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Abstract

Transformer-based NLP models are powerful001
but have high computational costs that limit002
deployment scenarios. Finetuned encoder-003
decoder models are popular in specialized do-004
mains and can outperform larger more gener-005
alized decoder-only models, such as GPT-4.006
We introduce a new configuration for encoder-007
decoder models that improves efficiency on008
structured output and question-answering tasks009
where multiple outputs are required of a single010
input. Our method, prompt-in-decoder (PID),011
encodes the input once and decodes output in012
parallel, boosting both training and inference013
efficiency by avoiding duplicate input encod-014
ing, thereby reducing the decoder’s memory015
footprint. We achieve computation reduction016
that roughly scales with the number of sub-017
tasks, gaining up to 4.6x speed-up over state-018
of-the-art models for dialogue state tracking,019
summarization, and question-answering tasks020
with comparable or better performance.021

1 Introduction022

The transformer architecture (Vaswani et al., 2017)023

is the backbone of many successful NLP models,024

but they have high costs in computation resources025

and latency. To reduce costs, researchers have in-026

vestigated multiple approaches, including model027

compression (e.g., distillation, Hinton et al., 2015;028

Gou et al., 2021; Udagawa et al., 2023; quantiza-029

tion, Zadeh et al., 2020; Dettmers et al., 2022; Yao030

et al., 2022; Dettmers et al., 2023; and mixture031

of experts Kudugunta et al., 2021), model archi-032

tecture modifications (e.g., sparse attention, Roy033

et al., 2021; Liu et al., 2022; multi-query attention,034

Shazeer, 2019; grouped-query attention, Ainslie035

et al., 2023), speculative decoding with a smaller036

model (Leviathan et al., 2023) and GPU kernel037

optimizations (Dao et al., 2022; Ye et al., 2024a).038

Our work focuses on the complementary ap-039

proach of improving training and inference effi-040

ciency in encoder-decoder models on tasks that041
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Figure 1: Given a task where a single input document
X is used to generate multiple outputs Yu associated
with different prompts Zu, PIE creates unique encod-
ings Mu for every prompt Zu. In contrast, PID uses a
single shared M for each prompt. and thus requires less
memory access and has higher computational efficiency.

involve multiple queries over the same document 042

(or dialogue). These tasks include scenarios where 043

multiple users are querying the same document 044

with different requests (e.g., question answering, 045

Ye et al., 2024b; Juravsky et al., 2024), as well as 046

scenarios where it is useful to decompose a com- 047

plex task into simpler subtasks (e.g., abstractive 048

summarization of long/multiple documents, Gidio- 049

tis and Tsoumakas, 2020; Meng et al., 2021; Zhang 050

et al., 2022; or information extraction, Lu et al., 051

2023). 052

In the multi-user question-answering scenario, 053

decoupling questions and the corresponding doc- 054

ument allows reusing the shared document em- 055

beddings for questions from different users in a 056

decoder-only model. The shared embeddings can 057

significantly reduce computation during training 058

and inference. The large amount of document em- 059

beddings can be can be efficiently compressed and 060

stored (Cao et al., 2023). For summarization and 061

information extraction, decomposing a long tar- 062

get output into multiple shorter sequences miti- 063

gates attention degeneration issues (Fu et al., 2023; 064
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Zhou et al., 2023), leading to a boost in accuracy065

