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Abstract

Computerized adaptive testing (CAT), as a tool that can efficiently measure stu-
dent’s ability, has been widely used in various standardized tests (e.g., GMAT and
GRE). The adaptivity of CAT refers to the selection of the most informative ques-
tions for each student, reducing test length. Existing CAT methods do not explicitly
target ability estimation accuracy since there is no student’s true ability as ground
truth; therefore, these methods cannot be guaranteed to make the estimate converge
to the true with such limited responses. In this paper, we analyze the statistical
properties of estimation and find a theoretical approximation of the true ability:
the ability estimated by full responses to question bank. Based on this, a Bounded
Ability Estimation framework for CAT (BECAT) is proposed in a data-summary
manner, which selects a question subset that closely matches the gradient of the
full responses. Thus, we develop an expected gradient difference approximation
to design a simple greedy selection algorithm, and show the rigorous theoretical
and error upper-bound guarantees of its ability estimate. Experiments on both real-
world and synthetic datasets, show that it can reach the same estimation accuracy
using 15% less questions on average, significantly reducing test length.

1 Introduction

As the landscape of education is changing rapidly, especially after COVID-19, many schools and
institutions move from in-class to online platforms, providing individualized education, such as edu-
cational measurement and recommendation. They are looking to “right-size” the learning experience
of students according to their ability level [1, 2]. To this end, Computerized Adaptive Testing (CAT)
[3] becomes an indispensable tool to efficiently measure student’s ability in the areas of standardized
testing, computer tutoring, and online courses, through automatically selecting best-suited questions
for individual students. Compared with the time-consuming and burdensome paper-and-pencil tests,
CAT has been proven to require fewer questions to reach the same measurement accuracy [4, 2].

A typical CAT system is shown in Figure 1: At test step t, the Cognitive Diagnosis Model, e.g., Item
Response Theory (IRT), as the user model based on psychology, first uses student’s previous t item
answer responses to estimate his/her current ability θt. IRT family has been used for ability estimation
in several state assessments, such as OECD/PISA Project [5, 6]. Next, the selection algorithm selects
the next item from the entire question bank according to some criteria [7, 8, 9]. Most of them are
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Figure 1: An illustration of the CAT system: At test step t ∈ [1, ..., T ], the selection algorithm uses
the current ability estimate θt to select the next question qt+1 from the question bank. When the test
stops, the θT (i.e., the final estimate of his/her true ability θ0) will be output.

informativeness metrics such as selecting the question with difficulty closest to his/her current ability
estimate θt, i.e., the student’s probability of answering it correctly is closest to 50% [7]. Obviously,
the selection algorithm is the core component to realize CAT’s adaptivity and seeks to answer the
following question about accuracy and efficiency: Can we estimate student’s true ability by asking
him/her as few questions as possible, with negligible estimation error?

From the perspective of machine learning, CAT can be viewed as a parameter estimation problem
with the least cost: it is essentially to select the fewest data samples (questions to be answered)
sequentially from the whole unlabeled data (question bank), so that after obtaining their labels
(correct/wrong responses), model’s hidden parameters (student true ability θ0) can be accurately
estimated. Unfortunately, the exact true ability of student is unknown even to the students themselves,
thus it is impossible to find such ground truth in datasets to design/train selection algorithms. As a
result, most selection algorithms are not designed explicitly with the goal of accurate and efficient
estimation. Existing approaches either select representative/diverse items solely from question feature
space [9] (deviating from the goal of ability estimation), or require additional training overhead (e.g.,
Reinforcement Learning-based methods [10, 11, 12, 13]). Although these implicit methods achieve
good results in experiments, the theoretical guarantee on approximating student’s true ability is also
critical for reliable CAT systems especially in standardized tests.

Obviously, the biggest challenge of designing reliable explicit methods is: student’s true ability θ0 is
unknown. Therefore, in this work, we propose a general (upper-)Bounded Ability Estimation CAT
framework (BECAT), which explicitly targets the accuracy and efficiency of ability estimation. Due to
the unknown θ0, we first find its theoretical approximation θ∗ as the alternative: the ability estimated
by his/her full responses on the entire question bank. Hence, our key idea is to select questions such
that the estimate can best approximate the ability estimated by full responses. Specifically, we propose
an expected gradient difference approximation method based on recent data efficiency/summary
technique [14, 15, 16], and design a practical greedy selection algorithm in submodular function,
which essentially finds representative items to approximate the gradient of full responses. We further
provide the theoretical analysis about its upper-bound of ability estimation error.

To validate BECAT’s effectiveness, we conduct experiments on three real-world datasets from
different educational platforms. Empirical results show that this simple greedy selection achieves
state-of-the-art performance compared with other implicit methods. The main contributions are:

• To better estimate the unknown θ0, we find its theoretical approximation as the new target for
designing an explicit selection algorithm. Based on this, we formally redefine and transform
CAT into an adaptive subset selection problem in data summary manner for the first time.

• An effective expected gradient-based selection algorithm is proposed to select appropriate
items, which exactly minimizes the estimation error term, therefore admitting theoretical
guarantees on ability estimation in CAT systems.

• We show the generality of BECAT — it can be applied to any gradient-based method,
including IRT and neural network methods. We observe that BECAT outperforms existing
CAT methods at reducing test length, requiring 10%-20% less questions to reach the same
estimation accuracy.

2 Problem Definitions of CAT

For accurate and efficient assessment, CAT needs to sequentially select best-fitting questions for
each student from the question bank Q; then uses the corresponding responses for ability estimation.
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When the test stops, the final estimate is output as the result/score of this test. The goal of CAT is to
accurately estimate examinee’s true ability θ0, while minimizing the number of questions asked [17].

2.1 Preliminaries

Specifically, at test step t ∈ [1, 2, ..., T ], given the student’s previous t responses St =
{(q1, y1), ..., (qt, yt)}, where {qi}ti=1 ⊆ Q are selected sequentially by the selection algorithm
and y is the binary outcomes of correct or incorrect; student’s current ability can be estimated by
minimizing the empirical risk (e.g., binary cross-entropy) from the whole ability space Θ:

θt = arg min
θ∈Θ

∑
i∈St

li(θ) = arg min
θ∈Θ

∑
i∈St

− log pθ(qi, yi), (1)

where pθ(qi, yi) represents the probability of the response (qi, yi) towards a student with θ, and the
specific form of pθ is determined by IRT. Since the size of St is small, Standard Gradient Descent
[18, 19] is sufficient to minimize Eq.(1), and requires the computations of

∑
i∈St ∇li(θ) — sum of

the gradients over the previous t response data. It takes repeated steps in the opposite direction of the
gradient, thus leading to a minimum of the empirical risk in Eq.(1).

Next, the selection algorithm selects the next question qt+1 from bank Q according to various criteria
[7, 8, 12, 13]. The above process will be repeated for T times2, i.e., |S| = T (T ≤ 20 in most tests
[13]), ensuring the final step estimate θT close to the true θ0, i.e.,
Definition 1 (Traditional Definition of CAT). At each step t, it will select the most suit-
able/informative question, according to student’s current ability θt. When the test ends (t = T ), the
final ability estimate θT = arg minθ∈Θ

∑
i∈S li(θ) can approximate the true ability:

min
|S|=T

‖θT − θ0‖. (2)

Unfortunately, directly solving the above optimization problem is infeasible. Because the ground truth
ability θ0 cannot be obtained and, even students themselves cannot know the exact value. As a result,
traditional informativeness-based methods [7, 8] use asymptotic statistical properties of Maximum
Likelihood Estimation to reduce estimation uncertainty, e.g., selecting the one whose difficulty is
closest to student’s current ability θt; but they are all IRT-specific, i.e., they can not be applied
into recent neural networks methods. Although recent active learning-based [9] and reinforcement
learning-based [12, 13] methods achieve good experimental results, there is no evidence that they
can theoretically guarantee that estimate can efficiently approach θ0, which is unacceptable for CAT
systems applied in standardized tests. Testing reliability requires not only satisfactory experimental
results, but also good theoretical guarantees [3].

