, several synthetic methods are able to generate datasets
with balanced demographic distributions (Qiu et al., 2021; Kim et al., 2023; Melzi et al., 2023). However,
these methods rely on using either existing demographic labels or labels generated by supervised models
(Taigman et al., 2014; Kim et al., 2023; Melzi et al., 2023), which exhibit poor performance on minority
classes (see Fig. S2). Another issue inherent with synthetic methods is the challenge of balancing identity
(ID) preservation with generating diverse images for each individual. Although ID preservation can be
achieved using pretrained FR model embeddings as a conditioning signal (Boutros et al., 2023a; Kim et al.,
2023; Li et al., 2024), generating sufficient diversity to reflect ‘in-the-wild’ variation remains challenging. To
generate image variations for an individual, current methods rely on extracting specific attributes such as
face pose, expression, and illumination (Melzi et al., 2023; Papantoniou et al., 2024). However, this requires
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using supervised models trained on those attributes and ignores properties that cannot be easily classified
but are important for FR performance. In summary, while synthetic data generation methods achieve certain
aspects, such as balanced demographics and ID preservation, the issue of generating sufficient diversity across
and within identities remains unsolved.

Here we propose VariFace, a synthetic face generation pipeline that achieves fair interclass variation and
diverse intraclass variation. To obtain accurate demographic labels, we first leverage a pretrained CLIP
encoder (Radford et al., 2021) to extract initial predictions. These labels are subsequently refined with
dataset-level information by enforcing consistency within FR embedding space. The race and gender labels
are used as conditioning signals for the first stage to generate a demographically-balanced dataset of face
identities. Moreover, interclass diversity is further improved by applying the Vendi score (Friedman &
Dieng, 2023) as a guidance loss function during sampling. To generate diverse intraclass variation, we
propose Divergence Score Conditioning, a metric in the FR embedding space that enables control over the ID
preservation-intraclass diversity trade-off. This avoids the need to manually specify image attributes, greatly
simplifying the generation pipeline by avoiding the use of auxiliary supervised models. By conditioning with
divergence score, ID, and age labels, the second stage generates diverse but ID-preserved variation across
individuals.

While the use of web-scraped face datasets should be avoided when training FR models, for the purpose
of benchmarking, we follow previous methods and train VariFace on the CASIA-WebFace dataset. When
constrained to the same dataset size, our proposed approach achieves comparable performance to state-
of-the-art FR models trained with real face data. Moreover, by scaling dataset size, we demonstrate for
the first time face verification accuracy that exceeds the real dataset used for training and achieve a new
state-of-the-art across six evaluation datasets (Fig. 1).

In this paper, we propose the following contributions:

• We propose a two-stage, diffusion-based face generation pipeline that achieves fair interclass variation
and diverse intraclass variation.

• We introduce Face Recognition Consistency to refine demographic labels, Face Vendi Score Guidance
to improve interclass diversity, and Divergence Score Conditioning to control the ID preservation-
intraclass diversity trade-off.

• We achieve a new state-of-the-art FR performance across six face evaluation datasets using only
synthetic data, outperforming previous synthetic methods and the real dataset used for training.

2 Related work

Synthetic Face Generation. The applications of generating synthetic faces are extensive and include face
recognition (Boutros et al., 2023c; Bae et al., 2023; Boutros et al., 2023a; Melzi et al., 2023; Kim et al., 2023;
Kansy et al., 2023), reconstruction (Richardson et al., 2016; 2017), editing (Shen et al., 2020; Matsunaga
et al., 2022; Plesh et al., 2023; Wu et al., 2024b) and analysis (Li & Deng, 2020; Wood et al., 2021).

Using 3D face scan data, Wood et al. (2021) applied a face model with a library of hair, clothing, and accessory
assets to render a face dataset. 3D scan data avoids the need to use real face data while maintaining the
generation of well-preserved identities. However, the acquisition of 3D face scans is time-consuming and
expensive due to the need for specialized scanner equipment and considerable post-processing requirements.
Moreover, there remains a significant domain gap between rendered and real faces, and the variation is
limited by the assets available.

In contrast, deep generative methods such as GANs and diffusion models address domain gap issues by
leveraging real datasets to learn the generation of realistic faces. DiscoFaceGAN (Deng et al., 2020) combines
3D priors with an adversarial learning framework to generate faces with independent control over ID, pose,
expression, and illumination. Similarly, InterFaceGAN (Shen et al., 2020) enables precise control of facial
attributes while preserving ID by manipulating the latent representation along semantically meaningful
directions. Despite high controllability, GANs suffer from mode collapse, resulting in limited interclass and
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intraclass diversity. In contrast, diffusion models facilitate diverse face image generation while retaining
capabilities for fine-grained, controllable face editing (Matsunaga et al., 2022; Kim et al., 2023).

Synthetic Datasets for Face Recognition. There is a growing interest in applying synthetic datasets
for training FR models, with a surge in related competitions held in recent years (Shahreza et al., 2024;
DeAndres-Tame et al., 2024; Melzi et al., 2024). Synthetic data provides a cost-effective method to scale
datasets, facilitating the training of deep FR models that require many unique faces with a diverse set of
images per individual (Zhu et al., 2021; An et al., 2022).

Based on 3D face scan data, the DigiFace-1M (Bae et al., 2023) dataset comprises over a million rendered
faces. While 3DCG data avoids privacy concerns and issues with ID preservation, the domain gap and
low intraclass diversity limit FR performance (Rahimi et al., 2024). In contrast, deep generative models
suffer from problems with ID preservation and image artifacts but offer more flexibility to generate diversity
across and within individuals. SynFace (Qiu et al., 2021) leverages DiscoFaceGAN for face generation and
introduces ID mixup to improve interclass diversity. However, SynFace suffers from low intraclass diversity,
and IDiff-Face (Boutros et al., 2023a) applies dropout during training to prevent overfitting to ID context
and improve intraclass diversity. Similarly, to enhance intraclass diversity, DCFace (Kim et al., 2023) uses
a bank of real images for style information. However, there is a risk of data leakage using real images for
style transfer, and these methods may not help to improve diversity beyond the training dataset. Instead,
GANDiffFace (Melzi et al., 2023) uses supervised labels from pretrained models to generate individuals of
diverse ages, as well as the same individual with diverse poses and expressions. While supervised attributes
can further improve intraclass diversity, the limited attributes specified may not capture all the variations
important for FR. The most recent methods, such as VIGFace (Kim et al., 2024), Arc2Face (Papantoniou
et al., 2024), and Vec2Face (Wu et al., 2024a) focus on generating ID embeddings to synthesize diverse face
images. However, these methods do not address fairness concerns, inheriting demographic biases from the
real dataset (see Sec. 4.5), and there remains a considerable gap between the performance of FR models
trained on these datasets compared to real datasets.

