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Abstract001

Recent works have revealed the great poten-002
tial of speculative decoding in accelerating the003
autoregressive generation process of large lan-004
guage models. The success of these methods re-005
lies on the alignment between draft candidates006
and the sampled outputs of the target model.007
Existing methods mainly achieve draft-target008
alignment with training-based methods, e.g.,009
EAGLE, Medusa, involving considerable train-010
ing costs. In this paper, we present a training-011
free alignment-augmented speculative decod-012
ing algorithm. We propose alignment sampling,013
which leverages output distribution obtained in014
the prefilling phase to provide more aligned015
draft candidates. To further benefit from high-016
quality but non-aligned draft candidates, we017
also introduce a simple yet effective flexible018
verification strategy. Through an adaptive prob-019
ability threshold, our approach can improve020
generation accuracy while further improving021
inference efficiency. Experiments on 8 datasets022
(including question answering, summarization023
and code completion tasks) show that our ap-024
proach increases the average generation score025
by 3.3 points for the LLaMA3 model. Our026
method achieves a mean acceptance length up027
to 2.39 and speed up generation by 2.23×.028

1 Introduction029

The enormous size of state-of-the-art autoregres-030

sive models (Anthropic, 2024; Meta-AI, 2024;031

OpenAI, 2024) demands substantial memory and032

processing power, making real-time applications033

challenging. In scenarios such as interactive text034

generation, these models require vast amounts of035

computation, leading to slower response times and036

increased energy consumption. Hence, more effi-037

cient decoding algorithms are urgently needed to038

reduce inference costs significantly while maintain-039

ing or improving generation quality.040

Speculative decoding (SD) (Stern et al., 2018;041

Leviathan et al., 2023; Xia et al., 2023, 2024; Li042

et al., 2024) has emerged as an effective solution to 043

the inefficient decoding process of large autoregres- 044

sive models. It uses a “draft and verify” mechanism 045

to achieve lossless acceleration. A lightweight 046

drafting model generates candidate tokens, which 047

are then verified in parallel by the target model. 048

This enables the generation of multiple tokens in a 049

single step, thus accelerating decoding while pre- 050

serving the output distribution. Speculative decod- 051

ing algorithms that combine large and small mod- 052

els (Miao et al., 2023; Li et al., 2024) have shown 053

promising results. However, these approaches of- 054

ten require additional training and extra parame- 055

ters, complicating deployment in inference systems 056

(Contributors, 2023; Kwon et al., 2023). 057

As an alternative, the training-free retrieval- 058

based speculative decoding (Yang et al., 2023; Sax- 059

ena, 2023; He et al., 2024) uses external knowledge 060

sources such as databases or historical text to re- 061

trieve n-grams as drafts for generation. It is more 062

flexible and scalable to large models, as the draft- 063

ing cost is independent of model size. However, 064

two issues have been largely overlooked in previ- 065

ous work on retrieval-based speculative decoding. 066

First, poor alignment between the retrieved drafts 067

and the model’s output distribution leads to a low 068

acceptance rate. Second, in many generation sce- 069

narios, the input context and the generated content 070

have strong correlation. As a result, drafts retrieved 071

from the input context tend to be of higher qual- 072

ity and do not require strict verification to ensure 073

consistency with the target model’s output. 074

In this paper, we propose Alignment-Augmented 075

Speculative Decoding (AASD), a plug-and-play 076

generation algorithm that improves the draft-target 077

alignment in prompt-based speculative decoding. 078

To address the first issue, we introduce alignment 079

sampling, where we sample additional tokens from 080

the output distribution of the prefilling phase for 081

poorly aligned tokens, thereby improving the over- 082

all draft quality and increasing the chances of suc- 083
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cessful alignment with output distribution of the tar-084

