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Abstract

Automated image categorization is vital for computational social sci-
ence, particularly considering the rise of visual content on social media, as
it helps the identification of emerging visual narratives in online debates.
However, the methods currently used in the field to represent images nu-
merically are unable to fully capture their connotative meaning and do
not produce interpretable clusters. In response to these challenges, we
evaluate an approach based on the automated generation of intermediate
textual descriptions of the input images with respect to the connotative
semantic validity of the generated clusters and their interpretability. We
show that both aspects are improved over the currently typical clustering
approach based on convolutional neural networks.

keywords: Image clustering, Vision Large Language Models, Semantic cluster-
ing, Connotation, Interpretability

1 Introduction

Automated image categorization represents a valuable analytical tool in the field
of computational social science [1, 2, 3]. The visual turn in contemporary social
media [4, 5, 6] has further increased the importance of computational analysis
and the clustering of visual content for a wide range of research that leverage
online social data [7, 8, 9, 10], including social media analysis [11, 12, 13, 14, 1].

∗L.A., L.R., M.M., M.P. designed the study. L.A., M.M. implemented the clustering
pipeline. L.R., A.S. performed the qualitative validation. All authors have revised and ap-
proved the manuscript.
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In this context the automated annotation and categorization of visual content
can be used to better understand a wide range of collective patterns including
the proliferation of misinformation [15, 16] and the development of polarization
dynamics [17, 18]. These and other potential applications have motivated the
development of computational data analysis pipelines for visual content in social
research [19, 20, 1, 21, 22].

Nevertheless, the state-of-the-art techniques used for image clustering still
exhibit considerable limitations [23]. In particular, most traditional approaches
tend to concentrate on object detection, succeeding in recognizing objects or
patterns but potentially disregarding broader contextual and relational dynam-
ics within pictures [24]. This implies that spatial relationships among visual
elements and the external knowledge needed to interpret the image are ne-
glected, making it difficult to go beyond its denotative representation [25, 26].
These limitations are more and more relevant considering the prominent role
that internet memes [27, 28] and similar types of complex hybrid visual commu-
nication play in contemporary online social dynamics and political participation
[29].

In response to these limitations, researchers have developed the concept of
semantic clustering. Semantic clustering refers to the attempt to include as
elements for the clustering both denotative aspects, such as the presence of spe-
cific objects, and connotative aspects, to capture the actual social meaning of
what is represented [30]. The concept is exemplified in Figure 1. It has fre-
quently been explored in the data science literature, and a variety of strategies
to incorporate semantics into visual clustering have been proposed over time
[31, 32, 33, 27]. Earlier studies focused on employing images’ collateral textual
information (such as captions or existing textual descriptions associated with a
given image) along with low-level visual features in image clustering [31]. The
reliance of this approach on the presence of textual annotations, though benefi-
cial, remains a limitation, given the inconsistent availability of detailed textual
metadata for all pictures and the fact that text and images may carry different
meanings in online communication. Other researchers have attempted to derive
semantic meanings from sets of visual items through low-level variables such
as the color layout of the images and MPEG-7 color-structure descriptors [32].
However, while this approach was effective for preliminary screening tasks in
image retrieval, it proved inadequate for achieving accurate semantic clustering
[32]. Recent work attempts to integrate established methods such as Bag of Vi-
sual Words (BoVW) into the clustering pipeline, leading to an approach called
Bag of Visual Phrases (BoVP), which effectively identifies dominant visual pat-
terns in image collections while also connecting objects to their meanings and
addressing their spatial relationships [33]. However, since it prioritizes dom-
inant visual cues, this kind of approach might obscure elements that are less
prominent but still significant for identifying visual narratives, particularly in
the context of political analysis. For example, in the picture of a collective
event like a political rally, approaches based on BoVP may not prioritize small
and diverse visual elements such as symbols, party logos, or specific banners.
This may in turn overlook significant differences between apparently similar vi-
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Figure 1: Example of two images showing denotative difference but connotative
similarity that should be clustered together in semantic clustering.