3 Method

VariFace is a two-stage, diffusion-based pipeline for synthetic face dataset generation. The training and
inference pipeline is summarized in Fig. 2.

3.1 Stage 1: Fair interclass variation

The aim of the first stage of the pipeline is to generate a diverse set of face identities with a balanced
representation of races and genders. To create demographic labels, we first obtain initial estimates using a
pretrained CLIP model (Radford et al., 2021; Wang et al., 2023), and subsequently refine these predictions
using a pretrained FR model. With these labels, we train a conditional diffusion model (Ho et al., 2020;
Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Rombach et al., 2022; Crowson et al., 2024) to learn
to generate faces with control over race and gender attributes. During sampling, we apply the Vendi score
(Friedman & Dieng, 2023) as a guidance loss function to generate diversity within each demographic category.
Finally, we apply an automatic filtering process to retain images that are demographic-consistent and display
good face image quality for use as synthetic identities in the second stage.

Label refinement with Face Recognition Consistency. Previous methods used supervised approaches
such as DeepFace (Taigman et al., 2014) to extract demographic labels from face images (Melzi et al., 2023;
Karkkainen & Joo, 2021). Instead, we leverage a pretrained CLIP model to obtain race, gender, and age
labels (see Suppl. Sec. A). While DeepFace uses separate age, race, and gender models, CLIP benefits from
a unified embedding space and offers greater flexibility in defining labels. However, both supervised methods
and CLIP generate predictions independently for each face image, ignoring crucial contextual information
present in the dataset. Face embeddings extracted using FR models not only contain ID information but
also the space of face embeddings appears well structured with respect to demographic information (Li et al.,
2023; Leyva et al., 2024). Therefore, we propose to leverage the structure in the FR embedding space to
refine the race and gender labels.
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Figure 2: VariFace Training and Inference Pipeline. Training: Predictions for race (R*), gender (G*),
and age (A) are extracted using a pretrained CLIP model. Next, a pretrained FR model is used to refine
race (R) and gender (G) labels, as well as compute identity (ID) embeddings and divergence scores (DS).
These labels are used to train conditional diffusion models to generate interclass and intraclass variation in
stage 1 and 2, respectively. Inference: The stage 1 diffusion model generates a balanced dataset of synthetic
identities, which are subsequently filtered and processed with a pretrained FR model to generate a set of
synthetic embeddings. The synthetic ID embeddings and randomly sampled A and DS are used as conditions
for the stage 2 diffusion model to generate a synthetic face dataset, which is passed through the second stage
filter to create the filtered synthetic dataset.

Specifically, let I represent an image from the face dataset D. We first transform I using a pretrained FR
model to obtain a face embedding, E ∈ Rn. Given two face embeddings Ei and Ej , where i, j ∈ D, we
compute the cosine similarity (CS):

CS(Ei, Ej) = Ei · Ej

∥Ei∥∥Ej∥
. (1)

For each embedding, we select the top K similar embeddings from D measured by CS . Using this embedding
subset, we redefine the demographic label belonging to the query image as the most frequent label associated
with the top K similar subset of face embeddings. Accordingly, combining CLIP and Face Recognition
Consistency (CLIP-FRC) provides synergistic representations to obtain accurate demographic labels (see
Fig. S2).

Enhancing diversity with Face Vendi Score Guidance. Generating a diverse set of face identities is
important for training FR models (Kim et al., 2023). The Vendi score (VS) is an evaluation metric that
measures diversity at a dataset level and is defined as the exponential of the Shannon entropy applied to the
normalized eigenvalues of a kernel similarity matrix.

Formally, given a dataset X = {xi}n
i=1 with domain X , a positive semidefinite similarity function k : X×X →

R and its associated Kernel matrix K ∈ Rn×n with Ki,j = k(xi, xj), the VS is defined as:

V S(X; k) = exp
(
−

n∑
i=1

λi log λi

)
, (2)

where {λi}n
i=1 are the normalized eigenvalues of K such that λi = λi∑n

i=1
λi

.

Here, we propose using the VS as a guidance function to improve interclass diversity. In contrast to condi-
tional image generation (Ho & Salimans, 2022; Bansal et al., 2023), guided image generation involves using
a pretrained frozen diffusion model to control image generation (Kim et al., 2022a; Bansal et al., 2024).
By specifying a guidance loss function, the sampling process can be guided to simultaneously optimize the
guidance loss function and denoising objective. Concretely, for each batch of denoised images, we obtain face
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embeddings E ∈ Rn using a pretrained FR model and compute the VS loss (LV S) specifying the dataset as
the batch of embeddings B = {E}m

i=1 and similarity function as the cosine similarity CS : Rn × Rn → R
defined in Eq. 1:

LV S = −V S(B; CS). (3)

The Face Vendi Score Guidance algorithm for a generic diffusion sampler S(·, ·, ·) is summarized in Algorithm
1. Similar to Universal Guidance (Bansal et al., 2024), we apply the guidance loss to the denoised image.
Specifically, we use a pretrained FR model on the batch of denoised images to generate a set of face embed-
dings as input into LV S . The gradient of LV S is then scaled and combined with the noise estimated by the
diffusion model and used by the diffusion sampler to generate the prediction for the following timestep. By
maximizing the Vendi Score loss across timesteps, the batch of faces generated is guided to become diverse
with respect to face ID, therefore maximizing interclass diversity.

Algorithm 1 Face Vendi Score Guidance
Input: Batch of image latent vectors zt, diffusion model ϵθ, FR model fϕ, noise scale αt, Vendi Score loss

function LV S , guidance scale s, timesteps t = 0, 1, ..., T , race condition r, gender condition g, general
sampling function S(·, ·, ·)

Output: zt−1
for t = T to t = 1 do,

ẑ0 ← zt−(
√

1−αt)ϵθ(zt,t,r,g)√
αt

Ê0 ← fϕ(ẑ0)
ϵ̂θ(zt, t, r, g)← ϵθ(zt, t, r, g) + s · ∇ztLV S(Ê0)
zt−1 ← S(zt, ϵ̂θ, t)
ϵ′ ∼ N (0, I)
zt ←

√
αt/αt−1zt−1 +

√
(1− αt/αt−1)ϵ′

end for

Filtering. To create a balanced, high-quality set of face identities, we apply a two-stage filtering process
to the generated images. Firstly, we obtain demographic labels using CLIP-FRC and remove images that
are inconsistent with the intended label. Secondly, to remove images with extreme poses, poor lighting, or
artifacts, we use CLIB-FIQA (Ou et al., 2024) to extract face image quality labels and remove images with
a score below a predefined threshold.