get model. To address the second issue, we propose085

a conditional verification strategy. It applies heuris-086

tic probability thresholds for each token, based on087

its information entropy, allowing the model to au-088

tonomously utilize the input text during decoding089

through speculative decoding. It improves both090

generation accuracy and efficiency. Both the two091

techniques improve the alignment between the re-092

trieved draft candidates and the target model output093

distribution. Alignment sampling makes the drafts094

more aligned with the target model distribution,095

and conditional verification makes the target model096

more aligned with the high-quality drafts.097

We conduct comprehensive experiments with098

two different models on 8 datasets in long context099

generation scenarios, including question answering,100

summarization, and code completion tasks, in Sec-101

tion 4 to evaluate the effectiveness of AASD. The102

results show that AASD outperforms common sam-103

pling methods in terms of generation performance,104

improving the average score from 44.69 to 47.98105

compared to greedy sampling for the LLaMA3106

model (Meta-AI, 2024). In terms of generation effi-107

ciency, AASD achieves the highest acceptance rate108

and average decoding throughput among existing109

retrieval-based speculative decoding algorithms. It110

achieves a decoding speedup of up to 2.23 times.111

In summary, we highlight the importance of112

draft-target alignment in retrieval-based speculative113

decoding in this paper. We propose a training-free114

method called alignment-augmented speculative115

decoding to improve this alignment, which consists116

of alignment sampling and conditional verification.117

The proposed method improves generation accu-118

racy and efficiency compared to baseline methods.119

2 Backgrounds120

2.1 Speculative Decoding121

Given a prompt q = (x1, x2, ..., xl) and language122

model M , where xi(i=1,2,...,l) represents each to-123

ken, and l is the prefix length, we input the current124

sequence into the model to obtain the next token in125

the autoregressive decoding manner:126

yl+1 ∼ pM (xl+1|(x1, x2, ..., xl)), (1)127

where pM (·|·) represents the output probability dis-128

tribution of M . The model can generate only one129

token in one forward propagation, resulting in low130

efficiency, particularly for long generation lengths..131

Speculative decoding (SD) alleviates this prob- 132

lem by adopting a “draft and then verify” mecha- 133

nism. At each decoding step, a lightweight model 134

m generates a draft d = (x̂l+1, x̂l+2, ..., x̂l+ld) for 135

the next tokens based on the current input sequence, 136

where x̂i(i = l+1, l+2, ..., l+ld) denotes the draft 137

tokens and ld represents the draft length. This draft 138

is then simultaneously input into the target model 139

for verification. Tokens in the draft that match the 140

target model’s output will be accepted. Note that 141

if a token is rejected, all subsequent tokens in the 142

draft are also rejected. This allows the model to 143

generate multiple tokens in a single forward pass. 144

2.2 Retrieval-Based Drafting 145

An effective draft model must address two cru- 146

cial aspects. First, it must minimize computational 147

costs, ensuring faster and more efficient inference 148

through a lightweight design. Second, it must 149

closely align with the target model. Ideally, perfect 150

alignment would result in a 100% acceptance rate, 151

thus achieving the theoretical maximum speedup, 152

defined as the throughput of the smaller model di- 153

vided by that of the target model. 154

Approaches such as EAGLE (Li et al., 2024) 155

strengthen the alignment between the draft and 156

target models through alignment training, caus- 157

ing inconvenience in adapting to different models. 158

Retrieval-based speculative decoding methods com- 159

plete the drafting by retrieving n-grams from his- 160

torically generated data or pre-provided databases 161

based on the current sequence. However, exist- 162

ing retrieval-based speculative decoding methods 163

(Yang et al., 2023; Saxena, 2023; He et al., 2024) 164

ignore the importance of alignment. Although their 165

drafting overhead is very small compared to meth- 166

ods that require additional modules, their accep- 167

tance rate is also relatively lower. 168

2.3 Impact of Draft-Target Alignment 169

Recent research (Bachmann et al., 2025) shows 170

that even a high-quality draft will have a low accep- 171

tance rate if it does not align with the model output 172

distribution. We also conduct an experiment to give 173

an insight into the impact of draft-target alignment 174

in retrieval-based speculative decoding. For the 175

four-token input sequence “A, B, C, D”, the model 176

can predict the probability distribution of the next 177

token for each input token in parallel. For each 178

distribution, we select the token with the highest 179

probability, that is, greedy sampling. Assume that 180

the sampled tokens are B, C, F, E in order. The sam- 181
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Figure 1: Acceptance rate of aligned and misaligned
draft tokens in prompt-based speculative decoding.