sual representations that actually refer to disparate socio-political subcultures,
collective actors, or claims. An alternative approach is the Semantic-Enhanced
Image Clustering (SIC) method [24], employing the CLIP neural network model,
pre-trained on a large dataset of image-text pairs, to convert both pictures and
their textual label into high-dimensional vectors, establishing a multi-modal
embedding space [34]. In this case, these vectors are projected into a semantic
space constructed from a refined list of nouns from the Wordnet lexical database
[24, 35]. With this approach, SIC aims at categorising images based on their
semantic similarity, harnessing CLIP’s ability to model image-text relationships
and the semantic variations captured by specific nouns in WordNet [24]. SIC
methodology, leveraging CLIP’s multimodal capabilities, may enable improve-
ment in understanding subtle connections between visual elements within im-
ages [36]. However, this clustering approach still leans towards explicit elements
characterizing the pictures, which might be inadequate when the goal shifts from
mere clustering based on visual structures to categorizing images based on their
implicit semantic meanings, symbolic representations and subtext that may in-
stead be captured by LLMs’ descriptive potential to capture latent contextual
nuances within pictures [37, 38, 39]. In addition, the direct translation of im-
ages to feature vectors, whose individual elements are not directly associated to
specific concepts as it is instead the case in word-based representations of text,
hinders interpretability.

In this context, we propose to address these limitations and further develop
the state of the art of connotative semantic and interpretable clustering of vi-
sual content for social research, by leveraging the visual capabilities of recent
large multimodal models [40]. Large Language Models with visual capabilities
(VLLMs) have been able to identify subtle nuances and contextual clues [41, 42]
and recent extensive work shows the remarkable capabilities of contextual un-
derstanding offered by these models [43]. Therefore, we can use VLLMs to
produce textual descriptions of the input images, specifically asking to focus
on connotative elements. This then makes it possible to compute the clusters

3



Visual 
content

texts

vectors

clusters

describe reduce clusterembed

vectors

embed

vectors

reduce cluster

vectors

VLLM

CNN

clusters

describe

labels

Figure 2: Pipeline

(or other summaries of the input images) working directly with the text. We
compare the semantic quality of such clustering with the semantic quality of
the clustering obtained using pretrained Convolutional Neural Networks (CNN)
[1], that are commonly used in the recent literature on image clustering for the
social sciences and that have shown state-of-the-art performance on the same
data used in our experiments [1]. Differently from previous work, we assess
semantic quality both with respect to the denotative and connotative similarity
of images included in the same or different clusters.

In particular, we address the following research questions:

RQ1 Can a VLLM-based image clustering pipeline improve the connotative
semantic validity of clusters compared with a CNN-based pipeline?

RQ2 Are the results obtained with a VLLM-based image clustering pipeline
interpretable by the end-user?

2 Materials and methods

Figure 2 shows the two pipelines tested in this paper. The current mainstream
approach relies on a CNN trained on an image recognition task to extract vi-
sual features (S2), followed by dimensionality reduction (S3) and clustering (S4)
steps. Here we introduce Step 1 with the generation of textual descriptions us-
ing a VLLM (S1), followed by a textual embedding (S2). We also leverage the
text produced in this phase to add an additional description step (S5) that in-
creases the overall interpretability of the result. We note how the two parts of
the pipeline that are different from the CNN-based pipeline are not in them-
selves new in the computer science literature [44]; we discuss the different angles
explored by this study in the conclusion.

As a CNN we use VGG16, which has been shown to work well on the data
used in this paper and so provides a strong baseline for comparison [1]. Other
CNNs have also been tried, as reported in the appendix.
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As a VLLM we use OpenAI’s gpt-4-turbo. We note that some open source
VLLMs also exist at the time of writing, e.g. LLaVA [45] and BLIP [46]. How-
ever the objective of this paper is not to compare alternative models to see
what works best (which would also require a different experimental setup), but
whether this type of models can improve connotative clustering. Therefore, we
chose gpt-4-turbo as a state-of-the-art model providing fast executions if com-
pared with open source models run over commodity hardware. As a prompt we
used: “Describe the connotative meaning of this image, in one paragraph”. We
did not set model parameters (e.g., temperature), to test a default behavior, but
manually checked that the generated texts provided good representations of the
images instead. The only specific instruction we added (“in one paragraph”) is
used to generate texts that are not too short (so that there is space to provide a
connotative description, mentioning what meaning the image conveys) and not
too long (so that the model does not deviate from our instructions). We note
that the model parameter limiting the number of tokens could not be used for
this, as it resulted in truncated text.

