
Under review as a conference paper at ICLR 2024

GRASP: SIMPLE YET EFFECTIVE GRAPH
SIMILARITY PREDICTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph similarity computation (GSC) is considered one of the essential opera-
tions because of its wide range of applications in various fields. Graph Edit
Distance (GED) and Maximum Common Subgraph (MCS) are the most popular
graph similarity metrics. However, calculating exact GED and MCS is a complex
task that falls under the category of NP-hard problems. Consequently, state-of-
the-art methodologies learn data-driven models leveraging graph neural networks
(GNNs) for estimating GED and MCS values. A perceived limitation of these ap-
proaches includes reliance on computationally expensive cross-graph node-level
interaction components but to little avail. Instead of building up complicated com-
ponents, we aim to make the complicated simple and present GRASP, a simple
yet highly effective approach for GSC. In particular, to achieve higher expres-
siveness, we design techniques to enhance node features via positional encoding,
employ a graph neural network backbone with a gating mechanism and residual
connections, and develop a multi-scale pooling technique to generate meaning-
ful representations. We theoretically prove that our method is more expressive
and passes 1-WL test performance capabilities. Notably, GRASP is versatile in
accurately predicting GED and MCS metrics. In extensive experiments against
numerous competitors on real-world datasets, we demonstrate the superiority of
GRASP over prior arts regarding effectiveness and efficiency. The source code is
available at https://anonymous.4open.science/r/GraSP.

1 INTRODUCTION

A graph is a data structure to model relationships between objects. Graphs are ubiquitous in the
real world and have critical applications in bioinformatics, chemoinformatics, and social networks.
Calculating the similarity between graphs is a crucial operation with a range of subsequent ap-
plications, such as ranking related documents in information retrieval (Lee et al., 2008), disease
prediction in bioinformatics (Borgwardt & Kriegel, 2007), and code similarity detection (Li et al.,
2019). Graph Edit Distance (GED) (Bunke & Allermann, 1983) and Maximum Common Subgraph
(MCS) (Bunke & Shearer, 1998) are two popular graph similarity/distance metrics because they are
domain-agnostic. However, the computation of both GED and MCS is NP-hard (Zeng et al., 2009;
Liu et al., 2020), and in recent studies, computing the exact GED between graphs with more than
sixteen nodes is infeasible (Blumenthal & Gamper, 2020).

Methods for exact GED computation have mainly used the filter-verification framework with expo-
nential complexity, and recent work includes Kim et al. (2019); Kim (2020); Chang et al. (2020). In
order to reduce the computation cost, some traditional combinatorial approximation methods such as
Beam (Neuhaus et al., 2006), Hungarian (Riesen & Bunke, 2009) and VJ (Fankhauser et al., 2011)
have been proposed at a cost of accuracy drop. However, these methods have the complexity of
sub-exponential or cubic. In recent years, thanks to the powerful expressiveness of graph neural net-
works, several data-driven learning methods (Bai et al., 2019; Li et al., 2019; Bai et al., 2020; Ling
et al., 2023; Qin et al., 2021; Zhuo & Tan, 2022; Ranjan et al., 2022) have been proposed. These
methods have three main components, namely the node and graph embedding module, the cross-
graph node-level interaction module, and the similarity computation module. Most of these works
use the cross-graph node-level interactions, either explicitly or implicitly. However, this module
typically takes quadratic term time during offline training and online inference, and is expensive.

1

https://anonymous.4open.science/r/GraSP

Under review as a conference paper at ICLR 2024

In this paper, we present GRASP, a method that is simple but effective to grasp the intrinsic repre-
sentations for GRAph Similarity Prediction. Remarkably, with careful designs, GRASP can achieve
superior performance for effective graph similarity prediction and is efficient for training and infer-
ence. Specifically, we design a technique to enhance node features via positional encoding to con-
sider the global topological patterns in a graph, adopt a GNN backbone with a gating mechanism
and residual connections to generate meaningful representations, and concatenate the representa-
tions at each convolutional layer to retain information about the neighbors at each hop. Moreover,
we devise a multi-scale pooling technique to combine the merits of pooling techniques for effec-
tiveness. Compared with conventional GNN layers, like graph convolutional network (GCN) (Kipf
& Welling, 2017) or graph isomorphism network (GIN) (Xu et al., 2019) that are with restricted
expressive power by first-order Weisfeiler-Leman (1-WL) graph isomorphism test (Weisfeiler &
Leman, 1968), we theoretically prove that GRASP can indeed achieve higher expressiveness by
passing 1-WL test, which potentially benefits the practical effectiveness to predict graph similarity
values accurately. We have conducted extensive experiments to compare with 8 competitors on 4
datasets under various settings. Our method GRASP consistently achieves the best performance un-
der almost all metrics on all datasets for accurately estimating both GED and MCS. We also conduct
ablation study, efficiency evaluation, case study, etc, to further validate the power of GRASP.

In summary, our contributions are as follows:
• We propose a novel graph similarity prediction approach, GRASP that achieves superior perfor-
mance via a series of technical designs that are rational and effective.
• For the problem of graph similarity prediction, to our knowledge, we are the first to use positional
encoding to improve the performance. We also design a multi-scale technique on an advanced GNN
backbone to enhance our method.
• We conducted comprehensive experiments to validate that our method GRASP achieves superior
performance on estimating two metrics, GED and MCS, compared with existing state-of-the-art.

2 PROBLEM STATEMENT

A graph G is a data structure consisting of a set of nodes V and a set of edges E , i.e., G = (V, E).
The number of nodes and edges are |V| and |E|, respectively. Given a graph database D containing a
collection of graphs, we aim to build an end-to-end model to accurately estimate the similarity values
of graph pairs. The model is designed to predict multiple similarity/distance metrics, including
Graph Edit Distance (GED) and Maximum Common Subgraph (MCS). GED is the edit distance
between two graphs G1 and G2, i.e., the minimum number of edit operations to convert G1 to G2,
where edit operations include adding/removing a node, adding/removing an edge, and relabeling
a node. MCS refers to find the largest subgraph that is common to the two graphs G1 and G2.
Following the choice of (Bai et al., 2020), we require the MCS to be connected. Figure 1 shows
GED and MCS examples. Let m be the number of labels, and we can define the node feature matrix
X ∈ R|V|×m of a graph G. During the training phase, a training sample consisting of a set of graph
pair (G1,G2) ∈ D × D with ground-truth similarity value s(G1,G2). In the inference phase, the
model predicts the similarity/distance of unseen graph pairs.

2

3

2

2

3

2

2

3

2

Remove 2

3

2

2

3

2An Edge

Relabel

A Node

Figure 1: GED and MCS examples from AIDS700nef dataset. Left: GED is 2 and right: MCS is 6.

3 OUR PROPOSED APPROACH: GRASP

In this section, we present the proposed method GRASP. The architecture of GRASP is presented
in Figure 2. As shown in Figure 2, in the node feature pre-processing, we first enhance node fea-
tures by concatenating positional encoding of the node. This enhancement considers global graph
topological features. Second, the node embedding module preserves the enhanced node features
via a RGGC backbone into node embeddings. Third, in the graph embedding module, we devise a

2

Under review as a conference paper at ICLR 2024

Predicted GED/MCS

Positional Encoding

One-hot Encoding

RGGC
RGGC

RGGC

RGGC
RGGC

RGGC

⨁
⨁

⨁
⨁

GNN Backbone

Shared

Att Pooling
+

Sum Pooling

Att Pooling
+

Sum Pooling

FC(NTN("#, "%))
+

DIST("#, "%)

{ℎ#(}

{ℎ%(}

{ℎ#*}

MLP(·)

"#

"%

+#

+%

1) Node features pre-processing. 2) Node embeddings. 3) Graph embedding. 4) GED/MCS prediction.