and efficiency. However, existing methods put the066

prompts in the encoder, resulting in a higher compu-067

tation cost. In this context, we propose prompt-in-068

decoder (PID) an encode-once, decode-in-parallel069

strategy that avoids duplicate encoding costs by070

sharing inputs and increases decoding efficiency by071

reducing memory access.072

We demonstrate the effectiveness of our decod-073

ing strategy through experiments on a range of074

tasks with short and long inputs: dialogue state075

tracking, abstractive medical dialogue summariza-076

tion, and extractive medical question answering.077

Our models achieve comparable or higher perfor-078

mance (98-101%) than the current state of the art.079

At the same time, we observe a 2-10x computation080

reduction, depending on the number of subtasks,081

and up to 4.6x speed-up for shorter subtask outputs.082

In summary, the main contribution of this work083

is a new, more efficient decoding strategy for multi-084

query tasks, validated on several tasks. The associ-085

ated training/inference code and new models will086

be released with the published work.087

2 Encoder-Decoder Framework088

The encoder-decoder is a general framework that089

has been used to address a wide variety of prob-090

lems in NLP. Given an input word sequence, a091

desired result is obtained by first encoding the in-092

put and then iteratively generating an output word093

sequence. In general-purpose models, the input094

X is optionally combined with a prompt Z that095

specifies the task: Y “ decoderpencoderpX ,Zqq.096

The input X is any form of text, e.g., a sentence,097

article, or transcript of a conversation, and Z can098

be an instruction or a question. The output Y could099

be information extracted from an article, a sum-100

mary of a conversation, or a response to a question.101

State-of-the-art encoder-decoder systems are built102

on transformers. This section overviews the gen-103

eral framework to introduce notation and set up the104

multi-subtask inference problem that we address.105

2.1 Multi-Prompt Decoding106

In this paper, we tackle tasks that can be framed107

in terms of multiple prompts over the same in-108

put X . Specifically, the output is a list of sub-109

tasks (or answers) Y , where each subtask/answer110

is Yu, e.g., Y “ pY1, . . . , Yu, . . . , YU q, and U is111

the total number of subtasks/answers. Each sub-112

task Yu is associated with a specific prompt Zu, so113

Z “ pZ1, . . . , Zu, . . . , ZU q. The scenario involves 114

running inference multiple times to generate Yu, 115

Yu “ decoderpencoderpX , Zuqq, then combining 116

all outputs Yu to form the final Y . We refer to this 117

as the prompt-in-encoder (PIE) approach. Fig- 118

ure 1a illustrates how PIE tackles a single instance 119

(X , Y and Z). PIE involves U encodings of X , 120

one for each prompt Zu. 121

2.2 Encode Once and Decode in Parallel 122

To avoid the redundant encoding of X in PIE and 123

improve inference efficiency when decoding Yu, 124

we propose placing prompt Zu in the decoder, al- 125

lowing us to encode X once and decode Yu in 126

parallel. We refer to this method as prompt-in- 127

decoder (PID). By moving Zu from the encoder 128

(in PIE) to the decoder, the encoder only encodes 129

X once, generating a single sequence of embed- 130

dings that is reused throughout the decoding pro- 131

cess for each prompt Zu. As shown in Figure 1b, 132

X is only encoded once, and the embeddings M 133

are reused for U prompts during decoding to gener- 134

ate all subtask outputs pY1, . . . , Yu, . . . , YU q. For- 135

mally, the equation can be represented as Yu “ 136

decoderpencoderpX q, Zuq. 137

3 Performance Analysis 138

In this section, we show how the PID model im- 139

proves inference efficiency over the PIE model 140

by quantifying memory access and the number of 141

arithmetic operations. 142

3.1 Operational Intensity 143

Memory bandwidth peak performance per second 144

(byte/s) and the number of floating-point opera- 145

tions per second (FLOP/s) are used to compute the 146

operational intensity: 147

Operational Intensity“
FLOP/s
byte/s

“
# operations

memory access
, 148

which provides a measure for the hardware effi- 149

ciency of operations (Williams et al., 2009). 150

To carry out calculations, accelerators must ac- 151

cess and move data between global memory and 152

registers, which can be a bottleneck because mod- 153

ern hardware accelerators such as GPUs/TPUs of- 154

ten have significantly greater capacity for computa- 155

tions compared to memory bandwidth. For exam- 156

ple, an NVIDIA A100 GPU (Choquette et al., 2021) 157

has an operation capacity of 312 Tera FLOP/s ver- 158

sus a memory bandwidth of 2 Giga byte/s. The 159
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Encoder’s Self-attention Decoder’s Self-attention Decoder’s Cross-attention

Model Memory Operations Memory Operations Memory Operations

PIE-T5 Ubnsd ` d2 Ubnsd
2 Ubn2

td ` ntd
2 Ubntd

2 Ubnsntd ` Ubntd ` ntd
2 Ubntd

2

PID-T5 bnsd `d2 bnsd
2 Ubn2

td ` ntd
2 Ubntd

2 bnsntd `Ubntd ` ntd
2 Ubntd

2

Table 1: Inference computation comparison between PIE and PID, where U , b, ns, nt, d are the number of prompts,
batch size, input source length, output target length, and hidden size, respectively.

attainable FLOP/s of a device is determined by160

Attainable FLOP/s “ minpPeak FLOP/s,161

Operational Intensity
looooooooooomooooooooooon

# operations per byte

¨ Peak Memory Bandwidth
loooooooooooooomoooooooooooooon

bytes per second

q,162

where the peak memory bandwidth is fixed and163

the peak FLOP/s is the maximum arithmetic oper-164

ations the accelerator is capable of performing. If165

the operational intensity is too low, the accelerator166

idles, waiting for data to move to registers instead167

of running computations. This often occurs in mod-168

els where memory access is more intensive than169

arithmetic operations, i.e., incremental decoding in170

transformers (Shazeer, 2019). By decreasing mem-171

ory access, the operational intensity is increased,172

i.e., efficiency improves.173
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Figure 2: An illustration of cross-attention dot prod-
uct operations (QKJ in Equation 1) for PIE and PID
for a single inference step. U , d, ns are the number
of prompts, hidden layer dimension, and input length,
respectively. d is the dot product operation, and the re-
sulting scalars of QKJ are αu

τ , where τ “ t1, . . . , nsu,
at the decoding step τ w.r.t. the prompt Zu.

3.2 Multi-head Attention in Transformer174

Transformers (Vaswani et al., 2017) have two types175

of multi-head attention: self-attention and cross-176

attention. Usually, the attention key and value ten-177

sors have the dimension d{h, where d is the di-178

mension of input and output vectors and h is the179

number of attention heads. For simplicity, we con- 180

sider the operations of all heads together such that 181

the dimension of Q, K, V (query/key/value) in the 182

following section is denoted as d. 183

During attention, the query/key/value vectors 184

can be obtained by projecting the corresponding 185

input vectors N P Rnˆd or M P Rmˆd, where n 186

and m can be either ns (input source length) or nt 187

(output target length). More formally, the equations 188

are Q “ N ¨WQ P Rnˆd, K “ M ¨WK P Rmˆd 189

and V “ M ¨ W V P Rmˆd where the projection 190

matrices are WQ,WK ,W V P Rdˆd. 191

In the self-attention, N is equivalent to M; 192

hence, m “ n “ ns in the encoder or m “ n “ nt 193

in the decoder. On the other hand, in the case of the 194

cross-attention, the variable N P Rntˆd originates 195

from the decoder, while M P Rnsˆd is sourced 196

from the output of the encoder. 197

The simplified equation of the attention mecha- 198

nism is represented as follows, 199

O “ softmax

˜

QKJ

a

d{h

¸

V ¨ WO, (1) 200

where O P Rmˆd is the final atention output. 201

3.3 Performance Analysis for PIE and PID 202

Figure 2 shows the dot product operation in 203

the cross-attention for the two models. In the 204

PIE model, the input is contextualized with each 205

prompt, so the encoder’s output tensor differs for 206

each prompt. Thus, at each decoding step τ , K is 207

read U times to generate U different sets of atten- 208

tion weights αu
τ to decode Yu. In contrast, in the 209

PID model, K is shared across all prompts since 210

the input is encoded independently of the prompts. 211

Thus, at each decoding step τ , the dot product oper- 212

ation in the cross-attention shares and broadcasts K 213

and computes the dot product of K and Q, result- 214

ing in lower memory access but the same number 215

of arithmetic operations compared to PIE. 216

We approximate the memory access and opera- 217

tions based on the dominant terms in the self- and 218
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cross-attention and ignore the constant terms. For219

