BIONAS: INCORPORATING BIO-INSPIRED LEARNING RULES TO NEURAL ARCHITECTURE SEARCH

Anonymous authors

Paper under double-blind review

ABSTRACT

Bio-inspired neural networks have gained traction due to their adversarial robustness, energy efficiency and for being biologically plausible. While these bioinspired networks have shown significant progress, they still fall short in terms of accuracy and are hard to scale to complex tasks. In this paper, we propose to use neural architecture search to further improve state-of-the-art bio-inspired neural networks. We achieve this thanks to BioNAS, a framework for neural architecture search designed for bio-inspired neural networks. It explores different bioinspired neural network architectures and explores also the use of different learning rules for the layers of models being explored. The motivation for this choice comes from recent work in the field suggesting that different learning mechanisms might be used in different regions of the human brain. Using BioNAS, we get state-of-the-art bio-inspired neural network performance achieving an accuracy of 94.86 on CIFAR10, 76.48 on CIFAR-100 and 43.42 on ImageNet16-120, surpassing state-of-the-art bio-inspired neural networks. We show that a part of this improvement comes from the use of different learning rules instead of using a single learning rule for all the layers. To the best of our knowledge, BioNAS is the first neural architecture search framework that allows the exploration of using different bio-inspired learning rules for a neural network. We release BioNAS to the community and make the code available via this link (https://anonymous.4open.science/r/LR-NAS-DFE1).

028

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

Bio-inspired neural networks have gained significant traction recently. They are more biologically plausible, more robust to adversarial attacks Sanfiz & Akrout (2021a); Moraitis et al. (2022a), and have higher energy efficiency Malcolm & Casco-Rodriguez (2023). Despite their significant success, these methods are still in development and fall short in terms of accuracy and in scaling effectively for complex tasks. In this paper, we aim to use neural architecture search to improve state-of-the-art bio-inspired neural networks.

Neural Architecture Search (NAS) is a method that automatically searches for neural network archi-037 tectures and effectively finds high-quality architectures. This is usually done by exploring different types of architectures and picking one that best satisfies an objective (e.g., minimizing the loss). Early work based on Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) was able to 040 find interesting architectures, however such methods take significant amount of time. AmoebaNet-041 B Real et al. (2019), for example, takes around 3150 GPU days. Several efficient NAS methods have 042 been developed since then, offering a trade-off between search time and accuracy. Differentiable Ar-043 chitecture Search (DARTS) Liu et al. (2018) is a notable example. It has shown success in designing 044 differentiable neural architecture search. EG-NAS Cai et al. (2024), a follow-up work, improved on top of DARTS using genetic algorithms. It has shown an ability to find an accuracy competitive with DARTS in 0.1 GPU days compared to 1 GPU day for DARTS on CIFAR10. 046

In this paper, we build on top of DARTS and EG-NAS to propose BioNAS, a framework for neural architecture search that explores different bio-inspired neural network architectures and learning rules. BioNAS is the first NAS framework that explores the use of different bio-inspired learning rules for different layers of the model. The motivation for this choice comes from recent work in the field suggesting that the brain uses different learning mechanisms across different layers and regions in the brain, from Hebbian Learning to more complex optimization techniques Marblestone et al. (2016). To the best of our knowledge, this is the first work to address incorporating learning rules as part of the neural architecture search. We show that interesting architectures can be discovered

within this framework surpassing state-of-the-art bio-inspired neural networks, and achieving an accuracy of 94.86 on CIFAR10, 76.48 on CIFAR-100 and 43.42 on ImageNet16-120. We show that a part of this improvement comes from the use of different learning rules instead of using a single algorithm for all the layers.

- The contributions of this paper are as follows
 - 1. We propose BioNAS, a framework for neural architecture search designed for bio-inspired neural networks.
 - 2. To the best of our knowledge, BioNAS is the first framework that incorporates learning rules as part of the neural architecture search.
 - 3. We show that using different bio-inspired learning rules, improves the accuracy of bioinspired models as well as their adversarial robustness.
 - 4. We release BioNAS to the community and make the code available via this link (https: //anonymous.4open.science/r/LR-NAS-DFE1).
- 068 069 070

058

060

061

062

063

064

065

066 067

1 RELATED WORK

071

072 Backpropagation (BP) Rumelhart et al. (1986) is the most commonly used algorithm to train neural 073 networks it relies on a forward pass where a prediction is made, and a backward pass that updates 074 the weights according to the derivative of the loss. The backward pass relies on a weight-transposed 075 matrix and requires symmetry. This is known as the weight transport problem. Many alternatives 076 have been proposed to relax this requirement especially since evidence from the brain has shown 077 that it doesn't learn this way. Lillicrap et al. (2016) has proposed Feedback Alignment (FA) in its simplest form that instead of using a transposed weight gradient matrix in the backward pass, it uses a fixed random feedback matrix that's shared across the network. Another variant called 079 Direct Feedback Alignment has been proposed by Nøkland (2016) and uses a random feedback matrix shared across the network, however, the way the feedback synapses are wired is different: it 081 is skipped directly to each layer separately from the output layer. Coherent learning happens even with these random feedback matrices, credit assignment occurs as a result of a partial alignment of 083 the feedforward and backward weights. Liao et al. (2016) has shown that by using different sign 084 concordance matrices, the performance can be improved and can approximate backpropagation. 085 Sanfiz & Akrout (2021a) has benchmarked these different techniques and their intrinsic adversarial robustness.

On another note, Dellaferrera & Kreiman (2023) proposes "Present the Error to Perturb the Input To modulate Activity" (PEPITA), which is an algorithm that removes the backward pass and uses a second forward pass instead, to modulate the input signal based on the error. Hinton (2022) proposed the Forward-Forward algorithm that relies on a goodness metric for each layer and two forward passes. The goodness metric can theoretically be set to any metric that is high for positive data and low for negative data, such as the sum of the squared activities in a layer, this algorithm has been tested on simple tasks on shallow networks and has yet to be scaled for complex image classification tasks.

Brain-inspired plasticity rules such as Hebbian Learning have long been used in computational neuroscience as a plasticity rule implemented by certain synapses in the brain. Yet this mechanism of strengthening the synaptic weights when neurons fire together or inhibit them (Anti-Hebbian Learning) remained very simple and ineffective in learning complex tasks, Amato et al. (2019); Lagani et al. (2022b) have trained convolutional neural networks on complex tasks such as CIFAR10 and ImageNet, however Journé et al. (2023) have shown that Hebbian Learning can scale up and perform well on these complex tasks in an unsupervised way using a Winner-Take-All mechanism. Their method relies heavily on the choice of hyperparameters and relies on an adaptive learning rate.