3.2 Stage 2: Diverse intraclass variation

The second stage creates diverse image variations for each face generated in the first stage while preserving
face ID. We train the second diffusion model conditioned on face identities, ages, and divergence scores
obtained from the training dataset. To obtain face identities, we first extract face embeddings using a
pretrained FR model and then compute the mean embedding for each ID label, normalizing the embeddings
to a unit sphere. The age and divergence scores are obtained using a pretrained CLIP and FR model,
respectively. At inference, we use the face identities obtained from stage 1, and for each ID, we randomly
sample the age and the divergence scores to generate diverse intraclass variation. To reduce label noise, the
final filtering process ensures the generated images preserve face ID.

Divergence score conditioning. To generate diverse variation for a given individual, it is common to
specify a set of attributes such as pose or lighting, either using text prompts (Baltsou et al., 2024), or labels
derived from classifiers (Melzi et al., 2023). However, these methods are non-exhaustive and may struggle
to capture variations that cannot be easily conveyed in natural language or classified. Instead, we aim to
capture diversity more holistically and without the reliance on named attributes, greatly simplifying the
generation pipeline by removing the need for additional models. To do so, we assign a score to each training
image based on how far the image deviates from the ‘prototypical example’ for that individual and use this
score as a label for training a conditional diffusion model.
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Figure 3: Divergence Score Conditioning. By varying the divergence scores applied during sampling,
the diversity in generated images can be controlled. From top to bottom, the DS values used are 0.4, 0.6,
and 0.8, respectively. All the images are derived from the same synthetic identity.

Specifically, suppose Xi,j denotes the j-th sample of the i-th ID in the training dataset X. We first obtain
the corresponding face embedding Ei,j ∈ Rn with a pretrained FR model. The ‘prototypical example’ for
the i-th ID is defined as its mean embedding over all samples for that ID:

Ei = 1
|Ei|

∑
j

Ei,j . (4)

Then, for the image with the associated embedding Ei,j , we define its divergence score (DS) as:

DS(Ei,j) = CS(Ei,j , Ei). (5)

At inference, the divergence score condition can be used to control the intraclass diversity (Fig. 3).

Filtering. There is an inherent trade-off between intraclass diversity and ID preservation (Kim et al., 2023).
While controlling the DS helps to balance the trade-off, we further enforce this by applying a filter to remove
cases where the ID was not preserved. Using the pretrained FR model, we compute the cosine similarity
between the embedding from the base image generated in stage 1, with the images generated in stage 2 using
that ID as a condition. We then remove images where the cosine similarity between the embeddings is below
a predefined threshold.

4 Experiments

4.1 Implementation details

For the diffusion model, we adapted the Hourglass Diffusion Transformer (HDiT) (Crowson et al., 2024)
architecture to handle multiple conditions (see Fig. S7). We trained the stage 1 and 2 diffusion models for
700K and 3M iterations, which took ≈19 hours and 3.5 days, respectively, using 4 NVIDIA A100 GPUs.
During inference, we applied the DPM-Solver++(3M) SDE sampler (Lu et al., 2022; Crowson et al., 2024)
with 50 sampling steps. To create demographic labels, we used the pretrained ViT-L-14 MetaCLIP model
(Xu et al., 2023). For FR consistency, we used an IResNet-100 model trained on the CASIA-WebFace dataset
to extract embeddings and set K = 50. Regarding filtering settings, we empirically set the quality threshold
in stage 1 at 0.7 and the cosine similarity threshold at 0.3 in stage 2 (Wu et al., 2024a). For the stage 1
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Dataset Size (ID × images/ID) LFW CFP-FP CPLFW AgeDB CALFW Average Real Gap
CASIA-WebFace 0.5M (≈ 10.5K × 47) 0.9950 0.9536 0.9007 0.9487 0.9368 0.9470 0.0000
SynFace (Qiu et al., 2021) 0.5M (10K × 50) 0.8407 0.6337 0.6355 0.5910 0.6937 0.6789 -0.2681
IDNet* (Kolf et al., 2023) 0.5M (10K × 50) 0.9258 0.7540 0.7425 0.6388 0.7990 0.7913 -0.1557
ExFaceGAN* (Boutros et al., 2023b) 0.5M (10K × 50) 0.9350 0.7384 0.7160 0.7892 0.8298 0.8017 -0.1453
DigiFace* (Bae et al., 2023) 0.5M (10K × 50) 0.9540 0.8740 0.7887 0.7697 0.7862 0.8345 -0.1125
VIGFace* (Kim et al., 2024) 0.5M (10K × 50) 0.9660 0.8666 0.7503 0.8250 0.8342 0.8484 -0.0986
IDiff-Face* (Boutros et al., 2023a) 0.5M (10K × 50) 0.9800 0.8547 0.8045 0.8643 0.9065 0.8820 -0.0650
DCFace* (Kim et al., 2023) 0.5M (10K × 50) 0.9855 0.8533 0.8262 0.8970 0.9160 0.8956 -0.0514
ID3* (Li et al., 2024) 0.5M (10K × 50) 0.9768 0.8684 0.8277 0.9100 0.9073 0.8980 -0.0490
Arc2Face* (Papantoniou et al., 2024) 0.5M (10K × 50) 0.9881 0.9187 0.8516 0.9018 0.9263 0.9173 -0.0297
Vec2Face* (Wu et al., 2024a) 0.5M (10K × 50) 0.9887 0.8897 0.8547 0.9312 0.9357 0.9200 -0.0270
VariFace (ours) 0.5M (10K × 50) 0.9938 0.9460 0.8882 0.9438 0.9305 0.9405 -0.0065

Table 1: Face Verification Accuracy with constrained synthetic dataset size evaluated on the
Standard Benchmark. *Results taken from original papers. The best performance is highlighted in bold
for each evaluation dataset, and the second-best performance is underlined.

generation, we sampled a balanced set of individuals across races and genders. For the stage 2 generation,
we uniformly sampled age values A ∼ U(0, 1) and divergence scores DS ∼ U(0.5, 0.8) (see Table S2).

Within the synthetic generation pipeline, where performance is the main concern, we used an IResNet-
100 model, while for evaluation, we used the smaller IResNet-50 architecture. For both models, we used
the ArcFace loss function (Deng et al., 2019) and trained for 40 epochs, with an initial learning rate of
0.1, which is reduced by a factor of 10 at epochs 24, 30, and 36. Moreover, we applied the following
data augmentations: horizontal flip, sharpness, contrast, equalization, and random erasing. More detailed
information on the diffusion and FR model settings can be found in the Suppl. Sec. F and G, respectively.

4.2 Datasets

For training, we used the CASIA-WebFace dataset (Yi et al., 2014), a publicly available face dataset con-
taining 490,414 images from 10,575 individuals. For evaluation, we selected six common face verification
datasets: LFW (Huang et al., 2008), CFP-FP (Sengupta et al., 2016), CPLFW (Zheng & Deng, 2018),
AgeDB (Moschoglou et al., 2017), CALFW (Zheng et al., 2017) and RFW dataset (Wang et al., 2019).
These datasets were designed to evaluate specific aspects of FR performance, including pose variation (CFP-
FP, CPLFW), large age differences (AgeDB, CALFW), and race (RFW). Following previous methods (Kim
et al., 2023; 2024; Wu et al., 2024a), we group the LFW, CFP-FP, CPLFW, AgeDB, and CALFW datasets
and refer to these as the ‘Standard Benchmark’, and we report the performance difference to a baseline
model trained on CASIA-WebFace (Real Gap).

