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Abstract

Recently, deep unsupervised hashing has gained
considerable attention in image retrieval due to
its advantages in cost-free data labeling, computa-
tional efficiency, and storage savings. Although
existing methods achieve promising performance
by leveraging inherent visual structures within the
data, they primarily focus on learning discrimi-
native features from unlabeled images through
limited internal knowledge, resulting in an intrin-
sic upper bound on their performance. To break
through this intrinsic limitation, we propose a
novel method, called Deep Unsupervised Hash-
ing with External Guidance (DUH-EG), which
incorporates external textual knowledge as seman-
tic guidance to enhance discrete representation
learning. Specifically, our DUH-EG: i) selects
representative semantic nouns from an external
textual database by minimizing their redundancy,
then matches images with them to extract more
discriminative external features; and ii) presents
a novel bidirectional contrastive learning mecha-
nism to maximize agreement between hash codes
in internal and external spaces, thereby capturing
discrimination from both external and intrinsic
structures in Hamming space. Extensive exper-
iments on four benchmark datasets demonstrate
that our DUH-EG remarkably outperforms exist-
ing state-of-the-art hashing methods. The code
is available at: https://github.com/XLearning-
SCU/2025-ICML-DUHEG
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Figure 1. The matching result among three images from the
MSCOCO dataset. The category of the two images above (with a
blue border) is the airplane, while the remaining one (with a yellow
border) is categorized as a bird. We illustrate the matching proba-
bility based on features of image data and external nouns extracted
by the CLIP (ViT-B/16) model (Radford et al., 2021), respectively.
Specifically, for two images with a higher matching probability, if
they belong to different categories (indicating a mismatch), their
matching probability is marked in red. Otherwise, the probability
is marked in green.

1. Introduction
High retrieval efficiency and low storage cost are essen-
tial for large-scale information retrieval tasks. Hashing
methods map high-dimensional data into compact binary
codes, significantly reducing storage space and accelerating
computation through XOR operation, while preserving the
discrimination in the discrete representations. As a result, it
has received increasing attention from both academia and
industry. Existing hashing methods can be broadly cate-
gorized into supervised and unsupervised hashing. While
supervised hashing methods achieve promising performance
with well-labeled data, large-scale data annotation is labor-
intensive, costly, and even infeasible in practice. By contrast,
unsupervised approaches leverage unlabeled data to learn
binary representations, thereby avoiding cost-prohibitive
data annotation and drawing more practical interest. The
key to unsupervised hashing lies in constructing intrinsic
data structures without class labels.

To address this challenge, most unsupervised hashing meth-
ods explore mining inherent information from unlabeled
data to facilitate hash code learning, such as data reconstruc-
tion (Do et al., 2016; Song et al., 2018; Zieba et al., 2018),
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Figure 2. The overall framework of the proposed DUH-EG method. To be specific, in the left part, we construct the external features e
corresponding to the visual feature i of input images and identify similar (positive) and dissimilar (negative) external knowledge pairs,
marking them with different colors. Then, we generate hash codes of the external feature he and two augmented views hv1 and hv2 ,
respectively. After that, we employ a bidirectional contrastive learning loss to maximize the agreement across the positive samples as
shown in the right part. Note that we use distinct colors to represent different clusters of normal points in the left part.

similarity preserving (Tu et al., 2020; Shen et al., 2018; Yang
et al., 2019; Huang et al., 2016; Shen et al., 2019; Gu et al.,
2019), contrastive learning (Luo et al., 2021b; Lin et al.,
2022; Yu et al., 2022), etc. Data reconstruction methods
typically utilize generative models to learn binary bottleneck
representations by reconstructing input data, encouraging
hash codes to preserve as much intrinsic information from
input data as possible (Dai et al., 2017; Shen et al., 2020;
Cao et al., 2018). However, such methods may preserve
some non-discriminative information for reconstruction in
the Hamming space, such as extraneous background, lead-
ing to a sacrifice in hash code discriminability (Qiu et al.,
2021). In contrast, similarity-preserving methods (Luo et al.,
2021a; Dong et al., 2020) employ pre-trained models or clus-
tering techniques to extract underlining similarity structures,
such as pairwise similarity (Yang et al., 2018; Ma et al.,
2024) or pseudo-labels (Hu et al., 2017; Zhang et al., 2017),
from unlabeled inputs to guide hash function learning, thus
enhancing the discriminability of the discrete representa-
tions. Inspired by the great success achieved by contrastive
learning (Chen et al., 2020), recent studies (Qiu et al., 2021;
Ma et al., 2022; Luo et al., 2021b; Lin et al., 2022; Yu
et al., 2022) have integrated it to maximize mutual informa-
tion between positive pairs in Hamming space, constructed
from data augmentation (Qiu et al., 2021), similarity struc-
ture (Wei et al., 2024), or pseudo-labels (Luo et al., 2021c),
resulting in stronger supervision and more discriminative

hash codes. Despite these advancements, these methods,
which rely solely on internal visual structure, may face an in-
herent limitation on semantic guidance, potentially resulting
in suboptimal performance.

To be specific, the exclusive use of internal supervision
may introduce semantic ambiguity, thereby leading to an
inherent performance ceiling. For instance, as illustrated
in Figure 1, we extracted visual features from three images
using a pre-trained CLIP (ViT-B/16) model (Radford et al.,
2021), and calculated the matching probabilities based on
normalized similarity scores. Surprisingly, an airplane im-
age has a higher matching probability with a bird image
than with another airplane image (0.571 v.s. 0.429). Fortu-
nately, by associating the images with external nouns (e.g.
“airbus”, “mustang”, and “American egret”), we achieved
clearer distinctions and more accurate matching probabili-
ties (0.545 v.s. 0.455). In brief, leveraging external textual
information could thus provide richer and more precise guid-
ance for hash learning, enhancing the discriminability of
discrete codes. However, it is challenging to find repre-
sentative external nouns that discriminatively depict each
image without class labels. Intuitively, we could retrieve re-
lated nouns from a word database, such as WordNet (Miller,
1995), but excessive synonyms may be introduced and domi-
nate textual semantics, leading to semantic homogeneity and
discrimination loss. Additionally, integrating textual infor-
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mation as external guidance presents challenges in aligning
image-text semantics across different modalities, as well as
reconciling internal and external knowledge for consistent
semantic guidance.

