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Abstract

Recent works have revealed the great poten-
tial of speculative decoding in accelerating the
autoregressive generation process of large lan-
guage models. The success of these methods re-
lies on the alignment between draft candidates
and the sampled outputs of the target model.
Existing methods mainly achieve draft-target
alignment with training-based methods, e.g.,
EAGLE, Medusa, involving considerable train-
ing costs. In this paper, we present a training-
free alignment-augmented speculative decod-
ing algorithm. We propose alignment sampling,
which leverages output distribution obtained in
the prefilling phase to provide more aligned
draft candidates. To further benefit from high-
quality but non-aligned draft candidates, we
also introduce a simple yet effective flexible
verification strategy. Through an adaptive prob-
ability threshold, our approach can improve
generation accuracy while further improving
inference efficiency. Experiments on 8 datasets
(including question answering, summarization
and code completion tasks) show that our ap-
proach increases the average generation score
by 3.3 points for the LLaMA3 model. Our
method achieves a mean acceptance length up
to 2.39 and speed up generation by 2.23x.

1 Introduction

The enormous size of state-of-the-art autoregres-
sive models (Anthropic, 2024; Meta-Al, 2024;
OpenAl, 2024) demands substantial memory and
processing power, making real-time applications
challenging. In scenarios such as interactive text
generation, these models require vast amounts of
computation, leading to slower response times and
increased energy consumption. Hence, more effi-
cient decoding algorithms are urgently needed to
reduce inference costs significantly while maintain-
ing or improving generation quality.

Speculative decoding (SD) (Stern et al., 2018;
Leviathan et al., 2023; Xia et al., 2023, 2024; Li

et al., 2024) has emerged as an effective solution to
the inefficient decoding process of large autoregres-
sive models. It uses a “draft and verify” mechanism
to achieve lossless acceleration. A lightweight
drafting model generates candidate tokens, which
are then verified in parallel by the target model.
This enables the generation of multiple tokens in a
single step, thus accelerating decoding while pre-
serving the output distribution. Speculative decod-
ing algorithms that combine large and small mod-
els (Miao et al., 2023; Li et al., 2024) have shown
promising results. However, these approaches of-
ten require additional training and extra parame-
ters, complicating deployment in inference systems
(Contributors, 2023; Kwon et al., 2023).

As an alternative, the training-free retrieval-
based speculative decoding (Yang et al., 2023; Sax-
ena, 2023; He et al., 2024) uses external knowledge
sources such as databases or historical text to re-
trieve n-grams as drafts for generation. It is more
flexible and scalable to large models, as the draft-
ing cost is independent of model size. However,
two issues have been largely overlooked in previ-
ous work on retrieval-based speculative decoding.
First, poor alignment between the retrieved drafts
and the model’s output distribution leads to a low
acceptance rate. Second, in many generation sce-
narios, the input context and the generated content
have strong correlation. As a result, drafts retrieved
from the input context tend to be of higher qual-
ity and do not require strict verification to ensure
consistency with the target model’s output.

In this paper, we propose Alignment-Augmented
Speculative Decoding (AASD), a plug-and-play
generation algorithm that improves the draft-target
alignment in prompt-based speculative decoding.
To address the first issue, we introduce alignment
sampling, where we sample additional tokens from
the output distribution of the prefilling phase for
poorly aligned tokens, thereby improving the over-
all draft quality and increasing the chances of suc-



cessful alignment with output distribution of the tar-
get model. To address the second issue, we propose
a conditional verification strategy. It applies heuris-
tic probability thresholds for each token, based on
its information entropy, allowing the model to au-
tonomously utilize the input text during decoding
through speculative decoding. It improves both
generation accuracy and efficiency. Both the two
techniques improve the alignment between the re-
trieved draft candidates and the target model output
distribution. Alignment sampling makes the drafts
more aligned with the target model distribution,
and conditional verification makes the target model
more aligned with the high-quality drafts.

We conduct comprehensive experiments with
two different models on 8 datasets in long context
generation scenarios, including question answering,
summarization, and code completion tasks, in Sec-
tion 4 to evaluate the effectiveness of AASD. The
results show that AASD outperforms common sam-
pling methods in terms of generation performance,
improving the average score from 44.69 to 47.98
compared to greedy sampling for the LLaMA3
model (Meta-Al, 2024). In terms of generation effi-
ciency, AASD achieves the highest acceptance rate
and average decoding throughput among existing
retrieval-based speculative decoding algorithms. It
achieves a decoding speedup of up to 2.23 times.