102

Adversarial attacks are malicious attacks that try to fool models to erode their predictions. They use information about the architecture, the data that it has been trained on, or simply in a black box manner. Famous adversarial attacks include One or Few Pixel attacks Su et al. (2019), PGD Madry (2017), FGSM Goodfellow et al. (2014). Wu et al. (2024) have benchmarked the adversarial robustness of architectures resulting from NAS. Few works have investigated the search for robust architectures such as Zhu et al. (2023), where they include the adversarial score in the objective function while searching, this involves extra-evaluation of the resulting architectures. We're interested in
 exploring NAS for bio-inspired neural networks due to their robustness to noise and attacks without
 needing extra evaluation, especially since backpropagation-trained neural networks are more prone
 to gradient-based attacks.

112 113 114

115

2 BACKGROUND

In this work, we consider a neural network characterized by an input vector z, an output vector y, and an activation function $\phi(\cdot)$. The conventional weight update in backpropagation is derived using the chain rule of calculus and is given by:

119 120

121 122

123

124 125 126

127 128

133

134 135

136

153 154 where η is the learning rate, L is the loss function, and \mathbf{z}_i represents the pre-activation at layer *i*. The

 $\delta W_i = -\eta \frac{\partial L}{\partial W_i} = -\eta \left(\frac{\partial L}{\partial \mathbf{y}} \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{z}_i} \cdot \frac{\partial \mathbf{z}_i}{\partial W_i} \right),$

gradient $\frac{\partial \mathbf{z}_i}{\partial W_i}$ is typically calculated as:

$$\frac{\partial \mathbf{z}_i}{\partial W_i} = \phi'(\mathbf{z}_i) \mathbf{y}_{i-1}^T, \tag{2}$$

(1)

where \mathbf{y}_{i-1} is the output from the previous layer, and $\phi'(\mathbf{z}_i)$ is the derivative of the activation function with respect to \mathbf{z}_i . This update rule relies on the precise gradients provided by the subsequent layer's weight matrix, W_{i+1} .

2.1 **BIO-INSPIRED LEARNING RULES**

We base our work on learning rules discussed by Sanfiz & Akrout (2021a); Liao et al. (2016).

137 FEEDBACK ALIGNMENT (FA)

In layer *i*, the conventional weight update method necessitates knowledge of the subsequent layer's weight matrix, W_{i+1} , which is biologically implausible as it requires neurons to exchange extensive synaptic weight data. This challenge, often referred to as the weight transport problem, is addressed by substituting W_{i+1} with a randomly generated synaptic weight matrix B_{i+1} . This adjustment enables a distinct backward pass to circumvent the weight transport issue, modifying the weight update equation to:

$$\delta W_i = -((B_{i+1}\delta \mathbf{z}_{i+1})\phi'(\mathbf{z}_i))\mathbf{y}_{i-1}, where \delta \mathbf{z}_{i+1} = \frac{\partial L}{\partial \mathbf{z}_{i+1}}.$$
(3)

149 UNIFORM SIGN-CONCORDANT FEEDBACKS (USF) 150

This technique transmits only the sign of the forward matrix weights, assuming each synaptic weight has a unit magnitude:

$$B_i = \operatorname{sign}(W_i) \text{ for all } i. \tag{4}$$

In this method, the magnitude of the synaptic weights $|R_i|$ for each layer is recalculated after every update, configured as:

$$B_i = |R_i| \operatorname{sign}(W_i) \text{ for all } i.$$
(5)

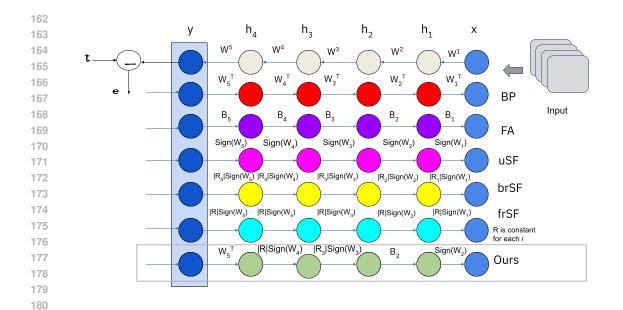


Figure 1: An illustration showing the usage of different credit assignment with BP and FA techniques.

FIXED RANDOM MAGNITUDE SIGN-CONCORDANT FEEDBACKS (FRSF)

A variant of brSF, where the magnitude of the weights $|R_i|$ remains constant |R| and is set at the beginning of training:

$$B_i = |R| \operatorname{sign}(W_i) \text{ for all } i.$$
(6)

181

182

183

185

186

187

188 189

2.2 DARTS

Differentiable Architecture Search (DARTS) Liu et al. (2018); Chu et al. (2020) is a neural architecture search (NAS) method that performs continuous relaxation of the search space to enable differentiable optimization. This technique reduces the computational cost by enabling weight sharing across candidate architectures during the search phase. In DARTS, a supernetwork composed of stacked normal and reduction cells is trained, with reduction cells positioned at certain layers to downsample feature maps and capture hierarchical representations.

Each cell in DARTS is represented as a directed acyclic graph (DAG), where the nodes correspond to feature maps, and the edges correspond to operations such as convolutions or pooling. The search process optimizes architecture parameters α alongside the network weights w via gradient-based optimization. A softmax over the candidate operations defines the mixed operation for each edge in the DAG:

205 206 207

208

$$\bar{O}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x) \tag{7}$$

After the search phase, the architecture is derived by selecting the operations with the highest weights for each edge, thus producing a finalized network architecture based on learned architecture parameters. We provide more details in Appendix A.4.1.

- 213 2.3 EG-NAS 214
- EG-NAS Cai et al. (2024) builds upon DARTS by integrating evolutionary strategies into the search process, specifically leveraging Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) Hansen (2016); Loshchilov & Hutter (2016). EG-NAS alternates between gradient descent to update network weights and evolutionary updates to explore the architecture parameters α . By sampling architectures from a Gaussian distribution and evolving them using CMA-ES, EG-NAS enhances the exploration of the search space and reduces the risk of converging to local optima.

