
StreetMath: Understanding How LLMs Approximate Mathematical Reasoning

Anonymous submission

Abstract

There is a substantial body of literature examining the
mathematical reasoning capabilities of large language mod-
els (LLMs), particularly their performance on precise arith-
metic operations in autoregressive architectures. However,
their ability to perform approximate reasoning in informal,
fast-paced mathematical operations has received far less at-
tention, especially among non-autoregressive decoder mod-
els. Our work addresses this gap by introducing Street-
Math, a benchmark designed to evaluate models’ ap-
proximation abilities under real-world approximation sce-
narios. We conduct extensive evaluations across different
LLM architectures: Qwen3-4B-Instruct-2507, Qwen3-4B-
Thinking-2507, Dream-v0-Instruct-7B, Falcon-Mamba-7B-
Instruct, and Mamba-GPT-3B. Furthermore, we apply mech-
anistic interpretability techniques to probe their internal com-
putational states. Our analysis reveals that LLMs generally
attempt to compute exact values or invoke external tools even
in tasks that call for approximation. Moreover, while models
sometimes reach the correct answer in early layers or steps,
they still consume more tokens when solving approximation
tasks. Additional experiments indicate that exact and approx-
imate arithmetic operations rely on largely separate neural
components. Drawing upon research on cognitive psychol-
ogy, we argue that LLMs do not exhibit cognitive miser-
liness in the same way humans do in street math settings.
We open source our work https://anonymous.4open.science/
r/StreetMath-1/

Introduction
Human mathematical reasoning flexibly alternates between
exact calculation and rough estimation, depending on con-
text. This adaptability—often described as ”cognitive miser-
liness”(Kahneman 2011)—allows people to conserve ef-
fort by using approximations when precision is unneces-
sary. According to Kahneman’s dual-process theory, hu-
mans preferentially rely on System 1 (fast, intuitive) think-
ing for everyday approximate calculations—what we call
street math—the quick mental calculations people make in
everyday life, such as estimating the total cost of groceries or
computing a restaurant tip (e.g., leaving a 20% tip on a $61
bill—roughly 20% of $60 $12, which is much easier to cal-
culate). This reflects the broader concept of cognitive miser-
liness, as the adaptive tendency to minimize mental effort
by employing shortcuts and approximations when full pre-

cision is unnecessary.(Fiske and Taylor 1991) Street math
exemplifies the context where System 1 dominates: quick
estimates suffice, and the cognitive cost of engaging System
2 (slow, effortful) reasoning is unwarranted. This principle
also highlights fundamental capacity limitations: cognitive
processing requires effort, which humans are motivated to
conserve by using ”good enough” strategies when circum-
stances permit. Our findings reveal that large language mod-
els (LLMs), in contrast, tend to bypass this adaptive flexibil-
ity. Instead of switching to easier approximation when ap-
propriate, they engage in effortful, exact computation—even
when rapid estimation would be more efficient—paralleling
a departure from human-like cognitive efficiency. Recent in-
terpretability studies have uncovered Fourier-like computa-
tion circuits (Zhou et al. 2024) and attention heads dedicated
to mathematical processing (Yu and Ananiadou 2024). Yet
it remains unclear whether these models exhibit the same
context-sensitive flexibility as humans, or whether their rea-
soning is rigidly tied to exact solutions.

In this work, we introduce the StreetMath dataset, a cu-
rated collection of 1000 approximation problems drawn
from everyday street math scenarios. Using this benchmark,
we systematically evaluate diverse model classes, including
autoregressive decoder architectures (Qwen3-4B-Instruct-
2507 (Team 2025), Qwen3-4B-Thinking-2507), state-space
models (Falcon-Mamba-7B (Zuo et al. 2024), Mamba-GPT-
3B (CobraMamba 2023)), and diffusion-based language
models (Dream-v0-Instruct-7B (Ye et al. 2025)). Our ex-
periments reveal a consistent bias across all architectures:
models overwhelmingly favor exact computation, even in
contexts where rough estimation would suffice. Most im-
portantly, some models achieve better approximation scores
only at the cost of increased computation (tokens), which
runs counter to humans’ cognitive miserliness. To better un-
derstand this limitation, we examine models’ rounding be-
havior, a fundamental operation for approximation in the
street math setting. We apply linear probing to compare in-
ternal representations, finding that models’ approximation
on single numbers resembles human behavior: they often
round numbers toward 5 or 10. In addition, models per-
form well at digit-level detection but struggle to generalize
to word-based numbers (Levy and Geva 2024).

We further investigate the neural underpinnings of these
behaviors. By pruning the neurons involved in exact arith-

Model A E M W Uncategorized Tool calls Avg tokens

Qwen3-4B-Instruct-2507 445 514 40 1 0 1000 125
Qwen-4B-Thinking-2507 151 637 197 15 0 0 228
Dream-v0-Instruct-7B 0 1000 0 0 0 0 263
Falcon-Mamba-7B-Instruct 177 469 131 22 201 0 131
Mamba-GPT-3B 174 459 166 198 3 0 86

Abbreviations: A = Good approximation, E = Exact Math, M = Mildly off, W = Way off

Table 1: Overall judgement counts by model with tool calls and average tokens (rounded).

Model Topic Good approx Exact math Mildly off Way off Uncategorized N

Qwen3-4B-Instruct-2507 basket sum 86 154 1 0 0 241
discounts 15 220 7 0 0 242
taxes 40 132 1 0 0 173
units 22 150 0 0 0 172
tips 22 150 0 0 0 172

Qwen-4B-Thinking-2507 basket sum 46 104 55 36 0 241
discounts 80 61 51 50 0 242
taxes 40 45 46 42 0 173
units 35 84 22 31 0 172
tips 28 68 40 36 0 172

Dream-v0-Instruct-7B basket sum 0 241 0 0 0 241
discounts 0 242 0 0 0 242
taxes 0 173 0 0 0 173
units 0 172 0 0 0 172
tips 0 172 0 0 0 172

Falcon-Mamba-7B basket sum 47 106 43 0 45 241
discounts 50 108 61 5 18 242
taxes 38 63 47 0 25 173
units 8 94 7 14 49 172
tips 11 77 4 0 80 172

Mamba-GPT-3B basket sum 51 97 46 47 0 241
discounts 43 111 35 53 0 242
taxes 29 59 39 43 3 173
units 32 78 31 31 0 172
tips 19 114 15 24 0 172

Table 2: Benchmark results: Counts by topic for all models.

metic (Christ et al. 2025a), we uncover a surprising dy-
namic: removing math-specific parameters can actually im-
prove performance on approximation tasks. This suggests
that rigid, precision-oriented circuits may actively hinder
flexible estimation. Additional probing into the entropy and
effective ranks of intermediate layers (Skean et al. 2025b)
reveals similar distributions and dimensionalities between
exact arithmetic operations and approximation. These find-
ings imply that approximation does not reduce computa-
tional cost—contrary to how humans use approximation to
simplify computation.