4.3 Constrained Face Recognition Results

The face verification performance on the Standard Benchmark, using different synthetic datasets constrained
to the same dataset size and images per ID, are shown in Table 1. When constrained to the same dataset
size as the real dataset, no synthetic method outperformed the real dataset. Compared to previous synthetic
methods, our proposed method consistently achieves the best performance, with a considerable improvement
over previous state-of-the-art (0.9200 → 0.9405) and the smallest overall performance gap compared to the
real dataset (Real Gap = −0.0065).

The performance on the RFW dataset using a constrained dataset size and images per ID is shown in
Table 2. Similarly, when constrained to the same dataset size and images per ID, the performance using
synthetic datasets cannot match the overall performance obtained using real data. However, VariFace con-
siderably outperforms previous methods (0.8682 → 0.8978) and achieves comparable performance to real
data (Real Gap = −0.0008). Importantly, VariFace outperforms the real dataset across all minority race
categories: African (0.8822→ 0.8895), Asian (0.8697→ 0.8733) and Indian (0.8978→ 0.8988).

8



Under review as submission to TMLR

Dataset African Asian Caucasian Indian Average Real Gap
CASIA-WebFace 0.8822 0.8697 0.9448 0.8978 0.8986 0.0000
SynFace (Qiu et al., 2021) 0.5643 0.6355 0.6647 0.6457 0.6276 -0.2710
DigiFace (Bae et al., 2023) 0.5952 0.6408 0.6750 0.6427 0.6384 -0.2602
DCFace (Kim et al., 2023) 0.7742 0.8122 0.8917 0.8460 0.8310 -0.0676
Vec2Face (Wu et al., 2024a) 0.8415 0.8535 0.9028 0.8750 0.8682 -0.0304
VariFace (ours) 0.8895 0.8733 0.9295 0.8988 0.8978 -0.0008

Table 2: Face Verification Accuracy with constrained synthetic dataset size evaluated on the
RFW dataset. All datasets contain 0.5M images, with 50 images per ID. The best performance is high-
lighted in bold for each dataset, and the second-best performance is underlined.

Dataset Size (ID × images/ID) LFW CFP-FP CPLFW AgeDB CALFW Average Real Gap
CASIA-WebFace 0.5M (≈ 10.5K × 47) 0.9950 0.9536 0.9007 0.9487 0.9368 0.9470 0.0000
SynFace (Qiu et al., 2021) 1.0M (10K × 100) 0.8580 0.6473 0.6395 0.5765 0.6987 0.6840 -0.2630
DigiFace* (Bae et al., 2023) 1.2M (10K × 72 + 100K × 5) 0.9582 0.8877 0.8162 0.7972 0.8070 0.8532 -0.0938
DCFace* (Kim et al., 2023) 1.2M (20K × 50 + 40K × 5) 0.9858 0.8861 0.8507 0.9097 0.9282 0.9121 -0.0349
VIGFace* (Kim et al., 2024) 4.2M (60× 50 + 60× 20) 0.9913 0.9187 0.8483 0.9463 0.9338 0.9277 -0.0193
Arc2Face* (Papantoniou et al., 2024) 1.2M (20K × 50 + 40K × 5) 0.9892 0.9458 0.8645 0.9245 0.9333 0.9314 -0.0156
Vec2Face* (Wu et al., 2024a) 15M (300K × 50) 0.9930 0.9154 0.8770 0.9445 0.9458 0.9352 -0.0118
VariFace (ours) 0.5M (25K × 20) 0.9938 0.9407 0.8930 0.9417 0.9357 0.9410 -0.0060
VariFace (ours) 1.2M (60K × 20) 0.9945 0.9561 0.9063 0.9475 0.9413 0.9492 +0.0022
VariFace (ours) 3.0M (60K × 50) 0.9950 0.9609 0.9145 0.9593 0.9445 0.9548 +0.0078
VariFace (ours) 6.0M (60K × 100) 0.9960 0.9637 0.9205 0.9568 0.9467 0.9567 +0.0097

Table 3: Face Verification Accuracy with unconstrained synthetic dataset size evaluated on the
Standard Benchmark. *The best results are taken from the original papers. For each dataset, the best
performance is highlighted in bold, and the second-best performance is underlined.

4.4 Unconstrained Face Recognition Results

One of the main benefits of using synthetic data is the ease of scaling the dataset size, involving either
synthesizing new IDs or increasing the number of images per ID. The face verification performance on
Standard Benchmark, using different synthetic datasets without dataset size constraint, is shown in Table 3.

The best performance was obtained using VariFace, achieving an average accuracy of 0.9567 at 6M images,
outperforming the real dataset (Real Gap = +0.0097). In fact, VariFace outperforms real data at 1.2M
images (0.9470 → 0.9492). In contrast, no other synthetic method at any dataset size reaches real data
performance. We observe that either increasing the number of IDs (25K → 60K) or increasing the number
of images per ID (20→ 100) improves performance across evaluation datasets.

The performance on the RFW dataset using an unconstrained dataset is shown in Table 4. Similarly, the
best performance on the RFW dataset was observed with VariFace, achieving an average score of 0.9366 at
6M images, outperforming real data (Real Gap = +0.0380). Importantly, VariFace outperforms real data at

Dataset Size (ID × images/ID) African Asian Caucasian Indian Average Real Gap
CASIA-WebFace 0.5M (≈ 10.5K × 47) 0.8822 0.8697 0.9448 0.8978 0.8986 0.0000
SynFace (Qiu et al., 2021) 1.0M (10K × 100) 0.5873 0.6617 0.6758 0.6502 0.6438 -0.2548
DigiFace (Bae et al., 2023) 1.2M (10K × 72 + 100K × 5) 0.6145 0.6648 0.6910 0.6603 0.6577 -0.2409
DCFace (Kim et al., 2023) 1.2M (20K × 50 + 40K × 5) 0.8157 0.8345 0.9083 0.8765 0.8588 -0.0398
Vec2Face (Wu et al., 2024a) 1.0M (20K × 50) 0.8763 0.8695 0.9185 0.8962 0.8901 -0.0085
VariFace (ours) 0.5M (25K × 20) 0.8973 0.8825 0.9277 0.9042 0.9029 +0.0043
VariFace (ours) 1.2M (60K × 20) 0.9130 0.9008 0.9445 0.9172 0.9189 +0.0203
VariFace (ours) 3.0M (60K × 50) 0.9292 0.9130 0.9560 0.9257 0.9310 +0.0324
VariFace (ours) 6.0M (60K × 100) 0.9363 0.9180 0.9590 0.9332 0.9366 +0.0380

Table 4: Face Verification Accuracy with unconstrained synthetic dataset size evaluated on
the RFW dataset. For each dataset, the best performance is highlighted in bold, and the second-best
performance is underlined.
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Figure 4: Synthetic dataset characteristics. Top: t-SNE plots of mean face embeddings for identities
in different synthetic datasets. The race and gender labels for each embedding are represented by different
colors defined in the legend. Bottom: Histogram of divergence scores for different synthetic datasets. The
regions where cosine similarity score < 0.3 and > 0.9 are shaded in red. CASIA-WebFace (real dataset) is
shown for reference.

the same dataset size of 0.5M when the images per ID are unconstrained (Real Gap = +0.0043). In contrast,
no other synthetic method achieves the same performance as real data at the dataset sizes evaluated.