To generate textual embeddings we used BERT (model: all-MiniLM-L6-v2),
which is commonly used being open and having shown high accuracy in several
studies. Given our research questions, we only need a good model (which we
can evaluate downstream in the pipeline looking at the cluster results), as our
objective is not to compare the accuracy of different text embedding models.
We have however also tested the OpenAI text-embedding-3-small model, which
has approximately the same accuracy of the large version of the same model
while being significantly smaller (and thus cheaper and more energy-efficient).
This does not lead to significant differences in our results; we report the details
in the appendix.

Several dimensionality reduction methods exist, and we have no strong theo-
retical reasons to expect some to work better than others. Therefore, we tested
one approach that preserves distances (UMAP) and a classical PCA, both for
different parameter settings. For UMAP we tested 5 and 10 components, and
5, 15, and 30 nearest neighbors (for a total 6 settings), for PCA we tested 5, 10,
and 20 components, and preserving 80% variability (4 settings).

As a clustering algorithm we used HDBSCAN, for three main reasons. First,
it does not assume globular clusters or clusters of similar sizes, which are not
guaranteed to be produced by UMAP. Second, it does not require to decide the
number of clusters in advance. Third, it removes outliers, which is a reasonable
choice for this study: our evaluation is focused on the generation of embeddings,
and using a clustering method forcing all data points to belong to one cluster
would make it difficult to discern whether a wrongly clustered image very differ-
ent from the rest is a result of the embedding step, or if the embedding indeed
clearly separated the image from the rest but the clustering method forced the
image to be clustered anyway. HDBSCAN requires to specify the minimum
cluster size. We argue that to be analytically valuable the minimum cluster
size should be large enough, not to create too many clusters and not to create
non-generalizing clusters. It should also not be too large, not to miss interesting
clusters or to forcefully merge semantically diverse clusters. The specific value
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depends on the research design, which implies that it should be optimized for
specific empirical studies. Here we test 50, 100, and 200.

The data used in the experiments consists of 11873 images used in climate
change communication [47].

Semantic and denotational validity

To evaluate if the VLLM-based approach creates higher-quality semantic clus-
tering than the existing state of the art we adapt the cluster quality measure
defined by [48]. In the original version, cluster quality measures the extent to
which intracluster similarities outdistance intercluster similarities.

In this paper we split the similarity concept into denotative similarity, in-
dicating the extent to which the images represent the same or similar visual
elements, and connotative similarity, indicating the extent to which the two im-
ages refer to the same social meaning. In this way, for each clustering we can
produce two scores assessing the extent to which they represent respectively
denotative and connotative similarities.

We randomly drew 500 pairs of images and asked expert human coders (un-
aware if the images were sampled from the same cluster of from different clusters)
to rate the denotative and connotative similarity of the images within each pair
on a three-point scale: (1) unrelated, (2) loosely related, (3) closely related. In
this paper we respectively assign numerical values 0, 1, and 2 to these three
classes. Then, we compute the average score ss for same-cluster pairs, and the
average score sd for different-cluster pairs. The final score is ss − sd, ranging
from -2 to 2 and with expected value 0 for random assignments. The evaluation
developed in three phases. First the coders rated denotative and connotative
clustering quality for 250 pairs reaching an intercoder agreement measured with
Krippendorff’s α of .55 for the denotative scores and of .56 for the connotative
scores. Then the coders discussed their differences during a consensus session
and reached an agreement for all the scores. Then the coders individually as-
signed scores to the remaining 250 pairs and a new intercoder agreement was
measured (α .81 for the denotative scores and .71 for the connotative scores).
After that a new consensus session was held and consensus score was obtained
for all the 500 pairs. We have also computed pair-counting F1-measure, which
highlights the same trends in the results.