The use of evolutionary strategies allows EG-NAS to scale more effectively for larger and more complex search spaces compared to DARTS, particularly when rapid exploration of architecture variations is required, more details about this algorithm are provided in Appendix A.4.2.

224 2.4 ADVERSARIAL ATTACKS

We evaluate the robustness of bio-inspired neural networks against the following adversarial attacks.

- Fast Gradient Sign Method (FGSM) Goodfellow et al. (2014): A white-box attack that perturbs the input in the direction of the gradient of the loss with respect to the input, bounded by an L_{∞} norm constraint.
- **Projected Gradient Descent (PGD)** Madry (2017): An iterative extension of FGSM, which applies multiple small perturbations to maximize the loss, followed by a projection back onto the L_{∞} constraint set.
- **Targeted Projected Gradient Descent (TPGD)** Zhang et al. (2019): A variant of PGD that uses KL-divergence loss to balance robustness and accuracy.
 - **One-Pixel Attack** Su et al. (2019): An attack that manipulates only a few pixels in the input image to fool the neural network while retaining the visual integrity of the input.
- Auto Projected Gradient Descent (APGD) Croce & Hein (2020): A parameter-free iterative attack that automatically adjusts the step size and adapts to the model's gradients for more efficient and robust perturbation.

3 Methods

243 244

226

227 228

229

230

231

232

233

234

235

237

238

239

240

241 242

Our method builds upon DARTS and EG-NAS but introduces learning rules in the search space. Specifically, we propose BioNAS-DARTS and BioNAS-EG, which extend the baseline methods by incorporating a more comprehensive set of candidate operations based on bio-inspired learning rules.

We implement different variants of feedback alignment, each based on a backward bio-inspired connection. For simplicity, we do not use DFA as it requires a change in the computational graph of the neural network, which would affect other methods relying on a backward pass using PyTorch.
We also do not use methods that rely on two forward passes such as Hinton (2022); Dellaferrera & Kreiman (2023). Instead, we rely on other feedback alignment techniques that can be separated into blocks and are not skip-connected.

255 256

264

265

266 267

268

3.1 SEARCH SPACE

The key contribution of our work lies in the design of the search space, where we expand the set of candidate operations to include operations guided by bio-inspired learning rules. We refer to these learning rules include Feedback Alignment (FA), Uniform Sign-concordant Feedback (uSF), Batchwise Random Magnitude Sign-concordant Feedback (brSF), and Fixed Random Magnitude Sign-concordant Feedback (frSF). The operations in our search space are as follows:

- 263 Candidate Operations:
 - 3×3 separable convolutions (in 4 modes: FA, uSF, brSF, frSF)
 - 5×5 separable convolutions (in 4 modes: FA, uSF, brSF, frSF)
 - 3×3 dilated convolutions (in 4 modes: FA, uSF, brSF, frSF)
 - 5×5 dilated convolutions (in 4 modes: FA, uSF, brSF, frSF)
 - 3×3 max pooling

- 270 271 272
- 3×3 average pooling
- Skip connection (Identity if stride equals 1, or Factorized reduce if stride equals 2, with 3 modes: uSF, brSF, frSF)
- 273 274 275

277

• Zero (no operation, it is used for DARTS and omitted for EG-NAS like the baseline)

This enriched search space allows us to explore a wider variety of robust architectures and adapt to different learning paradigms. Figure 2 shows that for each block selected a learning rule is selected as well at the same time.

278 279 280

3.2 **BIONAS-DARTS**

281 BioNAS-DARTS builds upon DARTS by introducing the expanded search space detailed above. 282 During the search phase, both architecture parameters α and network weights w are optimized si-283 multaneously. The search is conducted over a supernetwork composed of normal and reduction cells, 284 where each edge between nodes represents a candidate operation from our enhanced operation set. 285 The continuous relaxation method of DARTS allows us to optimize over this complex search space 286 efficiently. Figure 3 illustrates the search strategy for BioNAS-EG.

287 In our framework, each operation on the edge can be selected from multiple bio-inspired modes, 288 making the search process more diverse and capable of handling different types of data and learning 289 tasks. 290

3.3 **BIONAS-EG** 292

293 BioNAS-EG utilizes the faster, more scalable approach of EG-NAS, while incorporating our bio-294 inspired operations into the search space. We retain the combination of gradient descent and CMA-295 ES to explore architecture parameters efficiently. The evolutionary strategy explores multiple directions, avoiding local optima and enhancing the search for robust and diverse architectures. 296

297

291

298 The compound fitness function integrates 299 cross-entropy loss and cosine similarity to bal-300 ance performance and diversity during the 301 search, ensuring that the selected architectures perform well across various metrics. 302

303 BioNAS-EG provides a scalable solution for 304 neural architecture search that is suited for large 305 and complex datasets since it takes less search 306 time

- 307
- 308 3.4 EXPERIMENTAL SETUP 309

We benchmark our work on the CIFAR10, 310 CIFAR100 datasets, and the ImageNet16-120 311 dataset from NasBench201 Dong & Yang 312 (2020). We use a single NVIDIA A100 GPU. 313 We detail here the hyperparameters used for the 314 final architecture, and details about the hyper-315 parameters used for the supernetwork are in-316

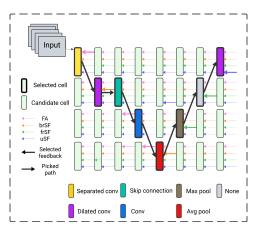


Figure 2: Search process: the supernetwork selects the best candidate operations, which are searched with different learning rules. The backward arrow represents the feedback mechanism (learning rule) chosen.

cluded in Appendix 4. We also use the package Biotorch to convert the convolutional layers and 317 it uses a Xavier Glorot & Bengio (2010) initialization of the weights to preserve the variance and 318 enhance the training. 319

320 3.4.1 CIFAR10 AND CIFAR100 321

Both CIFAR-10 and CIFAR-100 datasets Krizhevsky (2009) follow the same setup. CIFAR-10 con-322 tains 50,000 training images and 10,000 test images across 10 classes, while CIFAR-100 contains 323 50,000 training images and 10,000 test images across 100 classes.