In summary, we highlight the importance of
draft-target alignment in retrieval-based speculative
decoding in this paper. We propose a training-free
method called alignment-augmented speculative
decoding to improve this alignment, which consists
of alignment sampling and conditional verification.
The proposed method improves generation accu-
racy and efficiency compared to baseline methods.

2 Backgrounds

2.1 Speculative Decoding

Given a prompt ¢ = (21, z2, ..., ;) and language
model M, where ;;—1 2 ;) represents each to-
ken, and [ is the prefix length, we input the current
sequence into the model to obtain the next token in
the autoregressive decoding manner:

,.CU[)), (1)

Y41 ~ P (T4 (21, 22, .0

where pj/(+|-) represents the output probability dis-
tribution of M. The model can generate only one
token in one forward propagation, resulting in low
efficiency, particularly for long generation lengths..

Speculative decoding (SD) alleviates this prob-
lem by adopting a “draft and then verify” mecha-
nism. At each decoding step, a lightweight model
m generates a draft d = (&1, Z42, ..., £141,) for
the next tokens based on the current input sequence,
where &;(i = l+1,1+2, ...,1+1;) denotes the draft
tokens and [ represents the draft length. This draft
is then simultaneously input into the target model
for verification. Tokens in the draft that match the
target model’s output will be accepted. Note that
if a token is rejected, all subsequent tokens in the
draft are also rejected. This allows the model to
generate multiple tokens in a single forward pass.

2.2 Retrieval-Based Drafting

An effective draft model must address two cru-
cial aspects. First, it must minimize computational
costs, ensuring faster and more efficient inference
through a lightweight design. Second, it must
closely align with the target model. Ideally, perfect
alignment would result in a 100% acceptance rate,
thus achieving the theoretical maximum speedup,
defined as the throughput of the smaller model di-
vided by that of the target model.

Approaches such as EAGLE (Li et al., 2024)
strengthen the alignment between the draft and
target models through alignment training, caus-
ing inconvenience in adapting to different models.
Retrieval-based speculative decoding methods com-
plete the drafting by retrieving n-grams from his-
torically generated data or pre-provided databases
based on the current sequence. However, exist-
ing retrieval-based speculative decoding methods
(Yang et al., 2023; Saxena, 2023; He et al., 2024)
ignore the importance of alignment. Although their
drafting overhead is very small compared to meth-
ods that require additional modules, their accep-
tance rate is also relatively lower.

2.3 Impact of Draft-Target Alignment

Recent research (Bachmann et al., 2025) shows
that even a high-quality draft will have a low accep-
tance rate if it does not align with the model output
distribution. We also conduct an experiment to give
an insight into the impact of draft-target alignment
in retrieval-based speculative decoding. For the
four-token input sequence “A, B, C, D”, the model
can predict the probability distribution of the next
token for each input token in parallel. For each
distribution, we select the token with the highest
probability, that is, greedy sampling. Assume that
the sampled tokens are B, C, F, E in order. The sam-
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Figure 1: Acceptance rate of aligned and misaligned
draft tokens in prompt-based speculative decoding.

pled tokens “B” and “C” match the input, while
“F” does not match “D” in the input. We regard
the matching tokens (“B” and “C”) as aligned to-
kens and the unmatched tokens (“D”) as misaligned
tokens. We conduct prompt-based speculative de-
coding on 100 samples in NQ (Kwiatkowski et al.,
2019) dataset with LLaMA3.1-8B-Instruct (Meta-
Al, 2024) and calculate the acceptance frequency
of aligned and misaligned draft tokens. Results
are shown in Figure 1. About 45% retrieved draft
tokens are misaligned with the model output. The
acceptance rate of misaligned tokens is much lower
than that of aligned tokens. Inspired by this, for
the positions of misaligned tokens, we can sample
additional tokens from the output distribution to
enhance the alignment of the entire draft and the
model, thus improving the acceptance rate.