pled tokens “B” and “C” match the input, while182

“F” does not match “D” in the input. We regard183

the matching tokens (“B” and “C”) as aligned to-184

kens and the unmatched tokens (“D”) as misaligned185

tokens. We conduct prompt-based speculative de-186

coding on 100 samples in NQ (Kwiatkowski et al.,187

2019) dataset with LLaMA3.1-8B-Instruct (Meta-188

AI, 2024) and calculate the acceptance frequency189

of aligned and misaligned draft tokens. Results190

are shown in Figure 1. About 45% retrieved draft191

tokens are misaligned with the model output. The192

acceptance rate of misaligned tokens is much lower193

than that of aligned tokens. Inspired by this, for194

the positions of misaligned tokens, we can sample195

additional tokens from the output distribution to196

enhance the alignment of the entire draft and the197

model, thus improving the acceptance rate.198

2.4 Potential for Non-Strict Verification199

Most speculative decoding methods adopts strict200

verification to achieve lossless generation accelera-201

tion. The recent research (Bachmann et al., 2025)202

claims that correct but non-aligned draft candidates203

can be accepted to pursue higher speed-up ratio.204

They trained an additional module on carefully de-205

signed data to judge whether to accept draft tokens.206

However, for prompt-based speculative decoding,207

as the draft source is highly relevant to the answer,208

a training-free verification strategy can be designed209

to realize a better trade-off between generation per-210

formance and efficiency. For example, in long con-211

text generation scenario, the input context contains212

the key information needed for model generation.213

Some of the fragments even overlap with the stan-214

dard generated content. Given this, we can design a215

conditional verification method to allow the model216

to accept high-quality draft tokens, rather than just 217

accept that match its original output. This allows 218

the model to adaptively call the input original seg- 219

ments on the decoding side, thus enhancing the 220

generation accuracy and efficiency. 221

3 Method 222

In this section, we introduce AASD, an alignment- 223

augmented speculative decoding algorithm based 224

on alignment sampling and conditional verification 225

that improves both generation performance and ef- 226

ficiency. It is a plug-and-play speculative decoding 227

algorithm that does not require additional modules 228

or training. The overall description of AASD is 229

dispalyed in Algorithm 1 in Appendix C. 230

3.1 Context-Aware Drafting 231

For long text generation, the input context can act 232

as an important source of draft, because it is highly 233

relevant to the generated content. We construct the 234

input of each request into a draft pool by sliding 235

window sampling, which is an index dictionary. 236

The keys in the draft pool are several consecutive 237

tokens in the input context and the values are the 238

position indexes where these tokens appear. We up- 239

date the draft pool when new tokens are generated. 240

In each decoding step, we use the last several 241

tokens of the current sequence as the key to retrieve 242

indexes in the draft pool. Since longer keys give 243

higher draft relevance, following REST (He et al., 244

2024), we prioritize searching with longer keys and 245

obtain n-grams from the current sequence. 246

3.2 Alignment Sampling 247

As is shown in Figure 2, we perform alignment 248

sampling to expand the retrieved n-grams into draft 249

trees. For example, the token “is” is the third most 250

likely word in the probability distribution of the 251

next word of the token “Jackson”. Therefore, “was” 252

and “made” are potential high-quality draft tokens, 253

which are more aligned with the output distribution 254

of the target model. We additionally sample these 255

two tokens for the 100th position. In this way, we 256

expand and merge multiple candidate n-grams into 257

a draft tree and calculate the corresponding tree 258

attention mask for parallel verification. The draft 259

tree T is defined as: 260

T = (V,E),V =

l+r⋃
i=l+1

ni⋃
j=1

{
x̂ji

}
, (2) 261

where V and E is the set of its nodes and edges. 262

ni is the number of retrieved tokens in the ith 263
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Figure 2: Illustration of alignment sampling. “Jackson is a great” is an n-gram retreived by the key “Michael
Jackson”. According to the output distribution obtained in the prefilling stage, “is” is the token with the third highest
probability. The top-1 token “was” and top-2 token “made” are more likely to be generated after “Michael Jackson”.
Therefore, we sample two more tokens (“was” and “made” for the 100th position). Token “a” is well aligned with
the model output, so we keep it unchanged for the 101st position.