To address the challenges, we propose Deep Unsupervised
Hashing with External Guidance (DUH-EG) to enhance the
semantic similarity guidance for hash learning, as shown in
Figure 2. Specifically, we first extract text features of each
external noun using a pre-trained vision-language model,
clustering them to select representative features, thereby
mitigating semantic homogeneity caused by excessive syn-
onyms. DUH-EG then extracts image features using the
vision-language model, matching them with the representa-
tive textual features to integrate external features for each
image. To balance internal and external information, we
present a bidirectional contrastive learning loss to align tex-
tual and visual views for each image while maximizing the
agreement across different augmented views. However, tra-
ditional contrastive learning roughly treats different images
as negative pairs, inevitably sampling some intra-class views
as negatives, i.e., false negatives. To eliminate the adverse
impact of false negative pairs, we select latent positive pairs
from the negatives by using external features, enabling the
model to focus on semantic positives rather than only dif-
ferent views of the same sample. The main contributions of
this work are summarized as follows:

• We propose a novel approach that incorporates exter-
nal textual guidance to facilitate discrete representation
learning, overcoming the inherent limitations of inter-
nal visual structures.

• An efficient, automated, and non-generative method is
presented to select representative semantic nouns from
an accessible external textual database, integrating the
external textual features as external guidance of the
corresponding images.

• A bidirectional contrastive learning loss is developed to
preserve discrimination in hash codes by maximizing
mutual information between semantic positive pairs
instead of different views, thereby enhancing effective-
ness and robustness.

• Extensive experiments on the four widely-used bench-
marks, i.e., CIFAR-10, NUS-WIDE, Flickr25k, and
MSCOCO, demonstrate that our approach remark-
ably outperforms state-of-the-art unsupervised hashing
methods.

2. Related Work
2.1. Deep Unsupervised Hashing

Deep unsupervised hashing approaches can primarily be cat-
egorized into data reconstruction (Do et al., 2016; Song et al.,

2018; Zieba et al., 2018) and similarity preserving (Yang
et al., 2018; Huang et al., 2016; Shen et al., 2019). For
data reconstruction, various studies (Do et al., 2016; Song
et al., 2018; Zieba et al., 2018; He et al., 2024) employ
generative models such as variational auto-encoders (VAEs)
(Kingma & Welling, 2014) and generative adversarial net-
works (GANs) (Goodfellow et al., 2014) to reconstruct im-
ages and produce hash codes that preserve intrinsic infor-
mation implicit in inputs. For example, (Shen et al., 2020)
proposes a Wasserstein auto-encoder variant that uses code-
driven adjacency graphs to guide image reconstruction. Sim-
ilarly, (Cao et al., 2018) leverages images synthesized by
Pair Conditional Wasserstein GAN (PC-WGAN) to augment
training data, enabling the hash model to learn hash codes
that respect semantic pairwise relationships. For similarity
preserving, some methods mine semantic similarity struc-
tures from pre-trained models to learn similarity-preserving
hash codes (Yang et al., 2018; Tu et al., 2020; Shen et al.,
2018; Ma et al., 2024). By contrast, other methods lever-
age clustering techniques to generate pseudo-labels that
facilitate similarity-preserving learning in the Hamming
space (Huang et al., 2016; Shen et al., 2019; Wei et al.,
2023). For instance, (Luo et al., 2021a) employs deep clus-
tering and similarity exploration to build pairwise semantic
similarity structures from both local and global perspectives.
Likewise, (Qiu et al., 2024) applies hierarchical clustering
in the Euclidean tangent space to extract pseudo hierarchical
semantics, thereby providing additional training supervision.
Recently, contrastive learning has been introduced to learn
hash representations by maximizing instance discrimination,
achieving promising performance (Luo et al., 2021b; Yu
et al., 2022; Wei et al., 2024). However, almost all of these
methods seek to explore the intrinsic information implicit in
the input data, leading to an inherent performance ceiling.

Improvement: Differing from existing similarity-preserving
methods, our DUH-EG introduces the corresponding tex-
tual features as external knowledge for each image used in
training with an efficient, automated, and non-generative ap-
proach. Furthermore, rather than generating pseudo-labels,
DUH-EG balances the internal and external knowledge of
the images by leveraging a contrastive learning strategy that
aligns the visual and textual features of each training image.
Additionally, textual features are utilized to identify poten-
tial false-negative pairs, thereby maximizing the consistency
of features within the same class.

2.2. Learning with External Guidance

In recent years, there has been a growing interest in incor-
porating external guidance to enhance model performance.
External resources, such as noun phrases (Li et al., 2024), co-
occurrence relations of entities (Yang et al., 2023), instance-
aware information (Yan et al., 2023), and large language
models (Wang et al., 2023), have been increasingly used
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to enrich understanding and improve reasoning capabilities.
This typically involves reusing existing guidance and in-
tegrating external guidance to uncover latent and implicit
representations, providing more comprehensive guidance
information and improving model performance. For exam-
ple, in the task of learning with noisy labels, (Wang et al.,
2023) utilize large language models to assess the categories
of training samples and generate confidence scores, which
guide the fine-tuning of pre-trained language models. In 3D
scene generation, (Wu et al., 2024) extract the relative posi-
tional relationships and associated probabilities between the
paired objects from existing indoor scene data. They incor-
porate this external guidance to mitigate the ambiguity in
object shapes and layouts in sketches, ultimately enhancing
the diversity of the generated content. Similarly, in image
classification and object detection, (Shen et al., 2022) select
noun phrases from external textual sources, such as category
names and text titles, and append them to the original text
data. These augmented textual inputs enhance the visual
conceptual information in the data, improving the ability of
the model to recognize and classify objects. Although these
methods have demonstrated promising results with external
guidance, their effectiveness in the context of hash learning
remains an open question.