2.4 Potential for Non-Strict Verification

Most speculative decoding methods adopts strict
verification to achieve lossless generation accelera-
tion. The recent research (Bachmann et al., 2025)
claims that correct but non-aligned draft candidates
can be accepted to pursue higher speed-up ratio.
They trained an additional module on carefully de-
signed data to judge whether to accept draft tokens.
However, for prompt-based speculative decoding,
as the draft source is highly relevant to the answer,
a training-free verification strategy can be designed
to realize a better trade-off between generation per-
formance and efficiency. For example, in long con-
text generation scenario, the input context contains
the key information needed for model generation.
Some of the fragments even overlap with the stan-
dard generated content. Given this, we can design a
conditional verification method to allow the model

to accept high-quality draft tokens, rather than just
accept that match its original output. This allows
the model to adaptively call the input original seg-
ments on the decoding side, thus enhancing the
generation accuracy and efficiency.

3 Method

In this section, we introduce AASD, an alignment-
augmented speculative decoding algorithm based
on alignment sampling and conditional verification
that improves both generation performance and ef-
ficiency. It is a plug-and-play speculative decoding
algorithm that does not require additional modules
or training. The overall description of AASD is
dispalyed in Algorithm 1 in Appendix C.

3.1 Context-Aware Drafting

For long text generation, the input context can act
as an important source of draft, because it is highly
relevant to the generated content. We construct the
input of each request into a draft pool by sliding
window sampling, which is an index dictionary.
The keys in the draft pool are several consecutive
tokens in the input context and the values are the
position indexes where these tokens appear. We up-
date the draft pool when new tokens are generated.

In each decoding step, we use the last several
tokens of the current sequence as the key to retrieve
indexes in the draft pool. Since longer keys give
higher draft relevance, following REST (He et al.,
2024), we prioritize searching with longer keys and
obtain n-grams from the current sequence.

3.2 Alignment Sampling

As is shown in Figure 2, we perform alignment
sampling to expand the retrieved n-grams into draft
trees. For example, the token “is” is the third most
likely word in the probability distribution of the
next word of the token “Jackson”. Therefore, “was”
and “made” are potential high-quality draft tokens,
which are more aligned with the output distribution
of the target model. We additionally sample these
two tokens for the 100th position. In this way, we
expand and merge multiple candidate n-grams into
a draft tree and calculate the corresponding tree
attention mask for parallel verification. The draft
tree T is defined as:
I+r n; 4
T=V.E,v=J U {azj} o
i=l+1j=1

where V and E is the set of its nodes and edges.
n; is the number of retrieved tokens in the i,
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Figure 2: Illustration of alignment sampling. “Jackson is a great” is an n-gram retreived by the key “Michael
Jackson”. According to the output distribution obtained in the prefilling stage, “is” is the token with the third highest
probability. The top-1 token “was” and top-2 token “made” are more likely to be generated after “Michael Jackson”.
Therefore, we sample two more tokens (“was” and “made” for the 100th position). Token “a” is well aligned with
the model output, so we keep it unchanged for the 101st position.

layer of T. r is the depth of T. Then we input
T and the corresponding tree attention mask into
the model and get the output probability distribu-

tion Py (z;|F(z])) for each node, where F(z]) is
the set of all parent nodes (including prefix) of /.

3.3 Conditional Verification

As discussed in Section 2.2, high-quality drafts re-
trieved from prompts have the potential to be non-
rigorously verified to enhance generation accuracy.
The naive idea is to use a fixed probability thresh-
old to filter draft tokens or use top-k verification.
We argue that using the probability threshold con-
dition is superior to using the top-k condition alone
since the output probability directly reflects the
model’s confidence in each draft token. Moreover,
the verification condition of top-k is not applicable
for some extreme cases. For example, suppose the
probability of a certain token is close to 1, and the
probability of all other tokens is close to 0. In that
case, no other token should be accepted, except for
the token with the highest probability. If all tokens
have the same probability, then they should all be
accepted or rejected at the same time. However,
the top-k verification condition will only pass indi-
vidual tokens and reject others. Therefore, we first
set a probability threshold ¢ so that token & will
be accepted if the following conditions are met:

pu (& |F(2])) > 6. 3)