MLP(·)

{ℎ%*}

GNN Backbone

One-hot Encoding

Positional Encoding

⨁
⨁

MLP(·)MLP(·)

MLP(·) MLP(·)

Figure 2: The architecture of GRASP.

multi-scale node embedding pooling technique to obtain graph embeddings. Lastly, the prediction
module predicts the similarity/distance between the two graph embeddings.

3.1 ENHANCED NODE FEATURES VIA POSITIONAL ENCODING

Previous works like Bai et al. (2019; 2020); Ranjan et al. (2022) obtain features using the one-hot
encoding of node labels. Specifically, every node i has xi ∈ Rm to represent its node label, where
m is the number of labels in the graph database. Then xi is transformed by an MLP to µi ∈ Rd

(Ranjan et al., 2022), which is then used as the input of GNN layers.

However, only using node labels as node features to be the input of Message-passing graph neural
networks (MPGNNs) cannot pass the first-order Weisfeiler-Leman (1-WL) graph isomorphism test
(Weisfeiler & Leman, 1968). Specifically, MPGNNs are a series of graph neural networks that
update node representations based on message passing and by aggregating neighbor information, a
node i in a graph can be represented as:

h
(ℓ)
i = f

(
h
(ℓ−1)
i ,

{
h
(ℓ−1)
j

∣∣∣j ∈ N (i)
})

, (1)

where ℓ is l-th layer of the stack of the MPGNN layers, N (i) denotes the neighbors of node i.

Figure 3: MPGNNs fail to differen-
tiate non-isomorphic graphs.

It has been shown by Xu et al. (2019) that MPGNNs can per-
form up to, but not beyond, the level of the 1-WL test (We-
isfeiler & Leman, 1968). In general, the 1-WL test can ef-
fectively distinguish non-isomorphic graphs. However, since
MPGNNs only aggregate information from their direct neigh-
bors, they fail to capture higher-order structural properties and
the global topology of the graph, thus limiting the expresive
capability of MPGNNs. We take a case that MPGNNs fail to
distinguish (Sato, 2020), as shown in Figure 3. MPGNNs produce the same set of node embeddings
for these two non-isomorphic graphs. Thus, the same set of node embeddings causes our model to
give incorrect predictions that the GED is 0, which apparently should not be 0.

To mitigate this issue and enhance the expressiveness of our method, we propose to enhance node
features with positional encoding that can exceed the expressive capacity of the 1-WL test. Specif-
ically, we use the random walk method for position encoding, RWPE, which has been empirically
proven to work by Dwivedi et al. (2022). Unlike the distance encoding method proposed by Li et al.
(2020) that uses random walks to learn the distance of all pairs of nodes in the graph, RWPE uses
only the probability of a node landing on itself, i.e., the diagonal part of the random walk matrix.
Given the random walk length k, we can use RWPE to precompute the positional features piinit ∈ Rk

of a node i in the graph, denoted as piinit =
{
RWℓ

ii

∣∣∣ℓ = 1, 2, ..., k
}

, where RW = AD−1 is the
random walk matrix obtained by adjacency matrix A and diagonal degree matrix D of a graph.
Then we also transform the RWPE piinit into pi ∈ Rd by an MLP.

We concatenate the transformed positional encoding pi and the encoding µi both in Rd of node i

together to get its enhanced representation h
(0)
i ∈ R2d, which will be the input of GNN backbone,

h
(0)
i = CONCAT (µi,pi) . (2)

3

Under review as a conference paper at ICLR 2024

3.2 MULTI-SCALE POOLING ON RGGC

The enhanced node features h
(0)
i obtained in Section 3.1 are then fed into a graph neural network

consisting of n layers of ResGatedGraphConv (RGGC layers) (Bresson & Laurent, 2017) to learn
the hidden representations of the nodes. The RGGC layers can leverage a gating mechanism where
gating units learn to control information flow through the network. Moreover, residual connections
are used in RGGC layers to help with gradient flow during training. With these two techniques
incorporated, the RGGC layers can learn complex patterns in graph data, and therefore, are more
powerful and versatile than basic graph convolutional layers like GCNs and GINs. At the ℓ-th layer,
the node representation h

(ℓ)
i is

h
(ℓ)
i = h

(ℓ−1)
i + ReLU

(
W1h

(ℓ−1)
i +

∑
j∈N (i) ηi,j ⊙W2h

(ℓ−1)
j

)
, (3)

where W1 ∈ R2d×2d and W2 ∈ R2d×2d are learnable weight matrices, ⊙ is the Hadamard point-
wise multiplication operator and the gate ηi,j is defined as ηi,j = σ

(
W3h

(ℓ−1)
i +W4h

(ℓ−1)
j

)
,

where W3 ∈ R2d×2d, W4 ∈ R2d×2d are learnable weight matrices and with σ as an activation
function. In Bresson & Laurent (2017), the sigmoid function is chosen as the activation function
so that the gate ηi,j can learn the weight controlling how important the information from node j to
node i.

We concatenate the node representations of all layers to preserve the information of different-hop
neighbors better. The concatenated representation of node i after n layers is hi ∈ R2(n+1)d,

hi = CONCAT
({

h
(ℓ)
i

∣∣∣ℓ = 0, 1, ..., n
})

. (4)

Note that our task is to estimate the similarity between two graphs. Therefore, we need to gener-
ate graph-level representations based on the node representations above. We design a multi-scale
pooling technique that considers both attention pooling and summation pooling. Attention pool-
ing (Bai et al., 2019) assigns weights to each node according to its importance, and then pools
the node embeddings using a weighted sum based on the attention weights. Denote the resulting
graph embedding as zatt ∈ R2nd. And we get zatt =

∑|V|
i=1 σ

(
hT
i tanh

(
1
|V|W5

∑|V|
j=1 hj

))
hi,

where W5 ∈ R[2(n+1)d]×[2(n+1)d] is learnable and σ is a sigmoid function. Summation pooling
zsum ∈ R2(n+1)d sums the node embeddings, i.e., zsum =

∑|V|
i=1 hi.

We observe that both of the above pooling methods have some drawbacks: summation pooling
treats all nodes equally, which may not be optimal; and attention in attention pooling runs the risk
of overfitting on specific nodes. Therefore, in our multi-scale pooling, we mix these two pooling
methods and let the model learn to trade off the two pooling operations, thus reducing the drawbacks
of the two pooling methods. We denote the combined graph embedding z ∈ R2(n+1)d as follows:

zcombined = azatt + (1− a) zsum, (5)

where a ∈ R2(n+1)d is a vector that can be learned.

Similar to the node feature pre-processing, we pass the graph embedding that has gone through the
pooling layer via an MLP to adjust its dimension to a suitable size for subsequent processing, and
finally we get the graph embedding z ∈ Rd.

3.3 GED AND MCS PREDICTION OBJECTIVES

After obtaining the graph embeddings z1 and z2 of two graphs G1 and G2, we now explain how to
obtain predicted GED values and the design of training objective. The way to get MCS estimation
and training objective naturally follows.