layer of T. r is the depth of T. Then we input264

T and the corresponding tree attention mask into265

the model and get the output probability distribu-266

tion PM (xi|F(x̂ji )) for each node, where F(x̂ji ) is267

the set of all parent nodes (including prefix) of x̂ji .268

3.3 Conditional Verification269

As discussed in Section 2.2, high-quality drafts re-270

trieved from prompts have the potential to be non-271

rigorously verified to enhance generation accuracy.272

The naive idea is to use a fixed probability thresh-273

old to filter draft tokens or use top-k verification.274

We argue that using the probability threshold con-275

dition is superior to using the top-k condition alone276

since the output probability directly reflects the277

model’s confidence in each draft token. Moreover,278

the verification condition of top-k is not applicable279

for some extreme cases. For example, suppose the280

probability of a certain token is close to 1, and the281

probability of all other tokens is close to 0. In that282

case, no other token should be accepted, except for283

the token with the highest probability. If all tokens284

have the same probability, then they should all be285

accepted or rejected at the same time. However,286

the top-k verification condition will only pass indi-287

vidual tokens and reject others. Therefore, we first288

set a probability threshold δ so that token x̂ji will289

be accepted if the following conditions are met:290

pM (x̂ji |F(x̂
j
i )) ⩾ δ. (3)291

However, models exhibit varying levels of confi- 292

dence across different samples or tokens. A static 293

threshold may either over-restrict or under-restrict 294

the verification process, leading to suboptimal per- 295

formance. Therefore, we formulate an adaptive 296

threshold based on the verification probability dis- 297

tribution. Low-confidence tokens can be processed 298

with stricter thresholds to maintain precision, while 299

high-confidence tokens benefit from relaxed thresh- 300

olds to ensure recall. Therefore, we adjust the 301

verification threshold of each token based on the 302

information entropy of its verification probability 303

distribution. Draft token x̂ji is accepted under the 304

following condition: 305

pM (x̂ji |F(x̂
j
i )) ⩾ δji , (4) 306

where δji is calculated by: 307

δji = min(−α
∑

P (x̂ji ) logP (x̂ji )+β,∆), (5) 308

where 309

∆ = max
x̂j
i

P (x̂ji ), (6) 310

α and β are hyperparameters. α a is the factor 311

affecting the threshold value due to information 312

entropy. β is the benchmark value of the thresh- 313

old. The function of ∆ is to ensure that the token 314

with the highest probability will be accepted during 315

verification. Considering that the overall quality 316

of the alignment sampled tokens is lower than the 317
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tokens retrieved from the prompt. We only perform318

conditional verification on the draft token retrieved319

from the input context and selected by alignment320

sampling. Strict verification is still applied for to-321

kens retrieved from generated context. We accept322

the longest draft candidate that passes verification.323

4 Experiments324

4.1 Settings325

In most speculative decoding methods with strict326

verification (e.g., REST (He et al., 2024), PLD327

(Saxena, 2023) and LLMA (Yang et al., 2023)),328

the performance on datasets depends solely on the329

sampling strategy rather than the specific decoding330

algorithm. Equipped with conditional verification,331

AASD introduces a novel sampling method, which332

enhances access to input fragments. Therefore, we333

compare the performance of AASD with several334

common sampling methods: 1) Greedy Sampling:335

It samples the token with the highest probability; 2)336

Top-k Sampling (Fan et al., 2018): It selecting the337

next token from the top k most probable options338

(k = 50); Nucleus Sampling (Holtzman et al.,339

2020): It is also called top-p sampling (p = 0.8),340

which selects the next token from the smallest set of341

top tokens whose cumulative probability exceeds342

a predefined threshold; 3) Beam Search (Li et al.,343

2016): It explores multiple candidate sequences at344

each step, keeping only the top n most likely op-345

tions (the beam width n = 10), to find an optimal346

or near-optimal output sequence.347

On the other hand, we compare the performance348

and efficiency of AASD with autoregressive de-349

coding and other retrieval-based speculative decod-350

ing methods. Baselines are as follows: 1) Auto-351

regressive decoding (ARD), 2) REST (He et al.,352

2024): It retrieves n-grams from an external gen-353

eral database and constructs a tree-structured draft,354

3) PLD (Saxena, 2023): It retrieves n-grams di-355

rectly from the input context. Note that LLMA356

(Yang et al., 2023) and PLD can be considered as357

the same method since they are very similar.358

We evaluate the proposed method with359

LLaMA3.1-8B-Instruct (Meta-AI, 2024) and360

Qwen2.5-32B-Instruct (Qwen et al., 2025) on 3 dif-361

ferent tasks: 1) Question Answering (QA): Nature362

Question (NQ) (Kwiatkowski et al., 2019), Trivi-363

aQA (TQA) (Joshi et al., 2017), 2WikiMQA (Ho364

et al., 2020) and HotpotQA (Yang et al., 2018); 2)365

Summarization: Multi-News (Fabbri et al., 2019)366

and GovReport (Huang et al., 2021); 3) Code Com-367

Figure 3: Speed-up ratio on the six different task cate-
gories in SpecBench. The center point (1.0×) represents
the baseline of autoregressive decoding.