However, models exhibit varying levels of confi-
dence across different samples or tokens. A static
threshold may either over-restrict or under-restrict
the verification process, leading to suboptimal per-
formance. Therefore, we formulate an adaptive
threshold based on the verification probability dis-
tribution. Low-confidence tokens can be processed
with stricter thresholds to maintain precision, while
high-confidence tokens benefit from relaxed thresh-
olds to ensure recall. Therefore, we adjust the
verification threshold of each token based on the
information entropy of its verification probability
distribution. Draft token & is accepted under the
following condition:

pu(#]F(2])) > 8], 4)
where 6Z is calculated by:

5] = min(~ay_ P(i])log P(&]) + B, A), (5)

where '

A = max P(&;), (6)
« and 8 are hyperparameters. « a is the factor
affecting the threshold value due to information
entropy. [ is the benchmark value of the thresh-
old. The function of A is to ensure that the token
with the highest probability will be accepted during
verification. Considering that the overall quality
of the alignment sampled tokens is lower than the



tokens retrieved from the prompt. We only perform
conditional verification on the draft token retrieved
from the input context and selected by alignment
sampling. Strict verification is still applied for to-
kens retrieved from generated context. We accept
the longest draft candidate that passes verification.

4 Experiments

4.1 Settings

In most speculative decoding methods with strict
verification (e.g., REST (He et al., 2024), PLD
(Saxena, 2023) and LLMA (Yang et al., 2023)),
the performance on datasets depends solely on the
sampling strategy rather than the specific decoding
algorithm. Equipped with conditional verification,
AASD introduces a novel sampling method, which
enhances access to input fragments. Therefore, we
compare the performance of AASD with several
common sampling methods: 1) Greedy Sampling:
It samples the token with the highest probability; 2)
Top-k Sampling (Fan et al., 2018): It selecting the
next token from the top k most probable options
(k = 50); Nucleus Sampling (Holtzman et al.,
2020): It is also called top-p sampling (p = 0.8),
which selects the next token from the smallest set of
top tokens whose cumulative probability exceeds
a predefined threshold; 3) Beam Search (Li et al.,
2016): It explores multiple candidate sequences at
each step, keeping only the top n most likely op-
tions (the beam width n = 10), to find an optimal
or near-optimal output sequence.

On the other hand, we compare the performance
and efficiency of AASD with autoregressive de-
coding and other retrieval-based speculative decod-
ing methods. Baselines are as follows: 1) Auto-
regressive decoding (ARD), 2) REST (He et al.,
2024): It retrieves n-grams from an external gen-
eral database and constructs a tree-structured draft,
3) PLD (Saxena, 2023): It retrieves n-grams di-
rectly from the input context. Note that LLMA
(Yang et al., 2023) and PLD can be considered as
the same method since they are very similar.

We evaluate the proposed method with
LLaMA3.1-8B-Instruct (Meta-Al, 2024) and
Qwen2.5-32B-Instruct (Qwen et al., 2025) on 3 dif-
ferent tasks: 1) Question Answering (QA): Nature
Question (NQ) (Kwiatkowski et al., 2019), Trivi-
aQA (TQA) (Joshi et al., 2017), 2WikiMQA (Ho
et al., 2020) and HotpotQA (Yang et al., 2018); 2)
Summarization: Multi-News (Fabbri et al., 2019)
and GovReport (Huang et al., 2021); 3) Code Com-
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Figure 3: Speed-up ratio on the six different task cate-
gories in SpecBench. The center point (1.0x) represents
the baseline of autoregressive decoding.

pletion: RepoBench-P (Liu et al., 2024) and LCC
(Guo et al., 2023). For the NQ dataset, we ran-
domly sampled 300 queries from the validation
set for evaluation. We use subsets sampled by
LongBench (Bai et al., 2023) for other datasets.
We report F1 score for QA datasets, ROUGE-L
for summarization datasets and Edit Sim for code
completion datasets. We also test the decoding
efficiency on SpecBench (Xia et al., 2024).

we use the same generation hyperparameters for
all baselines. REST involves an additional database
as the draft source. We selected the best database
from the officially released database for testing (for
each model and each datasets). We did not com-
pare with other training-required methods for gen-
erating enhancements and speculative algorithms
because they require additional training or use ad-
ditional models. We use 6-grams and set the maxi-
mum length of the key for retrieval to 6 for AASD.
We use unified hyperparameters for AASD on all
datasets. « is set to 0.1 and 0.2 for LLaMA3.1
and Qwen?2.5, respectively. [ is set to 0.1. Each
position can be extended by at most two tokens
by alignment sampling during drafting. We use 4
A100-PCIE-40GB GPUs for all experiments.