To get predicted GED, an intuitive idea is to compute the Euclidean distance between z1 and z2,

distance(z1, z2) = ∥z1 − z2∥2. (6)

Moreover, inspired by Zhuo & Tan (2022), we introduce the Neural Tensor Network (NTN) (Socher
et al., 2013) as a multi-headed weighted cosine similarity function to compute the interaction value

4

Under review as a conference paper at ICLR 2024

of the two graph embeddings in the capacity of a bias value as a complement to Eq. 6. NTN is a
powerful method for quantifying relationships between representations. We denote the interaction
value of embeddings z1 and z2 as:

interaction (z1, z2) = MLP
(

ReLU
(
zT1 W

[1:t]
6 z2 +W7CONCAT (z1, z2) + b

))
, (7)

where W
[1:t]
6 ∈ Rd×d×t is a learnable weight tensor, W7 is a learnable weight matrix, b ∈ Rt is

a bias vector, t is the hyperparameter controlling the NTN output and MLP(·) is a fully connected
neural network that maps the similarity from Rt to R.

Finally, our predicted GED value is
GED(G1,G2) = βdistance(z1, z2) + (1− β)interaction(z1, z2), (8)

where β is a scalar that can be learned.

Then we adopt the mean squared error between our predicted GED value GED(G1,G2) and ground-
truth GED value GED∗(G1,G2), and have the loss function:

L =
1

T

∑
(G1,G2)∈D×D MSE (GED(G1,G2),GED∗(G1,G2)) , (9)

where T is the number of training graph pairs in a graph database D and GED∗(G1,G2) is the
ground-truth GED value between graph G1 and G2.

Eq. 8 can be generalized to other similarity metrics like MCS. Recall that MCS is a similarity metric
measuring the largest common subgraph of two graphs. Therefore, we can consider the output of
interaction, i.e., Eq. 7 as the similarity of the two graph embeddings and further consider Eq. 6 as a
bias value. Therefore, we can keep the right-hand side of Eq. 8 unchanged and change the left-hand
side to MCS(G1,G2). The loss function in Eq. 9 follows for MCS.

4 ANALYSIS

We first prove that our method GRASP achieves high expressiveness and can pass 1-WL test, and
then analyze the complexity of GRASP that is linear to the number of nodes in a graph pair.

We use the following proposition to formally state that under certain preconditions, our method can
outperform the 1-WL test. We utilize the proof in Xu et al. (2019) that the the representation ability
of 1-WL test is equivalent to that of standard MPGNNs in the graph isomorphism problem.
Proposition 1. Given a pair of non-isomorphic graphs G1 and G2 that cannot be discriminated by
the 1-WL test, and the two graphs have different sets of initial position encodings, then GRASP can
generate different graph representations for the two non-isomorphic graphs.

The preconditions of Proposition 1 include that two graphs should have different sets of initial
position encodings. According to the definition of RWPE we use, nodes on two non-isomorphic
graphs generally get different sets of RWPEs when k is sufficiently large (Dwivedi et al., 2022).
Thus, RWPE satisfies this precondition that the sets of positional encodings are different. Please see
Appendix A.1 for detailed proof.

The inference time complexity of GRASP is linear to the number of nodes of the graph pair. Our
node feature preprocessing module requires downscaling the dimensionality of the node features
from Rm to Rd, resulting in a time complexity of O(md|V|). The positional encoding module
contains a random walk positional encoding pre-computation and an MLP. The pre-computation of
random walk positional encoding takes O(k|V|2) due to the sparse matrix multiplication. This pre-
computation only needs to be calculated one time when the number of steps of the random walker
k is selected, and thus it is omitted for the complexity. The MLP(·) takes O(kd|V|) time. The node
embedding module contains n layers of RGGC with time complexity of O(n|E|). The multi-scale
pooling module contains attention pooling and summation pooling, both with time complexity of
O(nd|V|). In the phase of generating the final graph embedding, we downscale the dimensionality
of the graph embedding from R2nd to Rd with a time complexity of O(nd2). In the similarity
prediction module, the time complexity of NTN interaction is O(d2t), where t is the dimension of
NTN output, and the time complexity of Euclidean distance calculation is O(d) and the total time is
O(d2t). Hence, the time complexity of GRASP for predictions is O(d|V|(m+k+n)+nd2+d2t),
which is linear to the number of nodes of the graph pair.

5

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

We evaluate our method GRASP against competitors on the GED and MCS prediction tasks.

5.1 EXPERIMENT SETUP

Data and Ground Truth. We conduct experiments on four real-world datasets, including
AIDS700nef, LINUX, IMDBMulti (Bai et al., 2019) and PTC (Bai et al., 2020). Dataset descrip-
tions and statistics can be found in Appendix A.2. We split training, validation, and testing data with
ratio of 6:2:2 for all datasets and all methods by following the setting in Bai et al. (2019) and Bai
et al. (2020). For the small datasets AIDS and LINUX, we use A* to calculate ground-truth GEDs.
For IMDBMulti and PTC, we follow the way in Bai et al. (2019) and use the minimum of the results
of three approximation methods Beam (Neuhaus et al., 2006), Hungarian (Riesen & Bunke, 2009)
and VJ (Fankhauser et al., 2011) to be ground-truth GED. We use the MCSPLIT (McCreesh et al.,
2017) algorithm to calculate the ground-truth MCS.

Baseline Methods. We compare with SIMGNN (Bai et al., 2019), GMN (Li et al., 2019), GRAPH-
SIM (Bai et al., 2020), MGMN (Ling et al., 2023), H2MN (Zhang et al., 2021), EGSC (Qin et al.,
2021), ERIC (Zhuo & Tan, 2022), GREED (Ranjan et al., 2022). We use their official code provided
by the authors and leave it unchanged for GED objective and simply extend it for MCS objective,
since some methods are only implemented for GED. GENN-A* (Wang et al., 2021) cannot scale to
large datasets, including IMDBMulti and PTC, and thus its result is omitted.

Hyperparameters. In our method, we use a search range of {w/o, 8, 16, 24, 32} for the step size k
of the RWPE, {4, 6, 8, 10, 12} for the number of layers ℓ of the GNN backbone, and {16, 32, 64, 128,
256} for the dimensionality d of the node hidden representations and also the final graph embedding.
Our full hyperparameter settings on the four datasets and hyperparameter sensitivity analysis on the
AIDS700nef dataset can be found in Appendix A.3 and A.4, respectively. For competitors, we
conduct experiments according to their hyperparameter settings reported by their works.

Evaluation metrics. We compare the performance of all methods by Mean Squared Error (MSE),
Spearman’s Rank Correlation Coefficient (ρ) (Spearman, 1987), Kendall ’s Rank Correlation Co-
efficient (τ) (Kendall, 1938), and Precision at 10 and 20 (P@10 and 20). The lower MSE proves
that the model performs better; the higher the last four, the better the model performs. All these
metrics are widely used in previous studies (Bai et al., 2019; 2020). Note that, our method GRASP,
same as the baseline GREED, is designed to predict GED directly, while the other methods predict
normalized GED scores. Hence, on the acquisition of the MSE, to be consistent with other works
including (Bai et al., 2019; 2020; Zhuo & Tan, 2022), we first normalize the outputs of GRASP and
GREED by s(G1,G2) = exp

(
− 2×GED(G1,G2)

|V|1+|V|2

)
for GED and by s(G1,G2) =

2×MCS(G1,G2)
|V|1+|V|2 for MCS.