a single input, the memory access of M and N is220

nsd and ntd. The memory access of the matrices221

WQ, WK , W V , WO is d2. The number of oper-222

ations in both attention mechanisms is dominated223

by the matrix projections which are used to obtain224

Q, K, V, and O; thus, the number of operations is225

approximated as nsd
2 or ntd

2.226

The comparisons of memory access and opera-227

tion counts on different inference components for228

our PIE and PID implementations are presented229

in Table 1, explained in further detail below. In the230

analysis, we assume that a batch of b inputs with the231

same set of U subtasks are processed together. The232

encoder input length and the decoder output length233

differ depending on whether the prompt is in the234

decoder. For simplicity, the analysis also assumes235

that the prompt terms are negligible; Appendix A236

provides the detailed justification.237

Encoder’s self-attention. In PIE, to run infer-238

ence on a single instance, the model encodes U239

prompts (Zu) with input (X ). Considering a batch240

with b instances, PIE takes Ubnsd`d2 for memory241

access and Ubnsd
2 for the number of operations.242

In contrast, PID only encodes the input once, so243

the memory access and the number of operations244

remain bnsd ` d2 and bnsd
2. Thus, the encoders245

of both models have similar operational intensity,246

but PIE requires more memory access and more247

arithmetic computations.248

Decoder’s self-attention. In both PIE and PID,249

the decoder computes the self-attention for U250

prompts. For each decoding step, the memory ac-251

cess and the number of operations are Ubntd and252

Ubd2. Thus, for nt steps, the resulting memory ac-253

cess and the number of operations are Ubn2
td and254

Ubntd
2. In this case, PIE and PID have roughly255

the same operational intensity.256

Decoder’s cross-attention. Cross-attention dom-257

inates the inference cost. For each decoding step,258

we load the encoded input embeddings M P Rmˆd,259

where m “ ns, from the encoder for each pX , Zuq260

input for PIE and X for PID. For PIE, the resulting261

b pM1, . . . ,MU q is fed into the decoder’s cross-262

attention for b instances with U prompts. On the263

other hand, PID shares all M for all U prompts264

of each instance, resulting in feeding b M to the265

decoder. Therefore, for each step, the memory ac-266

cess for loading encoded M is Ubnsd and bnsd267

for PIE and PID, respectively. The memory access268

of loading Q and O is Ubd. Loading projection 269

matrices takes d2. We multiply all memory access 270

cost by a factor of nt steps. 271

4 Datasets & Metrics 272

4.1 Datasets & Task Performance Metrics 273

Dialogue State Tracking (DST). Multi-domain 274

Wizard-of-Oz dataset (MultiWoZ; Budzianowski 275

et al., 2018) is a task-oriented dialogue dataset. 276

We selected the most recent version of MultiWoZ 277

2.4 (Ye et al., 2022b) due to its refined validation 278

and test set annotations. For comparison to other 279

work, joint goal accuracy (JGA) is adopted as the 280

evaluation metric. The input X is the dialogue 281

history, Y is the dialogue state, the subtask prompts 282

Zu are the domain-slot name, and the associated 283

outputs Yu are slot values. 284

Summarization. We use ACI-Bench (Yim et al., 285

2023), a dataset containing clinical notes associated 286

with conversations between doctors and patients. 287

The clinical notes have structured output with dis- 288

tinct sections. We use ROUGE-L score (Lin, 2004), 289

denoted as R-L, to evaluate models. The input X 290

is the doctor-patient dialogue, Y is the full clinical 291

note, the subtask prompts Zu are section indicators, 292

and the associated outputs Yu are section notes. 293

Question Answering. RadQA (Soni et al., 2022) 294

is an extractive question-answering dataset on radi- 295

ology reports with 3k questions posed by experts. 296

A single report can have multiple questions. We use 297

exact match (EM) as our evaluation metric. The in- 298

put X is the radiology report, the subtask prompts 299

Zu are specific questions, and the associated out- 300

puts Yu are extracted responses. 301

4.2 Efficiency Metrics 302

Floating point operations (FLOPs) refer to 303

the number of arithmetic operations required for 304

model inference, i.e., the computational complex- 305

ity.1 Note that FLOP reduction may not correlate 306

with wall-clock speed, as it tends to ignore over- 307

heads from memory access (IO) (Dao et al., 2022). 308

Latency. To account for extra IO costs, e.g., GPU 309

memory bandwidth, we also report latency, which 310

measures the wall clock time for a single instance 311

inference. Specifically, we report the average time 312

for a single instance inference, where instances are 313

processed sequentially. 314

1We use calflops (Ye, 2023) to compute FLOPs.
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Latency w/ Batching. For real applications, mul-315