Together, these findings suggest that while LLMs have de-
veloped specialized pathways for arithmetic, they lack the
human-like adaptability required for context-sensitive street
math. Although LLMs are capable of approximating single
numbers, they do not leverage this ability during the pro-

cess of solving street math questions; instead, they approxi-
mate only after calculating exact answers. We conclude that
LLMs do not reason about approximation questions in the
same way humans do. The training corpora likely introduce
this universal gap across model architectures and sizes.

StreetMath Dataset & Evaluations
We release 1,000 multiple-choice math reasoning problems
under street math settings, covering five major topics, each
with several subtopics: basket sum (sum of shopping items),
discounts (buy-n-get-m-free, threshold discounts such as
“$X off if you spend $Y”, percentage discounts), taxes (tax
before discount and tax after discount applied), units (calcu-
lating cost based on per-pound or per-kilogram prices), and
tips (% on spend). Each question offers four answer options,
designed to distinguish different levels of approximation ca-

Model Peak Acc Best Layer Err (0) Err (1) Err (2)
Qwen3-4B-Instruct 0.939 2 0.4% 5.5% 9.4%
Qwen3-4B-Thinking 0.917 6 7.2% 14.6% 2.5%
Dream-7B 0.970 26 4.2% 4.8% 0.5%
Falcon-Mamba-7B-Instruct 0.989 7 0.7% 0.6% 1.7%
Mamba-GPT-3B 0.999 3 0.4% 0.0% 0.0%

Table 3: Comprehensive Near-5 Digit Analysis: Performance and Error Patterns at the best layer. Acc = Accuracy; Err = Error
rate

Model Peak Acc Best Layer Err (0) Err (1) Err (2)
Qwen3-4B-Instruct 0.603 16 7.0% 4.0% 94.3%
Qwen3-4B-Thinking 0.607 4 0.4% 0.6% 100.0%
Dream-7B 0.620 1 0.0% 0.0% 99.5%
Falcon-Mamba-7B-Instruct 0.784 20 4.2% 2.7% 50.5%
Mamba-GPT-3B 0.746 13 2.1% 0.0% 64.2%

Table 4: Comprehensive Near-5 (Words) Analysis: Performance and Error Patterns at the best layer. Acc = Accuracy; Err =
Error rate

Model Peak Acc Best Layer Err (0) Err (1) Err (2) Err (3) Err (4+)
Qwen3-4B-Instruct 0.967 8 4% 12% 1% 1% 0%
Qwen3-4B-Thinking 0.987 7 1% 3% 3% 0% 1%
Dream-7B 0.988 24 2% 5% 0% 0% 0%
Falcon-Mamba-7B-Instruct 0.998 10 1% 0% 1% 0% 0%
Mamba-GPT-3B 0.999 2 0% 0% 0% 0% 0%

Table 5: Comprehensive Near-10 Analysis: Performance and Error Patterns at the Best Layer

Model Peak Acc Best Layer Err (0) Err (1) Err (2) Err (3) Err (4+)
Qwen3-4B-Instruct 0.680 3 96% 98% 3% 4% 3%
Qwen3-4B-Thinking 0.687 18 97% 96% 4% 2% 2%
Dream-7B 0.698 12 98% 100% 0% 0% 0%
Falcon-Mamba-7B-Instruct 0.811 9 67% 58% 0% 0% 0%
Mamba-GPT-3B 0.789 4 74% 57% 2% 5% 2%

Table 6: Comprehensive Near-10 (Words) Analysis: Performance and Error Patterns at the Best Layer

pability: exact calculation, good approximation (within 20%
relative error of the exact answer), mildly off (between 60%
and 90% relative error), and way off (greater than 150% rel-
ative error). Details of the benchmark is elaborated in Ap-
pendix B. The benchmark not only evaluates final answers
but also examines intermediate numerical evidence and the
chain-of-thought (CoT) reasoning process. Any traces of ex-
act computation or tool usage are flagged as exact math. To
assess whether models exhibit cognitive miserliness, we use
token count as a proxy for reasoning efficiency.

We evaluate a range of model architectures including
autoregressive decoder, state-space and language dif-
fusion models across different reasoning styles (CoT vs.
non-CoT) and parameter sizes (3B, 4B, 7B). The mod-
els include Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-
2507, Dream-v0-Instruct-7B, Falcon-Mamba-7B-Instruct,
and mamba-GPT-3B, with experiemnt setup details in Ap-
pendix A. We carefully adapt system and user prompts
to each architecture to ensure fair comparisons. As shown

in Table1 and 2, LLMs across all architectures predomi-
nantly compute exact answers even when model prompt ex-
plicitly asks for approximation. When they do produce ap-
proximated answers, they typically first compute the exact
value and then round it. Notably, Qwen3-4B-Thinking-2507
shows better approximation performance than Qwen3-4B-
Instruct-2507, but this improvement comes at the cost of
higher token usage (228 vs. 125 tokens on average) and in-
creased deviations contrary to human cognitive miserliness.
State-space models achieve similar approximation perfor-
mance to Qwen3-4B-Instruct-2507 with fewer tokens but
greater deviations. Dream-v0-Instruct-7B consistently pro-
duces exact answers with perfect accuracy. We leave it to
future work to investigate whether adjusting the steps and
temperatures of Dream-v0-Instruct-7B can improve its ap-
proximation performance.