4.2 Improvement on Accuracy

We compare the performance of different sampling
methods in Table 1. We report the average scores
of the 8 datasets in the last column. AASD out-
performs other sampling methods with LLaMA3.1-
8B-Instruct on these datasets except for TQA. It
improves the average score from 44.69 to 47.98



NQ TQA

2WikiMQA  HotpotQA  Multi-News

GovReport RepoBench-P LCC

Method Avg.
F1 F1 F1 F1 ROUGE-L ROUGE-L Edit Sim Edit Sim
LLaMA3.1-8B-Instruct
Greedy 29.13  92.13 42.83 49.80 13.51 15.96 48.11 66.05 44.69
Top-k 29.08 84.52 38.48 42.01 13.34 15.18 45.36 56.19 40.52
Nucleus 29.21 86.39 39.98 44.79 13.58 15.46 45.59 55.82 41.35
Beam 32.57 83.04 43.29 48.93 14.07 17.75 46.27 67.52 44.16
AASD 3454 91.56 43.10 50.38 15.05 19.34 58.84 71.03 47.98
Qwen2.5-32B-Instruct
Greedy 4190 81.90 32.35 35.73 12.77 14.58 37.72 60.85 39.72
Top-k 40.86  80.02 28.17 36.09 11.72 13.19 36.14 50.56 37.09
Nucleus 41.64 79.07 29.64 35.37 12.30 13.56 38.01 49.48 37.43
Beam 36.78 84.57 17.49 19.55 9.49 11.07 42.04 63.26 35.53
AASD 43.34 83.55 34.99 39.12 12.67 15.25 37.23 58.65 40.60

Table 1: Performance of different sampling methods with LLaMA3.1-8B-Instruct and Qwen2.5-32B-Instruct. For
all metrics, higher scores indicate better performance. The best results are in bold.

Method 2WikiMQA GovReport LCC
MAL TPS Speed-up MAL TPS Speed-up MAL TPS  Speed-up

LLaMA3.1-8B-Instruct

ARD 1.00  20.10 1.00 1.00  20.15 1.00 1.00  20.67 1.00

REST 1.08 18.26 0.91 1.27  21.20 1.05 126  26.09 1.07

PLD 1.93 3277 1.63 142  21.33 1.06 2.06  36.52 1.77

AASD 237 3718 1.85 1.97 34.00 1.69 239  46.20 2.23
Qwen2.5-32B-Instruct

ARD 1.00 8.08 1.00 1.00 8.14 1.00 1.00 7.35 1.00

REST 1.07 7.33 0.91 1.26 8.16 1.00 1.16 7.53 1.02

PLD 2.13  14.04 1.74 1.51 10.01 1.23 1.46 8.72 1.19

AASD 2.14 13.87 1.72 2.18 14.20 1.74 1.89 11.80 1.61

Table 2: Inference efficiency of AASD with LLaMA3.1-8B-Instruct and Qwen2.5-32B-Instruct. ARD refers to
auto-regressive decoding with greedy sampling. MAL represents mean acceptance length and TPS represents tokens

per second. The best results are in bold.

compared to greedy sampling. For Qwen2.5-32B-
Instruct, AASD also improves the average score.
However, it does not show an advantage in code-
related tasks, possibly because the model’s inherent
code capabilities are relatively weak, making it un-
able to effectively reject the wrong draft tokens.