4.5 Synthetic dataset characteristics

We analyze the characteristics of the VariFace and open-source synthetic 0.5M datasets with respect to
fairness and intraclass diversity.

Fairness. t-SNE plots of different synthetic datasets are shown in Fig. 4. The t-SNE plot of CASIA-
WebFace identities shows large clusters corresponding to Caucasian males and females. In contrast, while
there are smaller clusters for African and Asian races, there are no clusters for Indian individuals. Vec2Face
demonstrates clusters similar to those in CASIA-WebFace, inheriting the demographic biases from the real
dataset. DigiFace displays multiple but indistinct clusters for each race, while only the Caucasian clusters
are retained using SynFace, and no clusters are observed with DCFace. In contrast, VariFace reveals clusters
for each race and gender category, including for Indian individuals, which were not observed in the real
dataset.

Intraclass diversity. Histogram plots of DS for different synthetic datasets are shown in Fig. 4. Low
cosine similarity values generally correspond to label noise, representing either mislabeled data for real
datasets or lack of ID preservation for synthetic datasets (see Suppl. Sec. C). Among the synthetic datasets,
SynFace displays many images with low cosine similarity values due to the use of ID mixing (Qiu et al.,
2021). In contrast, other synthetic methods contain mainly high cosine similarity values, corresponding to
low intraclass diversity. VariFace controls the DS to enable the generation of diverse image variation while
preserving ID.

4.6 Dataset generation time

In addition to performance improvements, VariFace also takes less time to generate face datasets than
previous methods (Table 5).

The entire pipeline to generate 500K images using VariFace, including ID generation and filtering, took ≈15
hours. There are three main reasons for Variface’s efficiency. Firstly, while FVSG adds inference overhead
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Method (↓) Dataset Generation Time (hours)
DCFace (Kim et al., 2023) 20

Vec2Face (Wu et al., 2024a) 36
VariFace (ours) 12

Table 5: Dataset generation time. 500K images generated using second stage generative model on a
single NVIDIA A100 GPU.

Demographic Age Divergence LFW CFP-FP CPLFW AgeDB CALFW Average African Asian Caucasian Indian Average
✓ ✗ ✗ 0.9903 0.9267 0.8672 0.9200 0.9148 0.9238 0.8662 0.8580 0.9117 0.8683 0.8760
✓ ✓ ✗ 0.9927 0.9274 0.8735 0.9295 0.9338 0.9314 0.8757 0.8652 0.9237 0.8870 0.8879
✓ ✗ ✓ 0.9917 0.9447 0.8882 0.9273 0.9173 0.9338 0.8812 0.8737 0.9252 0.8793 0.8898
✗ ✓ ✓ 0.9948 0.9444 0.8962 0.9403 0.9295 0.9411 0.8650 0.8365 0.9355 0.8912 0.8820
✓ ✓ ✓ 0.9938 0.9460 0.8882 0.9438 0.9305 0.9405 0.8895 0.8733 0.9295 0.8988 0.8978

Table 6: Ablation study. Face verification accuracy using VariFace with different combinations of condi-
tioning signals. Demographic = race and gender conditioning in stage 1. Age = age condition in stage 2.
Divergence = divergence score condition in stage 2. All datasets contain 0.5M images (50 images/ID).

to stage 1 generation, this cost is minimal because face datasets contain significantly fewer IDs than images.
Therefore, the stage 1 generation is fast, taking ≈15 minutes to generate 10,000 IDs without FVSG, or ≈40
minutes with FVSG. The main bottleneck is in the second stage, where multiple images of the same ID are
generated. To minimize inference costs in this stage, our proposed DSC provides a lightweight solution to
generate diversity without relying on additional gradient computations through auxiliary models. Finally,
we adopt an efficient diffusion architecture and fast sampling method that reduces inference time across both
stages.

4.7 Ablation study

Conditioning signal. To assess the effect of each conditioning signal used in VariFace, we evaluate the FR
performance trained with VariFace using different combinations of conditions (Table 6). By removing the
race and gender conditioning in stage 1, the performance on the Standard Benchmark remains comparable
(0.9405 → 0.9411), but there is a considerable decrease in RFW performance (0.8978 → 0.8820), especially
with minority races (Asian: 0.8733→ 0.8365, Indian: 0.8988→ 0.8683, African: 0.8895→ 0.8662). Both age
and DS conditioning improve face verification accuracy across all datasets, with age conditioning improving
performance on the AgeDB and CALFW datasets, and DS conditioning improving performance on the CFP-
FP and CPLFW datasets. Overall, the best performance is achieved using all three conditions, providing
fairness across races and robustness to significant pose and age variation.

Face Vendi Score Guidance. The purpose of FVSG is to improve the interclass diversity (see Suppl Sec.
B). Previous methods to improve interclass diversity relied on ID filtering (Kim et al., 2023; Wu et al., 2024a),
where FR embeddings from synthesized identities with a cosine similarity above a predefined threshold are
removed. Here, we demonstrate that FVSG improves face verification accuracy and is a better alternative
to ID filtering (Table 7), with the most improvement observed on the RFW dataset (0.8935 → 0.8978).
In contrast, we observe that ID filtering was associated with a decrease in performance across datasets
(0.8935 → 0.8927). While ID filtering and FVSG are designed for the same purpose, ID filtering does not
encourage sampling more diverse IDs and is sensitive to the FR model and threshold used. Moreover, the
removal of similar IDs using ID filtering risks removing difficult-to-classify but distinct IDs misclassified by
the FR model, which may be most informative for training (Swayamdipta et al., 2020). In contrast, FVSG
ensures all demographic groups are well represented by directly optimizing the distribution of generated
identities. Furthermore, FVSG is less dependent on the FR model because the model is used as a guidance
signal without thresholding and does not risk removing informative cases.