Overall, our findings indicate that LLMs tend to rely on
exact arithmetic even in approximation settings, showing be-
havior opposite to human-like cognitive miserliness.

Linear Probe on Rounding Behaviors
We investigate whether models encode numerical topology
similar to human cognitive distance effects (Dehaene 2011;
Moyer and Landauer 1967) by training linear probes (Alain
and Bengio 2016; Hewitt and Manning 2019) to detect near-
ness to multiples of 5 and 10 (De Brauwer, Verguts, and
Fias 2006), defining proximity as exactly one integer away
from the nearest multiple (e.g., 21 is near-10; 22 is not). Us-
ing simple templates to extract hidden-state representations,
we evaluate five StreetMath models on digit-based (“Here is
23.”) and word-based (“Consider the number twenty three.”)
inputs, analyzing (i) layer-wise accuracy, (ii) best-layer er-
rors across distances 0, 1, 2+. The experiment setup is elab-
orated in Appendix C, and results are shown in Figure 1 and
Table 3 to Table 6.

Digit tasks show early emergence (Teerapittayanon, Mc-
Danel, and Kung 2016) where state-space models lead:
Mamba-GPT-3B reaches 99.9% and Falcon-Mamba-7B
reaches 98%, with best layers in early–middle posi-
tions (shortcut-friendly; supports early stopping), whereas
Dream-v0-Instruct-7B peaks late (26th Near-5, 24th Near-
10), consistent with diffusion vs. autoregressive/state-space
differences. Distance-1 cases (e.g., 9, 11, 14, 16) are hardest,
reflecting digit encoding (Levy and Geva 2025) and calibra-
tion biases (Lovering et al. 2024a). Word tasks underperform
across architectures, evidencing surface-form encoding and
limited numerical abstraction (McCoy, Pavlick, and Linzen
2019; Belinkov and Glass 2019; Goldberg 2016), likely due
to tokenization, pretraining bias toward digits, and separable
digit/word representational clusters.

Causal Studies
To isolate parameters tied to exact arithmetic (Christ et al.
2025b; Rai et al. 2025), We adapt the MathNeuro code-
base to study pruning and scaling in instruction-tuned LMs,
with experiment details in Appendix D. For each calibra-
tion corpus (a CSV with instruction and response columns),
we estimate parameter importance by registering forward
hooks on all Linear layers and accumulating mean ac-
tivation magnitudes weighted by the corresponding weight
magnitudes over 200 calibration samples. We then construct
a keep-mask that retains the top p% of parameters, where
p ∈ {0.01%, 0.1%, 0.5%, 1%, 2.5%, 5%, 10%, 25%, 50%}.

We find that increasing pruning does not necessarily hurt
StreetMath performance: aside from Qwen3-4B-Instruct-
2507, most models remain stable or even improve under
moderate pruning, contradicting the intuition that reduced
capacity uniformly impairs numerical reasoning. Pruning ef-
fects diverge by benchmark, as depicted in Figure 2: MMLU
and RACE are similarly resilient, whereas GSM8K is ex-
tremely sensitive—even slight pruning collapses accuracy
to near zero across all models—implicating a specialized,
fragile neuron subset for exact arithmetic while StreetMath
and language-heavy tasks rely on more distributed represen-
tations. These patterns align with prior results (Christ et al.
2025b), suggesting a dual pathway: (i) localized, brittle cir-
cuits for exact arithmetic that fail under pruning, and (ii)
distributed, robust circuits for approximation and text-heavy

reasoning, where moderate pruning can denoise and im-
prove performance—consistent with StreetMath being tack-
led more as context-driven linguistic estimation than strict
mathematical computation.

Layer-wise Studies
To uncover the internal state of LLMs, we extract layer-
wise diagnostics from transformers on mathematical reason-
ing corpora and StreetMath and analyze the spectral entropy,
effective rank, activation entropy... The layer-wise analyses
(Skean et al. 2025b) reveal a broadly U-shaped evolution
of spectral entropy and effective rank (high at input, dip-
ping early, then rising) across models and tasks, with Falcon-
Mamba-7B on StreetMath as the main exception, as depicted
in Figure 3 Figure 4 and Appendix E. GSM8K runs of
Qwen3-4B-Instruct-2507 show a pronounced dip by the first
third of layers and a steady increase. Notably, both GSM8K
and StreetMath runs exhibit elbow-like transitions at com-
parable depths, consistent with early compression and later
re-expansion seen in shortcut reasoning (Ding et al. 2024a).
This observation supports the view that approximation in
StreetMath does not help models reach solutions more ef-
ficiently, showing the opposite of human cognitive miserli-
ness (Jiang et al. 2025).

It is evident from our experiments that task-specific ef-
fects emerge across the models. StreetMath runs typically
show higher late-layer entropy and effective rank than
GSM8K for the same model, along with larger transition
distances. This pattern indicates not only higher variabil-
ity across models but also more sustained representational
expansion and stronger late-stage adjustments. By contrast,
GSM8K often consolidates into a stable mid-layer corri-
dor with very high cosine similarity and minimal angular
changes. These observations support our causal study results
that models use a more diverse set of neurons when handling
street math-type questions while dedicating to a small set of
neurons when handling exact arithmetic operations. For de-
tails, refer to Appendix E.

Conclusion
We curated the StreetMath benchmark to reveal LLMs’ lack
of cognitive miserliness in street-math settings. Although
these models can round single numbers, they fail to use
this ability to save computational effort and instead rely
on exact arithmetic even when approximation would suf-
fice. Our analyses show that models activate broader neu-
ron sets for approximate reasoning but narrower, special-
ized ones for exact computation, suggesting limited flexibil-
ity in reallocating cognitive resources. Pruning experiments
further indicate that removing precision-oriented parameters
can improve approximation, implying that rigid numerical
circuits may hinder adaptive estimation. Overall, these re-
sults demonstrate that current LLMs can perform arithmetic
but not economize it—highlighting a key gap between hu-
man and machine reasoning in their ability to modulate ef-
fort based on context.

(a) Digits paraphrase (near=5)

(b) Digits paraphrase (near=10)

(c) Words (near=5)

(d) Words (near=10)

Figure 1: Accuracy per layer across models for digits paraphrase and words tasks with near parameters 5 and 10.