pletion: RepoBench-P (Liu et al., 2024) and LCC 368

(Guo et al., 2023). For the NQ dataset, we ran- 369

domly sampled 300 queries from the validation 370

set for evaluation. We use subsets sampled by 371

LongBench (Bai et al., 2023) for other datasets. 372

We report F1 score for QA datasets, ROUGE-L 373

for summarization datasets and Edit Sim for code 374

completion datasets. We also test the decoding 375

efficiency on SpecBench (Xia et al., 2024). 376

we use the same generation hyperparameters for 377

all baselines. REST involves an additional database 378

as the draft source. We selected the best database 379

from the officially released database for testing (for 380

each model and each datasets). We did not com- 381

pare with other training-required methods for gen- 382

erating enhancements and speculative algorithms 383

because they require additional training or use ad- 384

ditional models. We use 6-grams and set the maxi- 385

mum length of the key for retrieval to 6 for AASD. 386

We use unified hyperparameters for AASD on all 387

datasets. α is set to 0.1 and 0.2 for LLaMA3.1 388

and Qwen2.5, respectively. β is set to 0.1. Each 389

position can be extended by at most two tokens 390

by alignment sampling during drafting. We use 4 391

A100-PCIE-40GB GPUs for all experiments. 392

4.2 Improvement on Accuracy 393

We compare the performance of different sampling 394

methods in Table 1. We report the average scores 395

of the 8 datasets in the last column. AASD out- 396

performs other sampling methods with LLaMA3.1- 397

8B-Instruct on these datasets except for TQA. It 398

improves the average score from 44.69 to 47.98 399
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Method NQ TQA 2WikiMQA HotpotQA Multi-News GovReport RepoBench-P LCC Avg.
F1 F1 F1 F1 ROUGE-L ROUGE-L Edit Sim Edit Sim

LLaMA3.1-8B-Instruct

Greedy 29.13 92.13 42.83 49.80 13.51 15.96 48.11 66.05 44.69
Top-k 29.08 84.52 38.48 42.01 13.34 15.18 45.36 56.19 40.52
Nucleus 29.21 86.39 39.98 44.79 13.58 15.46 45.59 55.82 41.35
Beam 32.57 83.04 43.29 48.93 14.07 17.75 46.27 67.52 44.16
AASD 34.54 91.56 43.10 50.38 15.05 19.34 58.84 71.03 47.98

Qwen2.5-32B-Instruct

Greedy 41.90 81.90 32.35 35.73 12.77 14.58 37.72 60.85 39.72
Top-k 40.86 80.02 28.17 36.09 11.72 13.19 36.14 50.56 37.09
Nucleus 41.64 79.07 29.64 35.37 12.30 13.56 38.01 49.48 37.43
Beam 36.78 84.57 17.49 19.55 9.49 11.07 42.04 63.26 35.53
AASD 43.34 83.55 34.99 39.12 12.67 15.25 37.23 58.65 40.60

Table 1: Performance of different sampling methods with LLaMA3.1-8B-Instruct and Qwen2.5-32B-Instruct. For
all metrics, higher scores indicate better performance. The best results are in bold.

Method 2WikiMQA GovReport LCC

MAL TPS Speed-up MAL TPS Speed-up MAL TPS Speed-up

LLaMA3.1-8B-Instruct

ARD 1.00 20.10 1.00 1.00 20.15 1.00 1.00 20.67 1.00
REST 1.08 18.26 0.91 1.27 21.20 1.05 1.26 26.09 1.07
PLD 1.93 32.77 1.63 1.42 21.33 1.06 2.06 36.52 1.77
AASD 2.37 37.18 1.85 1.97 34.00 1.69 2.39 46.20 2.23

Qwen2.5-32B-Instruct

ARD 1.00 8.08 1.00 1.00 8.14 1.00 1.00 7.35 1.00
REST 1.07 7.33 0.91 1.26 8.16 1.00 1.16 7.53 1.02
PLD 2.13 14.04 1.74 1.51 10.01 1.23 1.46 8.72 1.19
AASD 2.14 13.87 1.72 2.18 14.20 1.74 1.89 11.80 1.61

Table 2: Inference efficiency of AASD with LLaMA3.1-8B-Instruct and Qwen2.5-32B-Instruct. ARD refers to
auto-regressive decoding with greedy sampling. MAL represents mean acceptance length and TPS represents tokens
per second. The best results are in bold.