2.2 New Definition of CAT

Given that there is no such ground truth θ0 in the dataset, thus, for designing explicit selection
algorithms, we find its approximation as the new target.
Proposition 1. The student’s one ability estimate θ∗, estimated by his/her full responses to the entire
question bank Q, is an approximation of his/her true ability θ0, that is,

θ∗ ≈ θ0 (3)

Proof. When we use consistent estimation approaches, such as Maximum Likelihood Estimation
(cross-entropy loss) in Eq.(1), we have lim

t→∞
p (|θt − θ0| ≥ ε) = 0, where t is the number of responses

(steps) for ability estimation. The size of CAT’s question bank is finite (i.e., t ∈ [0, |Q|]) and
θ∗ = lim

t→|Q|
θt, thus θ∗ ≈ lim

t→∞
θt ≈ θ0, i.e., θ∗ can be regarded as an approximation of θ0.

Since this proposition exploits estimator’s asymptotic property and may make the approximation
not perfect. For example, both the bank size |Q| and various perturbations in student’s response

2In this paper, we only consider the most common fixed-length tests (T = 20), and the effect of test length
can be found in Appendix E
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Figure 2: (a) Simulation experiments about Proposition 1 using MSE: E[‖θ∗ − θ0‖2]. In addition
to the normal situation (blue), we also show the MSE under different perturbations, for example:
Slip5% means that the label has a 5% probability of changing from 1 to 0; Guess25% means that
the label changes from 0 to 1 with 25%. (b) The illustration of the optimization problem: selecting
subset S to cover the whole response data on Q. The rectangles represent a student’s full responses
to the bank Q, and w(i, j) measures the similarity of response pair (i, j).

can impact this proposition. Thus, we also conduct simulation experiments to further verify it: we
randomly sample 100 θ0 from Θ as groundtruth, using the smallest EXAM dataset (|Q| = 1650)
in Section 4; then use IRT with these θ0 to simulate the response behavior (correct/wrong) of 100
students. Figure 2(a) shows that when the bank size exceeds 300 (≈ |Q|/5), the estimated θ∗ ≈ θ0

(blue). Even if some extreme perturbations (e.g., guess and slip factors [13]) are added, their MSE will
not exceed 0.1. Therefore, it is reasonable to replace θ0 with θ∗ as the ground truth in optimization.

In this way, the selection algorithm can aim to approach θ∗ instead of the unknown θ0. We can design
explicit selection algorithms: Select a subset of questions S from the bank Q, so that the student’s
ability is estimated only on the subset S while still (approximately) converging to the optimal solution
θ∗ (i.e., the estimate that would be obtained if optimizing on the full responses to Q). As mentioned
in Preliminaries, the ability estimation usually adopts cross-entropy loss with gradient computations,
and denote the full gradient of the loss w.r.t. ability parameters by

∑
i∈Q∇li(θ) — sum of the

gradients over full responses. Thus,

Definition 2 (New Definition of CAT). It will adaptively find a subset S of size T and the corre-
sponding weight {γ}j that approximates the full gradient: minimizing their difference for all the
possible ability values of the optimization parameter θ ∈ Θ :

min
|S|=T

‖θT − θ∗‖ ⇒ min
|S|=T

max
θ∈Θ
‖
∑
j∈S

γj∇lj(θ)−
∑
i∈Q
∇li(θ)‖. (4)

Since we know nothing about the range of student’s ability when optimizing, we consider the worst-
case approximation error (maxθ∈Θ) instead of a particular θ. After finding such S and the associated
weights {γ}j , the gradient updates on S will be similar to the gradient on Q regardless of the value
of θ, thus making the estimate close to the target θ∗. In this way, CAT can be regarded as a subset
selection optimization problem in a data-efficiency manner. Also, we find that it is consistent with
recent Coreset techniques [20, 15, 21], which approximate the gradients of the full data, so that the
model is trained only on the subset while still (approximately) converging to the optimal solution
(i.e., the model parameters that would be obtained if training on the full data).

However, compared with the traditional Coreset problem, the biggest technical challenge is: the
gradients on bank (

∑
i∈Q∇li(θ)) cannot be calculated without labels. Only the few questions that

have been answered in previous steps (i.e., St) have the corresponding labels. Thus, to simplify the
problem, we assume for the moment that student’s full responses are available. In Section 3.1, we
will further propose an expected approximate method to address this.
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3 The BECAT framework

In this section, to solve the above optimization problem Eq.(4), we design a simple greedy algorithm
in submodular functions. More importantly, we provide an upper bound on the expected error of the
ability estimate when using our method.

Optimization. The above subset selection problem is NP-hard, thus, we transform it based on the
recent Coreset method. It proves that the subset S that minimizes the error of estimating the full
gradient is upper-bounded by a submodular facility location function that has been used in various
summarization applications [22, 23]. Thus

min
|S|=T

max
θ∈Θ
‖
∑
j∈S

γj∇lj(θ)−
∑
i∈Q
∇li(θ)‖ ⇒ min

|S|=T
max
θ∈Θ

∑
i∈Q

minj∈S‖∇li(θ)−∇lj(θ)‖

⇒ max
|S|=T

∑
i∈Q

maxj∈S w(i, j), (5)

where w(i, j) , d −maxθ∈Θ‖∇li(θ)−∇lj(θ)‖ is the gradient similarity between response pair
i = (qi, yi) and j = (qj , yj) for this student. The associated weight of the response j, γj =∑
i∈Q 1[j = arg maxs∈S w(i, s)], is the number of responses in Q that are most similar to j ∈ S.

Given a subset S,
∑
i∈Q maxj∈S w(i, j) in Eq.(5) quantifies the coverage of the whole response data

on Q, by summing the similarities w between every i ∈ Q and its closest item j ∈ S. The semantics
of this optimization problem is shown in Figure 2(b). The larger the value of w(i, j), the smaller their
gradient difference in ability estimation for all the possible ability θ ∈ Θ, which means these two
responses i and j have similar importance/influence on the student’s ability estimation. Thus, the
transformed problem in Eq.(5) is equivalent to selecting the most representative responses to form the
subset S, which shares the same idea (i.e., selecting “representative” items) with previous selection
algorithms [12, 9], active learning methods [24, 25] and unsupervised learning [26, 27].

Define a monotone non-decreasing submodular function — the facility location function F : 2Q → R:
F (S) =

∑
i∈Q maxj∈S w(i, j). The submodular optimization provides a near-optimal solution with

a (1− 1/e)-approximation bound [28], with simple greedy algorithm for selecting the t-th question:

qt = arg max(q,y)∈Q\St−1
∆((q, y)|St−1). (6)

where ∆((q, y)|St−1) = F ({(q, y)} ∪ St−1) − F (St−1) and St−1 is the set of previous t − 1
responses of this student in CAT.