3. Method
3.1. Overview

Let X = {xi}Ni
i=1 represents an unlabeled dataset that

contains {Ni} image samples. The goal of deep unsuper-
vised hashing is to learn a hash function H : xi → hi ∈
{−1,+1}L that encodes the i-th sample of images xi as
L-bit compact discrete representation hi for efficient image
retrieval. Following a common practice in most previous
hashing methods (Qiu et al., 2021; Ma et al., 2024; Luo
et al., 2021b), we assume that the hash codes are composed
of ±1, i.e., hi ∈ {−1,+1}L.

The core challenge of unsupervised hashing is to construct
semantic guidance from input data without relying on se-
mantic labels. However, the semantic guidance extracted
solely from the images is constrained by their inherent vi-
sual structure. To overcome this limitation, we propose
DUH-EG, which introduces external knowledge to improve
the semantic similarity guidance for hash learning. To il-
lustrate our DUH-EG, we categorize this approach into two
distinct phases: External Feature Construction (Section 3.2)
and Bidirectional Contrastive Learning (Section 3.3). In
the first phase, the proposed method screens representative
external nouns and extracts external features that match
well with the visual features. For the subsequent stage, we
present a bidirectional contrastive learning loss to maximize
agreement between textual and visual views of the same
image, thus encapsulating the instance discrimination into

hash codes. Simultaneously, we eliminate false negatives
by selecting latent positive pairs using external features, en-
abling the model to focus on semantic positives. In addition,
for ease of differentiation, we denote the aligned external
feature and two differently augmented views of xi as ei,
v1
i and v2

i , respectively. The hashing networks applied to
the augmented views and external features as Hv and He

respectively, where Hv consists of a pre-trained backbone
followed by a hashing layer, while He consists solely of a
hashing layer to project the external features into L-bit hash
codes. In our DUH-EG, the outputs of each hash function
are defined as hv1

i = Hv(v
1
i ,Θv), hv2

i = Hv(v
2
i ,Θv) and

he
i = He(ei,Θe) where Θv and Θe are the learnable pa-

rameters in the hashing networks. hv1
i , hv2

i and he
i are L-bit

hash codes ({−1,+1}L) corresponding to two augmented
views and an external textual view, respectively. Thus, to
maximize agreement across each view of the redefined posi-
tive pairs, the bidirectional contrastive learning loss function
is formulated as:

LBCL = Lb(h
v1
i ,hv2

i )+Lb(h
v1
i ,he

i )+Lb(h
v2
i ,he

i ). (1)

3.2. External Feature Construction

In this phase, we first select all nouns from WordNet (Miller,
1995) as an external noun set. Following a prompt template
subset recommended by CLIP 1 (contains 7 templates in
total), each noun is then constructed into several natural
phrases {textpw}

Np

p=1, where w corresponds to the w-th sam-
ple in the noun set, p refers to the index of prompt templates,
and Np is the number of prompt templates. Subsequently,
we utilize a pre-trained CLIP model (Radford et al., 2021)
to extract textual features tpw for each constructed phrase.
To integrate the textual features of each word into a unified
representation, we fuse these features through

t̄w =
1

Np

Np∑
p=1

tpw w ∈ {1, · · · , Nt}, (2)

where Nt indicates the number of samples in the noun set.
Next, to select representative semantic nouns that discrim-
inatively characterize each image, we apply the K-means
clustering to the fused textual features and generate Nk clus-
ters. For the k-th cluster, we select textual features that are
relatively distant from the cluster center ck and treat them
as a representative subset {t̄repw }Nrep

w=1 with Nrep features,
while the remaining features are denoted as {t̄norw }Nnor

w=1 .{
{t̄w,k} ∈ {t̄repw } if dis(t̄w,k, ck) > T1,

{t̄w,k} ∈ {t̄norw } if dis(t̄w,k, ck) ≤ T1,

{t̄w}Nt
w=1 = {{t̄repw }Nrep

w=1 , {t̄norw }Nnor
w=1 },

(3)

1https://github.com/openai/CLIP/blob/
main/notebooks/Prompt_Engineering_for_
ImageNet.ipynb

4

https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb


Deep Unsupervised Hashing via External Guidance

where t̄w,k indicates that t̄w belongs to the k-th cluster,
dis(t̄w,k, ck) denotes the distance between each word and
its cluster center in the public embedding space, and T1

is a distance threshold. In addition, to preserve informa-
tive features of each cluster center, we predict the softmax
probability pw,k that each remaining word t̄norw belongs to
a cluster center ck as

pw,k =
exp(cos(t̄norw , ck))∑Nk

j=1 exp(cos(t̄
nor
w , cj))

. (4)

For each cluster, we select textual features with the highest
softmax probability relative to the cluster center to repre-
sent it, forming a new subset {t̄cenw }Ncen

w=1 . We combine
{t̄repw }Nrep

w=1 and {t̄cenw }Ncen
w=1 to form a final representative

subset {t̄comw }Ncom
w=1 = {{t̄repw }Nrep

w=1 , {t̄cenw }Ncen
w=1 }.

Subsequently, we use the pre-trained CLIP model to ex-
tract image features ii and compute their counterpart from
{t̄comw }Ncom

w=1 for each image data xi. To be specific, we cal-
culate the softmax probability between the image features
and each text feature, and treat the probability as a weight.
Hence, through applying weighted summation, the external
feature ei corresponding to each image can be calculated as

ei =

Ncom∑
w=1

si,w t̄
com
w , (5)

si,w =
exp(cos(ii, t̄

com
w )/τ1)∑Ncom

k=1 exp(cos(ii, t̄comk )/τ1)
, (6)

where si,w indicates the softmax probability between the
image features ii and each natural phrase feature t̄comw , and
τ1 is the temperature parameter.