compared to greedy sampling. For Qwen2.5-32B-400

Instruct, AASD also improves the average score.401

However, it does not show an advantage in code-402

related tasks, possibly because the model’s inherent403

code capabilities are relatively weak, making it un-404

able to effectively reject the wrong draft tokens.405

4.3 Improvement on Efficiency406

We evaluate generation efficiency of AASD on407

TQA, GovReport, and LCC datasets (one dataset408

for each task). Table 2 displays the results with409

different retrieval-based speculative decoding ap-410

proaches. Since the inputs of these tasks are long411

and have large length variance, input length has a412

great impact on the prefilling time (computation413

time of the first step). To avoid the influence of414

this method-irrelevant factor, we only report the415

TPS of incremental inference (without the first step416

of generation for each sample). REST adopts an417

independent database as the drafting source, thus 418

having a low acceptance rate for out-of-domain 419

tasks. AASD outperforms other approaches both 420

on the perspective of MAL and throughput with 421

LLaMA3.1-8B-Instruct. It achieves a speed-up 422

ratio up to 2.23 compared with auto-regressive de- 423

coding. For Qwen2.5-32B-Instruct, AASD has 424

a significant improvement in the generation effi- 425

ciency of summary and code tasks. However, for 426

2WikiMQA, as the mean output length is very short 427

(about 8 tokens), its performance is similar to PLD. 428

The total time overhead for retrieving the draft can- 429

didates for each step is between 0.02 milliseconds 430

and 2 milliseconds, which is less than 5% of the 431

time cost of a single step for the 8B model. For 432

larger target models, this overhead is negligible. 433

In addition, Figure 3 displays the evaluation re- 434

sults on SpecBench. We report the speed-up ratio 435

compared with autoregressive decoding. AASD 436
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Method NQ TQA 2WikiMQA HotpotQA Multi-News GovReport RepoBench-P LCC Avg.
F1 F1 F1 F1 ROUGE-L ROUGE-L Edit Sim Edit Sim

AASD 34.54 91.56 43.10 50.38 15.05 19.34 58.84 71.03 47.98
w/ threshold verification 32.05 91.82 41.19 51.22 15.16 18.69 56.51 67.75 46.80
w/ top-k verification 31.21 82.71 22.12 27.34 14.93 18.15 43.17 45.62 35.66

Table 3: Results for ablation study with LLaMA3.1-8B-Instruct. The best results are in bold.

Method 2WikiMQA GovReport LCC

MAL TPS Speed-up MAL TPS Speed-up MAL TPS Speed-up

AASD 2.37 37.18 1.85 1.97 34.00 1.69 2.39 46.20 2.23
w/o alignment sampling 1.80 36.12 1.80 1.87 32.93 1.63 2.25 42.71 2.07
w/o conditional verification 2.36 35.86 1.78 1.86 32.60 1.62 2.34 39.02 1.89

Table 4: Inference efficiency of AASD without alignment sampling and conditional verification.

outperforms the baselines in most tasks, except for437

the RAG task, which further proves the effective-438

ness in improving decoding efficiency.439

4.4 Ablation Study440

We conduct the ablation study with LLaMA3.1-441

8B-Instruct in this section. We evaluate the perfor-442

mance of AASD with top-k verification and fixed443

threshold verification. For top-k condition, k is set444

to 5. For threshold verification, threshold is set to445

0.1. Table 3 shows the results. AASD achieves the446

highest average score. Using the top-k condition447

decreases the scores for most datasets. For evalua-448

tion the generation efficiency, we consider AASD449

without alignment sampling and AASD without450

conditional verification. Table 4 displays the re-451

sults. Both alignment sampling and conditional452

verification contribute to the inference acceleration.453

4.5 Comparison with Large and Small models454

Collaboration455

Another training-free approach is to directly use456

the same series of small models as the draft model457

(Leviathan et al., 2023; Kim et al., 2023). We com-458

pare AASD with this approach in this section. We459

test the inference efficiency on NQ dataset with460

LLaMA2 model series (Touvron et al., 2023). Ta-461

ble 5 displays the result. AASD outperforms SD on462

generation acceleration for the 7B and 70B model.463

For SD, the size of the draft model has a significant464

impact on inference efficiency. A draft model that465

is too small will result in a low acceptance rate,466

while a draft model that is too large will lead to467

excessive draft overhead. For a 70B target model,468

the 7B draft model has high quality, but its draft469

overhead accounts for about 80% of the total infer-470

Method M Md MAL TPS Speed-up

ADR 7B - 1.00 34.32 1.00
SD 7B 68M 1.16 24.60 0.71
AASD 7B - 1.83 50.26 1.46

ADR 70B - 1.00 5.17 1.00
SD 70B 1B 1.14 2.68 0.52
SD 70B 7B 4.13 6.61 1.28
AASD 70B - 1.83 7.94 1.53

Table 5: Comparison with speculative decoding with
big and small model collaboration. SD represents stan-
dard speculative decoding. Column M and Md indi-
cates the target model size and draft model size.

ence overhead. Therefore, it does not significantly 471

improve throughput. It is difficult to obtain a draft 472

model of appropriate size that can well balance 473

acceptance rate and overhead. In contrast, AASD 474

does not have this concern. It costs little overhead 475

and performs well as the model size scales up. 476

4.6 Case Study 477

Section 4.2 shows that AASD has the potential to 478

improve generation accuracy with a near relatively 479

strict threshold. In this section, we explore how the 480

verification threshold affects the generation results 481

through a case study. Table 6 displays the pre- 482

dictions under different thresholds for a sample in 483

2WikiMQA. Vanilla output fails to give the correct 484

answer. However, the prediction of AASD (δ=1e-3 485

and δ=1e-5) contains the ground truth. With an 486

appropriate threshold, AASD improves the accu- 487

racy of generation through context-aware drafting 488

from the relevant context. When the threshold is 489

set to 1e-5, the logic of generated content begins to 490

lose. The prediction is completely messy when the 491
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Method Label and Predictions