3.1 Expected Gradient Difference Approximation

However, the above selection algorithm is impractical in CAT. Because we cannot get student’s
full responses to bank Q, as a result, the gradient difference ‖∇li(θ)−∇lj(θ)‖ in w(i, j) can not
be calculated without related answer correctness labels. Actually, at step t, only the responses
of previous t − 1 steps (i.e., St−1) can be obtained. Therefore, we propose an expected gradient
difference approximation method to replace the original to measure their similarity, then the new
similarity function w̃(i, j) is:

w̃(i, j) , d−max
θ∈Θ

Ey∼pθt [‖∇li(θ)−∇lj(θ)‖], (7)

where the normed gradient difference is calculated as an expectation Ey∼pθt over the possible
labelings, since student’s response labels y to the candidate questions are unknown in the selection
step. Moreover, for more accurate approximation and to make full use of the available previous t− 1
responses, in Eq.(7), the expectation is determined by the current estimate θt. This method can be
regarded as a gradient difference approximation based on “soft pseudo-labels”. Thus, the selection of
the next question qt no longer requires the student’s real answer correctness labels:

qt = arg maxq∈Q\St−1
∆(q|St−1). (8)

where ∆(q|St−1) = F̃ ({q} ∪ St−1) − F̃ (St−1), and F̃ (S) =
∑
i∈Q maxj∈S w̃(i, j). Also, we

uncover some important conclusions about this simple expected approximation:
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Algorithm 1: The BECAT framework
Require: Q - question bank, f - IRT or neural network methods.
Initialize: Initialize the responses data S0 ← ∅.

1 for t = 1 to T do
2 Select question qt based on w̃(i, j): qt ← arg maxq∈Q\St−1

∆(q|St−1).
3 Get student’s related answer correctness label yt: St ← St−1 ∪ {(qt, yt)}.
4 Update the weights {γj}tj=1: γj ←

∑
i∈Q 1[j = arg maxs∈St w̃(i, s)].

5 Update student’s ability estimate: θt ← arg minθ∈Θ

∑
i∈St γili(θ).

Output: The student’s final ability estimate θT .

Lemma 1. When we replace the original gradient difference in w(i, j) with w̃(i, j), the correspond-
ing designed selection algorithm using submodular function F̃ is actually approximately solving the
following optimization problem:

min
|S|=T

max
θ∈Θ

Ey

‖∑
j∈S

γj∇lj(θ)−
∑
i∈Q
∇li(θ)‖

 (9)

Based on the conclusion in Lemma 1, we can assume that, after optimization, the
preconditioned expected gradient can be approximated by an error of at most ε:
Ey
[
‖∑i∈S γj∇lj(θ)−

∑
i∈Q∇li(θ)‖

]
≤ ε. Then we find the theoretical guarantees for abil-

ity estimation when applying gradient-based estimation method to the subset S found by it:
Theorem 1 (Expected estimation error bound). Assume that the loss function for ability estimation
is α-strongly convex (e.g., IRT). Let S be a weighted subset obtained by the proposed method. Then
with learning rate 1

α , ability estimation in gradient descent applied to the subsets has the following
expected estimation error bound:

E
[
‖θt+1 − θ∗‖2

]
≤ 2εDα+ σ2

l + 2σfDαHp(θ
t, θ∗)

α2
(10)

where Hp(θ
t, θ∗) = E(q,y)∼pθt

[
1

pθ∗(q, y)

]
(11)

where θ∗ is the optimal estimate using full responses, σ is an upper bound on the norm of the
gradients, and D = maxθ ‖θ − θ∗‖.

All the proofs can be found in Appendix. The above theorem shows that despite not being able to
obtain student’s full response, such simple expected gradient difference approximation can make the
estimate error upper bounded at each step. This theorem is attainable for the case where the loss
is strongly convex, such as the cross-entropy loss of the classic L2-regularized IRT [29]. We will
further verify the performance of other cases (e.g., neural network-based methods) in experiments.

Theorem 1 also suggests that, to minimize the expected error bound, the CAT systems should try to
minimize Hp(θ

t, θ∗) that can be regarded as a type of statistical distance: measuring how probability
distribution pθt is different from pθ∗ . Moreover, we find that with the help of the consistency
estimation (i.e., binary cross-entropy) at each step, Hp(θ

t, θ∗) can reach its theoretical minimum:
Theorem 2. Assume that θt, estimated by the cross-entropy loss in Eq.(1), can minimize the empirical
risk i.e.,

∑
i∈St li(θ

t) = 0. Then Hp(θ, θ
∗) can take its minimum when θ = θt, that is

Hp(θ
t, θ∗) ≤ Hp(θ, θ

∗), ∀θ ∈ Θ (12)

Therefore, the ability estimation methods commonly used in CAT can actually help minimize this
upper bound. The proofs and related experiments can be found in the Appendix Cand E.4.

Complexity Analysis of BECAT. Algorithm 1 presents the pseudo-code of our BECAT framework.
A naive implementation of our selection algorithm in Eq.(8) has the complexity of O(|Q|2|Θ|),
because at each step we have to: (1) find the question from the bank (O(|Q|)) that (2) maximizes
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the marginal gain ∆(q|St−1) = F̃ ({q} ∪ St−1) − F̃ (St−1) with complexity O(|Q||Θ|). To make
BECAT faster and more scalable from the above two aspects, we adopt two speed-up tricks: lazy
evaluations [30, 31] and multifaceted estimation [32] (See Appendix D for implementation details).
Also, we compare the time (second) spent on question selection by different methods in Appendix E.

4 Experiments

Evaluation Method. The goal of CAT is to estimate the student’s ability accurately with the fewest
steps. Therefore, there are usually two tasks to verify the performance of different CAT methods
following prior works [9, 12]: (1) Student Score Prediction: To evaluate the ability estimate output
by CAT, the estimate can be used for predicting the student’s binary response (correct/wrong) on the
questions he/she has answered in the held-out response data. Thus, Prediction Accuracy (ACC) and
AUC are used for evaluations [33]; (2) Simulation of Ability Estimation: This is CAT’s traditional
evaluation methods. Since the ground truth of student ability θ0 is not available, we artificially
generate the θ0 and further simulate student-question interaction process. Thus, we can use Mean
Square Error (MSE) metric. See Appendix E for the details of these two evaluation methods.

Datasets. We conduct experiments on three educational benchmark datasets, namely ASSIST,
NIPS-EDU, and EXAM. ASSIST [34] is collected from an online educational system ASSISTments
and consists of students’ practice logs on mathematics. NIPS-EDU [35] refers to the large-scale
dataset in NeurIPS 2020 Education Challenge, which is collected from students’ answers to questions
from Eedi (an educational platform). The EXAM dataset was supplied by iFLYTEK Co., Ltd., which
collected the records of junior high school students on mathematical exams. The statistics of the
datasets are shown in appendix. The code can be found in the github: https://github.com/
bigdata-ustc/EduCAT.

Compared Approaches. To verify the generality of BECAT, in addition to the traditional IRT,
we also compare the neural network-based model NeuralCDM [36]: It can cover many IRT and
cognitive diagnosis models, such as MIRT [37] and MF [38, 39]. For the selection algorithm, we
mainly use the following SOTA algorithms as baselines: Random: The random selection strategy is
a benchmark to quantify the improvement of other methods; FSI [7] and KLI [8] select the question
with the maximum Fisher/Kullback-Leibler information, which measures the amount of information
that a question carries about the unknown parameter θ. They are specially designed for IRT. MAAT
[9] utilizes Active Learning [40] to measure the uncertainty caused by each candidate question.
BOBCAT [12] and NCAT [13] recast CAT as a bilevel optimization and Reinforcement Learning
problem respectively, and train a data-driven selection algorithm from student response data.