4.3 Improvement on Efficiency

We evaluate generation efficiency of AASD on
TQA, GovReport, and LCC datasets (one dataset
for each task). Table 2 displays the results with
different retrieval-based speculative decoding ap-
proaches. Since the inputs of these tasks are long
and have large length variance, input length has a
great impact on the prefilling time (computation
time of the first step). To avoid the influence of
this method-irrelevant factor, we only report the
TPS of incremental inference (without the first step
of generation for each sample). REST adopts an

independent database as the drafting source, thus
having a low acceptance rate for out-of-domain
tasks. AASD outperforms other approaches both
on the perspective of MAL and throughput with
LLaMA3.1-8B-Instruct. It achieves a speed-up
ratio up to 2.23 compared with auto-regressive de-
coding. For Qwen2.5-32B-Instruct, AASD has
a significant improvement in the generation effi-
ciency of summary and code tasks. However, for
2WikiMQA, as the mean output length is very short
(about 8 tokens), its performance is similar to PLD.
The total time overhead for retrieving the draft can-
didates for each step is between 0.02 milliseconds
and 2 milliseconds, which is less than 5% of the
time cost of a single step for the 8B model. For
larger target models, this overhead is negligible.
In addition, Figure 3 displays the evaluation re-
sults on SpecBench. We report the speed-up ratio
compared with autoregressive decoding. AASD



NQ TQA

2WikiMQA  HotpotQA  Multi-News

GovReport RepoBench-P LCC

Method Avg.
F1 F1 F1 F1 ROUGE-L  ROUGE-L Edit Sim Edit Sim
AASD 3454 91.56 43.10 50.38 15.05 19.34 58.84 7103 47.98
w/ threshold verification  32.05  91.82 41.19 51.22 15.16 18.69 56.51 6775  46.80
w/ top-k verification 3121 8271 22.12 27.34 14.93 18.15 43.17 4562 35.66
Table 3: Results for ablation study with LLaMA3.1-8B-Instruct. The best results are in bold.
Method 2WikiMQA GovReport LCC
MAL TPS  Speed-up MAL TPS  Speed-up MAL TPS  Speed-up
AASD 237 3718 1.85 1.97  34.00 1.69 239  46.20 2.23
w/o alignment sampling 1.80  36.12 1.80 1.87 3293 1.63 225 4271 2.07
w/o conditional verification  2.36  35.86 1.78 1.86  32.60 1.62 234 39.02 1.89
Table 4: Inference efficiency of AASD without alignment sampling and conditional verification.
outperforms the baselines in most tasks, except for Method M M; MAL TPS  Speed-up
the RAG task, .Whlch fur.ther proves the effective- ADR 7B i 100 3432 1.00
ness in improving decoding efficiency. SD 7B 68M 1.16  24.60 0.71
AASD 7B - 1.83 50.26 1.46
44  Ablation Study ADR  70B - 100 5.7 1.00
We conduct the ablation study with LLaMA3.1- Sg 783 1B ii;‘ 228 Ogé
. . . 70B 7B . .61 1.
8B-Instruct in this section. We evaluate the perfor- AASD  70B i 183 7.94 153

mance of AASD with top-k verification and fixed
threshold verification. For top-k condition, k is set
to 5. For threshold verification, threshold is set to
0.1. Table 3 shows the results. AASD achieves the
highest average score. Using the top-k condition
decreases the scores for most datasets. For evalua-
tion the generation efficiency, we consider AASD
without alignment sampling and AASD without
conditional verification. Table 4 displays the re-
sults. Both alignment sampling and conditional
verification contribute to the inference acceleration.

4.5 Comparison with Large and Small models
Collaboration

Another training-free approach is to directly use
the same series of small models as the draft model
(Leviathan et al., 2023; Kim et al., 2023). We com-
pare AASD with this approach in this section. We
test the inference efficiency on NQ dataset with
LLaMA2 model series (Touvron et al., 2023). Ta-
ble 5 displays the result. AASD outperforms SD on
generation acceleration for the 7B and 70B model.
For SD, the size of the draft model has a significant
impact on inference efficiency. A draft model that
is too small will result in a low acceptance rate,
while a draft model that is too large will lead to
excessive draft overhead. For a 70B target model,
the 7B draft model has high quality, but its draft
overhead accounts for about 80% of the total infer-

Table 5: Comparison with speculative decoding with
big and small model collaboration. SD represents stan-
dard speculative decoding. Column M and My indi-
cates the target model size and draft model size.

ence overhead. Therefore, it does not significantly
improve throughput. It is difficult to obtain a draft
model of appropriate size that can well balance
acceptance rate and overhead. In contrast, AASD
does not have this concern. It costs little overhead
and performs well as the model size scales up.