tiple instances are computed in a batch fashion to316

fully utilize the computing device, especially for317

cloud serving. We thus report the average time318

for a single instance, where a batch of instances is319

computed simultaneously.320

To assess the FLOPs and latency, we randomly321

chose 512 samples from MultiWoZ 2.4 test set322

(due to the large test set) and used the full test sets323

for ACI-Bench and RadQA. We report the average324

latency and the average latency w/ batching at the325

optimal batch size.326

5 Experiments & Results327

5.1 Compared Systems328

T5 Raffel et al. (2020) is adopted as the encoder-329

decoder model in all experiments. We use T5-base330

and T5-large models from HuggingFace for Multi-331

WoZ 2.4 and ACI-Bench. For RadQA, we follow332

the previous work (Lehman et al., 2023) and use a333

pretrained clinical T5. We denote base and large334

models in following tables as T5base and T5large.335

We use T5 as the backbone to compare two differ-336

ent subtasking strategies: prompt-in-encoder (PIE)337

and our proposed prompt-in-decoder (PID); thus338

the model size keeps the same as the standard T5.339

LLaMA2 Touvron et al. (2023) is a popular open340

decoder-only language model. Due to computation341

limitations, we adopt low-rank adaptation (LoRA;342

Hu et al., 2022a) to efficiently finetune LLaMA2343

7B, resulting in approximately 70M trainable pa-344

rameters with a rank of 16.345

Current state-of-the-art models. We report the346

current best published results for in-context learn-347

ing and full finetuning for every dataset. The source348

papers for the results of each dataset are docu-349

mented in the caption of Table 4.350

5.2 Training Procedure351

The standard fine-tuned T5 and LLaMA2 data is352

represented as pX ,Yq, i.e. no prompts are used. For353

PIE-T5, the data is pX , Yu, Zuq, since X is sepa-354

rately contextualized with each subtask prompt Zu355

and a subtask output Yu, effectively increasing the356

dataset size by a factor of U and substantially ex-357

tending the time required for training. In contrast,358

PID-T5 has the flexibility to be trained using either359

data representation, as it uses shared inputs. We360

choose pX ,Y,Zq for PID-T5 because it is more361

efficient to put all output Y from the same shared362

input X in the same batch to save encoding process- 363

ing time during gradient update. The model selec- 364

tion criterion is the highest score on the validation 365

set. Hyperparameters can be found in Appendix B. 366

MultiWoZ 2.4 ACI-Bench RadQA
Model JGA Ò R-L Ò EM Ò

T5base 71.5 47.9 –
PIE-T5base 76.3 53.8 53.7
PID-T5base 75.5 54.0 52.4

T5large 72.5 52.5 –
PIE-T5large 77.5 54.7 55.4
PID-T5large 76.5 55.2 54.6

LLaMA2 LoRA 66.1 53.8 54.4

Table 2: Task performance comparison between the
baseline models and PID-T5 over three public evalu-
ation tasks. The sizes of T5base and T5large are 220M
and 770M, respectively. We use LLaMA2 7B and the
number of trainable parameters is about 70M.

5.3 Results 367

Task performance. Table 2 presents the task per- 368

formance results for three different full finetuning 369

scenarios (T5, PIE-T5, and PID-T5), as well as a 370

LoRA finetuned LLaMA2 language model. The 371

results of MultiWoZ 2.4 and ACI-Bench indicate 372

that subtasking and multi-prompt decoding help, 373

since both PIE-T5 and PID-T5 outperform the stan- 374

dard T5 and LLaMA2 models. Although larger 375

model size often comes with better performance in 376

moving from T5base to T5large, there are mixed re- 377

sults for LLaMA2 on these domains. One possible 378

reason could be that the number of trainable pa- 379

rameters is fewer than that of full finetuning. More 380

importantly, similar or greater gains in performance 381

are obtained with smaller, more efficient models 382

that leverage task structure. 383

Computation efficiency. Since PIE-T5 and PID- 384

T5 achieve better results than standard T5, we com- 385

pare PIE-T5 and PID-T5 in Table 3. Regarding 386

computational efficiency, measured in FLOPs, PID- 387

T5 significantly outperforms PIE-T5 in reducing 388

the number of arithmetic operations because it pro- 389

cesses each input only once. PID-T5 achieves supe- 390

rior speed-up in both single-instance and batching 391

scenarios across three datasets and two model sizes, 392

while obtaining similar performance (98-101%) to 393

PIE-T5. Additionally, PID-T5 offers greater re- 394

ductions in computational costs (2-10x) and further 395

accelerates efficiency when dealing with a larger 396

number of subtasks—for example, managing 30 397
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MultiWoZ 2.4 ACI-Bench RadQA

Model JGA Ò FLOPs Ó SpÒ Spbatch
Ò R-L Ò FLOPs Ó SpÒ Spbatch

Ò EM Ò FLOPs Ó SpÒ Spbatch
Ò

PIE-T5base 76.3 1.0x 1.0x 1.0x 53.8 1.0x 1.0x 1.0x 53.7 1.0x 1.0x 1.0x
PID-T5base 75.5 0.1x 1.9x 4.6x 54.0 0.4x 1.1x 1.1x 52.4 0.6x 1.3x 1.3x

PIE-T5large 77.5 1.0x 1.0x 1.0x 54.7 1.0x 1.0x 1.0x 55.4 1.0x 1.0x 1.0x
PID-T5large 76.5 0.1x 2.8x 4.2x 55.2 0.4x 1.0x 1.5x 54.6 0.5x 2.8x 1.3x

LLaMA2 LoRA 66.1 0.7x 0.2x 0.5x 53.8 4.8x 0.3x 0.3x 54.4 26.8x 0.2x 0.1x

Table 3: Task performance and inference efficiency comparison between PIE-T5, PID-T5 and LLaMA2 over three
public evaluation tasks. Sp and Spbatch represent the relative speed-up in single-instance and batching scenarios
computed on NVIDIA A100. We present the relative ratios of FLOPs, Sp and Spbatch compared to PIE-T5base or
PIE-T5large, across other models. Overall, PID-T5 achieves best computation efficiency across all tasks and achieves
comparable task performance on MultiWoZ 2.4 and RadQA and better task performance on ACI-Bench.