4.1 Results and Discussion

In this section, we compare the performance on two classic CAT tasks introduced above to evaluate
the effectiveness and efficiency of our proposed BECAT framework. Also, we conduct a qualitative
investigation of the characteristics of the selected questions, and gain deeper insights on why BECAT
leads to more accurate ability estimation.

Task1: Student Score Prediction. Following prior work [13], we also fix the max length T = 20
and calculate the ACC and AUC at step 5, 10 and 20 on three datasets for Student Score Prediction
task and the results are shown in Table 3. We find that:

(1) The explicit BECAT framework achieves the best overall performances on the three datasets. It
performs significantly better than all the other methods, where the relative performance improvements
are as least 1.5% with respect to ACC@20 and 1.1% with respect to AUC@20 on average on ASSIST.
This result indicates that BECAT can provide accurate ability estimates at the end of the exam.
Also, it even surpasses the implicit selection algorithms based on deep learning, such as NCAT and
BOBCAT. This phenomenon shows that compared to focusing on modeling complex student-question
interactions, targeting the accuracy of estimation indeed achieves amazing results.

(2) BECAT’s performance on large-scale datasets (e.g., NIPS-EDU) is better. From Table 3, on NIPS-
EDU dataset (the bank size is 27613), BECAT can achieve 2.48% AUC gain (on average) above the
famous FSI baseline. On the other two datasets ASSIST and EXAM, the average improvement is only

7

https://github.com/bigdata-ustc/EduCAT
https://github.com/bigdata-ustc/EduCAT


Table 1: The performance of different methods on Student Score Prediction with ACC and AUC
metrics. “–” indicates the information/uncertainty-based selection algorithms (e.g., FSI) cannot be
applied to the deep learning method. The boldfaced indicates the statistically significant improvements
(p-value < 0.01) over the best baseline.

(a) Performances on ASSIST

CDM IRT NeuralCDM

Metric@Step ACC/AUC@5 ACC/AUC@10 ACC/AUC@20 ACC/AUC@5 ACC/AUC@10 ACC/AUC@20

Random 71.01/70.68 72.20/71.91 73.07/72.61 71.52/71.19 72.66/72.06 72.67/72.83
FSI 71.77/71.33 72.94/72.48 73.24/73.54 – – –
KLI 71.93/71.38 72.73/72.52 73.17/73.57 – – –
MAAT 72.20/71.54 72.33/72.58 73.22/73.08 72.36/70.98 72.52/72.33 71.74/72.27
BOBCAT 72.31/71.68 72.36/72.28 73.70/73.39 72.69/71.45 72.89/72.84 73.87/72.84
NCAT 72.28/71.53 72.55/72.31 73.81/73.50 72.28/71.59 72.63/72.37 73.90/73.59

BECAT 71.92/71.44 73.01/72.73 73.96/73.61 72.30/71.60 73.11/72.97 74.13/73.70

(b) Performances on NIPS-EDU

CDM IRT NeuralCDM

Metric@Step ACC/AUC@5 ACC/AUC@10 ACC/AUC@20 ACC/AUC@5 ACC/AUC@10 ACC/AUC@20

Random 66.45/69.05 68.23/71.66 70.23/74.82 67.19/69.32 68.44/71.56 70.57/74.99
FSI 67.70/70.60 69.62/73.62 71.03/76.24 – – –
KLI 67.09/69.79 69.27/73.30 70.42/75.73 – – –
MAAT 66.70/70.32 69.13/72.41 69.07/74.46 67.86/70.12 70.07/72.58 70.66/75.83
BOBCAT 69.51/74.42 70.94/75.73 71.73/76.58 71.13/76.00 72.52/77.87 73.47/79.00
NCAT 67.30/72.11 70.68/75.80 71.91/76.66 70.47/74.10 72.81/77.99 73.47/79.12

BECAT 66.98/73.15 71.61/75.87 72.00/76.82 71.33/76.30 73.09/78.34 73.58/79.36

(c) Performances on EXAM

CDM IRT NeuralCDM

Metric@Step ACC/AUC@5 ACC/AUC@10 ACC/AUC@20 ACC/AUC@5 ACC/AUC@10 ACC/AUC@20

Random 77.58/70.34 78.59/71.91 80.40/74.22 79.80/72.58 79.80/74.81 79.80/78.40
FSI 77.37/70.57 78.79/72.21 81.01/74.89 – – –
KLI 77.37/70.57 78.79/72.21 81.01/74.70 – – –
MAAT 76.97/70.38 78.79/72.12 80.61/74.65 82.82/70.32 82.83/74.11 83.82/79.44
BOBCAT 80.81/68.17 83.84/72.04 83.43/72.88 78.18/78.24 78.19/81.47 78.18/79.49
NCAT 80.92/70.72 83.99/72.71 84.02/74.29 82.30/78.77 83.19/81.47 81.53/79.49

BECAT 80.99/70.74 83.85/72.88 84.29/75.00 82.84/78.75 83.22/81.49 84.77/79.70

0.32%. This finding inspires us: BECAT is more adaptable to practical large-scale testing situations,
and can retrieve the most suitable questions from the massive candidate questions. However, it cannot
be ignored that the BECAT cannot surpass all other methods at the beginning of the exam. For
example, on NIPS-EDU dataset, it is about 2.53% behind BOBCAT on ACC@5. This is because the
student’s response data available in the initial stage of exam is limited, and the data-driven methods
(e.g., BOBCAT and NCAT) can be pre-trained on large-scale student response datasets to learn the
interaction patterns, thus addressing this cold-start problem [41]. Thus, adapting the proposed explicit
algorithm to data-driven frameworks is a very promising future work.

Task 2: Simulation of Ability Estimation. The goal of a practical CAT system is to accurately
estimate student’s ability. We conduct the Simulation of Ability Estimation experiment on the EXAM
dataset using the mean square error E[‖θt − θ0‖2] between the ability estimate θt and the true ability
θ0 at each step. Figure 3(a) reports the results of different methods on IRT. As the number of questions
selected increases, we find that the BECAT method can always achieve much lower estimation errors,
especially in the middle stage. Some implicit methods that do not aim at estimation accuracy perform
better in the initial stage (e.g., NCAT), but the final accuracy still lags behind BECAT framework.
Also, compared with the widely used FSI, the proposed BECAT can reach the same estimation error
using up to 20% less questions. On average, it can reach the same estimation accuracy using 15%
less questions, which demonstrates its efficiency in ability estimation, i.e., reducing test length.