For this experiment, we only considered results where at least 50 pairs of
manually labeled images were included in the same cluster and at least 50 pairs
of manually labeled images were included in different clusters. This is not
necessarily the case for all clusterings, because for 6 images we could not generate
a text description and because some images are not included in any cluster
but labeled as outliers. For example, the best clustering with respect to the
connotative quality score labels 4027 images as outliers, leading to 82 same-
cluster and 131 different-cluster pairs of images.
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Interpretability

LLMs and more in general over-parametrized models have often been labeled as
black boxes. However, we note that here we are interested in the interpretabil-
ity of the clustering, which does not necessarily require to explain the models
generating textual descriptions or embeddings, as argued in [49].

To assess the interpretability of the VLLM-based approach, we produced
a description of each cluster by joining the descriptions of all images in the
cluster and returning the k terms with the highest TF-IDF score. This is a
common procedure in information retrieval, also available in commonly used
text clustering software packages1. To reduce the number of terms and make
the descriptions more compact, we removed terms not providing topic-specific
meanings, such as conveys and suggests. Then we tested to what extent the
descriptions corresponded to the clusters. To do so, we randomly selected sets
of α images, where each set only contained images from the same cluster, and
checked how often a human evaluator could correctly match a set with the
explanation assigned by the algorithm. We also tested reliability, using three
evaluators.

The reason for using α > 1 is that we assume some images can be clustered
by mistake. The fact that such images cannot be matched to the descriptions
is not a sign of low interpretability, but a mistake in clustering that is already
assessed as part of the semantic and denotational validity.

3 Results

3.1 Connotative and denotative clustering quality

Figure 3 shows a quality score for denotative (A) and connotative (B) clus-
tering for the proposed VLLM-based strategy (using GPT-4-turbo as a specific
model) and for the CNN-based clustering (using VGG16). This measure, defined
in [48] for a generic similarity function and here differentiated into denotative
and connotative similarities, is the difference between the average similarity of
intra-cluster pairs of images and the average similarity of inter-cluster pairs
of images, from a sample of pairs manually annotated (see the details in the
methods section). Values range between -2 and +2, with 0 indicating a random
clustering. Per each clustering strategy we show the scores per different val-
ues of the minimum cluster size parameter, with each boxplot summarizing the
different scores obtained with multiple parameters for dimensionality reduction
performed using UMAP [50].

The data show a higher quality of connotative clustering for the VLLM-
based approach regardless of the minimum cluster size even if larger minimum
cluster size degrades the performance. The quality of the connotative clustering
obtained by the CNN-based approach is overall stable and it is not clearly
affected by the minimum cluster size. The reason why the minimum cluster

1https://github.com/MaartenGr/BERTopic
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(a) Connotative clustering quality

0.00

0.25

0.50

0.75

1.00

50 100 200
Min. Cluster Size

Q
ua

lit
y 

S
co

re
 −

 D
en

ot
at

iv
e 

C
lu

st
er

in
g

Model GPT−4−Turbo VGG

(b) Denotative clustering quality

Figure 3: Clustering quality score for connotative (Figure 3a) and denotative
(Figure 3b) clustering for VLLM (gpt-4-turbo) and CNN (VGG16). We visu-
alize a boxplot to report the results for different strategies of dimensionality
reduction.

size has such a profound impact on the connotative clustering quality of the
VLLM-based approach seems to be that, forcing clusters to be larger, images
that look similar but are connotatively diverse can be clustered together (e.g.,
images of street protests about two different issues).

This can be clearly seen from comparing Figure 4a and 4b. The cluster
represented by the random sample in Figure 4a has a very precise focus on the
issue of plastics pollution in water, showing both sources and effect. The se-
mantically comparable cluster showed in Figure 4b has a less well defined focus,
mixing images referring to plastic pollution in the sea as well as on land together
with images more generally connected with waste disposal and pollution.

Within this perspective, as it is often the case in clustering exercises, the
right granularity of the concepts that should be clustered together is ultimately a
decision for the researchers to make. The higher clustering quality of the VLLM-
based approach is overall very clear peaking when the clustering algorithm allows
smaller clusters.