(a) Overall accuracy (b) Pruning accuracy on Qwen3-4B-Thinking-2507

(c) Pruning accuracy on Qwen3-4B-Instruct-2507 (d) Pruning accuracy on Dream-v0-Instruct-7B

(e) Pruning accuracy on mamba-GPT-3B.png (f) Pruning accuracy on Falcon-Mamba-7B-Instruct

Figure 2: Effect of structured pruning on task performance for all models. Accuracy is plotted against the proportion of param-
eters pruned for StreetMath and GSM8K benchmarks.

(a) Layerwise Average Summary - Qwen3-4B-Instruct-2507 on GSM8K

(b) Layerwise Average Summary - Qwen3-4B-Instruct-2507 on StreetMath

Figure 3: Comparative Layerwise Average Summary for Qwen3-4B-Instruct-2507 on GSM8K vs StreetMath

(a) Layerwise Average Summary - Qwen3-4B-Thinking-2507 on GSM8K

(b) Layerwise Average Summary - Qwen3-4B-Thinking-2507 on StreetMath

Figure 4: Comparative Layerwise Average Summary for Qwen3-4B-Thinking-2507 on GSM8K vs StreetMath

Appendix A. Experiment Setup
A.1 Model Selection
To examine how different architectures perform under the
street math setting, we selected representative models from
autoregressive transformer, diffusion-based LLM, and state-
space families. Given computational constraints, we re-
stricted our study to small- and medium-sized models. To
ensure reproducibility and enable deeper investigation of in-
ternal mechanisms, we further limited our selection to open-
source models with publicly available weights. Because the
task requires models to follow prompts reliably and gener-
ate multiple-choice responses, we focused on instruction-
tuned and thinking models. Within these constraints, we also
sought to preserve meaningful comparisons, such as chain-
of-thought versus instruction-only models, as well as cross-
architecture and cross-size contrasts.

Accordingly, our study evaluates Qwen3-4B-Instruct-
2507, Qwen3-4B-Thinking-2507, Dream-v0-Instruct-7B,
Falcon-Mamba-7B, and Mamba-GPT-3B. All models are
initialized with the default parameters.

A.2 Hardware specifications
We conducted all experiments on a single NVIDIA A10
GPU hosted on RunPod, using an Ubuntu 22.04 operating
system with CUDA version 12.8.1.

Appendix B. StreetMath dataset and
benchmark result

B.1 Data Curation
StreetMath targets everyday “street math,” emphasizing
fast estimation over exact arithmetic. It contains multiple-
choice questions across shopping and daily-life contexts:
basket totals, discounts (percentage-off, BOGO, buy-n-get-
m, threshold coupons), taxes (pre/post-discount), unit con-
versions (lb-oz, kg-g), and tips. Prompts explicitly nudge for
approximate reasoning (“about how much”) to elicit human-
style rounding.

Each question has four options: the exact value; a
“good approximation” within 20% relative error (correct);
a “mildly off” option; and a “way off” option (fractional or
multi-fold). Choices are shuffled A–D, with metadata stor-
ing numeric values. Spacing ensures clear separation: mild
≥ 60% and way ≥ 150%.

Good approximations follow deterministic rounding
rules. Basket totals round prices to dollars, then sum and
drop cents. Discounts round prices to dollars, rates to near-
est 5%, pair BOGO (buy one get one) items by price, and
compute buy-n-get-m deterministically. Threshold coupons
apply to a rounded subtotal. Taxes round bases and rates
(5% steps) before dropping cents. Unit costs round prices
and weights. Tips apply percentages to subtotals rounded to
$5/$10 buckets.

Data generation is deterministic given a seed. Templates
randomize prices, quantities, and rates. Outputs are JSONL
lines with id, topic, prompt, choices, labels,
correct label, and metadata (exact, good, mild,
way). Splits are controllable by topic weights. A validator
enforces spacing and alignment.

B.2 StreetMath Benchmark
The benchmark evaluates LLMs on Street-
Math via local JSONL or hosted dataset
(LuxMuseAI/StreetMathDataset). The sys-
tem prompt encourages estimation and discourages
exact calculation. Models must output: “Final choice:
<A|B|C|D>”, “Answer: <numeric>”, and “Reason-
ing: <short sentence>”; optional inner thoughts
appear in <think>...</think>. The runner supports
OpenAI-compatible APIs, local Transformers, and Ollama.

Outputs are parsed for choice, numeric answer, reasoning,
and optional tool calls. If only a number is given, the clos-
est choice is inferred. Labels: exact = ”Exact math,” good =
”Good approximation,” mild/way = ”Mildly off”/”Way off.”
We use the count of Good approximation as evaluation met-
rics to avoid giving arbitrary weights to each choice.

Each sample yields a JSON record with prompt, predic-
tions, reasoning, token/latency, and judgement. A summary
aggregates mean scores, label counts, accuracy by topic,
tool-call frequency, and average resource use. This setup
cleanly separates approximation skill from exact computa-
tion preference while ensuring reproducibility across models
and backends.

Appendix C. Linear Probe
C.1 Experimental Setup
Task Definition: We train linear probes to detect numerical
proximity concepts, specifically whether numbers are ”near”
multiples of 5 or 10. For near-5 detection, proximity is de-
fined as min(|n mod 10− 0|, |n mod 10− 5|, |n mod 10−
10|) ≤ 1, covering digits {0, 1, 4, 5, 6, 9}. For near-10 de-
tection, proximity is defined as min(|n mod 10−0|, |n mod
10− 10|) ≤ 1, covering digits {0, 1, 9}.

Data Generation: We generated 4,000 training samples
and 1,500 validation samples per condition. Numbers were
randomly sampled from [0, 9999] and embedded into de-
scriptive templates. Two template sets were used:

• Template A: “Consider the number {n}.”, “Let x = {n}.”,
“Value: {n}”, etc.

• Template B: “Here is {n}.”, “We study the scalar {n}.”,
“Write down {n} and continue.”, etc.

Numbers were presented in two surface forms: digits
(“25”) and words (“twenty five”) using the num2words li-
brary with normalization (hyphens and commas removed,
lowercase).