4.6 Case Study

Section 4.2 shows that AASD has the potential to
improve generation accuracy with a near relatively
strict threshold. In this section, we explore how the
verification threshold affects the generation results
through a case study. Table 6 displays the pre-
dictions under different thresholds for a sample in
2WikiMQA. Vanilla output fails to give the correct
answer. However, the prediction of AASD (d=1e-3
and d=1e-5) contains the ground truth. With an
appropriate threshold, AASD improves the accu-
racy of generation through context-aware drafting
from the relevant context. When the threshold is
set to le-35, the logic of generated content begins to
lose. The prediction is completely messy when the



Method Label and Predictions
Ground Truth Mahesh Bhatt
Greedy Pooja Bhatt ()( )

AASD (6=1e-3)
AASD (6=l1e-5)
AASD (6=1e-7)

actor Anupam Kher (X )

Pooja Bhatt’s father is Mahesh Bhatt. (\/ )
Pooja Bhatt’s television film Daddy was directed by her father Mahesh Bhatt. (\/ )
Pooja Bhatt’s television film Daddy was directed by Pooja Bhatt, starring! the director’s father, played by

Table 6: Comparison of generated results with AASD under different thresholds. The question is “Who is the father

of the director of film Kajraare?”

threshold comes to 1e-7. Therefore, the threshold
should be large enough to keep the model output
logical and fluent. Besides, too relaxed verfication
may affect the model’s ability to defend against
attack inputs. If the input context contain harmful
information, using AASD may lead the model to
incorporate it into its responses. Therefore, in prac-
tical applications, AASD requires additional safety
alignment to ensure the security of the language
model. See Appendix A for a more comprehensive
study for the impact of verification strictness.

5 Related Work

Context Utilization Using context to improve
generation performance is typical in retrieval-
augmented generation (RAG) scenarios. RAG
methods (Zheng et al., 2023; Dai et al., 2023; Gao
et al., 2023; Fan et al., 2024; Zhao et al., 2024)
retrieves relevant documents based on the given
input for model reference, thus improving the qual-
ity of generation. The naive approach (Ma et al.,
2023) applies the search engine as the retriever and
directly combines the retrieved documents with the
user query as the input for frozen LLMs. Most
RAG methods (Yoran et al., 2023; Luo et al., 2023;
Asai et al., 2023; Melz, 2023; Yan et al., 2024)
leveraging context on the input side to enhance gen-
eration. Self-RAG (Asai et al., 2023) introduces
generating reflection tokens to enable customizing
models’ behaviors for different tasks. Speculative
RAG (Wang et al., 2024b) adopts instruct-tuned
draft models to drafting according to different re-
trieved documents and uses the target model to pick
out the best draft as the final response. Apart from
them, CoG (Lan et al., 2023) proposes a encoder-
based model architecture to seek suitable text spans
from the context during generation. Cao et al.
(2024) improves CoG through linguistic heuristics
initialization and iterative self-reinforcement.
Speculative decoding Stern et al. (2018);
Leviathan et al. (2023); Xia et al. (2023, 2024)

adopt a “drafting-verification” pattern to lossless
accelerates autoregressive decoding. At each de-
coding step, a small model is used to draft the
following few tokens. Then, the target model ver-
ifies the draft in parallel and accepts tokens that
are consistent with the original output. In this
way, multiple tokens can be generated in a sin-
gle step. Some works (Leviathan et al., 2023; Cai
et al., 2024; Li et al., 2024) employ independent
small models or additional trained modules as the
draft models, while others (Saxena, 2023; Fu et al.,
2024; He et al., 2024) retrieve drafts from a draft
pool. The draft structure has evolved from n-grams
(Leviathan et al., 2023; Fu et al., 2024) to draft
trees (Li et al., 2024; Wang et al., 2024a). Among
them, PLD (Saxena, 2023) and LLMA (Yang et al.,
2023) retrieve n-grams from the prompt to con-
struct the draft. REST (He et al., 2024) uses a
common public data source to build a draft pool
and retrieves the tree structure draft according to
the last several tokens of the current sequence at
each decoding step. These retrieval-based methods
avoid the hassle of additional training, but their
acceleration performance is relatively lower.