Filtering. Filtering is widely used in synthetic face generation Kim et al. (2023); Wu et al. (2024a), although
the importance of filtering has not been well studied. Similar to Wu et al. (2024a), we noticed that filtering
only affected a small proportion of the generated images, and here we further investigated the impact of
filtering on face verification accuracy (Table 8). While the best overall performance is observed with filtering,

11



Under review as submission to TMLR

FVSG S1F LFW CFP-FP CPLFW AgeDB CALFW Average African Asian Caucasian Indian Average
✓ Q 0.9938 0.9460 0.8882 0.9438 0.9305 0.9405 0.8895 0.8733 0.9295 0.8988 0.8978
✗ Q 0.9920 0.9433 0.8917 0.9412 0.9313 0.9399 0.8783 0.8780 0.9260 0.8917 0.8935
✗ Q+ID 0.9923 0.9451 0.8897 0.9388 0.9303 0.9393 0.8850 0.8695 0.9233 0.8928 0.8927

Table 7: FVSG ablation study. FVSG=Face Vendi Score Guidance. S1F=Stage 1 filtering. Q=quality.
ID=identity. All datasets contain 0.5M images (50 images/ID).

we observe that filtering is not necessary for VariFace to achieve state-of-the-art results. Even without any
filtering, VariFace still considerably outperforms previous SOTA methods (0.9386 > 0.9200), highlighting
the robustness of the conditional generation models used in VariFace.

S1F S2F LFW CFP-FP CPLFW AgeDB CALFW Average African Asian Caucasian Indian Average
✓ ✓ 0.9938 0.9460 0.8882 0.9438 0.9305 0.9405 0.8895 0.8733 0.9295 0.8988 0.8978
✓ ✗ 0.9937 0.9410 0.8892 0.9382 0.9308 0.9386 0.8867 0.8785 0.9247 0.8962 0.8965
✗ ✓ 0.9933 0.9444 0.8923 0.9413 0.9325 0.9408 0.8880 0.8722 0.9272 0.8918 0.8948
✗ ✗ 0.9908 0.9464 0.8912 0.9353 0.9293 0.9386 0.8828 0.8713 0.9212 0.8912 0.8916

Table 8: Filtering ablation study. SB=Standard Benchmark. S1F=Stage 1 filtering. S2F=Stage 2
filtering. All datasets contain 0.5M images (50 images/ID). The bottom row corresponds to results where
no filtering was applied.

5 Conclusions

In this paper, we propose VariFace, a two-stage, diffusion-based pipeline for generating fair and diverse
synthetic face datasets for training FR models. We introduce Face Recognition Consistency to refine demo-
graphic labels, Face Vendi Score Guidance to improve interclass diversity, and Divergence Score Conditioning
to balance the ID preservation-intraclass diversity trade-off. When controlling for the dataset size and the
number of images per ID, VariFace consistently outperforms previous synthetic dataset methods across six
evaluation datasets and achieves FR performance comparable to real data (Table 1, 2). Furthermore, by
scaling synthetic dataset size, VariFace outperforms the real dataset, as well as previous synthetic methods
at all dataset sizes (Table 3, 4). Importantly, VariFace addresses fairness concerns, achieving better repre-
sentation of minority demographic classes demonstrated both through qualitative visualizations (Fig. 4) and
quantitative evaluation (Table 2).

With a gap between the FR performances from training on synthetic and real datasets, previous methods
have emphasized the benefit of using synthetic data to augment real datasets (Qiu et al., 2021; Bae et al.,
2023; Kim et al., 2024). In contrast, we demonstrate for the first time that state-of-the-art FR performance
can be achieved when training only on synthetic data. Therefore, our results establish synthetic face datasets
as a viable solution for achieving accurate and fair FR performance.

Broader Impact Statement

Over the past decade, there has been significant improvements in automated face recognition performance,
with models achieving human-level performance (Taigman et al., 2014; Phillips et al., 2018). The performance
improvement is not only due to architectural developments, but perhaps equally, if not more importantly,
due to the significant increase in data used to train these models. However, these massive face datasets were
obtained by web-scraping and do not have consent from individuals to use their faces for this purpose. To
avoid the need to use these datasets, there has been growing interest to develop synthetic face datasets as an
alternative. However, the best current synthetic methods, including our proposed method, still rely on real
data to train the synthetic models. While this is a better option than directly training on real data, synthetic
methods based on CG data or small-scale consented real face data are promising research directions that
could eliminate the reliance on massive web-scraped datasets.
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Figure S1: CLIP demographic labeling. Using a pretrained pair of CLIP image and text encoders, the
cosine similarities between the image and text embeddings are computed and then converted into softmax
probabilities. The final label is obtained after averaging softmax probabilities across values obtained from
the image and flipped image embeddings.

A CLIP Demographic labeling

A.1 Framework

We adapt the CLIP-IQA framework (Wang et al., 2023) to obtain demographic labels without relying on
supervised models (Fig. S1). Unlike CLIP-IQA, we input both the image and its horizontally flipped version
into the CLIP image encoder to obtain their corresponding image embeddings. We use the horizontally
flipped image as a form of test-time augmentation to improve the robustness of the predictions. For the
text encoder, we pass a set of prompts with the structure “A photo of a * face" where * is replaced with
[“Male", “Female"], [“Young", “Old"], [“Caucasian", “Asian", “Indian", “African"] for gender, age and race
labeling, respectively. Given a set of text embeddings T = {t1, t2, ..., tn} and the embedding of an image and
its horizontally flipped version X = {x1, x2}, first the cosine similarity is computed:

si,j = xj · ti

∥xj∥∥ti∥
, i ∈ {1, 2, ..., n}, j ∈ {1, 2}. (6)

Next, the softmax values, s̄i, for each label are computed and averaged over results from the image and
flipped version:

s̄i = 1
|X|

∑
j

esi,j∑
i esi,j

. (7)

Finally, the value for the label, l, is obtained:

l = arg max
i

s̄i. (8)

A.2 Evaluation

To evaluate the benefit of using CLIP compared to supervised models, we compare CLIP with DeepFace
(Serengil & Ozpinar, 2021), a library that contains supervised models for race prediction of face images. Fur-
thermore, we evaluate the benefit of including Face Recognition Consistency (FRC) with CLIP predictions.

For evaluation, we use the RFW dataset, which contains 48,000 images evenly divided across the follow-
ing races: [“Caucasian", “Asian", “Indian", “African"]. DeepFace includes “Latino Hispanic" and “Middle
Eastern" as predicted classes, and we relabel these as “Indian" predictions to conform to the RFW race
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Figure S2: Race prediction accuracy on the RFW dataset.

Figure S3: Varying guidance scale with Face Vendi Score Guidance. Examples were synthesized
using VariFace. GS = guidance scale, CS = cosine similarity.

categories. For FRC, we set K = 10 to account for the small dataset size. The accuracy of the predictions
using DeepFace, CLIP, and CLIP-FRC for each race are shown in Fig. S2.