Training Protocol: We used a two-stage streaming ap-
proach to handle memory constraints:

1. Standardization: StandardScaler fitted per layer using
partial fit() with mean centering disabled

2. Classification: SGD logistic regression with optimal
learning rate, L2 regularization (α = 10−4), and single-
epoch updates

C.2 Evaluation Methodology
Cross-Template Validation: Three validation sets tested
different robustness aspects: 1.Training: Template A + dig-

its; 2. Validation A: Template B + digits (template robust-
ness); 3. Validation W: Template A + words (cross-modal
transfer).

Error Analysis: We analyzed error patterns at the best-
performing layer (highest accuracy) across distance buckets.
For near-5: distances 0, 1, 2+ . For near-10: distances 0-5
maintained separately. We also examined errors by round-
ing direction: -1 (round down closer), 0 (exact multiple), +1
(round up closer).

Layer Selection Rationale: We analyzed the best-
performing layer rather than layer averages because: (1) it
reveals models’ optimal proximity detection capabilities, (2)
it avoids noise from suboptimal layers that could mask gen-
uine patterns, (3) it aligns with interpretability goals of un-
derstanding whether models can learn proximity concepts.

Layer Sampling: We probed every layer (stride=1) for
comprehensive analysis, skipping only embedding layers
(layer 0).

Statistical Measures: Accuracy per layer, error rates by
distance/direction, best layer identification. Results aver-
aged over single runs with fixed random seeds (1337) for
reproducibility.

Appendix D. Causal Study
Due to compute constraints, each setting is run once us-
ing bootstrap samples (≤ 500 examples) drawn from both
the training set (CSV with question, solution, and answer
fields) and each calibration set. For every pruning propor-
tion, we reload the model (AutoModelForCausalLM,
bfloat16, device map=auto; Dream models are
wrapped for lm eval compatibility), apply the mask, and
evaluate performance using the EleutherAI LM Evalua-
tion Harness on user-specified tasks.

To manage compute, per-task evaluation is capped at
1,000 items, and prompts are truncated to 256 tokens. When
no lm eval tasks are provided, a lightweight multiple-
choice evaluator is used. For GSM8K, evaluation is limited
to 1,000 samples. For StreetMath-style multiple choice, we
treat a “good approximation” judgment as correct.

All results are saved per model, per task and per pruning
proportion in the specified results directory.

Appendix E. Layerwise Study
The experiments implement a two-stage pipeline that first
extracts layerwise diagnostics from transformer models on
mathematical reasoning corpora and then aggregates and vi-
sualizes these diagnostics across many prompts.

In the first stage, model-specific analysis scripts
(for example, Dream-v0-Instruct-7B, Qwen3-4B variants,
Mamba-GPT-3B, and Falcon-mamba-7B-Instruct) load a
Hugging Face model and tokenizer and evaluate it on a cho-
sen dataset split. The workflows support both the GSM8K
test split and a StreetMath test set. For each prompt, the
scripts request hidden states, and compute a suite of met-
rics for every layer. Intra-layer measurements include spec-
tral entropy and effective rank (Roy and Vetterli 2007) ob-
tained from singular-value spectra, activation entropy com-
puted from histogram estimates, the trace of the covari-

ance matrix as a proxy for Gaussian complexity, gradient
norms approximated by the variance of hidden activations,
logit-lens proxy scores, and attention entropy when atten-
tion weights are present. Inter-layer measurements quantify
how the representation changes from one layer to the next
through cosine similarity, L2 distance, and angular distance.
Each prompt therefore contributes a record containing these
per-layer vectors, along with metadata, to a JSON file. Due
to computational constraint, we limit each dataset to 1000
samples.

The second stage consolidates these per-prompt records.
The script reads a results JSON and computes the sam-
ple mean and the sample standard deviation across prompts
for every metric and for every layer index. Because the
raw results may mix series of slightly different lengths, the
aggregation is performed at the most common length ob-
served for each metric, ensuring that elementwise statistics
are well-defined and not dominated by outliers in shape.

Appendix F. Related Work
F.1 The Approximation Gap in Mathematical
Reasoning
Current mathematical reasoning research exhibits a system-
atic bias toward exact computation, creating a fundamental
blind spot in our understanding of numerical intelligence.
Zhou et al. (Zhou et al. 2024) demonstrated that LLMs
use specialized Fourier mechanisms for precise arithmetic,
while Yu and Ananiadou (Yu and Ananiadou 2024) identi-
fied localized attention heads for exact operations. Kahne-
man (Kahneman 2011)—adaptively reduces computational
effort when an approximation suffices. These findings sys-
tematically overlook cognitive flexibility, instead celebrating
models that can perform precise calculations while ignoring
whether they can engage in the contextually appropriate ap-
proximation that characterizes genuine mathematical under-
standing. These mechanistic insights, while valuable, repre-
sent a narrow conception of mathematical reasoning that pri-
oritizes precision over cognitive flexibility. Recent work by
Srivastava et al. on LMThinkBench (Srivastava et al. 2024)
reveals that models achieve high accuracy but at the cost
of unnecessarily complex reasoning paths; a pattern consis-
tent with systems that lack the cognitive control mechanisms
necessary for adaptive approximation. When models can-
not modulate their computational precision based on contex-
tual demands, they default to maximum effort regardless of
whether such precision is warranted or efficient. Highlight-
ing the gap between computational capability and efficient
reasoning.

F.2 Training Data Bias Toward Exact Computation
Research reveals systematic biases in mathematical reason-
ing training data that favor exact computation over flexi-
ble approximation strategies. Analysis of major mathemat-
ical training corpora shows a predominant focus on prob-
lems with exact, verifiable answers. Paster et al.’s Open-
WebMath dataset (Paster et al. 2023), containing 14.7B to-
kens of mathematical web content, consists primarily of fo-
rum discussions, educational materials, and reference pages

Figure 5: Layerwise Average Summary - Dream-v0-Instruct-7B on GSM8K

Figure 6: Layerwise Average Summary - Dream-v0-Instruct-7B on StreetMath

Figure 7: Layerwise Average Summary - Falcon-mamba-7B on GSM8K

Figure 8: Layerwise Average Summary - Falcon-mamba-7B on StreetMath

Figure 9: Layerwise Average Summary - mamba-gpt-3B on GSM8K

Figure 10: Layerwise Average Summary - mamba-gpt-3B on StreetMath

where mathematical problems are presented with definitive
solutions rather than approximation strategies. Similarly,
Lewkowycz et al.’s Minerva training corpus (Lewkowycz
et al. 2022) drew from 118GB of scientific papers and math-
ematical web content that emphasizes precise computational
procedures.