Looking at the quality score for denotative clustering, we observe how the
CNN-based approach is marginally better than the VLLM-based approach. This
is unsurprising, since CNNs have proven capable of clustering images represent-
ing the same objects or similar pictures while the VLLM-based method can
easily ignore shape similarity in favor of connotative semantic proximity. A
good example of this that also exemplifies the limits of a denotative clustering,
can be seen in Figure 5, where we compare a cluster obtained using the CNN-
based approach (Figure 5a) with a cluster obtained with the VLLM-based one
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(a) min. cluster size 50 (b) min. cluster size 200

Figure 4: An example of the impact of increasing minimum cluster size. Conno-
tative semantic coherence of clustering degrades when moving from a minimum
cluster size of 50 to a minimum cluster size of 200.

(a) CNN-based method (min.cl.size 50) (b) VLLM-based method (min.cl.size 50)

Figure 5: A cluster obtained by the CNN-based approach (a) compared with
a cluster obtained by the VLLM-based approach. The CNN-based approach
favors shapes and object similarity while the VLLM-based approach ignores the
visual difference between solar panels and wind turbines and produces a highly
coherent cluster around the concept of renewable energy.
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(Figure 5b). On the one side, it is clear how the CNN-based approach prioritizes
shapes, objects and colors producing a cluster that, while centered around the
visual representation of planet Earth, is semantically diverse (ranging from calls
for veganism to climate data). On the other side, the VLLM-based approach
clusters together the different shapes of wind turbines and solar panels with
text-only messages calling for a transition to renewable energies. The resulting
cluster is highly coherent from a connotative point of view at the expense of
denotative coherence.

Building on these results, we can confidently answer the first research ques-
tion. We demonstrate that a VLLM-based approach greatly improves the con-
notative semantic validity of visual clustering over a CNN-based approach from
both a quantitative and a qualitative point of view. We also observe how adopt-
ing a VLLM-based approach results into a loss in quality of denotational clus-
tering. This decline in denotational quality, albeit is small, is the side effect of
introducing a connotative approach over a purely denotative one.

3.2 Interpretability

To assess interpretability, we compute a description of each of the 32 clusters
generated by the best VLLM-based model, where each description is a list of
terms with high TF-IDF score. This is a common approach from the field of
information retrieval to summarize sets of texts, focusing on words that dif-
ferentiate between them. As an example, the explanation for the cluster in
Figure 5b is: energy, renewable, solar, wind, turbines, sustainable, message (see
the appendix for the list of all descriptions). Then we had three human eval-
uators tasked to assign a random sample of sets of images (five sets for each
cluster, three images per set, in total 160 sets) to the clusters only using the
descriptions.

The average Cohen’s Kappa between the three pairs of evaluators was .74.
We then considered the majority label, that was available for 150 of the 160
samples (in the ten cases with three different labels, we just took the label of
the first evaluator). As a result, the average precision and recall over all 32
clusters are, respectively, .83 and .83, with an overall accuracy of .83. As a
reference, the expected precision and recall for a cluster assuming equal cluster
sizes and random assignments is .03.

The values of precision and recall are not equally distributed across clusters
(the detailed values for all clusters are provided in the appendix). Respectively
18 and 19 of the clusters obtain perfect precision and recall. Differences in
cluster assignment are in some cases due to two clusters being semantically
close. The following are three clear cases:

• One cluster about conferences and one whose description includes terms:
youth, formal, and speaking.

• Two clusters about nature and water, with very similar terms (one having
life, boat, the other beauty, river).
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• One cluster about protests and one whose description includes terms:
youth, activism, and action.

• One cluster about climate change, nature, message and one with arctic
themes.

Merging these pairs of clusters with similar semantics, accuracy is increased to
.87.

This evaluation clearly demonstrates how, exploiting the intermediate tex-
tual representations, the obtained clusters are not only semantically meaningful
but also easily interpretable.

4 Conclusion

In this paper, we assessed the ability of a VLLM-based image clustering pipeline
to produce semantically meaningful and interpretable clusters. We did so by
defining denotative and connotative similarity functions, through manual la-
belling of randomly sampled pairs of images, and by generating textual de-
scriptions of the clusters and testing the ability of human evaluators to match
selected image samples with the right description, in both cases with the evalua-
tors not being aware of the clusters produced by the algorithms. This procedure
also allowed us to use these labels to evaluate and compare a large number of
settings for the two pipelines.