CLIP outperforms DeepFace across all races, notably with respect to the Caucasian race prediction
(79.6% → 97.1%). Overall, the accuracy using DeepFace, CLIP, and CLIP-FRC are 82.6%, 92.6%, and
92.8%, respectively. Despite a decrease in performance on Caucasian individuals (97.1%→ 89.4%), there is
an improvement across all other races with using FRC: Asian (96.8% → 97.2%), Indian (83.2% → 89.2%),
and African (93.3%→ 95.3%).

B Face Vendi Score Guidance

To improve interclass diversity, we apply Face Vendi Score Guidance while sampling individuals in stage
1. The effect of varying the guidance scale is shown in Table S1, with examples shown in Fig. S3. At
higher guidance scales, there is improved interclass diversity measured using cosine similarity. However, high
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Guidance scale Cosine Similarity High quality
0 0.0032 0.62
1 0.0027 0.59
10 0.0025 0.44

Table S1: Varying guidance scale with Face Vendi Score Guidance. Cosine similarity is computed
over an average of 10,000 embeddings. High quality refers to the fraction of images with a quality score
> 0.7 evaluated by CLIB-FIQA.

DS LFW CFP-FP CPLFW AgeDB CALFW Average African Asian Caucasian Indian Average
[0.5, 0.6] 0.9900 0.9453 0.8872 0.9338 0.9227 0.9358 0.8772 0.8650 0.9113 0.8807 0.8835
[0.6, 0.7] 0.9923 0.9443 0.8863 0.9405 0.9290 0.9385 0.8862 0.8720 0.9242 0.8878 0.8925
[0.7, 0.8] 0.9918 0.9279 0.8747 0.9377 0.9288 0.9322 0.8792 0.8698 0.9233 0.8873 0.8899
[0.8, 0.9] 0.9905 0.8737 0.8187 0.9088 0.9235 0.9030 0.8433 0.8420 0.8965 0.8607 0.8606
[0.5, 0.8] 0.9938 0.9460 0.8882 0.9438 0.9305 0.9405 0.8895 0.8733 0.9295 0.8988 0.8978

Table S2: Divergence score hyperparameter evaluation. For each setting, we apply the Divergence
score (DS) with a uniform distribution [A, B]. For each dataset, the best performance is highlighted in bold,
and the second-best performance is underlined.

guidance scales are associated with a higher frequency of artifacts, suggesting that careful selection of the
guidance scale is required.

C Divergence Score Conditioning

C.1 Label noise detection with Divergence scores

Given the use of web scraping to obtain large-scale face datasets such as CASIA-WebFace, there are potential
issues with mislabeling of identities. The divergence score (DS) can be used to identify mislabeled identities,
where a low DS suggests label noise. For synthetic data, filtering low DS can be used to remove cases where
identity is not preserved. Examples of cases with low DS within the SynFace dataset are shown in Fig. S4.

The examples highlight how DS can be used to identify obvious cases where individual images differ from
other images assigned the same ID label.

C.2 Hyperparameter evaluation

To demonstrate the effect of hyperparameter settings for the DS, we evaluate a broad range of DS conditioning
values (Table S2).

There is considerably lower performance when using either a low range of DS values ([0.5, 0.6]) or a high
range of DS values ([0.8, 0.9]), which are associated with loss of ID preservation and low intraclass diversity,
respectively. The best performance was observed with a broad range of DS values ([0.5, 0.8]), demonstrating
the usefulness of DS to balance ID preservation and intraclass diversity.

D Age Conditioning

In the second stage, we apply age conditioning to generate face images of different ages. The benefit of
face recognition performance, especially on age-diverse datasets, was shown in Table 6, and here we show
examples of face images generated with different age conditions in Fig. S5.

The examples demonstrate that VariFace can generate face images across a broad range of ages while
maintaining the identity of the individual.
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Figure S4: Detecting label noise with Divergence Scores. Example images with associated divergence
scores for identities in the SynFace dataset. Cases with low divergence scores are shown in the column on
the right.
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Figure S5: VariFace can generate images of the same individual of different ages. Example of
synthetic images generated with different values for the age condition. For each row, the same ID condition
was used, and the DS was fixed at 0.8 for all samples.

23



Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0

Cosine Similarity

0

100

200

300

400

500

F
re

q
u
en

cy

Figure S6: Histogram of maximum cosine similarities of VariFace identities compared to CASIA-
WebFace identities.

E Synthetic faces comparison with real faces

One privacy concern with using deep generative models is the potential for real face images to leak into the
synthetic dataset. To compare the identities in the synthetic and real datasets, we apply a pretrained face
recognition model (IResNet-100) to generate embeddings and use these embeddings to determine identity
similarity. For each of the 10,000 identities in the 0.5M VariFace dataset, we plot the maximum cosine
similarity with the CASIA-WebFace dataset (Fig. S6).

Most synthesized identities have a low maximum cosine similarity score of around 0.2, with very few cases
above 0.3. This suggests that most of the identities synthesized are different to those in the CASIA-WebFace
dataset.

F Diffusion model settings

The settings for the diffusion models used in VariFace are shown in Table S3. We generally follow the
default settings from the original HDiT, except for using Adaptive Discriminator Augmentation. (Karras
et al., 2020), and modifying the conditioning module to accommodate for multiple conditions (Fig. S7).

G Face recognition model settings

The settings used for the FR model are shown in Table S4. We generally follow default settings from the
InsightFace library (Deng et al., 2019), except for substituting the polynomial learning rate scheduler for a
step learning rate scheduler and including additional data augmentations.

H Baseline real dataset performance

Due to differences in models, loss function, and training setup used, there is considerable variation in reported
baseline FR performance obtained with CASIA-WebFace. To validate whether VariFace outperforms other
baselines used in previous research, we compare our real dataset performance with others reported in the
literature. The reported face recognition model performance trained on CASIA-WebFace and evaluated on
the Standard Benchmark is shown in Table S5.

Our CASIA-WebFace trained FR model achieves performance comparable to the highest reported baselines.
Importantly, even when compared to the best-performing baseline, our proposed method, VariFace, achieves
better performance at 1.2M images (0.9482→ 0.9492).
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Figure S7: VariFace HDiT block. We follow the structure of the HDiT block used in (Crowson et al.,
2024) and modify the conditioning block to handle multiple conditions. The structure of the conditioning
block is shown for the stage 2 model. For the stage 1 model, the identity condition is removed, and age and
divergence scores are replaced with race and gender labels. GEGLU is used as the MLP (Shazeer, 2020).