We also evaluate the inference efficiency.

All experiments are carried out on a linux machine with Ubuntu system, CPU model Intel(R)
Xeon(R) Gold 6226R CPU @ 2.90GHz and GPU model NVIDIA GeForce RTX 3090.

5.2 EFFECTIVENESS

Tables 1 and 2 report the overall effectiveness of all methods on all datasets for GED and MCS
predictions, respectively. In Table 1, for GED predictions, our method GRASP outperforms all
methods by all metrics on AIDS700nef and LINUX datasets, and by 4 out of 5 metrics on IMDB-
Multi and PTC datasets. For example, On AIDS700nef, our method GRASP achieves high P@20
0.863, significantly outperforming the best competitor performance 0.78 of GREED by 10.6% rela-
tive improvement. On LINUX, our method GRASP significantly reduces MSE to 0.075, compared
with the best competitor ERIC with 0.110 MSE.

In Table 2 for MCS predictions, our method GRASP outperforms all methods by all metrics on all
four datasets. For example, On IMDBMulti, GRASP can achieve 0.965 for τ metric, which is much
higher than the runner-up H2MN with 0.921. On PTC, the P@10 of GRASP is 0.681 while the best
competitor EGSC has 0.563.

6

Under review as a conference paper at ICLR 2024

AIDS700nef IMDBMulti

MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑ MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
SIMGNN 2.251±0.169 0.861±0.005 0.690±0.005 0.471±0.019 0.542±0.014 0.676±0.051 0.893±0.018 0.781±0.019 0.831±0.015 0.845±0.017

GRAPHSIM 1.040±0.031 0.841±0.003 0.683±0.004 0.417±0.017 0.499±0.011 1.275±0.117 0.877±0.009 0.781±0.012 0.728±0.021 0.760±0.012

GMN 2.692±0.079 0.762±0.003 0.662±0.004 0.399±0.017 0.476±0.013 4.702±0.672 0.691±0.010 0.608±0.090 0.589±0.109 0.551±0.081

MGMN 2.402±0.071 0.904±0.002 0.749±0.003 0.464±0.014 0.541±0.011 6.250±2.840 0.860±0.068 0.680±0.084 0.506±0.075 0.556±0.088

H2MN 1.044±0.062 0.871±0.002 0.719±0.003 0.475±0.010 0.561±0.010 0.410±0.028 0.889±0.010 0.793±0.011 0.848±0.009 0.860±0.005

EGSC 1.637±0.099 0.896±0.003 0.733±0.005 0.592±0.012 0.650±0.014 0.689±0.195 0.934±0.010 0.821±0.017 0.852±0.011 0.862±0.008

ERIC 1.467±0.030 0.903±0.001 0.761±0.005 0.608±0.035 0.654±0.006 0.451±0.020 0.909±0.023 0.835±0.023 0.859±0.006 0.869±0.003

GREED 1.432±0.059 0.913±0.004 0.796±0.004 0.710±0.008 0.780±0.007 1.174±0.094 0.930±0.007 0.865±0.005 0.859±0.004 0.858±0.002

GRASP 0.987±0.017 0.930±0.002 0.829±0.002 0.806±0.007 0.863±0.010 0.789±0.110 0.940±0.002 0.876±0.005 0.868±0.007 0.876±0.003

LINUX PTC

MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑ MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
SIMGNN 0.391±0.093 0.979±0.005 0.885±0.011 0.969±0.008 0.959±0.011 2.043±0.139 0.926±0.007 0.783±0.010 0.492±0.024 0.587±0.008

GRAPHSIM 0.186±0.047 0.984±0.003 0.930±0.008 0.966±0.007 0.949±0.008 0.772±0.033 0.941±0.004 0.828±0.007 0.510±0.068 0.600±0.065

GMN 1.596±0.217 0.924±0.007 0.788±0.006 0.783±0.009 0.773±0.010 2.210±0.432 0.661±0.004 0.652±0.012 0.244±0.042 0.392±0.020

MGMN 2.035±0.430 0.965±0.008 0.856±0.018 0.938±0.031 0.930±0.005 2.315±0.347 0.935±0.012 0.777±0.021 0.486±0.034 0.588±0.035

H2MN 0.882±0.147 0.977±0.002 0.899±0.004 0.948±0.006 0.922±0.008 1.913±0.269 0.913±0.012 0.767±0.013 0.500±0.014 0.595±0.003

EGSC 0.170±0.028 0.986±0.001 0.904±0.003 0.987±0.003 0.980±0.007 1.915±0.133 0.924±0.002 0.781±0.005 0.510±0.031 0.594±0.016

ERIC 0.110±0.013 0.993±0.002 0.968±0.005 0.989±0.004 0.981±0.004 1.680±0.051 0.932±0.006 0.793±0.009 0.516±0.012 0.605±0.008

GREED 0.926±0.032 0.966±0.005 0.905±0.002 0.978±0.005 0.975±0.006 2.442±0.100 0.889±0.005 0.765±0.006 0.424±0.009 0.517±0.007

GRASP 0.075±0.016 0.995±0.002 0.971±0.003 0.994±0.002 0.991±0.002 1.641±0.131 0.946±0.002 0.846±0.002 0.602±0.007 0.707±0.011

Table 1: Effectiveness results on GED predictions with standard deviation. The MSE is in 10−3.
Bold: best, Underline: runner-up.

AIDS700nef IMDBMulti

MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑ MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
SIMGNN 6.148±0.261 0.838±0.004 0.666±0.004 0.406±0.017 0.484±0.011 0.494±0.157 0.976±0.002 0.912±0.004 0.866±0.013 0.893±0.012

GRAPHSIM 3.601±0.325 0.805±0.020 0.647±0.023 0.358±0.038 0.428±0.029 3.530±0.241 0.897±0.013 0.839±0.018 0.674±0.023 0.706±0.023

GMN 3.817±0.488 0.829 ±0.009 0.613±0.007 0.433±0.032 0.492±0.016 2.351±0.312 0.891±0.011 0.779±0.024 0.646±0.094 0.682±0.032

MGMN 6.102±0.262 0.881±0.004 0.725±0.005 0.435±0.023 0.503±0.009 2.267±0.347 0.968±0.006 0.862±0.012 0.663±0.082 0.727±0.064

H2MN 3.301±0.253 0.822±0.008 0.665±0.009 0.370±0.017 0.442±0.015 0.214±0.034 0.981±0.003 0.921±0.007 0.847±0.010 0.874±0.009

EGSC 2.544±0.213 0.915±0.003 0.775±0.003 0.590±0.009 0.656±0.007 0.245±0.056 0.979±0.011 0.909±0.006 0.895±0.012 0.898±0.018

ERIC 3.119±0.292 0.900±0.002 0.779±0.003 0.556±0.016 0.620±0.019 0.227±0.011 0.980±0.005 0.953±0.005 0.868±0.005 0.890±0.003

GREED 3.377±0.298 0.911±0.004 0.807±0.005 0.774±0.027 0.822±0.013 1.472±0.460 0.869±0.006 0.782±0.009 0.887±0.024 0.898±0.027