3.3. Bidirectional Contrastive Learning

To leverage external features, we propose a bidirectional
contrastive learning loss that maximizes mutual information
between images and their corresponding textual features.
Specifically, we apply random transformations to each im-
age xi, generating two augmented views v1

i and v2
i , which

are aligned with the external feature ei. Next, we project
both the augmented views and the external text features
into a Hamming space using two distinct hashing networks,
Hv and He, producing L-bit hash codes: hv1

i , hv2
i and

he
i . To facilitate the computation of the Hamming distance

disH(h1,h2) between two hash codes, we adopt the inner
product: disH(h1,h2) = 1

2 (L − ⟨h1,h2⟩). This formu-
lation ensures that the similarity measure, sim(h1,h2) =
1
2L (L + ⟨h1,h2⟩) is positively correlated with the inner
product, allowing it to quantify similarity effectively in the
Hamming space.

After generating the hash codes, we employ a bidirectional
contrastive learning loss (as illustrated in Figure 2) to align

the discrete representation of textual and visual views for
each image while maximizing the mutual information be-
tween the two augmented views. However, traditional con-
trastive learning only treats different views of the same im-
age as positive pairs, as in Equation (7), inevitably neglect-
ing the potential semantic similarity among other samples
and misidentifying some intra-class samples as negatives.

L(a, b) = − 1

Ni

Ni∑
i=1

log

∑
j=i exp(

⟨ha
i ,h

b
j⟩

τ2
)∑Ni

k=1 exp(
⟨ha

i ,h
b
k⟩

τ2
)
, (7)

where a, b ∈ {v1,v2, e} (a ̸= b), and τ2 is a temperature
parameter controlling the scaling of similarity.

To reduce the detrimental effect of false negative pairs, we
redefine positive and negative pairs by finding external fea-
ture pairs with relatively high similarity. To be specific, we
first treat the hash codes of external features (he

i ) and two
augmented views (hv1

i and hv2
i ) that are derived from the

same image as positive sample pairs. After that, to select
potential positive pairs from the negatives, we calculate the
cosine similarity between all external features and determine
the semantic positive and negative pairs as{

j ∈ {ineg} if cos(ei, ej) ≤ T2,

j ∈ {ipos} if cos(ei, ej) > T2,

{ineg} ∪ {ipos} = {1, 2, · · · , Ni},
(8)

where T2 indicates a similarity threshold. If the similarity
between a sample pair ei and ej exceeds this threshold,
we consider the j-th image xj as a positive sample pair
(j ∈ {ipos}) corresponding to the i-th image xi. Conversely,
if the similarity does not exceed the threshold, the image pair
is considered as a negative sample pair (j ∈ {ineg}). Based
on the redefined positive pairs, we modify Equation (7) to

Lb(a, b) = − 1

Ni

Ni∑
i=1

log

∑
j∈{ipos} exp(

⟨ha
i ,h

b
j⟩

τ2
)∑Ni

k=1 exp(
⟨ha

i ,h
b
k⟩

τ2
)

. (9)

4. Experiments
4.1. Experiment Setup

4.1.1. DATASETS

• CIFAR-10 (Krizhevsky & Hinton, 2009) - Dataset con-
tains 60,000 photographs divided into ten categories,
with 6,000 images in each class. Following the proto-
col of previous studies (Qiu et al., 2021; Wang et al.,
2022; Qiu et al., 2024), we randomly pick 1,000 pho-
tographs from each class as the query set, for a total of
10,000 images. We take the remaining images as the
retrieval set and randomly choose 500 images per class
as the training set from the retrieval set.
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Method References CIFAR-10 NUS-WIDE Flickr25k MSCOCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

CNN

CIBHash (Qiu et al., 2021) IJCAI21 0.590 0.622 0.641 0.790 0.807 0.815 - - - 0.737 0.760 0.775
DATE (Luo et al., 2021b) ACMMM21 0.577 0.629 0.647 0.798 0.810 0.815 0.822 0.841 0.844 - - -
MeCoQ (Wang et al., 2022) AAAI22 0.629 0.641 0.651 0.802 0.822 0.832 0.813 0.817 0.827 - - -
DSCH (Lin et al., 2022) AAAI22 0.624 0.644 0.670 0.762 0.780 0.786 0.817 0.827 0.828 - - -
NSH (Yu et al., 2022) IJCAI22 0.706 0.733 0.756 0.758 0.811 0.824 - - - 0.746 0.774 0.783
CGHash (Song et al., 2023) ACMMM23 0.795 0.803 0.817 0.814 0.833 0.841 - - - 0.768 0.782 0.791
DDCH (Wei et al., 2023) PR23 0.611 0.648 0.658 0.781 0.798 0.808 - - - 0.721 0.759 0.779
HAMAN (Ma et al., 2022) TCSVT23 - - - 0.806 0.825 0.834 0.796 0.813 0.826 0.722 0.775 0.787
HiHPQ (Qiu et al., 2024) AAAI24 0.633 0.658 0.671 0.799 0.821 0.826 0.807 0.826 0.830 - - -
HARR (Ma et al., 2024) TOMM24 0.520 0.536 0.575 0.807 0.826 0.841 0.818 0.830 0.838 0.748 0.789 0.816
LGH (Zhao et al., 2024) ICMR24 0.846 0.862 0.874 0.815 0.828 0.837 - - - 0.796 0.814 0.827
HHCH(Wei et al., 2024) TIP24 0.631 0.657 0.681 0.797 0.820 0.828 0.825 0.838 0.842 0.775 0.798 0.810

VGG-16 Ours 0.887 0.888 0.885 0.852 0.854 0.856 0.856 0.858 0.856 0.833 0.840 0.842
VGG-16best−T2 Ours 0.889 0.889 0.891 0.852 0.855 0.856 0.856 0.858 0.856 0.842 0.846 0.847

ViT

UDBH (Guo et al., 2023) TCSVT23 0.775 0.779 0.783 0.829 0.840 0.849 0.845 0.850 0.860 - - -
DDCH (Wei et al., 2023) PR23 0.882 0.923 0.935 - - - - - - 0.816 0.866 0.875
FSCH (Cao et al., 2023) TCSVT23 0.876 0.912 0.926 0.812 0.832 0.844 0.815 0.838 0.849 0.760 0.787 0.799
*HHCH (Wei et al., 2024) TIP24 0.881 0.907 0.912 0.812 0.829 0.838 0.815 0.854 0.866 0.805 0.849 0.853

CLIP Ours 0.931 0.934 0.933 0.849 0.855 0.855 0.874 0.887 0.892 0.854 0.878 0.887
CLIPbest−T2 Ours 0.939 0.940 0.940 0.849 0.856 0.856 0.874 0.887 0.892 0.862 0.881 0.888

Table 1. Mean Average Precision (MAP) comparison among different state-of-the-art deep unsupervised hashing methods on four
benchmark datasets with hash code lengths varying from 16 to 64. Note: i) ‘*’ indicates that the source code for the paper is available,
and we used the CLIP (ViT-B/16) model as its backbone. ii) The “best-T2” represents the optimal MAP results corresponding to different
values of T2 (as illustrated in Figure 5b and indicated with star markers).