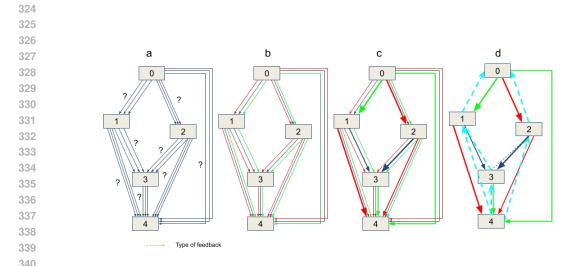


Figure 3: Illustration of BioNAS: Operations on the edges are initially unknown. (b) Continuous 342 relaxation of the search space. (c) Joint optimization of the mixing probabilities and the network weights (d) Inducing the final architecture as well as the learning rules. Figure inspired from Kara-344 giannakos (2021)

347 We train the architectures resulting from the search using the following hyperparameters for both 348 CIFAR-10 and CIFAR-100: batch size of 96, learning rate of 0.025, momentum of 0.9, weight decay 349 of 3×10^{-4} , for 600 epochs. The architectures are initialized with 36 channels and have 20 layers. 350 We enable the auxiliary tower with a weight of 0.4, apply cutout augmentation with a length of 16, 351 use a drop path probability of 0.2 for BioNAS-DARTS and 0.3 for BioNAS-EG, and apply gradient 352 clipping with a maximum norm of 5. These parameters follow the setup found in Liu et al. (2018) and 353 Cai et al. (2024). For the ResNet20 and ResNet56 architectures, we use the same experimental setup obtained via the hyperparameter search process done by Sanfiz & Akrout (2021b) and reproduce 354 their experiments, and for retraining with the same learning rule, the same setup as the original 355 architecture is applied. 356

3.4.2 IMAGENET16-120 358

359 ImageNet16-120 Chrabaszcz et al. (2017) is a subset of ImageNet Deng et al. (2009) with 120 360 classes, downsampled to 16x16 resolution. This dataset provides a fast benchmark for evaluating 361 the robustness of the searched architectures. 362

The hyperparameters used to train the architectures on ImageNet16-120 are as follows: batch size 363 of 1024, learning rate of 0.5, momentum of 0.9, weight decay of 3×10^{-5} , for 250 epochs. The 364 architectures are initialized with 48 channels and have 14 layers. We enable the auxiliary tower with a weight of 0.4, apply label smoothing with a factor of 0.1, use a linear learning rate scheduler, and 366 apply gradient clipping with a maximum norm of 5. No drop path regularization is applied. These settings follow the setup described in Cai et al. (2024).

367 368 369

370 371

372 373

374

375

376

377

341

343

345 346

357

3.5 ADVERSARIAL ATTACKS

In our experiments, we used the following parameters for the adversarial attacks:

- Fast Gradient Sign Method (FGSM): We set the maximum perturbation size $\epsilon = 0.35$.
 - Projected Gradient Descent (PGD): The step size α was set to 2/255, with a maximum perturbation of $\epsilon = 0.35$ and 10 steps. We also used random initialization.
- Targeted Projected Gradient Descent (TPGD): This attack used a step size of α = 2/255, a perturbation limit of $\epsilon = 8/255$, and 7 iterations.

	Bio-inspired	CIFAR-10 Tes Error (%)	t CIFAR-100 Te Error (%)
ResNet He et al. (2015)	×	4.61	22.1
ENAS + cutout Pham et al. (2018)	×	2.89	-
AmoebaNet-A Real et al. (2019)	×	3.34	17.63
NSGA-Net Lu et al. (2019)	×	2.75	20.74
NSGANetV1-A2 Lu et al. (2019)	×	2.65	-
EPCNAS-C Huang et al. (2022)	×	3.24	18.36
EAEPSO Huang et al. (2023)	×	2.74	16.94
DARTS(1st) Liu et al. (2018)	×	3.00	17.54
DARTS(2nd) Liu et al. (2018)	×	2.76	-
SNAS (moderate) + cutout Xie	×	2.85	17.55
et al.			
ProxylessNAS + cutout Cai et al.	×	2.02	-
(2019)			
GDAS Dong & Yang (2019b)	×	2.93	18.38
BayesNAS Zhou et al. (2019)	×	2.81	-
P-DARTS + cutout	×	2.50	17.49
PC-DARTS + cutout Chen et al.	×	2.57	16.90
(2019)		2.57	10.90
DARTS- Xu et al. (2020)	×	2.59	17.51
β -DARTS Ye et al. (2022)	×	2.53	16.24
DrNAS Chen et al.	×	2.54	-
DARTS+PT Wang et al. (2023)	×	2.61	_
EG-NAS Cai et al. (2024)	×	2.53	16.22
ResNet20 FA	$\widehat{\checkmark}$	32.16	75.70
ResNet20 frSF	· · · · · · · · · · · · · · · · · · ·	11.2	58.68
ResNet20 brSF	~	11.02	58.37
ResNet20 uSF	v	10.05	56.09
ResNet56 FA	· · · · · · · · · · · · · · · · · · ·	34.88	50.07
ResNet56 frSF	· · · · · · · · · · · · · · · · · · ·	9.49	-
ResNet56 brSF	~	8.69	-
ResNet56 uSF	v	8.2	-
ResNet20 BP	×	8.63	-
ResNet56 BP	×	8.3	-
SoftHebb* Moraitis et al. (2022b)	\checkmark	8.5 19.60	-
FastHebb Lagani et al. (2022a)	× _	15.0	-
BioNAS-EG (ours)	× _	7.16	29.76
BioNAS-DARTS (ours)	× _	5.14	23.52

• Auto Projected Gradient Descent (APGD): We used the L_{∞} norm with a perturbation size of $\epsilon = 8/255$, 50 steps, and 1 restart.

429 430

431 Each attack was applied in both the untargeted and targeted modes where applicable, to explore the full range of adversarial vulnerabilities in our bio-inspired neural networks.

432 4 RESULTS

433 434

467

468

469 470

471

472

Through the experiments reported in Table 1, we show that NAS can effectively enable us to find the best architecture as well as the best bio-inspired learning rule, and we notice that the architecture that DARTS discovers on CIFAR10 performs well when benchmarked on CIFAR100, surpassing the backpropagation based DARTS-V1 from the Nas-Bench-201, ResNet20, and ResNet56 that are both trained with backpropagation. Table 3 shows the accuracy of BioNAS compared to other stateof-the-art NAS methods. Despite having a lower accuracy than BP-trained supernetworks, it is to the best of our knowledge the first attempt to train a supernetwork with mixed bio-inspired learning rules.