The Characteristics of the Selected Questions. To gain deeper insights on why BECAT leads to
more accurate estimation, we take a close look at the characteristics of the selected questions. First,
for IRT, we output the difficulty and discrimination parameters of the selected questions and draw a
scatter chart in Figure 3(b). We find that it tends to choose those questions with high discrimination,
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Figure 3: (a) The error of ability estimation on EXAM dataset. (b) The characteristics (i.e., discrim-
ination and difficulty) of the questions selected for 10 students in IRT, where grey dots represent
all the questions in the bank, and the “ ∗ ” represent the ones selected by BECAT. (c) The Jaccard
similarity coefficient of the selected questions.

and their difficulty is scattered and roughly concentrated in the middle difficulty area, which may be
caused by the fact that most of the students are of middle-ability [42]. Second, for NeuralCDM, to
gain a better insight into the knowledge concepts (e.g., Geometry in mathematics) covered by the
selected questions, and the association between BECAT and other methods. Figure 3(c) shows the
Jaccard similarity coefficient of questions’ concepts. Questions selected by the same type of method
have a high overlap in knowledge concepts, such as FSI and KLI, BOBCAT and NCAT. MAAT and
FSI have the highest similarity scores with BECAT: 1) Although BECAT does not directly adopt the
concept features in the selection, it has a high score to MAAT that directly targets knowledge concept
coverage/diversity, thus making the measurement more comprehensive. 2) The high similarity (with
FSI) proves that BECAT is not only general but also capable of selecting informative items.

5 Related Works

Computerized Adaptive Testing Computerized Adaptive Testing (CAT) technology has been
widely used in many standardized tests, such as GMAT, and the multistage testing in GRE is also its
special case of CAT [17]. It is an iterative procedure, mainly including Item Response Theory and a
question selection algorithm. The following reviews these two components separately:

(1) Item Response Theory (IRT). It is built on psychometric theory and has become popular in
educational assessment to provide more individualized feedback about a student’s latent ability
[43, 44]. It assumes that the examinee’s ability is unchanged throughout a test, thus the ability
can be estimated using his/her previous response on questions in gradient-based optimization [32].
The classic form is the two-parameter logistic (2PL): p(the response to question j is correct) =
sigmoid(aj(θ − bj)), where aj , bj ∈ R represent each question’s discrimination and difficulty
respectively that are pre-calibrated before testing [29], and θ ∈ R is student’s ability to be estimated.
Recently, many studies [36, 45, 46] combine cognitive diagnosis and utilize neural networks to model
such student-question interaction (e.g., NeuralCDM [36]).

(2) Selection Algorithms. The selection algorithm is the core component to realize CAT’s adaptivity –
accurately estimating student’s ability with the fewest test steps. Traditional algorithms are based on
some uncertainty or information metrics, e.g., the famous Fisher Information (FSI). Based on it, many
methods [8, 47, 48, 49] have been proposed to introduce additional information in selection. Since
they are not general and not applicable to recent neural network methods, MAAT [9] uses active
learning to select diverse and representative items in question’s feature space. Recently, BOBCAT
[12] and NCAT [13] regard CAT as a Reinforcement Learning (RL) problem and train selection
algorithms directly from large-scale student response data. Due to the unknown of the θ0, their goal
is to minimize the student performance prediction loss of the estimate on the held-out responses
data, which is also implicit and prone to biases in training data. In this paper, BECAT is general
and explicitly targets the accuracy and efficiency of ability estimation. Compared with previous
implicit methods, we find that it exhibits superior performance both theoretically and experimentally.
However, various biases, such as those introduced in test item design and respondent pool selection,
can affect the validity of estimating a student’s true ability [50]. While our approach seeks to improve
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the efficiency with which student ability is estimated, it does not diminish the need for test designers
to mitigate sources of bias introduced outside of the model fitting process.

Data Efficiency. Another closely related literature is data efficiency (or data summary) [51, 15,
52]. To alleviate various costs (computational [53, 54] or labeling costs [40]), data efficiency
is used to carefully select or generate some samples from dataset on par with the full data. Its
specific implementation methods include Coreset [15, 21, 16, 20], Active Learning [40, 55, 56], Data
Distillation [57], etc. For example, recent Coreset approaches [15, 21, 20] try to find a subset that
closely approximates the full gradient, i.e., the sum of the gradients of the whole training samples.
In this paper, Coreset helps us transform our optimization problem in Section 2.2, but the gradient
calculation requires labels, which is obviously not applicable to the CAT scenario (student’s response
labels cannot be obtained before the question selection). Therefore, we improve it and design an
expected gradient difference approximation method and provide good upper-bound guarantees to the
optimal solution, which is one of the main contributions of this paper.

6 Conclusion

This paper focuses on the explicit approach for accurate and efficient estimation of student’s true
ability θ0. Given that the ground truth θ0 is unavailable, we find its theoretical approximation: the
ability estimated by the full responses to the question bank, and use it as the optimization goal to
design a Bounded Ability Estimation CAT framework (BECAT). For practical use in CAT scenario,
we propose a simple but effective expected gradient difference approximation in the greedy selection
algorithm. We further analyze its theoretical properties and prove the error upper-bound of the
ability estimation on questions found by BECAT. Through extensive experiments on three real-
world education datasets, we demonstrate that BECAT can achieve the best estimation accuracy and
outperform existing CAT methods at reducing test length.
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A Proofs of Lemma 1

We first proof the following Lemma
Lemma 1. When we replace the original gradient difference in w(i, j) with w̃(i, j), the correspond-
ing designed selection algorithm using submodular function F̃ is actually approximately solving the
following optimization problem:

min
|S|=T

max
θ∈Θ

Ey

‖∑
j∈S

γj∇lj(θ)−
∑
i∈Q
∇li(θ)‖

 (13)

Proof. Following the theoretical analysis in the recent Coreset method CRAIG [15], we first define
a mapping function h from set Q to S to a mapping function:∀i ∈ Q, h(i) ∈ S. It assign every
response data point i ∈ Q to one of the elements j in S. Then, for any arbitrary ability parameter
θ ∈ Θ we can write ∑

i∈Q
∇li(θ) =

∑
i∈Q

[∇li(θ)−∇lh(i)(θ) +∇lh(i)(θ)] (14)

=
∑
i∈Q

[∇li(θ)−∇lh(i)(θ)] +
∑
j∈S

γj∇lj(θ) (15)

Subtracting and taking the expected norm of the both sides, we get an upper bound on the error.
According to the triangle inequality, we have

E

‖∑
i∈Q
∇li(θ)−

∑
i∈S

γj∇lj(θ)‖

 ≤∑
i∈Q

E
[
‖∇li(θ)−∇lh′(i)(θ)‖

]
. (16)

When the mapping function h is to map each element in Q to the one in S that is closest to its
expected gradient, the right side of inequality (16) is minimized, or minimum expected distance
between the gradient: h(i) = arg minj∈S E [‖∇li(θ)−∇lj(θ)‖]. Therefore, the upper bound of the
expected gradient difference can be further constrained:

min
|S|=T

E

‖∑
i∈Q
∇li(θ)−

∑
i∈S

γj∇lj(θ)‖

 ≤∑
i∈Q

min
j∈S

E [‖∇li(θ)−∇lj(θ)‖]. (17)

Next, define a similarity function w̃(i, j) which measures the expected gradient similarity
between response pair i and j: w̃(i, j) = d − maxθ∈Θ E [‖∇li(θ)−∇lj(θ)‖], and d =
maxi∈Q,j∈Smaxθ∈Θ‖∇li(θ)−∇lj(θ)‖ is the maximum pairwise gradient distance. Thus, the
optimization problem (Eq.(13)) can also be transformed as:

max
|S|=T

∑
i∈Q

max
j∈S

w̃(i, j). (18)

Following the same way of origin problem, its corresponding submodular F̃ (S) =∑
i∈Q maxj∈S w̃(i, j), which is the same with our proposed method. Thus, the designed selec-

tion algorithm is the greedy algorithm of the optimization problem (Eq.(13)).