• NUS-WIDE (Chua et al., 2009) - Dataset includes
269,648 photos in 81 different categories. We concen-
trate on the top 21 categories following (Zhao et al.,
2024; Cao et al., 2023; Ma et al., 2024), from which
we randomly select 100 images per category to create a
query set (2,100 photographs in total), and the remain-
ing images are served as the retrieval set. Additionally,
10,500 randomly chosen images (500 images per class)
from the retrieval set are used as the training set.

• Flickr25k (Huiskes & Lew, 2008) - 25,000 multi-label
photos with 24 classes are included in the dataset. After
eliminating unlabeled data, following the protocol used
in previous studies (Ma et al., 2022; Cao et al., 2023;
Ma et al., 2024), 2,000 images are randomly chosen as
the query set, while the remaining images are utilized
as the retrieval set. In the retrieval set, 5,000 images
are randomly chosen for training.

• MSCOCO (Lin et al., 2014) - 123,287 samples are
contained in the dataset, and a subset of 122,218 im-
ages from 80 categories is used in our approach. In this
subset, similar to (Cao et al., 2023), we randomly select
5,000 images as the query set, and use the remaining
images for retrieval, with 10,000 of them further used
for training.

4.1.2. IMPLEMENTATION DETAILS

In Section 3.3, we employ a VGG-16 network (Simonyan
& Zisserman, 2015) pre-trained on ImageNet-1K and a pre-
trained CLIP (ViT-B/16) model (Radford et al., 2021) as
the backbone of Hv, respectively. The hashing layer of
Hv consists of a two-layer multi-layer perceptron (MLP)
with dimensions [F–512–L], where F represents the out-
put dimension of the pre-trained backbones, while L de-
notes the length of the generated hash codes, selected from
{16, 32, 64}. To be specific, F was set to 4096 for the
pre-trained VGG-16 model, and to 512 for the pre-trained
CLIP model. In addition, we adopted a non-cyclic cosine
annealing strategy for the learning rate at each epoch t.

lrt = lrmin + (lrmax − lrmin)× lrtemp, (10)

where lrmin indicates the minimum learning rate and lrmax
refers to the maximum learning rate. The lrtemp is denoted
as:

lrtemp =

{
t/Twarm t < Twarm,
1
2

(
1 + cos

(
(t−Twarm)π
Tmax−Twarm

))
t ≥ Twarm.

(11)

Let Tmax denotes the total number of epochs and Twarm rep-
resents the warm-up epoch. In our training procedure, we
fixed lrmin = 1 × 10−5, lrmax = 1 × 10−4, Tmax = 60,
Twarm = 10, Nk = 800, T1 = 0.9 and T2 = 0.97.
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(a) P-R curves on CIFAR-10 (b) P-R curves on NUS-WIDE

(c) P-R curves on Flickr25k (d) P-R curves on MSCOCO

Figure 3. Results of Precision-Recall curves with 64-bit hash codes
on four benchmark datasets.

(a) P@N on CIFAR-10 (b) P@N on NUS-WIDE

(c) P@N on Flickr25k (d) P@N on MSCOCO

Figure 4. Results of TopN-Precision curves with 64-bit hash codes
on four benchmark datasets.

4.2. Comparisons with State-of-The-Art

4.2.1. MEAN AVERAGE PRECISION

In this section, we conduct a comparison between DUH-
EG and 14 state-of-the-art deep unsupervised hashing ap-
proaches on the four image retrieval datasets with hash
code lengths varying from 16 to 64. The approaches
include CIBHash (Qiu et al., 2021), DATE (Luo et al.,
2021b), MeCoQ (Wang et al., 2022), DSCH (Lin et al.,
2022), NSH (Yu et al., 2022), CGHash (Song et al.,
2023), DDCH (Wei et al., 2023), HAMAN (Ma et al.,
2022), HiHPQ (Qiu et al., 2024), HARR (Ma et al.,
2024), LGH (Zhao et al., 2024), HHCH (Wei et al., 2024),
UDBH (Guo et al., 2023) and FSCH (Cao et al., 2023). To
assess the quality of the hash codes that are produced, we
employed the standard statistic Mean Average Precision
(MAP). In accordance with (Qiu et al., 2021; Ma et al.,

2022; Qiu et al., 2024), we adopt MAP@1000 for CIFAR-
10 dataset and MAP@5000 for NUS-WIDE, Flickr25k and
MSCOCO datasets while evaluation. Table 1 illustrates the
MAP results of our proposed method DUH-EG on four im-
age retrieval datasets with hash code lengths varying from
16 to 64. It is clear that our method consistently achieves the
best performance compared with the state-of-the-art meth-
ods on four benchmark datasets. To be specific, in the Con-
volutional Neural Network (CNN) part, we adopt a VGG-
16 model pre-trained on ImageNet as the backbone and
compare its performance with other baseline models. Our
DUH-EG achieves average improvements of 3.39%, 3.03%,
2.53% and 4.04% on CIFAR-10, NUS-WIDE, Flickr25k
and MSCOCO datasets compared to the most competitive
methods LGH (Zhao et al., 2024), CGHash (Song et al.,
2023) and DATE (Luo et al., 2021b), separately. In Vision
Transformer (ViT) part, we adopt a pre-trained CLIP (ViT-
B/16) model as the backbone and evaluate its performance
against other ViT-based methods. Our method achieves an
average increase of 2.95%, 1.71%, 4.70% and 2.95% on
CIFAR-10, NUS-WIDE, Flickr25k and MSCOCO datasets
compared with the top-performing methods DDCH (Wei
et al., 2023), UDBH (Guo et al., 2023) and HHCH (Wei
et al., 2024), respectively. Moreover, the improvements are
particularly evident in the case of a short hash code on the
four datasets.