We wanted to investigate the role that the learning rules and the architectures take in shaping this searched neural network. In Figure 4, we compare converting a neural network architecture searched independently of the learning rules and converting it to different modes, to a combined search of learning rule and architecture.

We train the architecture searched with BioNAS with backpropagation after converting it to different modes (brSF, frSF, uSF) on CIFAR10, with the same experimental setup used for training the resulting architecture from BioNAS. We notice that mixing the learning rules gives the best performance, which means that both the architecture choice and the learning rule choice are important. In order to underlying learning dynamics, we provide some analysis in subsection A.2, mixing the learning rules yields learning dynamics similar to those observed with L1 and L2 regularisation, yet a theoretical formulation and proof is to be provided.

Model	Clean	One Pixel attack			FGSM	PGD	TPGD	APGE		
	Acc	1		-2	4	-				
	67.00	1	2	3	4	5	<i>(</i> 1 - 1	(2.00)	(= 10	
RN56 FA	65.80	47.80	40.60	38.20	38.19	38.00	61.72	63.28	67.19	33.59
RN56 uSF	91.60	63.80	44.00	38.40	36.40	34.40	14.60	00.00	40.62	00.00
RN56 frSF	89.80	62.60	42.40	40.60	38.60	35.40	18.75	00.00	46.09	00.00
RN56 brSF	89.80	65.40	45.00	42.00	40.40	38.00	73.43	00.00	50.00	00.00
ResNet20 BP	91.99	59.60	35.80	32.40	32.00	28.20	12.50	00.00	33.59	00.00
BioNAS-DARTS (ours)	94.86	90.89	89.38	87.46	86.17	84.93	61.05	60.58	67.48	66.99

Table 2: Accuracy table comparing the robustness of BioNAS to backpropagation for 5 types of adversarial attacks.

4.1 DISCUSSION

The key benefit of using mixed learning rules lies in their ability to balance gradient variance across layers as shown in Figure 7 in the Appendix A. The variance in the gradient estimate when using a single rule across the network can be expressed as:

$$\operatorname{Var}[\nabla \mathcal{L}(\theta)] = \frac{1}{n} \sum_{i=1}^{n} (\nabla \mathcal{L}_{i}(\theta) - \mathbb{E}[\nabla \mathcal{L}_{i}(\theta)])^{2}.$$
(8)

When using mixed learning rules, the total variance becomes:

$$\operatorname{Var}_{\operatorname{Mixed}}[\nabla \mathcal{L}(\theta)] = \frac{1}{n} \sum_{i=1}^{n} w_i \operatorname{Var}_{\operatorname{Rule}}[\nabla \mathcal{L}_i(\theta)],$$
(9)

where w_i is the weight assigned to each learning rule. By combining rules with different characteristics, the overall variance is reduced, resulting in smoother gradient propagation and more stable training. This mixture improves the robustness of the network to variations in gradient magnitude, especially in deeper layers, leading to better generalization.

Model	CIFAR-10	CIFAR-100	ImageNet16-120	Search
			-	Time
	Test %	Test %	Test %	(GPU-
				Days)
BioNAS-EG (Bio)	81.16	70.24	23.84	0.35
BioNAS-DARTS (Bio)	85.83	52.12	-	1.37
ResNet He et al. (2015) (BP)	90.83	70.42	44.53	-
Random (BP)	93.70	70.65	26.28	-
ENAS Pham et al. (2018) (BP)	53.89	13.96	14.57	0.5
Random-NAS (BP)	84.07	52.31	26.28	-
SETN Dong & Yang (2019a) (BP)	87.64	59.05	32.52	-
GDAS Dong & Yang (2019b) (BP)	93.23	24.20	41.02	0.2
DSNAS Hu et al. (2020) (BP)	93.08	31.01	41.07	1.5
DARTS-V1 Liu et al. (2018) (BP)	54.30	15.61	16.32	0.4
DARTS-V2 Liu et al. (2018) (BP)	54.30	15.61	16.32	1.0
PC-DARTS (BP) Xu et al. (2020)	93.41	67.48	41.31	0.1
iDARTS (BP) Wang et al. (2023)	93.58	70.83	40.8	-
DARTS Chu et al. (2020) (BP)	93.80	71.53	45.12	0.4
EGNAS Cai et al. (2024) (BP)	93.56	70.78	46.13	0.1

Table 3: Validation accuracies and search times for the supernetwork on CIFAR-10, CIFAR-100, and ImageNet16-120 datasets. BioNAS's supernetwork achieves a validation accuracy of 23.84% in the search phase and an accuracy of 43.42% when the architecture is trained separately

Model	Top-1 accuracy %
BioNAS-EG-brSF	83.17
BioNAS-EG-frSF	90.58
BioNAS-EG-uSF	86.54
BioNAS-EG (ours)	92.84
BioNAS-DARTS-brSF	83.17
BioNAS-DARTS-frSF	90.58
BioNAS-DARTS-uSF	86.54
BioNAS-DARTS (ours)	94.86

Figure 4: Comparing neural architecture search to neural architecture search with learning rules.

5 CONCLUSION

> In this paper, we show that a good choice of the learning rule used for each layer in a network and the operation can result in a bio-inspired neural network with a good accuracy competing with backpropagation-trained neural networks, achieving state-of-the-art bio-inspired neural network accuracy. The mixed-rule approach provides advantages over using a single learning rule throughout the network by reducing gradient variance, facilitating better exploration of the loss landscape, and enhancing adversarial robustness. This theoretical framework aligns with the empirical results observed in our experiments, where architectures searched using NAS with mixed learning rules outperform those using a uniform rule across all layers. Further investigation should be done on the learning dynamics in this searched architecture and the representations learned.

6 ETHICS STATEMENT

We acknowledge the significant computational resources required for the NAS experiments on
 GPUs. However, we believe this work contributes to the development of more robust, bio-inspired neural networks, which can lead to more secure and efficient AI systems in the long run.

5407REPRODUCTIBILITY STATEMENT541

To ensure the reproducibility of our work, we have made the experimental code publicly available along with detailed instructions for setup and execution. This includes all necessary configurations and steps to replicate the results presented in this paper.