We note how the two parts of the pipeline that are different from the CNN-
based pipeline have already been used in the computer science literature. [44] re-
cently tested both the impact of clustering text descriptions and interpretability
based on TF-IDF keywords. The usage of TF-IDF keywords within text cluster-
ing is also a common task, implemented in popular libraries such as BERTopic2.
However, our research questions focus on new aspects that are fundamental for
application to social research. The evaluation in [44] assumes that methods
based on deep neural networks can map semantically similar images together,
and that a text-based approach can outperform one not based on text. However,
while not explicitly discussing this, the experiments in [44] focus on denotative
clustering, e.g., showing that a text-based approach is better at identifying and
explaining clusters about objects depicted in the images (bridges, churches,
towers, etc.). In this paper we differentiate between denotative and connotative
semantics, implying that the latter is what is often important in social research,
and show how the different approaches target one or the other. We also study
the concepts of semantics and interpretability in the context of social research,
which is visible in our validation based on online communication images and
alignment with human-defined and reliable notions of connotative and deno-
tative similarity (instead of, e.g., benchmark datasets used to train classifiers,
such as ImageNet and CIFAR), and also in the design of the interpretability
tests.

2https://github.com/MaartenGr/BERTopic
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The generation of intermediate image descriptions not only improves se-
mantic clustering and interpretability, which is the focus of the experimental
part of this paper, but also opens several new directions. First, based on the
evidence that a VLLM-based approach can provide a good representation of se-
mantic similarity, one could consider using topic modelling instead of an embed-
dig+clustering approach, e.g. LDA and its variations [51]. Directly testing topic
modelling would not have been methodologically appropriate for this paper,
where our objective was to perform a comparison with CNN-based pipelines.
To enable this comparison, we only replaced the CNN-based embedding step.
In this way, both pipelines would produce the same type of intermediate output
(embeddings), which could then be processed without changing the rest of the
pipeline. However, the fact that VLLMs enable other pipelines should also be
considered an advantage of using this general approach, and something to be
tested in future work.

Compared with typical topic models, the partitioning clustering approach
used in this paper is limited when the same image would fit multiple clusters
(mixed membership). While most of the images used in this paper do fit a
single cluster of the ones generated by the VLLM-based method, there are some
that would fit two or even more, e.g., an image with statistics about global
warming which could fit both the cluster on awareness of global warming and the
cluster on data and percentages. We note how these have made the validation
of interpretability harder, because images whose algorithmic cluster was correct
could also be correctly assigned to a different cluster by the human evaluator,
but still counted as a mistake in the validation measure.

Another interesting direction following from this study concerns prompt en-
gineering. In this paper we focus on semantic clustering and interpretability,
but one additional potential advantage of a VLLM-based method is flexibility,
as the same approach can in principle be used to generate descriptions highlight-
ing different types of visual cues, e.g., emotional and aesthetic. [44] suggests
how prompting can also be used to inject external knowledge. This requires a
different type of experimental setting. We note that in our experiments we also
tested alternative prompts (without prompt engineering) obtaining no conclu-
sive evidence, and thus suggesting a separate and focused experimental study
as future work.

When LLMs are used, something that should be checked is the possible bias
introduced in the analysis, both with respect to possible mistakes but also with
respect to possible preferences assigned to one instead of a different cluster.
This requires a specific analysis, but we anecdotally note that the VLLM-based
approach produced a cluster about culture, showing people wearing non-western
clothes. While this interpretation was aligned with the one of the human evalu-
ators, and thus did not result in lower validity scores, it is contextual and could
also well have not been aligned if using other models or evaluators. It is also
interesting to observe, again anecdotally, the prevalent arctic themes in a cluster
supposedly about nature and climate change.

In our experiments we did not post-process the outliers produced by the
clustering method, for example assigning (part of) them to the clusters. This
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would have introduced an additional variable, making it more difficult to con-
trol the experiments and not contributing to answering our research questions.
However, in studies where it is important to cluster everything that can be
clustered, for example to compute a more precise measure of prevalence of the
different visual themes, such a post-processing should be considered.