4.2.2. PRECISION-RECALL AND TOPN-PRECISION

To evaluate retrieval quality, we follow (Wei et al., 2024;
Ma et al., 2024; Cao et al., 2023; Duan et al., 2025) to ap-
ply the following additional metrics: i) Precision-Recall
(P-R) curves and ii) TopN-Precision (P@N) curves different
number of retrieved samples. We report the P-R curves for
the 64-bit hash codes in Figure 3. Obviously, DUH-EG
outperforms all the compared methods by large margins on
CIFAR-10 dataset. Additionally, on NUS-WIDE, Flickr25k
and MSCOCO datasets, DUH-EH achieves higher precision
at lower recall rates. For P@N curves illustrated in Figure 4,
DUH-EG demonstrates significantly superior performance
compared to other methods across four benchmark datasets.
Notably, on the CIFAR-10 dataset, as the number of re-
trieval samples increases, DUH-EG exhibits a much slower
rate of precision degradation relative to the other methods.
This highlights that by incorporating external guidance, our
DUH-EG can generate high-quality hash codes.

4.3. Ablation Studies

In this section, we conduct ablation studies to validate the
indispensability of methods used in DUH-EG on all four
benchmark datasets. Specifically, as shown in Table 2, we
evaluate the effect of the SIM and AUG modules while us-
ing external features introduced in Section 3.2. Here, the
SIM module represents utilizing the mechanism illustrated
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Module CIFAR-10 NUS-WIDE Flickr25k MSCOCO
SIM AUG 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

#1 - - 0.922 0.926 0.925 0.827 0.833 0.835 0.845 0.860 0.871 0.812 0.849 0.864
#2 ✓ - 0.922 0.925 0.925 0.832 0.838 0.839 0.859 0.870 0.878 0.855 0.874 0.883
#3 - ✓ 0.939 0.940 0.940 0.848 0.854 0.855 0.864 0.880 0.886 0.831 0.862 0.874
#4 ✓ ✓ 0.939 0.940 0.940 0.849 0.856 0.856 0.874 0.887 0.892 0.862 0.881 0.888

Table 2. Ablation studies on the SIM and AUG modules with different bit lengths across four benchmark datasets.

External CIFAR-10 NUS-WIDE Flickr25k MSCOCO
Knowledge 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

IMGAUG 0.922 0.923 0.929 0.828 0.839 0.844 0.839 0.856 0.866 0.733 0.785 0.819
IMGK 0.924 0.927 0.929 0.836 0.846 0.846 0.840 0.857 0.864 0.739 0.794 0.820

EK 0.935 0.936 0.937 0.845 0.850 0.851 0.844 0.852 0.858 0.858 0.877 0.883
IMGCLS 0.934 0.937 0.936 0.838 0.848 0.849 0.842 0.859 0.867 0.748 0.798 0.823

EFC 0.939 0.940 0.940 0.849 0.856 0.856 0.874 0.887 0.892 0.862 0.881 0.888

Table 3. Ablation studies on the IMGAUG, IMGK, IMGCLS, EK and EFC methods with different bit lengths across four benchmark
datasets.

in Equation (8) to identify the potential positive pairs and
negative pairs in bidirectional contrastive learning loss by
the similarity threshold (T2). Moreover, the AUG module
refers to incorporating two augmented views of images in
bidirectional contrastive learning loss and maximizing mu-
tual information between the discrete representation of these
two views. Table 2 illustrates the MAP result of different
configurations on four benchmark datasets. In particular,
when considering module SIM and AUG individually, the
comparison results of (#1 v.s. #2) demonstrate a notable con-
tribution of the SIM module to performance improvement.
Especially on the MSCOCO dataset, the performance of the
16-bit hash codes increases with a gain of 5.30%. For the
AUG module, comparing the MAP result between #1 and
#3 clearly indicates that enabling the AUG module leads to
a significant enhancement in performance across all four
datasets. In addition, configuration #4 demonstrates that
the simultaneous introduction of both the SIM and AUG
modules leads to the best performance.

Furthermore, to validate the facilitating effect of the exter-
nal feature construction method mentioned in Section 3.2,
we compare the performance of five different methods: IM-
GAUG, IMGK, IMGCLS, EK and EFC in Table 3. To be
specific, IMGAUG performs contrastive learning using only
augmented image features extracted by the CLIP model,
without incorporating any external knowledge, which means
IMGAUG only maximizes the agreement between two aug-
mented views of the same image. In contrast, EK and EFC
incorporate external knowledge into contrastive learning,
treating external textual features as additional guidance for
the corresponding images. Notably, EFC follows the exter-
nal feature construction method (in Section 3.2) to screen

representative semantic nouns from external knowledge,
while EK does not apply any such filtering and instead gen-
erates external features based on all available nouns. For
IMGK and IMGCLS, non-augmented image features are
used as internal visual knowledge. In the case of IMGK, the
method replaces the external knowledge used in EK with
internal visual knowledge. Similarly, for IMGCLS, this ap-
proach replaces the external knowledge used in EFC with in-
ternal visual knowledge, and ensures that the ratio of clusters
to total features is consistent between internal and external
knowledge. As illustrated in Table 3, the performance of EK
is significantly higher compared to IMGAUG, IMGK and
IMGCLS. This improvement is particularly evident when
evaluated on the MSCOCO dataset, where EK demonstrates
an average gain of 11.37%. Additionally, EFC achieves op-
timal performance across all four datasets. When compared
to the EK method, the improvement of the EFC combi-
nation is particularly notable, especially on the Flickr25k
dataset. This not only verifies the effectiveness of introduc-
ing external knowledge and filtering representative semantic
nouns, but also demonstrates the advantages of using exter-
nal knowledge compared to exhaustively mining internal
visual information.