slots in MultiWoZ 2.4 versus 4 sections in ACI-398

Bench and 2-6 questions in RadQA.399

Comparison between PID-T5large and state-of-400

the-art models. Table 4 illustrates the compari-401

son between our method, PID-T5large, and existing402

state-of-the-art approaches. Our PID-T5large out-403

performs in-context learning methods on all three404

datasets with much smaller models. Compared to405

full fine-tuning, our model outperforms on Mul-406

tiWoZ 2.4 and ACI-Bench, but underperforms on407

RadQA. This discrepancy could be attributed to the408

fact that the prompts in RadQA are less structured409

compared to the fixed types of prompts in tasks410

with structured outputs.411

We omit the inference cost of state-of-the-art412

models since access to the language models for413

in-context learning is restricted to API calls, and414

some fine-tuned models’ checkpoints are unavail-415

able. Nevertheless, we can assume that the infer-416

ence cost exceeds that of the proposed PID-T5 due417

to the larger model sizes or inference techniques418

employed. The T5XXL inference in MultiWoZ 2.4419

follows the standard T5, while the inference ap-420

proaches for Bartlarge and T5large in ACI-Bench and421

RadQA are consistent with those in PIE-T5.422

Comparison between in-context learning and423

finetuned models in the low-resource setting.424

Figure 3 shows the comparison between in-context425

learning and full finetuned models. We use the426

same 1%, 5% and 10% training set provided in Hu427

et al. (2022b). PID-T5base surpasses Codexdavinci428

when the 5% training (« 374 examples) is avail-429

able with 0.1% model size.2 The result suggests430

that the small, finetuned model is still useful when431

a reasonable amount of training data is available.432

2Some papers mention that Codexdavinci is 175B, but Ope-
nAI does not officially confirm that.
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Figure 3: Comparison between in-context learning and
full finetuning on MultiWoZ 2.4 test set. The JGA
scores are reported at 1%, 5%, 10% and 100% of train-
ing data. We use the 3 random splits of the training data
provided by IC-DST(Hu et al., 2022b).

Efficiency under the batching scenario. The ef- 433

ficiency of batching is reflected in latency w/ batch- 434

ing. Batching instances with mixed output lengths 435

requires padding all outputs to the same length. 436

The additional padding tokens during the decod- 437

ing phase leads to increased computational over- 438

head for PIE-T5 and PID-T5 compared to T5. The 439

padding issue will be amplified in PIE-T5 and PID- 440

T5 when the number of prompts U is relatively 441

large, e.g., 30 slots in MultiWoZ 2.4. Figure 4 442

shows the computational efficiency and the task 443

performance. PID-T5 outperforms the standard 444

T5 model and achieves similar task performance 445

to PIE-T5, while maintaining the same scale of 446

FLOPs as the standard T5. Furthermore, the la- 447

tency w/ batching of PIE-T5 is more sensitive to 448

model size than either T5 or PID-T5. 449

Training efficiency. Table 5 shows the training 450

costs associated with models and training strategies 451

described in subsection 5.2. PIE-T5base incorpo- 452
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MultiWoZ 2.4 ACI-Bench RadQA

Learning Method Model SizeÓ JGA Ò Model SizeÓ R-L Ò Model SizeÓ EM Ò

In-context learning sota Codexdavinci 175B 62.4 GPT4-32k 1760B 54.3 GPT3 175B 36.2
Full finetuning sota T5XXL 11B 75.9 Bartlarge 4ˆ406M 48.6 T5large 770M 55.0

Our PID T5large 770M 76.5 T5large 770M 55.2 T5large 770M 54.6

Table 4: We choose previous state-of-the-art (sota) generative models from the literature with the most comparable
model sizes. In-context learning sota results for MultiWoZ, ACI-Bench, and RadQA are reported in the studies (Hu
et al., 2022b; Yim et al., 2023; Lehman et al., 2023), respectively. For full finetuning sota, the results are reported in
the studies (Zhao et al., 2022; Yim et al., 2023; Lehman et al., 2023).Yim et al. (2023) use four Bartlarge models (one
for each section), resulting in quadruple the size of a single Bartlarge (406M).

50 100 150 200 250 300 350 400
Latency w/ batching, msec

70

71

72

73

74

75

76

77

78

Jo
in

t G
oa

l A
cc

ur
ac

y 
(J

G
A

)

PID-T5base
75.5

PID-T5large
76.5

T5base
71.5

T5large
72.5

PIE-T5base
76.3

PIE-T5large
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JGA vs. Latency w/ batching on NVIDIA A100

150 GFLOPs
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4530 GFLOPs

Figure 4: Comparison of joint goal accuracy (JGA)
and latency w/ batching on the MultiWoZ 2.4 test set.
Models positioned in the upper left corner indicate supe-
rior task performance coupled with faster decoding. A
larger bubble indicates the model requires more FLOPs
to complete a instance.