This training bias toward exact answers has measurable
consequences for model behavior. The pattern-matching hy-
pothesis is supported by Mirzadeh et al.’s GSM-Symbolic
analysis (Mirzadeh et al. 2024), which reveals that model
performance degrades significantly when numeric values
are perturbed, indicating over-reliance on specific number
patterns rather than general reasoning principles. Shao et
al. (Shao et al. 2024) explicitly acknowledge this issue, not-
ing that their model exhibits ”data selection bias in pre-
training and fine-tuning” that leads to weaker performance
on certain problem types.

F.3 Overthinking and Computational Inefficiency
Recent work has documented a troubling pattern: LLMs
consistently overthink mathematical problems, generating
verbose reasoning chains when simpler approaches would
suffice. Ding et al. (Ding et al. 2024b) proposed ”break the
chain” strategies to reduce token consumption, demonstrat-
ing that models maintain performance even when forced to
skip intermediate steps. Zhao et al.’s work on efficiency en-
hancement in reasoning models (Zhao et al. 2024) suggests
this isn’t just a performance issue but a fundamental archi-
tectural limitation.

F.4 Mechanistic Evidence for Competing Circuits
Mechanistic interpretability studies reveal distinct and over-
lapping neural pathways for exact versus approximate rea-
soning. Christ et al. (Christ et al. 2025a) demonstrated that
math-specific parameters can be isolated through structured
pruning. Skean et al. (Skean et al. 2025a) conducted a layer-
by-layer analysis, revealing that different types of mathe-
matical operations are processed at different depths in trans-
former architectures. Sun et al. (Sun et al. 2025) probed
arithmetic errors in language models and identified system-
atic patterns in computational failures, while Saynova et
al. (Saynova et al. 2025) investigated whether mathematical
reasoning relies on fact recall, heuristics, or pure computa-
tion, finding evidence for multiple pathways depending on
problem complexity and context.

F.5 Numerical Representation and Geometric
Understanding
Understanding how LLMs represent numerical information
has been a focus of recent mechanistic interpretability work.
Levy and Geva (Levy and Geva 2024) demonstrated that
language models encode numbers using individual circu-
lar representations for each digit in base 10, providing geo-
metric understanding of numerical processing. Kantamneni
and Tegmark (Kantamneni and Tegmark 2025) extended this
work by showing that language models use trigonometric
functions in their internal computations, suggesting sophisti-
cated geometric representations of numerical concepts. Zhu

et al. (Zhu et al. 2025) investigated how language models en-
code numeric magnitude, while Shah et al. (Shah et al. 2023)
examined magnitude comparison tasks, finding that models
develop specialized circuits for determining relative numer-
ical size. These representational studies suggest that current
numerical encodings may be too rigid to support flexible ap-
proximation strategies.

F.6 Architectural Differences in Approximation
Capacity
Different LLM architectures exhibit varying capabilities for
flexible reasoning, though systematic evaluation of approx-
imation strategies across architectures remains limited. Li
et al. (Li et al. 2025) explored diffusion models for lan-
guage tasks, demonstrating their application to text gen-
eration, though their mathematical reasoning capabilities,
particularly regarding approximation versus precision trade-
offs, have not been extensively studied.

The architectural constraints that affect mathematical rea-
soning extend beyond approximation to fundamental infor-
mation processing capabilities. Jelassi et al. (Jelassi et al.
2024) demonstrated that transformers can theoretically copy
strings of exponential length while state-space models are
fundamentally limited by their fixed-size latent state, sug-
gesting that the rigid memory constraints that impede copy-
ing may also constrain flexible approximation strategies.
These findings indicate that current architectural paradigms
may systematically differ in their capacity for the kind of
cognitive flexibility that characterizes human mathematical
reasoning.

This architectural variation highlights a broader gap in
our understanding of how different model designs affect
the ability to engage in contextually appropriate approxi-
mation—a crucial aspect of mathematical intelligence that
remains largely unexplored across the spectrum of current
LLM architectures.

F.7 Augmentation Strategies and Alternative
Approaches
Recognizing the limitations of pure language model ap-
proaches to arithmetic, researchers have proposed several
augmentation strategies. Tool-augmented approaches rep-
resent the dominant paradigm, where models learn to in-
voke external calculators, symbolic solvers, or knowledge
bases. Schick et al. (Schick et al. 2023) introduced Tool-
former, which teaches LLMs to use tools through self-
supervised learning, while Das et al. (Das et al. 2024) devel-
oped MathSensei, combining web search, Python execution,
and Wolfram-Alpha integration for comprehensive mathe-
matical reasoning support.

Program-aided reasoning offers another promising direc-
tion. Gao et al. (Gao et al. 2023) proposed Program-Aided
Language models (PAL), which generate Python programs
as intermediate reasoning steps, while Chen et al. (Chen
et al. 2022) introduced Program-of-Thoughts prompting to
separate computation from reasoning. These approaches ef-
fectively delegate precise calculations to programming envi-
ronments while preserving natural language reasoning.

At the architectural level, Dietz and Klakow (Dietz and
Klakow 2025) introduced the Integrated Gated Calculator
(IGC), which emulates a calculator directly on the GPU,
achieving 98-99% accuracy on arithmetic tasks in a single
iteration without external tools. Lauter et al. (Lauter et al.
2024) investigated machine learning approaches for modular
arithmetic, demonstrating specialized techniques for specific
algebraic structures, though with limited success that high-
lights the inherent difficulty of certain mathematical opera-
tions.

While these augmentation strategies successfully address
computational limitations and improve exact calculation ca-
pabilities, they do not resolve the fundamental issue our
work identifies: the inability to engage in contextually ap-
propriate approximation when exact computation is unnec-
essary. Current approaches actually reinforce the precision
bias by providing increasingly sophisticated mechanisms for
exact calculation, potentially exacerbating the cognitive in-
flexibility that characterizes current mathematical reasoning
systems.