GRASP 2.120±0.193 0.926±0.002 0.830±0.003 0.888±0.017 0.908±0.017 0.119±0.032 0.985±0.003 0.965±0.004 0.927±0.009 0.953±0.006

LINUX PTC

MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑ MSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
SIMGNN 0.282±0.108 0.960±0.008 0.837±0.017 0.920±0.024 0.926±0.016 3.919±0.336 0.882±0.005 0.724±0.007 0.493±0.012 0.571±0.011

GRAPHSIM 0.239±0.066 0.947±0.014 0.865±0.029 0.902±0.014 0.902±0.015 2.868±0.345 0.826±0.016 0.671±0.018 0.424±0.038 0.505±0.044

GMN 0.792±0.092 0.879±0.009 0.763±0.032 0.762±0.019 0.802±0.061 4.913±0.122 0.801±0.032 0.647±0.027 0.462±0.022 0.531±0.040

MGMN 1.244±0.201 0.902±0.015 0.772±0.026 0.775±0.042 0.814±0.048 4.293±0.271 0.922±0.005 0.772±0.008 0.480±0.017 0.560±0.014

H2MN 0.235±0.016 0.952±0.004 0.854±0.007 0.915±0.003 0.920±0.006 1.981±0.048 0.871±0.006 0.711±0.008 0.486±0.014 0.568±0.016

EGSC 0.167±0.011 0.968±0.001 0.853±0.003 0.949±0.008 0.951±0.005 2.832±0.159 0.909±0.012 0.766±0.014 0.563±0.045 0.633±0.027

ERIC 0.114±0.010 0.971±0.004 0.928±0.004 0.957±0.005 0.967±0.007 3.188±0.240 0.880±0.008 0.732±0.011 0.518±0.016 0.582±0.015

GREED 0.280±0.110 0.812±0.002 0.719±0.002 0.974±0.009 0.982±0.005 5.915±1.215 0.841±0.016 0.714±0.019 0.541±0.052 0.637±0.041

GRASP 0.064±0.020 0.977±0.002 0.939±0.002 0.978±0.005 0.985±0.004 1.922±0.052 0.927±0.004 0.795±0.007 0.681±0.010 0.718±0.021

Table 2: Effectiveness results on MCS predictions with standard deviation. The MSE is in 10−3.
Bold: best, Underline: runner-up.

The overall results in Tables 1 and 2 demonstrate the superior power of GRASP with simple but
effective designs, including positional encoding enhanced node features and multi-scale pooling on
RGGC backbone.

To visualize the superiority of our method, we compare our approach GRASP on the absolute GED
error with the recent baselines GREED and ERIC by absolute GED error heatmaps as shown in Ap-
pendix A.5, which intuitively shows that GRASP can reduce prediction errors over existing methods.

5.3 EFFICIENCY

We report the inference time per 10k graph pairs of all approaches on every dataset in Figure 4.
Our method GRASP is the fastest method on all datasets to complete the inference. The efficiency
of GRASP is due to the following designs. First, GRASP does not need the expensive cross-graph
node-level interactions that are usually adopted in existing methods. Second, the positional encoding
used in GRASP to enhance node features can be precomputed and reused for the efficiency of online

7

Under review as a conference paper at ICLR 2024

AIDS700nef IMDBMulti LINUX PTC0

2

4

6

8

10

12

Ti
m

e
(s

)

SimGNN
GMN
GraphSim

MGMN
H2MN
EGSC

ERIC
GREED
GraSP

Figure 4: Inference time in second(s) per 10k pairs.

MSE ρ τ P@10 P@20

GRASP (GIN) 1.092 0.921 0.815 0.761 0.831
GRASP (GCN) 1.304 0.909 0.796 0.717 0.786
GRASP (w/o pe) 1.101 0.920 0.812 0.772 0.838
GRASP (w/o att) 1.089 0.923 0.817 0.789 0.844
GRASP (w/o sum) 1.077 0.922 0.817 0.779 0.847
GRASP (w/o NTN) 1.473 0.915 0.802 0.728 0.805
GRASP 0.987 0.930 0.829 0.806 0.863

Table 3: Ablation study on AIDS700nef un-
der GED metric. MSE is in 10−3.

(a) Attention Pooling. (b) Add Pooling. (c) Multi-scale Pooling.

Figure 5: T-SNE visualization on IMDBMulti. We plot the graph embeddings on a 2d plain, where
the green cross denotes a randomly chosen query graph, red dots denote the top fifty percent of
similar graphs in the database and blue dots denote the later fifty percent.

inference. Third, all the technical components in GRASP are designed to make the complicated
simple and effective for graph similarity predictions, resulting in the efficient performance. The
inference time of SIMGNN, GMN, GRAPHSIM and MGMN is longer, which is due to the expensive
cross-graph node-level interactions that these models explicitly perform during inference. EGSC,
ERIC, and GREED are relatively faster but do not exceed our method.

5.4 ABLATION STUDY

In the ablation study, we first compare GRASP with RGGC backbone over GRASP with GCN and
GIN backbones. We also ablate the positional encoding in Section 3.1, the attention pooling and
summation polling in the multi-scale pooling in Section 3.2 of GRASP, and the NTN in Section
3.3 denoted as w/o pe, w/o att, w/o sum, and w/o NTN respectively. The results on AIDS700nef
for GED are reported in Table 3. Observe that GRASP obtains the best performance on all met-
rics than all its ablated versions, which proves the effectiveness of all our proposed components in
GRASP. In particular, with only either attention or summation pooling, the performance is inferior
to GRASP with the proposed multi-scale pooling technique that hybrids both pooling techniques,
which validates the rationale for designing the technique.

To further exemplify the effect of multi-scale pooling, we conducted experiments on IMDBMulti
dataset with t-SNE visualization (van der Maaten & Hinton, 2008), as shown in Figure 5. Compared
to the graph embeddings obtained using only attention and summation pooling methods, the graph
embeddings obtained using multi-scale pooling technique exhibit better patterns in the embedding
space, which reflects the effective modeling of graph similarity properties.

5.5 CASE STUDY

We conduct a case study of GRASP over drug discovery. Graph similarity search is often applied
to drug discovery with an essential role in the precursor step before final molecular screening (Ranu
et al., 2011).The molecules identified by graph similarity are crucial to the quality of the final screen.
In this case study, to examine the application of our method, we consider the ranking of returned
graphs with respect to a query graph. In Figure 6, we show a case of ranking under the GED metric
on AIDS700nef dataset. Specifically, given a query graph on the left side of Figure 6, the first row
shows the ground-truth ranking of graphs with GED to the query, and the second row shows the
graphs ranked by predicted GED from our method GRASP. As shown, GRASP is able to accurately
predict the GED values and rank the graphs with similar structures to the top, and the ranking from
1 to 560 are almost the same as the ground truth. We further provide the case studies on the other
three datasets in Appendix A.6.

8

Under review as a conference paper at ICLR 2024

2

0
22

2

3

2

2

3

2

Query
2

0
22

2

3

2

2

3

2

 0

3

2

2

2

2

0

2

3

2

2

 3

2
2

3
0

2

0

2

3
2 2

 3
2

2
2

32

2

0

2

2

2

Ground-truth GED
 3

22

2

2

3

3

2

3

2

 4
0

2
0

2

2 2

22

 ... 8 ...