Data Training FLOPs Ó JGA Ò

T5base pX ,Yq 1.5 ˆ 1017 71.5
PIE-T5base pX , Yu, Zuq 5.0 ˆ 1018 76.3
PID-T5base pX ,Y,Zq 1.2 ˆ 1017 75.5

Table 5: Comparison of training cost across models
and different training procedure on MultiWoZ 2.4. The
training computational costs are reported in FLOPs, and
the JGA scores are reported on the test set.

rates prompts within its encoder, necessitating the453

enumeration of all prompts Z “ pZ1, . . . , ZU q454

for every input X during both training and testing455

phases. Consequently, PIE-T5base requires more456

FLOPs, i.e., longer training duration, as the total457

number of training samples is increased by a fac-458

tor of U . Conversely, PID-T5base allows the reuse459

of the same input across all prompts, keeping the460

total number of training examples the same as T5. 461

PID-T5base not only maintains a comparable JGA 462

score and has efficient inference but also reduces 463

training costs. 464

JGAÒ LA100 Ó Sp Ò L2080Ti Ó Sp Ò

PIE-T5base 76.3 146 1.0x 209 1.0x
PID-T5base 75.5 78 1.9x 91 2.3x

PIE-T5large 77.5 413 1.0x 625 1.0x
PID-T5large 76.5 147 2.8x 163 3.8x

Table 6: Comparison of latency (measured in msec)
between different levels of GPUs on MultiWoZ 2.4.
LA100 and L2080Ti stand for latency on NVIDIA A100
and RTX 2080Ti, respectively. Sp represent the relative
speed-up relative to PIE-T5base or PID-T5large.

Latency on different levels of GPUs. Table 6 465

illustrates that our PID-T5base surpasses PIE-T5base 466

in efficiency under a single-instance scenario. This 467

difference becomes more pronounced when using a 468

consumer-grade GPU, e.g., NVIDIA RTX 2080Ti, 469

and inferencing on the larger model. 470

Model Subtask JGA Ò FLOPs Ó Sp Ò

T5base All 71.5 1.0x 1.0x
PID-T5base Domain 72.5 2.3x 12.3x
PID-T5base Domain-Slot 75.5 2.5x 5.9x

Table 7: Comparison between different subtask scales,
i.e., 30 domain slots or 5 domains, on MultiWoZ 2.4.
Sp represents the relative speed-up in latency computed
on NVIDIA A100. The model with the domain subtask
predicts all active slot values in that domain.

Effect of different subtask granularity. In Mul- 471

tiWoZ 2.4, T5’s output can be broken down into 472

subtasks according to either domains (where the 473

output is a sequence of observed slots and their 474

values) or domain-slot pairs (where the output is 475

the slot value). Each domain or domain-slot pair 476
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Section (ROUGE-L)

Model All 1 2 3 4

T5base 47.9 34.3 28.8 28.4 17.9
PIE-T5base 53.8 36.9 57.2 50.9 35.4
PID-T5base 54.0 36.6 57.7 58.9 35.9

Table 8: Comparison between T5, PIE-T5 and PID-T5
on ACI-Bench test 1 set.

is associated with a individual prompt. As demon-477

strated in Table 7, the system PID-T5base reveals478

that employing multi-prompt decoding can enhance479

both the inference speed and the joint goal accu-480

racy (JGA) score, regardless of the granularity of481

the subtask units. While utilizing domains as sub-482

task units leads to more speed-up, the use of slots483

as subtask units yields the best JGA.484

Effect of subtasking for long output. In ACI-485

Bench, We adopt the structure proposed by (Yim486

et al., 2023) for organizing the summary output487

into four distinct parts: subjective, objective ex-488

amination, objective findings, and assessment with489

planning. The mean section lengths are specified490

as 285, 98, 35, 254 tokens, respectively. The first491

section details the patient’s medical history, while492

the fourth section focuses on assessment and plan-493

ning; these sections surpass the second and third494

sections in terms of length.495

Table 8 reveals that the standard T5base model un-496

derperforms with longer outputs, especially when497

the generation reaches the end of the sequence, i.e.,498

performance of later sections are much worse than499

for the other models. Both PIE-T5base and PID-500

T5base models demonstrate improved performance501

with subtasking, allowing the model to “focus” on502

one subtask at a time.503

6 Related Work504

Reduce model size. Reducing memory band-505

width bottleneck can be accomplished by quan-506

tizing model parameters and, in some cases, acti-507

vations (Dettmers et al., 2022; Zeng et al., 2023;508

Zhao et al., 2023). This compression of models de-509

creases the amount of data transfer and also lowers510

the total memory consumption, enabling the use of511

larger and more effective batch sizes. Moreover,512

it is possible to distill models into a smaller stu-513

dent model, which is cheaper for inference (Hinton514

et al., 2015; Gou et al., 2021; Hsieh et al., 2023).515

Reduce cross-attention overhead. Previous 516

work has found that data movement is often a con- 517

straining factor for computations on modern de- 518

vices. Shazeer (2019) shows that autoregressive 519

transformers are particularly bandwidth bound dur- 520

ing inference, and proposes multi-query attention 521

(MQA) as a partial solution. Ainslie et al. (2023) 522

introduce grouped-query attention (GQA), a gener- 523

alization of MQA which uses an intermediate num- 524

ber (more than one, less than the number of query 525

heads) of key-value heads. GQA achieves quality 526

close to original multi-head attention (MHA) with 527

comparable speed to MQA. 528

Parallel decoding. One method to address the 529

sequential decoding performance bottleneck is to 530

decode in parallel. Ning et al. (2023) use off-the- 531

shelf models and enable parallel decoding by using 532

a two-step strategy: use the LM to generate a skele- 533

ton outline, then fill in the outline with parallel de- 534

coding requests. Different from ours, their strategy 535

does not involve finetuning and focuses on decoder- 536

only models. Another approach is to decouple the 537

attention over a shared prefix and unique suffix 538

and store the shared key-value cache, reducing re- 539

dundant memory access and enabling multi-user 540

parallel decoding (Ye et al., 2024b; Juravsky et al., 541

2024). Their method focuses on kernel-level speed- 542

ups and decoder-only models. 543

Our method is compatible with the aforemen- 544

tioned efficiency techniques, theoretically leading 545

to further efficiency gains when used in concert. 546

7 Conclusion 547

We study settings arising in NLP where multiple 548

text queries are applied to the same document or di- 549

alogue. The subtasking approach allows a model to 550

individually address components of the main task, 551

leading to improved task performance and acceler- 552

ating decoding by enabling tasks to be completed 553

in parallel. The strategy of moving the prompt 554

from the encoder to the decoder allows the PID 555

method to reduce computational costs by encoding 556

the input just once and then reusing it for multiple 557

prompts, which further speeds up inference time 558

while either maintaining or improving task perfor- 559

mance. Our approach achieves higher efficiency 560

and comparable accuracy to existing approaches, 561

which is particularly valuable in scenarios where 562

computational resources are scarce. 563
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8 Limitations564