F.8 Pattern Recognition vs. Algorithmic
Understanding
A fundamental question concerns whether models learn gen-
uine algorithms or rely on sophisticated pattern recogni-
tion. Nikankin et al. (Nikankin et al. 2025) examined ”arith-
metic without algorithms,” investigating whether models
can perform mathematical reasoning without explicit al-
gorithmic procedures, suggesting that models may rely on
pattern recognition and approximation strategies that dif-
fer fundamentally from formal mathematical computation.
Gambardella et al. (Gambardella et al. 2024) investigated
whether language models perform hard arithmetic by ex-
amining their computational processes, while Lovering et
al. (Lovering et al. 2024b) examined language model prob-
abilities in mathematical contexts, providing insights into
how models represent uncertainty and confidence.

F.9 The Need for Approximation-Aware Evaluation
Current mathematical reasoning evaluation focuses exclu-
sively on exact computation, creating a fundamental evalua-
tion gap that obscures crucial aspects of mathematical intel-
ligence. While Ahn et al.’s comprehensive survey (Ahn et al.
2024) emphasizes that ”accuracy shouldn’t be the sole met-
ric” for evaluating mathematical reasoning and highlights
the need for more robust evaluation beyond final-answer cor-
rectness, existing benchmarks continue to reward only pre-
cise answers regardless of contextual appropriateness.

This evaluation paradigm fails to assess whether LLMs
can engage in the kind of flexible, context-appropriate ap-
proximation that characterizes human mathematical cogni-
tion in everyday settings. The gap is significant because it
touches on fundamental questions about the nature of ma-
chine intelligence and whether current LLMs genuinely un-
derstand mathematical concepts or merely implement so-
phisticated pattern matching. Without evaluating approxi-
mation capabilities, we cannot determine if models possess
the cognitive flexibility necessary for human-like mathemat-
ical reasoning in diverse contexts.

Appendix G. Limitations
While our work provides new insights into the approxima-
tion behavior of LLMs, several limitations remain. First,
the StreetMath dataset contains only 1,000 problems, which
may not capture the full variety of real-world estimation
tasks. Second, our evaluation focuses on a specific set of
open-source models; results may not generalize to larger
proprietary systems or other architectures. Third, our anal-
ysis is restricted to numerical approximation in simple arith-
metic settings. Extensions to more complex mathematical
domains are left for future work.

Acknowledgments
We acknowledge the use of AI tools (ChatGPT, Codex) for
text proofreading, formatting assistance and scripting.

References
Ahn, J.; Verma, R.; Lou, R.; Liu, D.; Zhang, R.; and Yin, W.
2024. Large Language Models for Mathematical Reasoning:
Progresses and Challenges.
Alain, G.; and Bengio, Y. 2016. Understanding interme-
diate layers using linear classifier probes. arXiv preprint
arXiv:1610.01644.
Belinkov, Y.; and Glass, J. 2019. Analysis methods in neural
language processing: A survey. Transactions of the Associ-
ation for Computational Linguistics, 7: 49–72.
Chen, W.; Ma, X.; Wang, X.; and Cohen, W. W. 2022. Pro-
gram of Thoughts Prompting: Disentangling Computation
from Reasoning for Numerical Reasoning Tasks. arXiv
preprint arXiv:2211.12588.
Christ, B. R.; Gottesman, Z.; Kropko, J.; and Hartvigsen,
T. 2025a. Math Neurosurgery: Isolating language models’
math reasoning abilities using only forward passes. arXiv
preprint.
Christ, B. R.; Gottesman, Z.; Kropko, J.; and Hartvigsen,
T. 2025b. Math Neurosurgery: Isolating Language Models’
Math Reasoning Abilities Using Only Forward Passes.
CobraMamba. 2023. Mamba-GPT-3B. https://huggingface.
co/CobraMamba/mamba-gpt-3b. Hugging Face model card;
Apache-2.0 license.
Das, D.; Banerjee, D.; Manocha, S.; and Baral, A.
2024. MATHSENSEI: A Tool-Augmented Large Lan-
guage Model for Mathematical Reasoning. arXiv preprint
arXiv:2402.17231.
De Brauwer, J.; Verguts, T.; and Fias, W. 2006. The repre-
sentation of multiplication facts: Developmental changes in
the problem size, five, and tie effects. Journal of Experimen-
tal Child Psychology, 94(1): 43–66.
Dehaene, S. 2011. The number sense: How the mind creates
mathematics. OUP USA.
Dietz, M.; and Klakow, D. 2025. IGC: Integrating a Gated
Calculator. arXiv preprint.
Ding, M.; Liu, H.; Fu, Z.; Song, J.; Xie, W.; and Zhang, Y.
2024a. Break the Chain: Large Language Models Can be
Shortcut Reasoners.