B Proofs of Theorem 1

Theorem 1 (Expected estimation error bound). Assume that the loss function for ability estimation
is α-strongly convex (e.g., IRT). Let S be a weighted subset obtained by the proposed method. Then
with learning rate 1

α , ability estimation in gradient descent applied to the subsets has the following
expected estimation error bound:

E
[
‖θt+1 − θ∗‖2

]
≤ 2εDα+ σ2

l + 2σfDαHp(θ
t, θ∗)

α2
(19)

where Hp(θ
t, θ∗) = E(q,y)∼pθt

[
1

pθ∗(q, y)

]
(20)
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where θ∗ is the optimal estimate using full responses, σ is an upper bound on the norm of the
gradients, and D = maxθ ‖θ − θ∗‖.

Proof. We now provide the expected estimation error bound for strongly convex functions building
on the analysis of [15, 58]. Let gt = 1

|Q|
∑
i∈Q∇li(θt), gtS =

∑
i∈S γi∇li(θt), and normalize the

subset weights at every iteration i.e.,
∑
j∈S γj = 1. Let L(θ) =

∑
i∈S γili(θ) be the weighted subset

training loss parameterized by ability parameters θ, and we have:

‖θt+1 − θ∗‖2 = ‖θt − ηgtS − θ∗‖2

= ‖θt − θ∗‖2 − 2η(gtS)>(θt − θ∗) + η2‖gtS‖2

≤ ‖θt − θ∗‖2 − 2η[L(θt)− L(θ∗)] + η2‖gtS‖2

≤ ‖θt − θ∗‖2 − 2η
[
(g∗S)>(θt − θ∗) +

α

2
‖θt − θ∗‖2

]
+ η2‖gtS‖2 (α− strongly convex). (21)

According to Cauchy–Schwarz inequality, we have

|(g∗S)>(θt − θ∗)| ≤ ‖g∗S‖‖θt − θ∗‖. (22)

Thus

‖θt+1 − θ∗‖2 ≤ ‖θt − θ∗‖2 + 2η
[
‖g∗S‖‖θt − θ∗‖

]
− ηα‖θt − θ∗‖2 + η2‖gtS‖2 (23)

Taking expectation with respect to the randomness in the label (i.e., the correctness of response)
decided by θt, we have

E
[
‖θt+1 − θ∗‖2

]
≤ (1− ηα)E

[
‖θt − θ∗‖2

]
+ 2ηE

[
‖g∗S‖‖θt − θ∗‖

]
+ η2E

[
‖gtS‖2

]
. (24)

Assuming gradients have a bounded norm ‖∇lj(θ)‖ ≤ σl and ‖∇fj(θ)‖ ≤ σf . Thus, from reverse
triangle inequality, we can write

E
[
‖gtS‖2

]
= E

‖∑
j∈S

γj∇lj(θt)‖2
 ≤ σ2

l . (25)

From Lemma 1, we can assume that the subset S and corresponding per-element weights
γj can approximate the full gradient with an expected error at most ε > 0, i.e.,

Ey∼pθt
[
‖∑i∈Q∇li(θ)−

∑
i∈S γj∇lj(θ)‖

]
≤ ε. Thus, from reverse triangle inequality E[‖g∗S‖] ≤

E[‖g∗‖] + ε and E[‖g∗‖] can be further derived as follows:

E[‖g∗‖] =
1

|Q|E

‖∑
i∈Q
∇li(θ∗)‖

 ≤ 1

|Q|
∑
i∈Q

E [‖∇li(θ∗)‖]

=
1

|Q|
∑
i∈Q

Eyi∼pθt [‖∇θ=θ∗(−yi ln fi(θ)− (1− y) ln(1− fi(θ)))‖]

=
1

|Q|
∑
i∈Q

Eyi∼pθt
[
‖ − yi

fi(θ∗)
∇fi(θ∗) +

1− yi
1− fi(θ∗)

∇fi(θ∗)‖
]

=
1

|Q|
∑
i∈Q
‖∇fi(θ∗)‖Eyi

∣∣∣∣ yi
fi(θ∗)

− 1− yi
1− fi(θ∗)

∣∣∣∣
=

1

|Q|
∑
i∈Q
‖∇fi(θ∗)‖

∑
y∈{0,1}

pθt(qi, yi = y)

pθ∗(qi, yi = y)

=
1

|Q|
∑
i∈Q
‖∇fi(θ∗)‖E(qi,yi)∼pθt

[
1

pθ∗(qi, yi)

]

≤ σfE(q,y)∼pθt

[
1

pθ∗(q, y)

]
, (26)
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where pθ(q, y) is the response distribution of the student with the ability θ, and fi(θ) = pθ(qi, yi = 1)
is the output of IRT. Also assuming that ‖θ − θ∗‖ ≤ D, we have,

E
[
‖g∗S‖‖θt − θ∗‖

]
≤ DE[‖g∗‖] + εD

≤ σfDE(q,y)∼pθt

[
1

pθ∗(q, y)

]
+ εD. (27)

Combining the Equation (24) to (26) and let η = 1
α , we have

E
[
‖θt+1 − θ∗‖2

]
≤ 2εDα+ σ2

l

α2
+

2σfD

α
E(q,y)∼pθt

[
1

pθ∗(q, y)

]
=

2εDα+ σ2
l + 2σfDαHp(θ

t, θ∗)

α2
, (28)

where Hp(θ
t, θ∗) = E(q,y)∼pθt

[
1

pθ∗ (q,y)

]
. So we complete the proof.

C Proofs of Theorem 2

Theorem 2. Assume that θt, estimated by the cross-entropy loss, can minimize the empirical risk i.e.,∑
i∈St li(θ

t) = 0. Then Hp(θ, θ
∗) can take its minimum when θ = θt, that is

Hp(θ
t, θ∗) ≤ Hp(θ, θ

∗), ∀θ ∈ Θ (29)

Proof. When we use the binary cross-entropy (BCE) loss to estimate the ability θ and minimize the
empirical risk at step t, we have

θt = arg min
θ

∑
i∈St

li(θ)

= arg max
θ

∑
i∈St

yi log fi(θ) + (1− yi) log(1− fi(θ))

= arg max
θ

∑
i∈St

log pθ(qi, yi)

≈ arg max
θ

E(q,y)∼pθ0 log pθ(q, y), (30)

where fi(θ) = pθ(qi, yi = 1) is the output of the IRT. We argue that the student’s response to the
question q is determined by the true ability θ0 in the CAT process, i.e., yi = arg maxy pθ0(qi, y).
Therefore, when the above empirical risk achieves its minimum, i.e.,

∑
i∈St li(θ

t) = 0,
E(q,y)∼pθ0 log pθ(qi, yi) can reach the maximum 0, and the real and predicted responses are the
same:

ymax = arg max
y

pθt(q, y) = arg max
y

pθ0(q, y),∀q (31)

and the predicted probability should approache 1: pθt(q, ymax)→ 1.