Hyperparameter Setting
Training steps 700K (stage 1)/3M (stage 2)
Batch size 128
Hardware 4 A100
Training time 19 hours/3.5 days
Patch size 4
Levels (Local + Global attention) 1 + 1
Depth [2, 11]
Width [256, 512]
Attention Head Dim 64
Neighborhood Kernel Size 7
Data Sigma 0.5
Sigma Range [1e-3, 1e3]
Sigma Sampling Density Interpolated cosine
Augmentation Probability 0.12
Dropout Rate 0
Conditional Dropout Rate 0
Optimizer AdamW
Learning Rate 0.0005
Betas [0.9, 0.95]
Eps 1e-08
Weight decay 0.0001
EMA Decay 0.9999
Sampler DPM++(3M) SDE
Sampling steps 50

Table S3: Diffusion model settings.
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Hyperparameter Setting
Backbone iResNet-50/iResNet-100
Batch size 256
Epochs 40
Optimizer SGD
Momentum 0.9
Weight decay 5e-4
Learning rate 0.1
Learning rate scheduler Step LR (x0.1 at 24, 30, and 36)
Loss ArcFace
Loss settings scale=64, margin=0.5

Augmentations

[transforms.ToPILImage(),
transforms.RandomHorizontalFlip(),
transforms.RandomAdjustSharpness(sharpness_factor=1.5, p=0.5),
transforms.RandomAutocontrast(p=0.5),
transforms.RandomEqualize(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
transforms.RandomErasing(p=0.5, scale=(0.02, 0.4)) ]

Table S4: Face recognition model settings.

Paper LFW CFP-FP CPLFW AgeDB CALFW Average
Kim et al. 2024 (Kim et al., 2024) 0.9935 0.9597 0.8412 0.9365 0.9078 0.9277
Kim et al. 2023 (Kim et al., 2023); Papantoniou et al. 2024 (Papantoniou et al., 2024) 0.9942 0.9656 0.8973 0.9408 0.9332 0.9462
Boutros et al. 2023 (Boutros et al., 2023b); Kolf et al. 2023 (Kolf et al., 2023) 0.9955 0.9531 0.8995 0.9455 0.9378 0.9463
Wu et al. 2024 (Wu et al., 2024a) 0.9938 0.9691 0.8978 0.9450 0.9335 0.9479
Boutros et al. 2023 (Boutros et al., 2023a) 0.9952 0.9552 0.9038 0.9477 0.9393 0.9482
Ours 0.9950 0.9536 0.9007 0.9487 0.9368 0.9470

Table S5: Face verification accuracy using CASIA-WebFace from previous research. For each
dataset, the best performance is highlighted in bold, and the second-best performance is underlined.

I Effect of loss function on model performance

Since the development of the ArcFace loss, there have been numerous alternative loss functions proposed in
the literature (Liu et al., 2017; Huang et al., 2020; Meng et al., 2021; Kim et al., 2022b; Zhou et al., 2023).
The performance using different loss functions for FR models trained on the CASIA-WebFace dataset is
shown in Table S6. Generally, the performance is similar across loss functions, with the best performance
obtained using the ArcFace loss.

J Reproducing performance from open-source synthetic datasets

To further compare our method with current state-of-the-art synthetic datasets, we train FR models using
the same settings as our experiments on open-source synthetic face datasets. The results are shown in Table
S7.

Except for DigiFace, we observed a similar performance with our training settings and the original paper
results. Our performance obtained with DigiFace is significantly lower than the results in the original paper,
and this is likely due to differences in the data augmentation strategies used (Bae et al., 2023). While

Loss LFW CFP-FP CPLFW AgeDB CALFW Average African Asian Caucasian Indian Average
ArcFace (Deng et al., 2019) 0.9950 0.9536 0.9007 0.9487 0.9368 0.9470 0.8822 0.8697 0.9448 0.8978 0.8986
CurricularFace (Huang et al., 2020) 0.9920 0.9421 0.8813 0.9308 0.9247 0.9342 0.8463 0.8340 0.9163 0.8608 0.8644
SphereFace (Liu et al., 2017) 0.9943 0.9524 0.9018 0.9478 0.9380 0.9469 0.8787 0.8658 0.9415 0.9003 0.8966
AdaFace (Kim et al., 2022b) 0.9955 0.9534 0.9007 0.9485 0.9345 0.9465 0.8787 0.8648 0.9452 0.8950 0.8959
MagFace (Meng et al., 2021) 0.9940 0.9517 0.8952 0.9488 0.9332 0.9446 0.8800 0.8628 0.9453 0.8900 0.8945
UniFace (Zhou et al., 2023) 0.9945 0.9531 0.9008 0.9437 0.9348 0.9454 0.8712 0.8583 0.9437 0.8917 0.8912

Table S6: Face verification accuracy using CASIA-WebFace with different loss functions. For
each dataset, the best performance is highlighted in bold, and the second-best performance is underlined.
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Dataset Size LFW CFP-FP CPLFW AgeDB CALFW Average Real Gap Orig Gap
CASIA-WebFace 0.5M 0.9950 0.9536 0.9007 0.9487 0.9368 0.9470 0.0000 -
SynFace (Qiu et al., 2021) 0.5M 0.8580 0.6473 0.6395 0.5765 0.6987 0.6840 -0.2630 -
SynFace (Qiu et al., 2021) 1.0M 0.8593 0.6341 0.6452 0.5750 0.6860 0.6799 -0.2671 -
DigiFace (Bae et al., 2023) 0.5M 0.8508 0.7431 0.6498 0.6093 0.6713 0.7049 -0.2421 -0.1296
DigiFace (Bae et al., 2023) 1.2M 0.8872 0.7827 0.6835 0.6218 0.7170 0.7384 -0.2086 -0.1148
DCFace (Kim et al., 2023) 0.5M 0.9863 0.8896 0.8325 0.9082 0.9173 0.9068 -0.0402 +0.0112
DCFace (Kim et al., 2023) 1.2M 0.9895 0.886 0.8497 0.9173 0.9268 0.9139 -0.0331 +0.0018
Vec2Face (Wu et al., 2024a) 0.5M 0.9848 0.8737 0.8413 0.9187 0.9298 0.9097 -0.0373 -0.0103
Vec2Face (Wu et al., 2024a) 1.0M 0.9868 0.8819 0.8537 0.9408 0.9372 0.9201 -0.0269 -0.0046

Table S7: Face Verification Accuracy using open-source synthetic datasets. The Real Gap is the
difference to the real dataset performance. The Orig Gap is the difference to the performance reported in
the original paper.

our data augmentation settings are tuned for real data, DigiFace employs additional data augmentation to
overcome the domain gap between real and CG data. Importantly, regardless of whether the original dataset
performance or our reproduced performances are used, our proposed method remains the best-performing
method.

K Limitations

VariFace does not outperform the real dataset performance when using a fixed dataset size and images per
ID. However, the ease of scalability is a key feature of synthetic methods, and VariFace outperforms the real
dataset at larger dataset sizes. Another limitation is that the results we have presented with VariFace relied
on training on CASIA-WebFace, a large-scale web-scraped dataset. With increasingly stricter regulations on
collecting face datasets, CG data provides an alternative to avoid using real data, but will require further
work to address the existing domain gap.
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