4.4. Parameter Analysis

To investigate the impact of the distance threshold T1 and
the similarity threshold T2, on performance, we evaluate
the MAP results of our proposed DUH-EG method under
various values of T1 and T2, with hash codes length equal to
64. As shown in Figure 5, we denote the MAP performance
on different datasets using various colors and markers. To be
specific, we apply red circles to represent CIFAR-10, blue
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(a) Distance threshold T1 used in Equation (3)

(b) Similarity threshold T2 used in Equation (8)

Figure 5. Parameter analysis with 64-bit hash codes on four bench-
mark datasets.

squares for NUS-WIDE, orange triangles for Flickr25k,
and green inverted triangles for MSCOCO. Additionally,
we use star markers to indicate the optimal MAP results
corresponding to different values of parameters.

To effectively filter the representative semantic nouns based
on the extracted text features, we apply a distance threshold
T1 to determine the point relatively farther from its cluster
center, and treat them as representative features as defined
in Equation (3). To further determine the best representative
noun screening threshold, we investigate the impact of the
distance threshold T1 in Figure 5a. The results show that
the optimal similarity threshold is 0.9 on four benchmark
datasets. To enhance the effectiveness of the InfoNCE loss,
we apply a similarity threshold T2 to distinguish positive
and negative sample pairs utilized in the InfoNCE loss (de-
fined in Equation (8)). As illustrated in Figure 5b, we also
investigate the impact of the similarity threshold T2. Since
the cosine similarity between each pair of external features
is concentrated at higher values, even slight variations in T2

can significantly influence the determination of false nega-
tive pairs in contrastive learning. Therefore, we measured
the optimal threshold value within a narrow range from 0.9
to 1.0 to ensure the precise selection of these pairs. It can
be observed that the optimal values of T2 for the CIFAR-10,
NUS-WIDE, Flickr25k, and MSCOCO datasets are 0.99,

0.98, 0.97, and 0.95, respectively. For consistency while
comparing with other approaches (as shown in Table 1), we
set T2 to a common value of 0.97 across all datasets. This
setting is indicated by the red vertical line in Figure 5b.

5. Conclusion
In this paper, we present a novel deep unsupervised hash-
ing method that integrates external textual information as
semantic guidance to address the limitations of inherent vi-
sual structures and enhance discrete representation learning.
Unlike existing works, our method offers two key contribu-
tions: i) To prevent excessive synonyms from dominating
the semantic features, we propose a simple yet effective
method for selecting representative semantic nouns, thereby
ensuring diversity and discriminability of external textual
features. ii) We present a bidirectional contrastive learn-
ing loss that maximizes the alignment between semantic
positive pairs, rather than just between views of the same
image, improving robustness and effectiveness. By incorpo-
rating external textual information as guidance, we improve
matching similarity among images, facilitating more accu-
rate hash learning. We validate the effectiveness of our
method through extensive experiments on four benchmark
datasets, demonstrating its superior performance compared
to 14 state-of-the-art approaches.
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A. Additional Experiment
A.1. Visualization
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Figure 6. The Top10 retrieval results of our proposed DUH-EG
and HHCH (Wei et al., 2024) on four benchmark datasets with
64 bits hash codes. The red box indicates the incorrect retrieval
results, while the green box represents correct ones. Note that
for multi-label datasets Flickr25k, NUS-WIDE and MSCOCO, a
correct retrieval result indicates that the retrieved image shares at
least one label with the query image.

We illustrate the Top10 retrieval results on CIFAR-10, NUS-
WIDE, Flickr25k and MSCOCO datasets with 64 bits hash
codes in Figure 6, respectively. On four benchmark datasets,
our DUH-EG outperforms the HHCH hashing method (Wei
et al., 2024), showing a higher number of correct samples
in the Top10 retrieval list. Moreover, we visualize the Top5
nouns matched by two different screening methods corre-
sponding to the same image in Figure 7. As defined in
Section 4.3, we filter representative semantic nouns through
the EFC method and match them with image data, as de-
scribed in Section 3.2. From Figure 7, it can be observed
that, in the absence of the EFC method, the Top5 matched
nouns include “Round shape”, “Ovoid”, “Hair ball”, “Cat
sleep” and “Back circle”. These terms primarily focus on
shape-related attributes of the image content. Such an em-

phasis not only induces redundancy in the external features
but also attenuates the weight associated with the primary
discriminative term (“cat sleep”). This leads to an excessive
allocation of weight to the shape feature when constructing
the external features of the image by Equation (5), rather
than to the object itself. Conversely, when the EFC method
is employed, the Top5 matched nouns highlight specific
objects relevant to the image and accurately capture the
essence of the depicted scene. Therefore, by utilizing the
EFC method, more precise external features can be con-
structed.

Top5 Nouns with EFC

Cat_sleep

Toroid

Black_catechu

Raised_doughnut

Pouf

Top5 Nouns without EFC

Round_shape1

Ovoid2

Hair_ball3

Cat_sleep4

Back_circle5

1

2

3

4

5

Figure 7. The Top5 matched external nouns (with the Top5 soft-
max probability computed by Equation (6)) corresponding to an
image from the Flickr25k dataset. The left panel presents the Top5
nouns without using the EFC method defined in Section 4.3, while
the right panel displays the Top5 nouns obtained when the EFC
method is applied. We highlight the noun that best matches the
given image in blue.

A.2. Performance

Vocabulary Word Num Pre-processing Time

ImageNet 21,843 99.53s
WordNet 117,797 476.79s
ConceptNet 134,364 531.12s
GloVe 317,756 1182.11s

Table 4. The number of words and pre-processing time for different
external knowledge sources.
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Vocabulary CIFAR-10 NUS-WIDE Flickr25k MSCOCO
Set 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ImageNet 0.940 0.942 0.941 0.849 0.854 0.855 0.871 0.885 0.888 0.864 0.885 0.892
WordNet 0.939 0.940 0.940 0.849 0.856 0.856 0.874 0.887 0.892 0.862 0.881 0.888

ConceptNet 0.938 0.940 0.940 0.850 0.853 0.855 0.875 0.885 0.890 0.865 0.886 0.893
GloVe 0.932 0.936 0.935 0.846 0.852 0.852 0.870 0.882 0.887 0.842 0.863 0.869

Table 5. The MAP performance while using different external vocabulary sets.