3

4

4

3
23

4

3

 18
4

19

 19

0

2

0
22

2

3

2

2

3

2

 rank=1

3

3

2

2

2

2

0

2

3

2

2

 rank=2

3

2
2

3
0

2

0

2

3
2 2

 rank=3

3
Predicted GED by GraSP

2

2
2

32

2

0

2

2

2

 rank=4

4

22

2

2

3

3

2

3

2

 rank=5

... 8 ...

0

2
0

2

2 2

2
2

 ... rank=280 ...

18

3

4

4

3
23

4

3

 rank=559

19

4

19

 rank=560

Figure 6: A ranking case study of GED prediction on AIDS700nef.

6 RELATED WORK

Exact calculation of GED and MCS is an NP-hard problem. For GED, recent works (Kim et al.,
2019; Kim, 2020; Chang et al., 2020) compress the search space for faster filtering and verification,
but still remain inefficient. For MCS, recent work (McCreesh et al., 2017) introduces a branch and
bound algorithm that compresses the memory and computational requirements of the search process.
Approximation methods like Beam (Neuhaus et al., 2006), Hungarian (Riesen & Bunke, 2009) and
VJ (Fankhauser et al., 2011) employ heuristic search and trade precision for reduced complexity,
but still have sub-exponential or cubical cost. Wang et al. (2021) uses combinatorial technique to
combine heuristic and learning methods, but still does not scale well (Ranjan et al., 2022).

In recent years, many learning-based methods have emerged which achieve accurate prediction
of similarity values between graphs, while allowing the use of fewer computational resources.
SIMGNN (Bai et al., 2019) adopts a Siamese network structure, an NTN module to compare graph
embeddings, and then also uses histogram features of node embeddings to capture fine-grained node-
level comparison information. GMN (Li et al., 2019) contains an attention module for cross-graph
node matching and then encodes cross-graph node matching information into node embeddings to
solve for graph similarity. GRAPHSIM (Bai et al., 2020) uses a CNN to capture multi-scale node-
level interactions. MGMN (Ling et al., 2023) introduces a node-graph matching layer to capture
interactions across levels (between nodes and graphs). H2MN Zhang et al. (2021) uses the concept
of hypergraphs; after constructing hypergraphs, each hyperedge after pooling in a hypergraph is
used as a subgraph for matching between subgraphs. These methods explicitly use the cross-graph
node-level interactions. ERIC (Zhuo & Tan, 2022) proposes a soft matching module aiming to be
used during training while to be removed when inference to speed up inference time. However, the
cross-graph node-level interaction module may not be necessary, while simple but effective designs
can already achieve superior performance. EGSC (Qin et al., 2021) uses the knowledge distillation
method to extract the knowledge learned by the teacher model to get a lighter-weight student model,
but the upper limit of the performance of the student model does not exceed that of the teacher
model. The latest GREED (Ranjan et al., 2022) proposes the concept of pair-independent embed-
dings that can be indexed, and further addresses the issue of cross-graph interactions. Our model
includes a novel embedding structure that incorporates a positional encoding technique, as well as
a new multi-scale pooling technique, to be more expressive than the 1-WL test to improve model
performance in graph similarity/distance prediction tasks.

7 CONCLUSION

In this paper, we present GRASP, a simple but effective and efficient method for accurate predictions
on GED and MCS, two important graph similarity metrics with a wide range of applications in var-
ious fields. To make the complicated simple, we design a series of rational and effective techniques
in GRASP to achieve superior performance. In particular, we design techniques to enhance node
features via positional encoding, employ a robust graph neural network, and develop a multi-scale
pooling technique. We theoretically prove that our method is more expressive and passes 1-WL test.
In extensive experiments, GRASP is versatile in predicting GED and MCS metrics accurately on
real-world datasets, often outperforming existing methods by a significant margin.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neu-
ral network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 384–392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, pp. 3219–3226, 2020.

David B. Blumenthal and Johann Gamper. On the exact computation of the graph edit distance.
Pattern Recognit. Lett., 134:46–57, 2020.

Karsten M. Borgwardt and Hans-Peter Kriegel. Graph kernels for disease outcome prediction from
protein-protein interaction networks. In Proceedings of the Pacific Symposium, pp. 4–15, 2007.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Horst Bunke and G. Allermann. Inexact graph matching for structural pattern recognition. Pattern
Recognit. Lett., 1(4):245–253, 1983.

Horst Bunke and Kim Shearer. A graph distance metric based on the maximal common subgraph.
Pattern Recognit. Lett., 19(3-4):255–259, 1998.

Lijun Chang, Xing Feng, Xuemin Lin, Lu Qin, Wenjie Zhang, and Dian Ouyang. Speeding up
GED verification for graph similarity search. In 36th IEEE International Conference on Data
Engineering, pp. 793–804, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In The Tenth
International Conference on Learning Representations, 2022.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 24:43:1–43:48,
2023.

Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. Speeding up graph edit distance computation
through fast bipartite matching. In Graph-Based Representations in Pattern Recognition - 8th
IAPR-TC-15 International Workshop, volume 6658 of Lecture Notes in Computer Science, pp.
102–111, 2011.

M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Jongik Kim. Nass: A new approach to graph similarity search. arXiv preprint arXiv:2004.01124,
2020.

Jongik Kim, Dong-Hoon Choi, and Chen Li. Inves: Incremental partitioning-based verification for
graph similarity search. In Advances in Database Technology - 22nd International Conference on
Extending Database Technology, pp. 229–240, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, 2017.

Jung-Eun Lee, Rong Jin, and Anil K. Jain. Rank-based distance metric learning: An application to
image retrieval. In IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2008.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. In Annual Conference on Neu-
ral Information Processing Systems, 2020.

10

Under review as a conference paper at ICLR 2024

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 3835–3845, 2019.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma, Fangli Xu, Alex X. Liu, Chunming Wu, and
Shouling Ji. Multilevel graph matching networks for deep graph similarity learning. IEEE Trans.
Neural Networks Learn. Syst., 34(2):799–813, 2023.

Yanli Liu, Chu-Min Li, Hua Jiang, and Kun He. A learning based branch and bound for maxi-
mum common subgraph related problems. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, pp. 2392–2399, 2020.

Ciaran McCreesh, Patrick Prosser, and James Trimble. A partitioning algorithm for maximum com-
mon subgraph problems. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, pp. 712–719, 2017.

Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for the computation
of graph edit distance. In Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR
International Workshops, volume 4109 of Lecture Notes in Computer Science, pp. 163–172, 2006.

Can Qin, Handong Zhao, Lichen Wang, Huan Wang, Yulun Zhang, and Yun Fu. Slow learning
and fast inference: Efficient graph similarity computation via knowledge distillation. In Annual
Conference on Neural Information Processing Systems, pp. 14110–14121, 2021.

Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan T. Chakaravarthy, Yogish Sabharwal,
and Sayan Ranu. GREED: A neural framework for learning graph distance functions. In Annual
Conference on Neural Information Processing Systems, 2022.

Sayan Ranu, Bradley T. Calhoun, Ambuj K. Singh, and S. Joshua Swamidass. Probabilistic Sub-
structure Mining From Small-Molecule Screens. Molecular Informatics, 30(9):809–815, 2011.

Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by means of bipartite
graph matching. Image Vis. Comput., 27(7):950–959, 2009.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning with neural
tensor networks for knowledge base completion. In 27th Annual Conference on Neural Informa-
tion Processing Systems, pp. 926–934, 2013.