Ground Truth Mahesh Bhatt
Greedy Pooja Bhatt (%)
AASD (δ=1e-3) Pooja Bhatt’s father is Mahesh Bhatt. (!)
AASD (δ=1e-5) Pooja Bhatt’s television film Daddy was directed by her father Mahesh Bhatt. (!)
AASD (δ=1e-7) Pooja Bhatt’s television film Daddy was directed by Pooja Bhatt, starring! the director’s father, played by

actor Anupam Kher (%)

Table 6: Comparison of generated results with AASD under different thresholds. The question is “Who is the father
of the director of film Kajraare?”

threshold comes to 1e-7. Therefore, the threshold492

should be large enough to keep the model output493

logical and fluent. Besides, too relaxed verfication494

may affect the model’s ability to defend against495

attack inputs. If the input context contain harmful496

information, using AASD may lead the model to497

incorporate it into its responses. Therefore, in prac-498

tical applications, AASD requires additional safety499

alignment to ensure the security of the language500

model. See Appendix A for a more comprehensive501

study for the impact of verification strictness.502

5 Related Work503

Context Utilization Using context to improve504

generation performance is typical in retrieval-505

augmented generation (RAG) scenarios. RAG506

methods (Zheng et al., 2023; Dai et al., 2023; Gao507

et al., 2023; Fan et al., 2024; Zhao et al., 2024)508

retrieves relevant documents based on the given509

input for model reference, thus improving the qual-510

ity of generation. The naive approach (Ma et al.,511

2023) applies the search engine as the retriever and512

directly combines the retrieved documents with the513

user query as the input for frozen LLMs. Most514

RAG methods (Yoran et al., 2023; Luo et al., 2023;515

Asai et al., 2023; Melz, 2023; Yan et al., 2024)516

leveraging context on the input side to enhance gen-517

eration. Self-RAG (Asai et al., 2023) introduces518

generating reflection tokens to enable customizing519

models’ behaviors for different tasks. Speculative520

RAG (Wang et al., 2024b) adopts instruct-tuned521

draft models to drafting according to different re-522

trieved documents and uses the target model to pick523

out the best draft as the final response. Apart from524

them, CoG (Lan et al., 2023) proposes a encoder-525

based model architecture to seek suitable text spans526

from the context during generation. Cao et al.527

(2024) improves CoG through linguistic heuristics528

initialization and iterative self-reinforcement.529

Speculative decoding Stern et al. (2018);530

Leviathan et al. (2023); Xia et al. (2023, 2024)531

adopt a “drafting-verification” pattern to lossless 532

accelerates autoregressive decoding. At each de- 533

coding step, a small model is used to draft the 534

following few tokens. Then, the target model ver- 535

ifies the draft in parallel and accepts tokens that 536

are consistent with the original output. In this 537

way, multiple tokens can be generated in a sin- 538

gle step. Some works (Leviathan et al., 2023; Cai 539

et al., 2024; Li et al., 2024) employ independent 540

small models or additional trained modules as the 541

draft models, while others (Saxena, 2023; Fu et al., 542

2024; He et al., 2024) retrieve drafts from a draft 543

pool. The draft structure has evolved from n-grams 544

(Leviathan et al., 2023; Fu et al., 2024) to draft 545

trees (Li et al., 2024; Wang et al., 2024a). Among 546

them, PLD (Saxena, 2023) and LLMA (Yang et al., 547

2023) retrieve n-grams from the prompt to con- 548

struct the draft. REST (He et al., 2024) uses a 549

common public data source to build a draft pool 550

and retrieves the tree structure draft according to 551

the last several tokens of the current sequence at 552

each decoding step. These retrieval-based methods 553

avoid the hassle of additional training, but their 554

acceleration performance is relatively lower. 555

6 Conclusion 556

In this paper, we proposed AASD, an alignment- 557

augmented speculative decoding algorithm with 558

alignment sampling and conditional verification. 559

Both techniques improve the input-model align- 560

ment in prompt-based speculative decoding, thus 561

increasing the mean acceptance length and improv- 562

ing decoding efficiency. Conditional verification 563

based on a heuristic probability threshold shows the 564

potential to enhance the generation accuracy at the 565

token level. AASD does not introduce additional 566

parameters or training, making it conveniently ap- 567

plicable to pre-trained LMs. It outperforms the 568

baseline with two different models on the average 569

score of 8 datasets in terms of generation perfor- 570

mance and achieves a speed-up ratio of up to 2.23. 571
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Limitations572