References

542

543

544

545 546

547 548

549

550

551

552 553

554

555

556

561

584

585

- Giuseppe Amato, Fabio Carrara, Fabrizio Falchi, Claudio Gennaro, and Gabriele Lagani. Hebbian learning meets deep convolutional neural networks. In Elisa Ricci, Samuel Rota Bulò, Cees Snoek, Oswald Lanz, Stefano Messelodi, and Nicu Sebe (eds.), *Image Analysis and Processing ICIAP 2019*, pp. 324–334, Cham, 2019. Springer International Publishing. ISBN 978-3-030-30642-7.
- Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and hardware. In *International Conference on Learning Representations*, 2019. URL https://arxiv.org/pdf/1812.00332.pdf.
- Zicheng Cai, Lei Chen, Peng Liu, Tongtao Ling, and Yutao Lai. Eg-nas: Neural architecture search with fast evolutionary exploration. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(10):11159–11167, Mar. 2024. doi: 10.1609/aaai.v38i10.28993. URL https://ojs.aaai.org/index.php/AAAI/article/view/28993.
- Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Drnas:
 Dirichlet neural architecture search. In *International Conference on Learning Representations*.
- 564
 565
 566
 566
 567
 567
 564
 564
 565
 566
 567
 567
 567
 568
 569
 569
 569
 569
 569
 569
 560
 560
 560
 561
 562
 562
 563
 564
 565
 565
 566
 566
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
 567
- Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative to the cifar datasets. *arXiv preprint arXiv:1707.08819*, 2017.
- Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair advantages in differentiable architecture search. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), *Computer Vision ECCV 2020*, pp. 465–480, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58555-6.
- Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–2216. PMLR, 2020.
- Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit assignment problem without a backward pass, 2023.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
 pp. 248–255. Ieee, 2009.
 - Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template network. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3681–3690, 2019a.
- Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1761–1770, 2019b.
- Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture search. In *International Conference on Learning Representations (ICLR)*, 2020. URL https://openreview.net/forum?id=HJxyZkBKDr.

594 595 596	Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In <i>International Conference on Artificial Intelligence and Statistics</i> , 2010. URL https://api.semanticscholar.org/CorpusID:5575601.
597 598 599	Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. <i>arXiv preprint arXiv:1412.6572</i> , 2014.
600	Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.
601 602 603	Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog- nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.
604	Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.
605 606 607 608 609	Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and Dahua Lin. Dsnas: Direct neural architecture search without parameter retraining. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12081–12089, 2020. doi: 10.1109/CVPR42600.2020.01210.
610 611 612	Junhao Huang, Bing Xue, Yanan Sun, Mengjie Zhang, and Gary G. Yen. Particle swarm opti- mization for compact neural architecture search for image classification. <i>IEEE Transactions on</i> <i>Evolutionary Computation (Early Access)</i> , pp. 1–15, 2022. doi: 10.1109/TEVC.2022.3217290.
613 614 615	Junhao Huang, Bing Xue, Yanan Sun, Mengjie Zhang, and Gary G. Yen. Particle swarm opti- mization for compact neural architecture search for image classification. <i>IEEE Transactions on</i> <i>Evolutionary Computation</i> , 27(5):1298–1312, 2023. doi: 10.1109/TEVC.2022.3217290.
616 617 618 619	Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep learn- ing without feedback. In <i>The Eleventh International Conference on Learning Representations</i> , 2023.
620 621	Sergios Karagiannakos. Neural architecture search (nas): basic principles and different approaches. <i>https://theaisummer.com/</i> , 2021.
622 623 624	A Krizhevsky. Learning multiple layers of features from tiny images. <i>Master's thesis, University of Tront</i> , 2009.
625 626 627 628 629	Gabriele Lagani, Claudio Gennaro, Hannes Fassold, and Giuseppe Amato. Fasthebb: Scaling heb- bian training training of deep neural networks to imagenet level. In <i>Similarity Search and Ap-</i> <i>plications: 15th International Conference, SISAP 2022, Bologna, Italy, October 5–7, 2022, Pro-</i> <i>ceedings</i> , pp. 251–264, Berlin, Heidelberg, 2022a. Springer-Verlag. ISBN 978-3-031-17848-1. doi: 10.1007/978-3-031-17849-8_20.
630 631 632 633 634	Gabriele Lagani, Claudio Gennaro, Hannes Fassold, and Giuseppe Amato. Fasthebb: Scaling heb- bian training of deep neural networks to imagenet level. In Tomáš Skopal, Fabrizio Falchi, Jakub Lokoč, Maria Luisa Sapino, Ilaria Bartolini, and Marco Patella (eds.), <i>Similarity Search</i> <i>and Applications</i> , pp. 251–264, Cham, 2022b. Springer International Publishing. ISBN 978-3- 031-17849-8.
635 636	Qianli Liao, Joel Leibo, and Tomaso Poggio. How important is weight symmetry in backpropaga- tion? In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 30, 2016.
637 638 639 640	Timothy P. Lillicrap, Daniel Cownden, Douglas Tweed, and Colin J. Akerman. Random synaptic feedback weights support error backpropagation for deep learning. <i>Nature Communications</i> , 7 (1), 11 2016. doi: 10.1038/ncomms13276. URL https://doi.org/10.1038/ncomms13276.
641 642	Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. <i>arXiv</i> preprint arXiv:1806.09055, 2018.
643 644 645	Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural networks. <i>arXiv preprint arXiv:1604.07269</i> , 2016.
646 647	Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm. In <i>Proceedings of the genetic and evolutionary computation conference</i> , pp. 419–427, 2019.