As a last important consideration, we should point out how our experiments
show relative improvements (with respect to CNN-based approaches) and also
good absolute performances, but the results are still not perfect in two regards.
First, while semantically more meaningful (assuming that we are often inter-
ested in connotative semantics), the produced clusters are still based on some
algorithmic choices that decrease the researcher’s control over the used semantic
similarity. One thing is to see that the clusters are meaningful, another thing is
to produce the clusters that the researcher would have liked to produce in the
absence of computational constraints. Second, there are still several mistakes
in the clusters, for example animals incorrectly identified as polar bears by the
VLLM or minor visual elements that gain semantic centrality (e.g., an image
of an activist eating candy from a bag representing penguins ended up being
clustered together with pictures showing the consequences of climate change
in the polar regions). Both issues suggest that, while in this paper we have
focused on a specific part of the image clustering pipeline, depending on the
research question we expect many applications of this pipeline to be followed
by (or intertwined with) interactive steps. Merging clusters, for example based
on semantic similarity as emerged in our experiments, or the removal of wrong
samples, are examples of these steps, which also require a thorough validation.
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A Alternative pipeline settings

We tested a variation of the parameters used in our main pipeline. To embed
the text, in addition to Bert we also used text-embedding-3-small, provided by
OpenAI, and a TF-IDF vectorization with a hyperparemeter for the number of
terms kept for each image (10, 20, and 30). To embed the images directly we
used three CNNs: VGG16 (which is the one for which we reported results in
the main paper), xception, and resnet50.

We also tested K-means as an alternative clustering algorithms with the same
range of parameters and dimensionality reduction strategies. The distribution
of quality scores for these alternatives is reported in Figure 6.

The violin plots show the distributions varying the parameters for clustering
and dimensionality reduction. For KMeans, we set the number of clusters to
7 (as for the best denotative clustering obtained using HDBSCAN), 15 (as an
intermediate value), and 32 (as for the best connotative clustering obtained using
HDBSCAN). For dimensionality reduction, as in the main paper, we preserved
5, 10, and 20 components, and the components explaining 80% of the variance,
for PCA, and 5 and 10 components for UMAP. For UMAP we also used 5, 15,
and 30 nearest neighbors.

B Interpretability

Table 1 shows the top TF-IDF terms for each of the 32 clusters obtained by
the pipeline with the best combination of parameters (UMAP: 10 components,
15 neighbors, HDBSCAN: 50 min cluster size), which is the one used to test
interpretability.

Table 2 shows the cluster assignment by the three human evaluators (con-
sensus) and by the pipeline, including 5 image sets per cluster in the validation
data with α = 3. Table 3 shows the corresponding precision and recall for each
cluster.
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Table 1: Cluster descriptions.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 5 5
1 4
2 5
3 5
4 5
5 4
6 5 2
7 5
8 1 5
9 5

10 5
11 2
12 5 1 1
13 1 4 1 1
14 1 5
15 4
16 2 5
17 5
18 5
19 1
20 5 1
21 5
22 3
23 1 3 1 1
24 3 3
25 5
26 5
27 2 1
28 4
29 2 4
30 1 5
31

Table 2: Confusion matrix for interpretability test. Rows: human assignment.
Columns: algorithmic assignment.
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(a) Connotative clustering quality
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(b) Denotative clustering quality

Figure 6: Kmeans Clustering Quality Score for connotative (Figure 6a) and
denotative (Figure 6b) clustering for various models, embedding strategies, and
dimensionality reduction methods. We visualize violin plots to report the results
for different dimensionality reduction parameters and minimum cluster size.

CL Pr Rec
0 0.50 1.00
1 1.00 0.80
2 1.00 1.00
3 1.00 1.00
4 1.00 1.00
5 1.00 0.80
6 0.71 1.00
7 1.00 1.00
8 0.83 1.00
9 1.00 1.00
10 1.00 1.00
11 1.00 0.40
12 0.71 1.00
13 0.57 0.80
14 0.83 1.00
15 1.00 0.80

CL Pr Rec
16 0.71 1.00
17 1.00 1.00
18 1.00 1.00
19 1.00 0.20
20 0.83 1.00
21 1.00 1.00
22 1.00 0.60
23 0.50 0.60
24 0.50 0.60
25 1.00 1.00
26 1.00 1.00
27 0.33 0.20
28 1.00 0.80
29 0.67 0.80
30 0.83 1.00
31 0.00 0.00

Table 3: Interpretability by cluster (precision and recall)
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