Ding, Y.; et al. 2024b. Break the Chain: Large Language
Models with Heuristics. arXiv preprint.
Fiske, S. T.; and Taylor, S. E. 1991. Social Cogni-
tion. McGraw-Hill Series in Social Psychology. New York:
McGraw-Hill, 2nd edition.
Gambardella, L.; et al. 2024. Language Models Do Hard
Arithmetic. arXiv preprint.
Gao, L.; Madaan, A.; Zhou, S.; Alon, U.; Liu, P.; Yang, Y.;
Callan, J.; and Neubig, G. 2023. PAL: Program-aided Lan-
guage Models. International Conference on Machine Learn-
ing.
Goldberg, Y. 2016. A primer on neural network models for
natural language processing. Journal of Artificial Intelli-
gence Research, 57: 345–420.
Hewitt, J.; and Manning, C. D. 2019. A structural probe for
finding syntax in word representations. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 4129–
4138.
Jelassi, S.; Brandfonbrener, D.; Kakade, S. M.; and Malach,
E. 2024. Repeat After Me: Transformers are Better than
State Space Models at Copying. In International Conference
on Machine Learning, 21502–21521.
Jiang, D. L.; Ye, S.; Zhao, L.; and Gu, B. 2025. Do Re-
ductions in Search Costs for Partial Information on Online
Platforms Lead to Better Consumer Decisions? Evidence
of Cognitive Miser Behavior from a Natural Experiment.
isre.2022.0432.
Kahneman, D. 2011. Thinking, fast and slow. Farrar, Straus
and Giroux.
Kantamneni, S.; and Tegmark, M. 2025. Language Models
Use Trigonometric Functions. arXiv preprint.
Lauter, K.; et al. 2024. Machine learning for modular arith-
metic. arXiv preprint.
Levy, A. A.; and Geva, M. 2025. Language Models En-
code Numbers Using Digit Representations in Base 10. In
Proceedings of the 2025 Conference of the Nations of the
Americas Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 2: Short
Papers), 385–395.
Levy, O.; and Geva, M. 2024. Language Models Encode
Numbers. arXiv preprint.
Lewkowycz, A.; Andreassen, A.; Dohan, D.; Dyer, E.;
Michalewski, H.; Ramasesh, V.; Slone, A.; Anil, C.; Schlag,
I.; Gutman-Solo, T.; et al. 2022. Solving quantitative rea-
soning problems with language models. Advances in Neural
Information Processing Systems, 35: 3843–3857.
Li, J.; et al. 2025. Diffusion Language Models. arXiv
preprint.
Lovering, C.; Krumdick, M.; Lai, V. D.; Ebner, S.; Kumar,
N.; Reddy, V.; Koncel-Kedziorski, R.; and Tanner, C. 2024a.
Language model probabilities are not calibrated in numeric
contexts. arXiv preprint arXiv:2410.16007.
Lovering, C.; et al. 2024b. Language Model Probabilities.
arXiv preprint.

McCoy, R. T.; Pavlick, E.; and Linzen, T. 2019. Right for
the wrong reasons: Diagnosing syntactic heuristics in natural
language inference. arXiv preprint arXiv:1902.01007.

Mirzadeh, I.; Alizadeh, K.; Shahrokhi, H.; Tuzel, O.; Ben-
gio, S.; and Farajtabar, M. 2024. GSM-Symbolic: Un-
derstanding the Limitations of Mathematical Reasoning in
Large Language Models. Apple; arXiv:2410.05229.

Moyer, R. S.; and Landauer, T. K. 1967. Time required
for judgements of numerical inequality. Nature, 215(5109):
1519–1520.

Nikankin, A.; et al. 2025. Arithmetic Without Algorithms.
arXiv preprint.

Paster, K.; Santos, M. D.; Azerbayev, Z.; and Ba, J. 2023.
OpenWebMath: An Open Dataset of High-Quality Mathe-
matical Web Text. arXiv preprint arXiv:2310.06786.

Rai, D.; Zhou, Y.; Feng, S.; Saparov, A.; and Yao, Z.
2025. A Practical Review of Mechanistic Interpretability
for Transformer-Based Language Models.

Roy, O.; and Vetterli, M. 2007. The effective rank: A mea-
sure of effective dimensionality. In 2007 15th European Sig-
nal Processing Conference, 606–610. IEEE.

Saynova, A.; et al. 2025. Fact Recall, Heuristics or Pure
Computation. arXiv preprint.

Schick, T.; Dwivedi-Yu, J.; Dessà, R.; Raileanu, R.; Lomeli,
M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023.
Toolformer: Language Models Can Teach Themselves to
Use Tools. arXiv preprint arXiv:2302.04761.

Shah, R.; et al. 2023. Numeric Magnitude Comparison.
arXiv preprint.

Shao, Z.; Wang, P.; Zhu, Q.; Xu, R.; Song, J.; Zhang, M.; Li,
Y. K.; Gong, Y.; Jin, Z.; Wang, X.; et al. 2024. DeepSeek-
Math: Pushing the Limits of Mathematical Reasoning in
Open Language Models. arXiv preprint arXiv:2402.03300.

Skean, M.; et al. 2025a. Layer by Layer: Uncovering Math-
ematical Reasoning. arXiv preprint.

Skean, O.; Arefin, M. R.; Zhao, D.; Patel, N.; Naghiyev, J.;
LeCun, Y.; and Shwartz-Ziv, R. 2025b. Layer by Layer:
Uncovering Hidden Representations in Language Models.
Version: 2; arXiv:2502.02013.

Srivastava, G.; Hussain, A.; Srinivasan, S.; and Wang, X.
2024. LMThinkBench: Towards Basic Math Reasoning and
Overthinking in Large Language Models.

Sun, X.; et al. 2025. Probing for Arithmetic Errors in Lan-
guage Models. arXiv preprint.

Team, Q. 2025. Qwen3 Technical Report.

Teerapittayanon, S.; McDanel, B.; and Kung, H.-T. 2016.
Branchynet: Fast inference via early exiting from deep neu-
ral networks. In 2016 23rd international conference on pat-
tern recognition (ICPR), 2464–2469. IEEE.

Ye, J.; Xie, Z.; Zheng, L.; Gao, J.; Wu, Z.; Jiang, X.; Li, Z.;
and Kong, L. 2025. Dream 7B: Diffusion Large Language
Models. arXiv preprint arXiv:2508.15487.

Yu, Z.; and Ananiadou, S. 2024. Interpreting Arithmetic
Mechanism in Large Language Models through Compara-
tive Neuron Analysis. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 3293–3306.
Zhao, W.; Guo, J.; Deng, Y.; Sui, X.; Hu, Y.; Zhao, Y.; Che,
W.; Qin, B.; Chua, T.-S.; and Liu, T. 2024. Exploring and
Exploiting the Inherent Efficiency within Large Reasoning
Models for Self-Guided Efficiency Enhancement.
Zhou, T.; Fu, D.; Sharan, V.; and Jia, R. 2024. Pre-trained
Large Language Models Use Fourier Features to Compute
Addition. arXiv preprint arXiv:2406.03445.
Zhu, W.; et al. 2025. Language Models Encode the Concept
of Numeric Magnitude. arXiv preprint.
Zuo, J.; Velikanov, M.; Rhaiem, D. E.; Chahed, I.; Belkada,
Y.; Kunsch, G.; and Hacid, H. 2024. Falcon Mamba: The
First Competitive Attention-free 7B Language Model.