The types of tasks where our method is applicable565

are currently limited because we require tasks with566

a shared input document. The subtasking strate-567

gies in our datasets were designed by humans, e.g.,568

according to structured output sections. Instead569

of using human-designed subtasking rules, a po-570

tential avenue for exploration is to allow a model571

to learn how to subtask, which can additionally572

make more tasks possible. While our subtasking573

experiments use only encoder-decoder models, our574

strategy of sharing an embedding and decomposing575

a task should work with decoder-only models, as576

in Khot et al. (2023), but experimental analysis is577

left to future work.578

9 Ethical Considerations579

Our research contributes to the extensive field of580

studies focused on transformer-based generative581

language models. This study targets faster and582

more efficient inference capabilities. This advance583

enhances practical applications such as dialogue584

state tracking, summarization, and question answer-585

ing for serving users. However, it also brings with586

it the inherent risks associated with all generative587

models.588
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A Detailed Performance Analysis870

Higher operational intensity bring more efficient871

matrix computation in modern accelerators such872

GPUs/TPUs. In this section, we detail the perfor-873

mance analysis and compare the operational in-874

tensity ratios of PIE and PID. To simplify equa-875

tions, we follow the previous work (Shazeer, 2019;876

de Jong et al., 2023; Ainslie et al., 2023), using877

the inverse operational intensity (R) to compare all878

modules. The lower inverse ratio indicates higher879

operational intensity, hence better performance.880

We discuss memory access and number881

of floating-point operations of encoder’s self-882

attention, decoder’s self-attention and decoder’s883

cross-attention for PIE and PID, respectively.884

We denote ns, nt and np as input length, out-885

put length and prompt length. U is number of886

prompts/subtasks. d is the joint dimension of all887

heads of key/query/value vectors.888

We approximate the memory access and the num-889

ber of operations based on the dominant terms in890

the self- and cross-attention and ignore the con-891

stant terms. For a single input, the memory access892

of the key or value tensors M or N are nsd and893

ntd. The memory access of the projection matrices894

of key/query/value/output tensors WK , WQ, W V ,895

WO is d2. As described in Shazeer (2019), the896

number of operations in both attention mechanisms897

is dominated by the matrix projections which are898

used to obtain projected query/key/value/output ten-899

sors (Q/K/V/O); thus, the number of operations900

is approximated as nsd
2 or ntd

2.901

A.1 Encoder’s self-attention902

The inverse operational intensity of PIE’s encoder903

can be written as follows,904

REnc-self
PIE “Ubpns ` npqd ` d2

loooooooooomoooooooooon

memory access

N

Ubpns ` npqd2
looooooomooooooon

# operations

905

“
1

d
`

1

Ubpns ` npq
,906

where PIE’s encoder individually encodes U907

prompts pZ1, . . . , ZU q with input X . REnc-self
PIE is908

a low ratio given the fact that ns is usually an hun-909

dred or a thousand tokens and d is usually near a910

thousand.911

Different from PIE’s encoder, PID’s encoder912

only encodes input X and leaves prompts in the913

decoder. Thus, the memory access is lower than914

PIE by a factor of U and only the input length ns is915

considered. More formally the inverse operational 916

intensity of PID’s encoder is denoted as 917

REnc-self
PID “ bnsd ` d2

loooomoooon

memory access

N

bnsd
2

loomoon

# operations

918

“
1

d
`

1

bns
. 919

Again, ns and d is around a thousand, resulting in 920

REnc-self
PID is also a low ratio. Compared to PIE, PID 921

requires fewer number of operations, saving more 922

memory usage and enabling faster computation. 923

A.2 Decoder’s self-attention 924

In PIE, prompts are encoded in the encoder, the 925

decoder only accounts for generating target tokens. 926

The inverse operational intensity of PIE encoder’s 927

self-attention is denoted as 928

RDec-self
PIE “Ubn2

td ` ntd
2

looooooomooooooon

memory access

N

Ubntd
2

loomoon

# operations

929

“
nt

d
loomoon

dominant term

`
1

Ub
, 930

where nt
d is the dominant term that causes the issue 931

of slower incremental decoding. 932

PID’s decoder encodes prompts and incremen- 933

tally generates output tokens. We decouple the 934

analysis of encoding prompts and generating out- 935

put tokens since the prompts are all given whereas 936

the output tokens are incrementally decoded. The 937

decoder just need to encode the prompts once; as a 938

result, the ratio can be written as 939

RDec-self,prompt
PID “ Ubnpd ` d2

looooomooooon

memory access

N

Ubnpd
2

loomoon

# operations

940

“
1

d
`

1

Ubnp
941

Obviously, the RDec-self,prompt
PID is a low ratio; thus 942

the encoding prompts in the decoder part is effi- 943

cient. In addition to encoding prompts, PID’s de- 944

coder needs to generate output tokens. The ratio 945

RDec-self,output
PID is the same as RDec-self

PIE . 946

A.3 Decoder’s cross-attention 947

In transformer architecture, the decoder’s cross- 948

attention is the key issue that cause the computation 949

inefficiency since the inference is incremental and 950

cross-attention needs to read the huge chunk of 951
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MultiWoZ 2.4 ACI-Bench RadQA

Data Task oriented Medical Medical
Input type Dialogue Dialogue Document
Task Dialog state tracking Summarization Question Answering
# examples 9887 207 6148
Input length 289˘108 1725˘511 137˘157
Output length 56˘26 693˘200 28˘49
Prompt type Fixed Fixed Free-form
# prompts 30 slots or 5 domains 4 sections –

Table 9: Statistics are calculated on the each full data set. Input and output lengths are calculated based on
Huggingface T5 tokenizer.