658

659

- Aleksander Madry. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.
- Kai Malcolm and Josue Casco-Rodriguez. A comprehensive review of spiking neural networks: Interpretation, optimization, efficiency, and best practices, 2023. URL https://arxiv.org/abs/2303. 10780.
- Adam Marblestone, Greg Wayne, and Konrad Kording. Toward an integration of deep learning and neuroscience. *Frontiers in Computational Neuroscience*, 10, 9 2016. doi: 10.3389/fncom.2016.
 00094. URL https://doi.org/10.3389/fncom.2016.00094.
 - Timoleon Moraitis, Dmitry Toichkin, Adrien Journé, Yansong Chua, and Qinghai Guo. Softhebb: Bayesian inference in unsupervised hebbian soft winner-take-all networks. *Neuromorphic Computing and Engineering*, 2(4):044017, 2022a.
- Timoleon Moraitis, Dmitry Toichkin, Adrien Journé, Yansong Chua, and Qinghai Guo. Soft Hebb: Bayesian inference in unsupervised Hebbian soft winner-take-all networks. *Neuromor- phic computing and engineering*, 2(4):044017, 12 2022b. doi: 10.1088/2634-4386/aca710. URL
 https://doi.org/10.1088/2634-4386/aca710.
- Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in neural information processing systems, 29, 2016.
- Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
 search via parameter sharing. In *International Conference on Machine Learning*, pp. 4095–4104, 2018.
- Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier architecture search. In *Proceedings of the aaai conference on artificial intelligence*, volume 33, pp. 4780–4789, 2019.
- David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. *Nature*, 323(6088):533–536, 10 1986. doi: 10.1038/323533a0. URL https://doi.org/10.1038/323533a0.
- Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feed back alignment algorithms. *arXiv preprint arXiv:2108.13446*, 2021a.
- Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feedback alignment algorithms, 2021b.
- Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
 neural networks. *IEEE Transactions on Evolutionary Computation*, 23(5):828–841, 2019. doi:
 10.1109/TEVC.2019.2890858.
- Huiqun Wang, Ruijie Yang, Di Huang, and Yunhong Wang. idarts: Improving darts by node nor malization and decorrelation discretization. *IEEE Transactions on Neural Networks and Learning Systems*, 34(4):1945–1957, 2023. doi: 10.1109/TNNLS.2021.3105698.
- Yongtao Wu, Fanghui Liu, Carl-Johann Simon-Gabriel, Grigorios Chrysos, and Volkan Cevher. Ro bust NAS under adversarial training: benchmark, theory, and beyond. In *The Twelfth Interna- tional Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=
 cdUpf6t6LZ.
- Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
 In *International Conference on Learning Representations*.
- Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. Pc Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Zhang, Xie, Yuhui Xu, Yuhui
- Peng Ye, Baopu Li, Yikang Li, Tao Chen, Jiayuan Fan, and Wanli Ouyang. b-darts: Beta-decay regularization for differentiable architecture search. In *proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10874–10883, 2022.

- Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 Theoretically principled trade-off between robustness and accuracy. In *International conference* on machine learning, pp. 7472–7482. PMLR, 2019.
- Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian approach for neural architecture search. In *International conference on machine learning*, pp. 7603–7613. PMLR, 2019.

Xunyu Zhu, Jian Li, Yong Liu, and Weiping Wang. Robust neural architecture search. *arXiv preprint arXiv:2304.02845*, 2023.

A APPENDIX

A.1 SUPERNETWORK HYPERPARAMETERS

Table 4 summarizes the hyperparameters used for the supernetworks training for CIFAR10 and
CIFAR100. When it comes to ImageNet16-120, an initial learning rate of 0.5 is used, and a batch
size of 512.

Hyper-parameter	Value
Optimizer	SGD
Initial LR	0.1
Nesterov	Yes
Ending LR	0.0
Momentum	0.9
LR Schedule	(Not mentioned)
Weight Decay	0.0003
Epochs	50
Batch Size	256
Initial Channels	16
V (Nodes per Cell)	4
N (Cells)	5
Random Flip	p=0.5
Random Crop	Yes
Normalization	Yes

735 736

709 710

711 712

713 714

715

Table 4: Hyperparameters used for training the supernetwork on CIFAR10 and CIFAR100.

737 738 739

740

A.2 WEIGHT DISTRIBUTION ANALYSIS

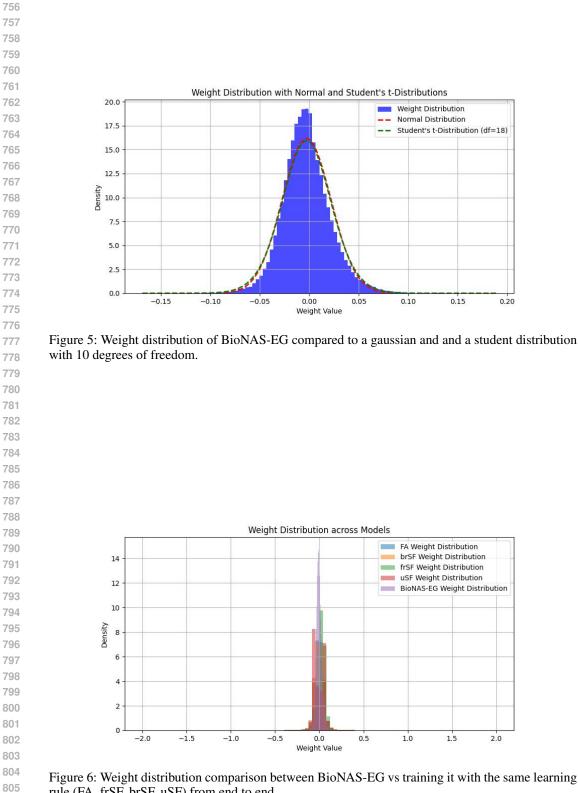
To understand how the learning happens, we plot the weight distribution of our model as shown in
Figure 5, the distribution is a little bit steeper than a Gaussian which is an effect observed usually
with regularization.

We compare the weights of the models with the highest accuracies, we train the resulting BioNAS-EG architecture with the same learning rule from end to end, as shown in figure 6, the weights of BioNAS-EG is steeper with more weights around 0. Note that we drop the weights that are less than 2 and more than 2 since their number is negligible and invisible on the plot.

Another thing we noticed is that for training with the same learning rule, the variance is much smaller than with BioNAS-EG as illustrated in figure 7.

751 A.3 THEORETICAL JUSTIFICATION OF MIXED LEARNING RULES

To demonstrate why a neural architecture searched with NAS using mixed learning rules outper forms architectures that use the same learning rule across all layers, we analyze the impact of com bining various learning rules on gradient propagation, variance reduction, and optimization efficiency.



rule (FA, frSF, brSF, uSF) from end to end.

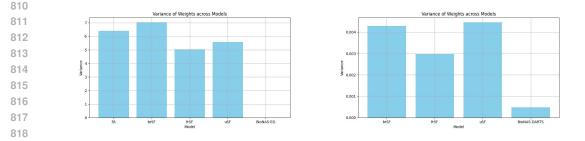


Figure 7: Comparison of weight variance and performance between BioNAS-EG (left) and BioNAS-DARTS (right) models (with mixed learning rules) versus training the same resulting architecture with the same learning rule from end-to-end.