C. Spearman. The proof and measurement of association between two things. The American Journal
of Psychology, 100(3/4):441–471, 1987.

Hannu Toivonen, Ashwin Srinivasan, Ross D. King, Stefan Kramer, and Christoph Helma. Statisti-
cal evaluation of the predictive toxicology challenge 2000-2001. Bioinform., 19(10):1183–1193,
2003.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learn-
ing of graph edit distance via dynamic embedding. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5241–5250, 2021.

Xiaoli Wang, Xiaofeng Ding, Anthony K. H. Tung, Shanshan Ying, and Hai Jin. An efficient graph
indexing method. In IEEE 28th International Conference on Data Engineering, pp. 210–221,
2012.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, pp. 12–16, 1968.

11

Under review as a conference paper at ICLR 2024

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, 2019.

Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374,
2015.

Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu Zhou. Comparing
stars: On approximating graph edit distance. Proc. VLDB Endow., 2(1):25–36, 2009.

Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2MN:
graph similarity learning with hierarchical hypergraph matching networks. In The 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2274–2284, 2021.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization. In
Annual Conference on Neural Information Processing Systems, 2022.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOFS OF PROPOSITIONS

Proof of Proposition 1.

Proof. Suppose that the 1-WL test still fails to distinguish between G1 and G2 through n iterations.
This is equivalent to the fact that the set of node representations {hℓ

u} generated is the same for any
layer ℓ from the 1-st to the n-th layer of the standard MPGNN; hence, the final graph representations
are also the same.

At ℓ = 0, it is clear that the set of node label features of two graphs {µu} is the same, and since
the two feature sets {pu|u ∈ G1} and {pv|v ∈ G2} are not the same, according to Eq. 2, where
positional coding has been used to enhance the initial node representations, the sets of node repre-
sentations at ℓ = 0 of the two graphs, {h(0)

u } = {CONCAT(µu,pu)} and {h(0)
v } are not the same.

Therefore, due to the usage of node concatenated representations in Eq. 4, the sets of concatenated
representations {hu} and {hv} is not the same. Therefore, the final two-graph embeddings are
different.

A.2 DESCRIPTIONS AND STATISTICS OF THE DATASETS

AIDS700nef. The AIDS1 dataset consists of compounds that exhibit anti-HIV properties after
screening. A total of 700 compounds of which less than or equal to 10 nodes were selected by
(Bai et al., 2019) to form the AIDS700nef dataset. There are 29 node labels in the AIDS700nef.
IMDBMulti. The IMDBMulti (Yanardag & Vishwanathan, 2015) is a movie collaboration dataset,
where nodes represent an actor and edges indicate whether two actors appear in the same movie.
LINUX. The LINUX dataset consists of a series of Program Dependency Graphs (PDGs) generated
by (Wang et al., 2012), where a node denotes a statement and an edge denotes a dependency between
two statements. The LINUX dataset we used in our experiments consists of 1000 graphs randomly
selected by (Bai et al., 2019) in the original LINUX dataset. PTC. The PTC (Toivonen et al., 2003)
dataset contains a series of compounds labeled according to their carcinogenicity in male and female
mice and rats. There are 19 node labeles in the PTC. The detailed statics of the four dataset are listed
in Table 4.

Datasets # Graphs # Pairs # Features Avg # Nodes
AIDS700nef 700 78400 29 8.9
IMDBMulti 1500 360000 1 13.0
LINUX 1000 160000 1 7.6
PTC 344 18975 19 25.6

Table 4: Statistics of datasets.

A.3 HYPERPARAMETER SETTINGS

We list our 8 hyperparameter settings in Table 5.

A.4 SENSITIVITY ANALYSIS

We evaluate how the step size k of the RWPE, the number of layers ℓ of the GNN backbone and
the dimensionality d of the node’s hidden representations will affect on the performance on the
AIDS700nef dataset. We list the MSE values of the AIDS700nef on Figure 7. We find that the
model achieves optimal performance with our hyperparameter settings k = 16, ℓ = 8 and d = 64.
We can also observe that the use of RWPE is improving the performance, and the performance first
improves and then stabilizes after k > 16. This is due to the fact that the average number of nodes
in AIDS700nef is less than 10, and also that the properties of RWPE that we utilize ensures that
when k is large enough, it can be guaranteed that the two non-isomorphic graphs have different sets
of RWPEs. When l and d are too large, the performance will drop because of overfitting.

1https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data.

13

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

Under review as a conference paper at ICLR 2024

Params AIDS700nef IMDBMulti LINUX PTC

GED

learning rate 1e−4 to 1e−3 1e−4 to 1e−3 2e−4 to 2e−3 1e−4 to 1e−3

weight decay 5e−4 5e−4 5e−4 5e−4

batch size 256 256 256 256
epochs 3e4 3e4 2e4 5e3

of gnn layers 8 4 8 8
hidden dims. 64 64 64 64
RWPE dims. 16 16 10 20

MCS

learning rate 1e−4 to 1e−3 1e−4 to 1e−3 2e−4 to 2e−3 1e−4 to 1e−3

weight decay 5e−4 5e−4 5e−4 5e−4

batch size 256 256 256 256
epochs 3e4 3e4 2e4 2e4

of gnn layers 8 3 8 8
hidden dims. 64 64 64 64
RWPE dims. 16 16 10 20

Table 5: Hyperparamater settings on 4 datasets.

w/o 8 16 24 32
Step size of the RWPE.

0.95

1.00

1.05

1.10

1.15

1.20

M
SE

1e 3

4 6 8 10 12
Number of layers.

0.95

1.00

1.05

1.10

1.15

1.20

M
SE

1e 3

16 32 64 128 256
Hidden dimention.

0.95

1.00

1.05

1.10

1.15

1.20

M
SE

1e 3

Figure 7: Hyperparameters sensitivity analysis.

0 10 20
2

4

6

8

10

Q
ue

ry
 S

iz
e

(a) GRASP

0 10 20
2

4

6

8

10

(b) GREED

0 10 20
2

4

6

8

10

0

1

2

3

4

5

(c) ERIC

Figure 8: Absolute error heatmap on GED on AIDS700nef.

A.5 A COMPARISON ON GED PREDICTION ERROR HEATMAP

The absolute GED error heatmaps of our approach, GREED and ERIC on four datasets are shown in
Figure 8, 9, 10 and 11. The x-axis represents the GED between the query graph and the target graphs.
The y-axis represents the number of nodes in the query graph. The color of each dot represents
the absolute error on GED between a query graph and a target graph. The lighter color indicates
the lower absolute error. Our method GRASP has better performance than existing methods over
different query sizes and GED values on all datasets.

A.6 ADDITIONAL CASE STUDIES

Three case studies on IMDBMulti, LINUX and PTC under GED metric are included in Figure 12,
13 and 14. Note that for AIDS700nef and LINUX dataset, the exact GEDs are obtained by the A*
algorithm and the predicted results are obtained by our model. For the IMDBMulti and PTC dataset,

14

Under review as a conference paper at ICLR 2024

0 20 40

10

20

Q
ue

ry
 S

iz
e

(a) GRASP

0 20 40

10

20

(b) GREED

0 20 40

10

20

0

5

10

15

20

25

(c) ERIC

Figure 9: Absolute error heatmap on GED on PTC.