MultiWoZ 2.4 ACI-Bench RadQA
PID-T5base PID-T5large PID-T5base PID-T5large PID-T5base PID-T5large

Batch size 4 1 1 2 4 2
Grdient accumulation 64 32 16 16 16 32
Effective batch size 64 64 32 32 64 64

# epochs 6 4 100 100 50 15
Max input length 1024 1024 3072 3072 1024 1024

Max output length 24 24 1024 1024 92 92
Max prompt length 8 8 6 6 36 36

# outputs 30 30 4 4 2-6 2-6
# beams 1 1 4 4 1 1

Table 10: The PID-T5 hyperparameters used in the training and testing.

key and value cached tensors from the encoder.952

The inverse operational intensity of PIE decoder’s953

cross-attention can be denoted as follows,954

RDec-cross
PIE “

memory access
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

Ubpns ` npqntd ` Ubntd ` ntd
2

Ubntd
2

loomoon

# operations

955

“
ns ` np ` 1

d
loooooomoooooon

dominant term

`
1

Ub
,956

where the prompts are encoded with the input in957

the encoder; hence the length of cached tensors is958

ns ` np. The dominant term results in a serious959

bottleneck especially when long input ns is fed into960

the model.961

Similar to the PID decoder’s self-attention, we962

consider the cross-attention on prompts and output963

separately. The ratio for encoding prompts is as964

follows,965

RDec-cross,prompt
PID “

memory access
hkkkkkkkkkkkikkkkkkkkkkkj

bnsd ` Ubnpd ` d2

Ubnpd
2

loomoon

# operations

966

“
1

d
¨

ˆ

ns

Unp
` 1

˙

loooooooomoooooooon

dominant term

`
1

Ubnp
.967

In the dominant term, the input length ns is divided 968

by the factor of Unp. 969

On the other hand, the ratio of decoding output 970

tokens is 971

RDec-cross,output
PID “

memory access
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

bnsntd ` Ubntd ` ntd
2

Ubntd
2

loomoon

# operations

972

“
1

d
¨

´ns

U
` 1

¯

loooooomoooooon

dominant term

`
1

Ub
. 973

Similarly, in the dominant term, the input length 974

ns is divided by the factor of U . Overall, in PID 975

decoder’s cross-attention, the dominant term of the 976

incremental decoding is reduced by a factor of U or 977

Unp since PID shares the same input key and value 978

cached tensors and broadcast the matrix operations 979

while performing the cross-attention. 980

B Training Details 981

Table 10 presents the hyperparameters selected for 982

the training and testing phases. We executed a 983

search for the optimal learning rate across the fol- 984

lowing set of values: t5 ˆ 10´4, 3 ˆ 10´4, 1 ˆ 985

10´4, 7ˆ10´5, 5ˆ10´5, 3ˆ10´5u to identify the 986

most effective learning rate for each dataset. All re- 987

ported values represent the medians of three differ- 988
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ent random runs. The rest of the hyperparameters989

are the same as the default values in HuggingFace990

transformer package. Training time varies because991

of dataset size, model size, model configuration and992

training procedure. Our experiments, which utilize993

T5base as the primary framework, are carried out994

using a single NVIDIA A40. Training T5base and995

PID-T5base on the MultiWoZ 2.4 dataset typically996

requires approximately 5 GPU hours, whereas it997

takes around 46 GPU hours for PIE-T5base. In the998

case of ACI-Bench, where the dataset is relatively999

small, T5base, PIE-T5base, and PID-T5base require1000

roughly 4 GPU hours each. On the other hand,1001

for RadQA, PIE-T5base takes 2 hours, while PID-1002

T5base requires 3 GPU hours. When switching to1003

T5large, the required GPU training time increases1004

by a factor of 2 to 3 times compared to the T5base1005

models.1006

We use t5-base3 and t5-large4 checkpoints down-1007

loaded from HuggingFace as initialization for Mul-1008

tiWoZ 2.4 and ACI-Bench. For RadQA, we follow1009

the previous work (Lehman et al., 2023) to use1010

pretrained clinical T5 models.51011

C Datasets1012

In terms of data preprocessing, we follow the pre-1013

vious works (Ye et al., 2022a; Yim et al., 2023;1014

Lehman et al., 2023) to process MultiWoZ 2.4,1015

ACI-Bench and RadQA, respectively. The dataset1016

statistics are shown in Table 9.1017

D License of Artifacts1018

The licensing for the code from HuggingFace’s1019

transformers (Wolf et al., 2020) falls under the1020

Apache License, Version 2.0. PyTorch (Paszke1021

et al., 2019) is open-source software released under1022

the modified BSD license. Meanwhile, the calflops1023

(Ye, 2023) code is protected under the MIT License.1024

Detailed conditions for utilizing our artifacts will1025

be provided within the package we distribute.1026

3https://huggingface.co/google-t5/
t5-base

4https://huggingface.co/google-t5/
t5-large

5https://physionet.org/content/
clinical-t5/1.0.0/
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