A.3.1 GRADIENT PROPAGATION AND LEARNING DYNAMICS

Consider a neural network consisting of multiple layers, each trained with different feedback learning rules. The general weight update in a layer *i* can be written as:

828 829 830

826

827

819 820

821

 $\delta W_i = -(B_{i+1}\delta \mathbf{z}_{i+1})\phi'(\mathbf{z}_i)\mathbf{y}_{i-1},$

where B_{i+1} is the feedback matrix and $\delta \mathbf{z}_{i+1}$ is the gradient of the loss with respect to the input of layer i + 1.

835 When a network uses a single learning rule throughout, this feedback matrix B_{i+1} is updated uni-836 formly across all layers. However, when different learning rules are applied in different layers, each 837 rule adapts the feedback matrix differently, allowing for a broader range of gradient dynamics across 838 the network. This diversity in updates helps mitigate issues like gradient vanishing or explosion, pro-839 moting better gradient flow.

840 841

842

A.3.2 EXPLORATION AND OPTIMIZATION EFFICIENCY

Each learning rule contributes differently to the exploration of the loss landscape. The variation
across layers helps the network strike a balance between exploration and exploitation during optimization. For example, some rules might encourage the network to explore different parts of the
loss surface by generating different gradient directions, while other rules help converge efficiently
by stabilizing the updates.

The overall gradient update at time t for a mixed-rule network is:

851

852

853 854

855

where $\Delta \theta_t^k$ is the gradient update under rule k and w_k is the weight assigned to that rule. By combining these updates, the mixed-rule network benefits from diverse gradient dynamics that prevent overfitting and improve convergence.

 $\Delta \theta_t^{\text{Mixed}} = \sum_k w_k \Delta \theta_t^k,$

A.3.3 ADVERSARIAL ROBUSTNESS

Using mixed learning rules enhances adversarial robustness by disrupting the consistency in gradient
signals across layers. In adversarial attacks, the goal is to align perturbations with the network's
gradient, but with different learning rules in different layers, the adversary faces a moving target.
This makes it harder to craft perturbations that generalize across the network, improving resistance to adversarial examples.

A.4 NEURAL ARCHITECTURE SEARCH

A.4.1 DARTS

In DARTS, a continuous relaxation of the architecture search space is employed, enabling the use of gradient-based optimization to search for the optimal architecture. Specifically, each intermediate node is computed by applying a softmax function over a mixture of candidate operations:

$$o^{(i,j)}(x^{(i)}) = \sum_{o \in O} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in O} \exp(\alpha_{o'}^{(i,j)})} o(x^{(i)}),$$

where i < j, the set of candidate operations is represented by O, and $\alpha_o^{(i,j)}$ represents the mixing weight for operation $o^{(i,j)}$ in the supernetwork. During the search process, DARTS optimizes both the network weights ω and the architecture parameters α simultaneously using a bi-level optimiza-tion framework. This framework is defined as:

$$\min_{\alpha} F(\omega^*(\alpha), \alpha) = L_{\text{val}}(\omega^*(\alpha), \alpha)$$

subject to $\omega^*(\alpha) = \arg\min_{\omega} L_{\text{train}}(\omega, \alpha),$

where $\omega^*(\alpha)$ denotes the optimal network weights for a given architecture. Both α and ω are updated through gradient descent. After the search phase concludes, the final architecture is derived by selecting the operation with the highest architectural parameter α on each edge:

$$p^{(i,j)} = \arg\max_{o \in O} \alpha_o^{(i,j)}.$$

A.4.2 EG-NAS

In traditional NAS approaches, gradient-based methods typically calculate gradients and use them to guide the search for optimal architectures. However, these methods are often limited by the gra-dient's inherent directionality, leading to a potential risk of getting trapped in local minima. EG-NAS addresses this issue by combining Covariance Matrix Adaptive Evolutionary Strategy (CMA-ES) with gradient-based optimization. CMA-ES is a powerful evolutionary algorithm known for its global search capabilities and efficient convergence in black-box optimization problems Hansen (2016); Loshchilov & Hutter (2016).

The EG-NAS algorithm begins by sampling N architectures, $\{x_n\}_{n=1}^N$, from a Gaussian distribution with a mean vector α and covariance matrix I, such that:

$$x_n = \alpha + \sigma y, \quad y \sim \mathcal{N}(0, I), \quad n = 1, 2, \dots, N$$

Each sampled architecture x_n initializes a CMA-ES search, where x_n serves as the mean vector m_0 of the *n*-th search. The initial population of the *n*-th evolutionary search is sampled as:

$$z_i^t = m^t + \sigma y_i, \quad y_i \sim \mathcal{N}(0, C_t)$$

where t represents the iteration index, starting from t = 0, with $C_0 = I$ and σ as the step size. During each iteration, the mean vector m^{t+1} and covariance matrix C_{t+1} are updated using the following equations:

912
913
914
$$m^{t+1} = \sum_{i=1}^{\lfloor \lambda/2 \rfloor} \beta_i z_i^t,$$

 $C_{t+1} = (1 - c_1 - c_{\lfloor \lambda/2 \rfloor})C_t + c_1(pp^T) + c_{\lfloor \lambda/2 \rfloor} \sum_{i=1}^{\lfloor \lambda/2 \rfloor} \beta_i (z_i^t - m^{t+1})(z_i^t - m^{t+1})^T,$

where β_i represents the fitness weight for each individual, and p is the evolutionary path.

Each individual is evaluated by a compound fitness function, incorporating both the cross-entropy loss (L_1) and cosine similarity (L_2) :

$$f(\alpha^t, z_i^{t+1}) = \begin{cases} \zeta L_1 - \eta L_2 & \text{if } \operatorname{Acc}(\alpha^t) > \operatorname{Acc}(z_i^{t+1}) \\ \zeta L_1 + \eta L_2 & \text{else}, \end{cases}$$

where ζ and η are weight coefficients, and L_2 ensures diversity among architectures by calculating the cosine similarity between α^t and z_i^{t+1} . This compound fitness function helps avoid premature convergence and ensures exploration of diverse architectures.

929 Finally, EG-NAS integrates the evolutionary strategy with gradient-based optimization. The network 930 weights ω are updated via gradient descent, while the architecture parameters α are updated using 931 the evolutionary strategy. The update rule for α is:

$$\alpha^t = \alpha^{t-1} + \xi s^t,$$

where s^t represents the search direction based on fitness values, and ξ is the step size. The bestperforming architecture across all evolutionary steps is selected as the final output, ensuring a more diverse and effective architecture search than traditional gradient-based methods.