Next, we discuss the minimization of the statistical distance Hp(θ
t, θ∗) = E(q,y)∼pθt [1/pθ∗(q, y)]

term in the upper bound in Theorem 1. In general, make now the simplifying assumption that
distribution pθ∗(q, y) is smooth and has a global maximum probability pmax, attained at a point
(q, ymax) for question q, so that 1/pθ∗(q, y) has a global minimum at the same ymax. Obviously, we
can choose:

pθt(q, y) = δ(y − ymax), (32)
where δ is the delta function [59], making E(q,y)∼pθt [1/pθ∗(q, y)] to its minimum. Based on the
above findings, in the CAT situation (binary classification), the optimal distribution pθt (minimizing
the Hp in the upper bound) needs to: have the same classification result as pθ∗ , i.e., ymax =
arg maxy pθt(q, y) = arg maxy pθ∗(q, y) ≈ arg maxy pθ0(q, y), and its corresponding probability
is as large as possible, i.e., pθt(q, ymax)→ 1. In this case, Hp(θ

t, θ∗) can takes its minimum. All of
these findings are consistent with the conclusion that minimizing BCE loss for ability estimation in
Eq.(30) and (31). So we complete the proof.
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Figure 4: The illustration of the distance measurements in similarity function w̃(i, j): replace the
entire ability space Θ with the student’s possible ability estimates Θt = {θti}mi=1 to reduce search
space and speed up the selection.

D Implementation Details of BECAT

To improve its complexity, we provide two implementation tricks:

(1) Lazy Evaluations. By exploiting the submodularity, we use the lazy evaluations approach
presented in [30, 31] to speed up the selection process and make the running time faster in practice.
At step t, the greedy selection algorithm must identify the question q with maximum marginal
gain ∆(q|St−1). Instead, this lazy method involves using a max-heap (O(1) lookup and O(log(n))
insertion) to keep an upper bound on the gain of each question that comes from submodularity, i.e.,
the marginal benefits of any question q ∈ Q are monotonically nonincreasing during the selection:

∆(q|St−1) ≥ ∆(q|St) ∀q ∈ Q. (33)

Instead of recomputing ∆(q|St−1) at each step for each element q ∈ Q (requiring O(|Q|) compu-
tations), the accelerated lazy algorithm maintains a list of upper bounds ∆′(q) (initialized to ∞)
on the marginal gains sorted in decreasing order (max-heap order). Specifically, at each step, the
algorithm first selects the maximal from this ordered list, i.e., the top of the heap. It then updates
this bound ∆′(q)← ∆(q|St−1) in the heap. As soon as the ∆′(q) is still at the top of the heap, then
submodularity Eq.(33) guarantees that ∆(q|St−1) ≥ ∆(q′|St−1) for all q′ 6= q, and therefore we do
not need to evaluate any more items. If it does not satisfy this condition, we just insert it with ∆′(q)
as the new upper bound and repeat the above procedure until the qualified question is selected. While
the worst case is the same, in practice this method has enormous speedups over the standard greedy
algorithm [60].

(2) Reducing the Ability Space Θ In our method, note that the similarity function w̃(i, j) =
d − maxθ∈Θ Ey∼pθt [‖∇li(θ)−∇lj(θ)‖] requires finding the worst case over the entire ability
parameter space Θ, which is too expensive for CAT systems. In fact, it only needs to be calculated in
each student’s own possible ability space. In other words, we can find an ability subspace Θt ⊆ Θ
specialized to each student. We utilize a novel MLE-based estimation approach [32], which models
student’s multifaceted nature and sequentially generates a set of possible abilities Θt = {θti}mi=1 at
each step t:

θti = arg min
θi

∑
i∈St

li(θi)−
λ

2

∥∥θi − θ̄i∥∥2
for i = 1, ...,m, (34)

where θ̄i is the average of previous i− 1 estimates and the term
∥∥θi − θ̄i∥∥2

ensures the diversity of
abilities in {θti}mi=1. We refer the reader to [32] for more details about this estimation method. As
shown in Figure 4 we replace the entire parameter space in the optimization problem with student’sm
potential estimates Θt = {θti}mi=1. The complexity can be reduced to O(|Q|2m) and m� |Θ|.

E Details of Experiment

The impact of test length. We use simulation experiments to verify the choice of max length T :
Due to the unknown of the true ability θ0, we artificially generate it and conduct the Simulation
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Figure 5: Simulation experiments of ability estimation using MSE: E[‖θt − θ0‖2].

of Ability Estimation experiment on the EXAM dataset using the mean square error E[‖θt − θ0‖2]
between the ability estimate θt at each step and the true ability θ0 (Figure 5): The classic Fisher
method can reduce the evaluation error quickly and 20 is sufficient for the length of a typical adaptive
test. Thus, we fix the max length T = 20.

Experimental Implementation Details. As 20 is sufficient for the length of a typical test [13], we
also fix the max length T = 20. We implement all the methods with PyTorch. We set batch size to 64
and the learning rate to 0.001, and optimize all the parameters using the Adam algorithm [61] on a
Tesla V100-SXM2-32GB GPU.

E.1 Statistics of the datasets

Table 2: Statistics of the datasets
Dataset ASSIST NIPS-EDU EXAM
#Students 20,704 220,274 9,214
#Questions 15,071 27,613 1,650
#Response logs 1,768,253 19,181,192 133,398
#Response logs per student 85.41 87.08 14.48
#Response logs per question 117.33 694.64 80.85

E.2 Detailed Evaluation Method

The goal of CAT is to estimate the student’s ability accurately with the fewest steps. However, since
the true ability cannot be obtained as the ground truth, there are usually two tasks to verify the
performance of different CAT methods following previous works [9, 12]: 1) Student Score Prediction
and 2) Simulation of Ability Estimation:

1) Student Score Prediction. To evaluate the ability estimate output by the CAT system, this estimate
can be used for predicting the student’s scores (correct or wrong) on the questions he/she has
answered in the held-out response data. This is an indirect evaluation method. Following the common
strategy [12], we use 70%-20%-10% students for training, validation, and testing respectively, and
the students in validation/testing set won’t appear in training. The training set is used for initializing
some question’s parameters in IRT (e.g., difficulty parameter in IRT), and the data-driven selection
algorithm baselines (e.g., BOBCAT). In the validation/testing, the responses of each student i are
further divided into the candidate (Qi) and meta (Mi) question sets to simulate CAT procedure,
following [9, 12]. Specifically, at each step, (1) different selection algorithms first select a question
from Qi; (2) IRT then updates the ability estimate with his/her response to it; (3) evaluate this
estimate’s accuracy by predicting binary-valued responses (correct or wrong) on the held-out meta
set Mi. This task assumes that the more accurate the score prediction is, the more accurate the ability
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Figure 6: Comparison of the time consumed by different methods at the selection step. The imple-
mentation tricks provide 2× to 3× speedup.

estimate is. This task considers that the accuracy of score prediction can reflect the accuracy this
ability estimates. Thus, from this binary classification perspective, we use Prediction Accuracy (ACC)
[46] and Area Under ROC Curve (AUC) [62] for the evaluation of different selection algorithms.

2) Simulation of Ability Estimation. This is CAT’s traditional evaluation method [2]. Since the
ground truth of student ability θ0 is not available, we artificially generate their θ0 and further simulate
student-question interaction process within CAT systems. For the rationality of the generated θ0, we
use all the students’ responses in the dataset to estimate their ability {θ1

0, θ
2
0, ..., θ

N
0 } as the ground

truth [9, 63]. Also, the dataset is used to learn questions’ parameters and fix them. Different from
the first task, such settings can simulate students with θ0 responding to any question in Q, thus the
candidate question in selection is the entire bank Q. Specifically, (1) different selection algorithms
first select a question from the entire bank Q; (2) IRT then updates the estimate with the response to
it; (3) evaluate this estimate’s accuracy by computing the difference between the estimated and the
true ability. In this way, we can use Mean Square Error (MSE) to evaluate the accuracy of estimation.