Due to resource constraints, we only consider ap-573

plying alignment sampling on prompt-based specu-574

lative decoding in this paper. However, alignment575

sampling is applicable to most existing retrieval-576

based speculative decoding (including REST) and577

most generated scenarios. Taking REST as an ex-578

ample, if we input the draft pool into the model in579

advance to obtain the output distribution of top-k580

tokens (or directly use the content of the model’s581

historical output to build the draft pool), then when582

using REST, we can use alignment sampling to583

improve the alignment of the draft pool with the584

target model, thereby improving the draft token585

acceptance rate and algorithm performance. We586

leave this for future work.587

If the input context contains harmful information,588

using AASD may lead the model to incorporate it589

into its responses. Therefore, in practical applica-590

tions, AASD requires additional safety alignment591

to ensure the security of the language model.592
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A Trade-off between Accuracy and833

Efficiency834

Figure 4: Mean acceptance length of different tasks
under threshold verification.

For non-strict verification, more relaxed veri-835

fication conditions lead to faster reasoning, but836

may also cause performance degradation. To study837

the trade-off between acuracy and efficiency, we838

conduct an experiment on LLaMA3.1-8B-Instruct839

(Meta-AI, 2024) with threshold verification.840

Figure 5 demonstrates the performance on each841

dataset as the threshold changes. Note that align-842

ment sampling is not applied. F1 score increases843

with decreasing threshold for NQ while decreases844

for other 3 QA datasets. The ground truth is im-845

plicit in the context for each sample in NQ. A more846

relaxed verification condition makes the model tend847

to use the original statement in the context, which848

may be more accurate than the model’s output in849

some cases, thus leading to better results. There-850

fore, for high-quality context, the threshold can851

be lowered to increase confidence in the context852

for better performance and efficiency. For both853

summary datasets, the overall trend of the scores854

decreases as the threshold decreases in the search855

range. The performance drops rapidly for more856

complex tasks such as code completion.857

Figure 4 displays the mean acceptance length858

under different thresholds. For all datasets, a lower859

threshold leading to a higher acceptance rate, thus860

improving the inference efficiency.861

B Target Length and Source-Target862

Overlapping Rate of Each Datasets863

To explore the effectiveness of AASD in different864

generation scenarios, we report the target length865

and overlapping rate between the input and output866

context of each dataset used in the main experiment.867

We adopts longest substring match ratio (R) to eval-868

uate the source-target overlapping rate, which is869

calculated as: 870

R =
LCS(X,Y )

|Y |
, (7) 871

where LCS is length of the longest common sub- 872

sequence of input context X and target context Y . 873

The average source-target overlapping rate and the 874

average target length of each dataset are shown in 875

Table 7. Even for QA tasks (e.g., TQA, 2WikiQA 876

and HotpotQA) where the average target length 877

is very short, AASD demonstrates effectiveness 878

according to the results in Table 1. On the other 879

hand, although AASD exhibits greater advantages 880

in tasks with high overlap, it remains effective even 881

in low-overlap scenarios, highlighting its versatility 882

across diverse generation tasks. 883

C The Overall Description of AASD 884

Algorithm 1 AASD
Input: Prompt q, LM M , α, β, length of n-

grams n, Maximum length of the key l.
Output: Prediction Aq

1: pool← {}
2: for k = 1 to l do
3: for i = 0 to len(q)− k do
4: key ← q [i : i+ k]
5: pool [key] .append(i+ k)
6: end for
7: end for ▷ Initialize the draft pool.
8: while ⟨eos⟩ not in q do
9: T← {q[−1]}

10: for k = l to 1 do
11: if q [−k :] ∈ pool then
12: T ← T + Sample(q [pool [q [−k :]]])

▷ Conduct alignment sampling.
13: break
14: end if
15: end for
16: P ←M(T)
17: y ← V erify(P,T, α, β)
18: q ← q + y
19: for k = 1 to l do
20: for i = −k − len(y) to −k do
21: key ← q [i : i+ k]
22: pool [key] .append(i+ k)
23: end for
24: end for ▷ Update the draft pool.
25: end while
26: Aq ← q
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Figure 5: Performance of different tasks under threshold verification. The dotted lines in each figure are the
baselines of the dataset with the corresponding colors.

TQA 2WikiQA HotpotQA NQ MultiNews GovReport LCC Repobench-P

Input length 9681 8849 9458 3612 7882 8161 13516 15300
Target length 5 5 5 145 335 702 13 14
R 0.13 0.77 0.82 1.00 0.43 0.54 0.71 0.42

Table 7: The target length and overlapping rate (R) between the input and output context of each dataset used in the
main experiment.
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