Pre-trained CIFAR-10 NUS-WIDE Flickr25k MSCOCO
Model 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

CLIP (ViT-B/16) 0.939 0.940 0.940 0.849 0.856 0.856 0.874 0.887 0.892 0.862 0.881 0.888
CLIP (ViT-B/32) 0.920 0.929 0.920 0.855 0.856 0.860 0.869 0.887 0.888 0.848 0.868 0.887

Table 6. The MAP performance while using different pre-trained models.

To evaluate the computational cost and scalability of our
approach, we conducted experiments using external vocabu-
lary sets of varying sizes (as shown in Table 4), derived from
four representative sources: (1) noun category labels from
ImageNet; (2) nouns extracted from WordNet; (3) noun
entries from the ConceptNet knowledge graph; and (4) the
full vocabulary from GloVe embeddings. Table 4 reports
the pre-processing time required by our method for each
of the above sources. As our approach relies on CLIP to
extract textual features for all words in the vocabulary, the
pre-processing time increases substantially with vocabulary
size. This observation underscores the importance of ex-
ploring more efficient textual feature extraction strategies,
which we identify as a promising direction for future work.
It is important to note that once the external knowledge is
pre-processed, both training and inference stages proceed
identically to baseline methods, incurring no additional com-
putational overhead.

Moreover, to assess scalability, we further evaluated model
performance across the same four external vocabulary
sources, with results presented in Table 5. Our External
Feature Construction (EFC) module (see Section 3.2) ef-
fectively reduces redundancy in external textual features,
maintaining consistent performance across diverse external
sources. These results demonstrate the robustness and scala-
bility of our method in handling varying degrees of external
knowledge integration.

Additionally, our method leverages Bidirectional Con-
trastive Learning (in Section 3.3) to align textual and visual
representations of images, making the quality of external
knowledge introduced via the textual modality a key factor
in the overall performance of the hashing network. To in-
vestigate this, we trained our model using textual features
from two different pre-trained CLIP models: ViT-B/16 and
ViT-B/32. As shown in Table 6, the MAP performance on

CIFAR-10 and MSCOCO datasets varies significantly be-
tween the two variants, confirming the significant impact of
the pre-trained model choice. These findings suggest that
similar effects can be expected when adopting other multi-
modal backbones, as the selection of the textual encoder
directly influences the semantic richness of the extracted
external text features and thus the retrieval effectiveness of
the proposed framework.
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B. Optimization Procedure
To present the method flow introduced in Section 3 more
clearly and systematically, we provide a detailed descrip-
tion of the DUH-EG learning process in Algorithm 1 and
Algorithm 2. In Algorithm 1 we detail the construction of
external features for each image, while Algorithm 2 illus-
trates the Bidirectional Contrastive Learning process.

Algorithm 1 The process of Section 3.2

Input: Training images X = {xi}Ni
i=1, External nouns

N = {nw}Nt
w=1, Text encoder Et, Image encoder

Ei, Distance threshold T1.
/* - Et, Ei: Encoders from the

pre-trained CLIP model. */

Output: Constructed external features E = {ei}Ni
i=1.

1 Construct natural phrases: nw → {textpw}
Np

p=1;
/* where Np = 7 in practice. */

2 Extract textual features: tpw = Et(text
p
w);

3 Generate noun features t̄w by Equation (2);
4 Perform clustering: K-means(t̄w) → {ck}Nk

k=1;
/* ck means the cluster center of the

k-th cluster. */
5 for w = 1 to Nt do

/* Denote t̄w as t̄w,k if t̄w ∈ k-th
cluster. */

6 Compute distance: dis(t̄w,k, ck);
/* - dis(·, ·): A function measuring

normalized distance between
vectors. */

7 if dis(t̄w,k, ck) > T1 then
8 t̄w ∈ {t̄repw }Nrep

w=1 ;

9 else
10 t̄w ∈ {t̄norw }Nnor

w=1 ;

11 Compute the softmax probability of t̄norw corresponding to
each cluster center pw,k = S(t̄norw , ck) by Equation (4);
/* - S: The softmax function used to

compute probability distributions.

*/
12 Assign {t̄cenw }Ncen

w=1 : p̄w,k(y = k) = sort{pw,k(y =
k|t̄norw )| argmax pw,k(y|t̄norw ) = k}[1];
/* If S(t̄norw , ck) → p̄w,k(y = k), t̄norw ∈ {t̄cenw }Ncen

w=1

*/
13 Assign representative semantic noun subset: {t̄cenw }Ncen

w=1 ∪
{t̄repw }Nrep

w=1 → {t̄comw }Ncom
w=1 ;

14 Extract image features: ii = Ei(xi);
15 Construct external features ei =

∑Ncom

w=1 by Equation (5).

Algorithm 2 The process of Section 3.3

Input: Training images X = {xi}Ni
i=1, External features

constructed in Algorithm 1 E = {ei}Ni
i=1, Image

hash function Hv , Text hash function He, Similarity
threshold T2, Training epochs T .

Output: Optimized hash function Hv .

1 Initialize Θv and Θe randomly;
2 for i = 1 to Ni do
3 for j = 1 to Ni do
4 Compute similarity: cos(ei, ej);

/* - cos(·, ·): A similarity
function measuring the cosine
similarity between vectors. */

5 if cos(ei, ej) ≤ T2 then
6 treat the j-th sample as forming a negative pair

with the i-th sample;
7 else
8 treat the j-th sample as forming a positive pair

with the i-th sample;

9 for t = 1 to T do
10 Generate two differently augmented views of images:

V1 = {v1
i }

Ni
i=1 and V2 = {v2

i }
Ni
i=1;

11 Generate hash codes: hv1
i = Hv(v

1
i ,Θv), hv2

i =
Hv(v

2
i ,Θv) and he

i = He(ei,Θe) ;
12 Compute LBCL with Equation (1);
13 Update Θv and Θe with the Adam optimizer.

3