E.3 Implementation Tricks for Speedups

To solve the BECAT optimization problem, we need to calculate the gradients of all items in question
bank, leading to high computation requirements for large datasets/examinations. To this end, we
consider two speed-up tricks: lazy evaluations and multifaceted estimation. Lazy evaluations take
advantage of submodularity to avoid calculating the conditional gain ∆(q|St−1) of all the candidate
items. The multifaceted estimation method [32] can effectively reduce the ability space when
calculating the similarity between two items, thus reducing the time to calculate ∆(q|St−1) of each
item. In Figure 6, we compare the time (second) spent on question selection by different methods3,
and find that the proposed implement tricks give the average speedup of 3×, and achieve 7× to recent
MAAT. And it is almost the same time as the traditional informativeness-based method KLI. This
demonstrates that our greedy selection algorithm in BECAT is fast in practice.

E.4 BECAT Analysis

In this section, we will further analyze its selection time/latency, the effectiveness of Theorem 1 and
2, and the characteristics of questions selected by BECAT, respectively.

Upper Bound Analysis of Estimation In Theorem 1, the most important component isHp(θ
t, θ∗),

which determines the upper bound on estimation error and the convergence behavior of the proposed
BECAT method. Therefore, to verify the effectiveness and theoretical guarantees of our explicit
selection algorithm, i.e., the estimation error bound conclusion in Theorem 1, we compute Hp for
each step on the strongly convex loss function: the cross-entropy loss of the L2-regularized IRT.
This experiment is still based on the simulation setting in Appendix E.2 and the results are shown in

3There is no comparison here of reinforcement learning methods, due to the extra training overhead they
require.
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Figure 7: (a) The value of Hp(θ
t, θ∗) in the upper-bound of estimation. (b) Normed difference

between the full gradient on |Q| and the gradient of the question subset found by different methods.

Figure 7(a): In the first few steps, the Hp(θ
t, θ∗) can rapidly decrease to the minimum. As the test

progresses, the ability estimate tends to be accurate (Figure 7(a)), and the upper-bound Hp remains
near the minimum, which reflects the good convergence behavior of BECAT. This demonstrates that
our expected gradient difference approximation is reliable in practice.

Gradient Approximation. In Proposition 1 we show that θ∗ is an approximation of student true
ability. To approach the new target θ∗, an approximation to the full gradient of the bank Q is
required. Figure 7(b) demonstrates the norm of the difference between the weighted gradient of
the questions subset found by BECAT and the full gradient. This figure also compares the normed
gradient difference of other subsets found by other methods where each response is weighted by
|Q|/|S|. The gradient difference is calculated by sampling the full gradient at various points in the
parameter space. Note that the gradient difference obtained by BECAT decreases significantly with
the increase of t and it is much smaller than that of other methods, which proves that the expected
gradient difference approximation method is accurate. Combining the experimental results on the
two tasks in Experiments, the better the prediction/estimation performance of the method, the smaller
the gradient difference. This demonstrates that the closeness to θ∗ reflects the closeness to the true
ability θ0, which further proves the rationality of using θ∗ as a new target.
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Table 3: The variance results of different methods on ACC and AUC metrics.

(a) Variance results on ASSIST

CDM IRT NeuralCDM

Metric@Step ACC / AUC@5 ACC / AUC@10 ACC / AUC@20 ACC / AUC@5 ACC / AUC@10 ACC / AUC@20

Random 0.0378 / 0.0462 0.0090 / 0.0226 0.0052 / 0.0142 0.0064 / 0.0072 0.0013 / 0.0042 0.0012 / 0.0038
FSI 0.0446 / 0.0257 0.0147 / 0.0076 0.0067 / 0.0024 – – –
KLI 0.0163 / 0.0058 0.0042 / 0.0037 0.0023 / 0.0019 – – –
MAAT 0.0121 / 0.0202 0.0082 / 0.0150 0.0162 / 0.0286 0.0123 / 0.0073 0.0083 / 0.0276 0.0253 / 0.0242
BOBCAT 0.0120 / 0.0152 0.0052 / 0.0057 0.0165 / 0.0148 0.0054 / 0.0066 0.0047 / 0.0024 0.0126 / 0.0023
NCAT 0.0063 / 0.0041 0.0065 / 0.0055 0.0012 / 0.0007 0.0032 / 0.0031 0.0037 / 0.0029 0.0035 / 0.0020

BECAT 0.0100 / 0.0136 0.0062 / 0.0040 0.0055 / 0.0023 0.0022 / 0.0022 0.0019 / 0.0011 0.0012 / 0.0010

(b) Variance results on NIPS-EDU

CDM IRT NeuralCDM

Metric@Step ACC / AUC@5 ACC / AUC@10 ACC / AUC@20 ACC / AUC@5 ACC / AUC@10 ACC / AUC@20

Random 0.0185 / 0.0406 0.0183 / 0.0431 0.0182 / 0.0478 0.0185 / 0.0406 0.0183 / 0.0431 0.0182 / 0.0478
FSI 0.0270 / 0.0350 0.0269 / 0.0357 0.0274 / 0.0401 – – –
KLI 0.0231 / 0.0315 0.0218 / 0.0278 0.0196 / 0.0247 – – –
MAAT 0.0207 / 0.0347 0.0232 / 0.0377 0.0256 / 0.0412 0.0192 / 0.0298 0.0216 / 0.0306 0.0253 / 0.0363
BOBCAT 0.0203 / 0.0311 0.0185 / 0.0267 0.0169 / 0.0247 0.0197 / 0.0315 0.0190 / 0.0289 0.0200 / 0.0310
NCAT 0.0178 / 0.0246 0.0159 / 0.0214 0.0142 / 0.0198 0.0176 / 0.0258 0.0163 / 0.0232 0.0169 / 0.0246

BECAT 0.0216 / 0.0294 0.0185 / 0.0248 0.0169 / 0.0225 0.0204 / 0.0304 0.0167 / 0.0251 0.0165 / 0.0225

(c) Variance results on EXAM

CDM IRT NeuralCDM

Metric@Step ACC / AUC@5 ACC / AUC@10 ACC / AUC@20 ACC / AUC@5 ACC / AUC@10 ACC / AUC@20

Random 0.0171 / 0.0189 0.0114 / 0.0136 0.0084 / 0.0086 0.0025 / 0.0107 0.0071 / 0.0102 0.0070 / 0.0090
FSI 0.0195 / 0.0112 0.0097 / 0.0099 0.0093 / 0.0069 – – –
KLI 0.0195 / 0.0112 0.0097 / 0.0099 0.0076 / 0.0098 – – –
MAAT 0.0193 / 0.0115 0.0104 / 0.0094 0.0082 / 0.0065 0.0191 / 0.0112 0.0182 / 0.0099 0.0053 / 0.0062
BOBCAT 0.0036 / 0.0133 0.0070 / 0.0114 0.0086 / 0.0092 0.0142 / 0.0087 0.0095 / 0.0091 0.0012 / 0.0021
NCAT 0.0033 / 0.0146 0.0005 / 0.0004 0.0004 / 0.0004 0.0160 / 0.0120 0.0148 / 0.0090 0.0003 / 0.0003

BECAT 0.0196 / 0.0121 0.0022 / 0.0006 0.0020 / 0.0007 0.0172 / 0.0134 0.0063 / 0.0012 0.0090 / 0.0029
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