0 5 10 15
4

6

8

10

Q
ue

ry
 S

iz
e

(a) GRASP

0 10
4

6

8

10

(b) GREED

0 5 10 15
4

6

8

10

0

1

2

3

4

5

(c) ERIC

Figure 10: Absolute error heatmap on GED on LINUX.

0 20 40

10

15

20

Q
ue

ry
 S

iz
e

(a) GRASP

0 20 40

10

15

20

(b) GREED

0 20 40

10

15

20

0

5

10

15

20

25

(c) ERIC

Figure 11: Absolute error heatmap on GED on IMDBMulti.

Query

 2 2 2
Ground-truth GED

 2 2 ... 26 ... 988 1502

2

 rank=1

2

 rank=2

2

 rank=3

2
Predicted GED by GraSP

 rank=4

2

 rank=5

... 25 ...

 ... rank=600 ...

999

 rank=1199

1528

 rank=1200

Figure 12: A ranking case on IMDBMulti.

we use the minimum of the calculated results for Beam, Hungarian, and VJ as the ground-truth
GEDs due to infeasibility of computing the exact GEDs of these relatively large graphs.

A.7 RESULTS ON PREDICTING GED DIRECTLY

Except GRASP and GREED, all the remaining baselines predict the exponentially normalized GEDs,
i.e, similarity scores. In order to directly predict GED, we modify the official codes of all baselines

15

Under review as a conference paper at ICLR 2024

Query

 0 2 2
Ground-truth GED

 2 2 ... 4 ... 11 12

0

 rank=1

2

 rank=2

2

 rank=3

2
Predicted GED by GraSP

 rank=4

2

 rank=5

... 4 ...

 ... rank=400 ...

11

 rank=799

12

 rank=800

Figure 13: A ranking case on LINUX.

Query

 1 2 4
Ground-truth GED

 5 5 ... 39 ... 204 209

3

 rank=1

5

 rank=2

5

 rank=3

6
Predicted GED by GraSP

 rank=4

6

 rank=5

... 40 ...

 ... rank=137 ...

204

 rank=274

209

 rank=275

Figure 14: A ranking case on PTC.

AIDS700nef IMDBMulti

RMSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑ RMSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
SIMGNN 1.008 0.856 0.680 0.519 0.631 18.041 0.925 0.811 0.696 0.696
GRAPHSIM 1.153 0.803 0.657 0.364 0.499 31.372 0.728 0.619 0.575 0.571
GMN 0.947 0.870 0.695 0.579 0.579 13.027 0.922 0.803 0.823 0.827
MGMN 1.015 0.896 0.762 0.539 0.650 29.887 0.925 0.790 0.683 0.733
H2MN 0.924 0.877 0.745 0.557 0.653 25.401 0.900 0.798 0.781 0.790
EGSC 0.946 0.902 0.740 0.693 0.757 9.194 0.941 0.852 0.850 0.877
ERIC 0.971 0.880 0.751 0.599 0.688 9.032 0.934 0.873 0.812 0.832
GREED 0.884 0.899 0.776 0.661 0.741 8.171 0.933 0.867 0.857 0.866
GRASP 0.808 0.923 0.810 0.754 0.819 7.924 0.946 0.891 0.867 0.881

LINUX PTC

RMSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑ RMSE ↓ ρ ↑ τ ↑ P@10 ↑ P@20 ↑
SIMGNN 0.518 0.931 0.779 0.852 0.864 8.364 0.903 0.772 0.420 0.577
GRAPHSIM 0.232 0.970 0.897 0.974 0.982 11.659 0.848 0.710 0.401 0.519
GMN 0.369 0.946 0.804 0.968 0.966 7.551 0.901 0.774 0.525 0.633
MGMN 0.587 0.970 0.889 0.968 0.949 6.767 0.942 0.839 0.393 0.512
H2MN 0.559 0.963 0.876 0.945 0.945 8.090 0.880 0.758 0.408 0.539
EGSC 0.215 0.949 0.813 0.985 0.990 6.882 0.895 0.769 0.530 0.624
ERIC 0.285 0.971 0.917 0.977 0.989 6.401 0.881 0.735 0.409 0.529
GREED 0.414 0.966 0.902 0.969 0.978 4.970 0.921 0.810 0.455 0.569
GRASP 0.137 0.975 0.923 0.986 0.992 4.826 0.948 0.852 0.597 0.701

Table 6: Effectiveness results on original GED predictions. Bold: best, Underline: runner-up.

and train them by original GED. Table 6 reports the overall effectiveness of all methods on all
datasets for GED predictions. RMSE represents root mean square error. Observe that our method
GRASP consistently outperforms existing methods, while GREED and ERIC are with top perfor-
mance.

16

Under review as a conference paper at ICLR 2024

A.8 EXTENDING TO CONSIDER OF EDGE RELABELING

Here we discuss how to extend GRASP to include the cost of relabeling edges. Following (Dwivedi
et al., 2023), Eq. 3 can be modified as:

h
(ℓ)
i = h

(ℓ−1)
i + ReLU

(
W1h

(ℓ−1)
i +

∑
j∈N (i) e

(ℓ)
i,j ⊙W2h

(ℓ−1)
j

)
, (10)

where e
(ℓ)
i,j is the edge gate and can be defined as:

e
(ℓ)
i,j = σ

(
e
(ℓ−1)
i,j + ReLU

(
Ah

(ℓ−1)
i +Bh

(ℓ−1)
j +Ce

(ℓ−1)
i,j

))
, (11)

where A,B,C ∈ R2d×2d and e
(0)
i,j represents the input edge feature.

A.9 GENERALIZATION ABILITY TO LARGE UNSEEN GRAPHS

To test the generalization ability of GRASP on large unseen graphs for GED predictions, we conduct
experiments by following the setting in (Ranjan et al., 2022). Specifically, we get GRASP-25 and
GRASP-50 by training GRASP on graphs with node sizes up to 25 and 50, respectively, and then
test on graph pairs in which the number of nodes in the query graph is in the range [25, 50]. Table
7 shows the results, with comparison to GREED and H2MN. Observe that (i) the performance of all
methods degrades for large query sizes in [25,50], compared with the entire set in [0,50], (ii) when
trained using smaller graphs from 50 to 25 size, all methods also degrade, (iii) our method GRASP-
25 (resp. GRASP-50) keeps the best performance than the baselines under all these generalization
settings.

Query Size in [0,50] Query Size in [25, 50]
GRASP-50 5.418 6.104
GREED-50 5.885 7.470
H2MN-50 7.041 9.024
GRASP-25 7.499 9.841
GREED-25 8.341 10.204
H2MN-25 8.965 10.956

Table 7: Generalization on large unseen graphs with RMSE results to predict GED directly on PTC.

17

	Introduction
	Problem Statement
	Our Proposed Approach: GraSP
	Enhanced Node Features via Positional Encoding
	Multi-Scale Pooling on RGGC
	GED and MCS Prediction Objectives

	Analysis
	Experiments
	Experiment Setup
	Effectiveness
	Efficiency
	Ablation Study
	Case Study

	Related Work
	Conclusion
	Appendix
	Proofs of Propositions
	Descriptions and Statistics of the Datasets
	Hyperparameter Settings
	Sensitivity Analysis
	A comparison on GED prediction error heatmap
	Additional Case Studies
	Results on predicting GED directly
	Extending to Consider of Edge Relabeling
	Generalization ability to large unseen graphs