6 Conclusion

In this paper, we proposed AASD, an alignment-
augmented speculative decoding algorithm with
alignment sampling and conditional verification.
Both techniques improve the input-model align-
ment in prompt-based speculative decoding, thus
increasing the mean acceptance length and improv-
ing decoding efficiency. Conditional verification
based on a heuristic probability threshold shows the
potential to enhance the generation accuracy at the
token level. AASD does not introduce additional
parameters or training, making it conveniently ap-
plicable to pre-trained LMs. It outperforms the
baseline with two different models on the average
score of 8 datasets in terms of generation perfor-
mance and achieves a speed-up ratio of up to 2.23.



Limitations

Due to resource constraints, we only consider ap-
plying alignment sampling on prompt-based specu-
lative decoding in this paper. However, alignment
sampling is applicable to most existing retrieval-
based speculative decoding (including REST) and
most generated scenarios. Taking REST as an ex-
ample, if we input the draft pool into the model in
advance to obtain the output distribution of top-k
tokens (or directly use the content of the model’s
historical output to build the draft pool), then when
using REST, we can use alignment sampling to
improve the alignment of the draft pool with the
target model, thereby improving the draft token
acceptance rate and algorithm performance. We
leave this for future work.

If the input context contains harmful information,
using AASD may lead the model to incorporate it
into its responses. Therefore, in practical applica-
tions, AASD requires additional safety alignment
to ensure the security of the language model.
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A Trade-off between Accuracy and
Efficiency
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Figure 4: Mean acceptance length of different tasks
under threshold verification.

For non-strict verification, more relaxed veri-
fication conditions lead to faster reasoning, but
may also cause performance degradation. To study
the trade-off between acuracy and efficiency, we
conduct an experiment on LLaMA3.1-8B-Instruct
(Meta-Al, 2024) with threshold verification.

Figure 5 demonstrates the performance on each
dataset as the threshold changes. Note that align-
ment sampling is not applied. F1 score increases
with decreasing threshold for NQ while decreases
for other 3 QA datasets. The ground truth is im-
plicit in the context for each sample in NQ. A more
relaxed verification condition makes the model tend
to use the original statement in the context, which
may be more accurate than the model’s output in
some cases, thus leading to better results. There-
fore, for high-quality context, the threshold can
be lowered to increase confidence in the context
for better performance and efficiency. For both
summary datasets, the overall trend of the scores
decreases as the threshold decreases in the search
range. The performance drops rapidly for more
complex tasks such as code completion.

Figure 4 displays the mean acceptance length
under different thresholds. For all datasets, a lower
threshold leading to a higher acceptance rate, thus
improving the inference efficiency.

B Target Length and Source-Target
Overlapping Rate of Each Datasets

To explore the effectiveness of AASD in different
generation scenarios, we report the target length
and overlapping rate between the input and output
context of each dataset used in the main experiment.
We adopts longest substring match ratio (R) to eval-
uate the source-target overlapping rate, which is

calculated as:

_ LOS(X,Y)

R= : 7

where LC'S is length of the longest common sub-
sequence of input context X and target context Y.
The average source-target overlapping rate and the
average target length of each dataset are shown in
Table 7. Even for QA tasks (e.g., TQA, 2WikiQA
and HotpotQA) where the average target length
is very short, AASD demonstrates effectiveness
according to the results in Table 1. On the other
hand, although AASD exhibits greater advantages
in tasks with high overlap, it remains effective even
in low-overlap scenarios, highlighting its versatility
across diverse generation tasks.

C The Overall Description of AASD

Algorithm 1 AASD

Input:  Prompt ¢, LM M, «, 3, length of n-
grams n, Maximum length of the key .

Output:  Prediction A4,

1: pool + {}

2: fork=1toldo

3: fori=0tolen(q) — k do

4: key < qli: i+ k]

5: pool [key] .append(i + k)

6:  end for

7: end for > Initialize the draft pool.

8: while (eos) not in ¢ do

o T+ {q[-1])

10 fork=1[1toldo

11: if ¢ [~k :] € pool then

12: T < T + Sample(q [pool [q [k :]]])
> Conduct alignment sampling.

13: break

14: end if

15:  end for

16: P+« M(T)

17: y <« Verify(P,T,a,B)
18 g4 q+y

190 fork=1toldo

20: fori = —k — len(y) to —k do

21: key < qli: i+ k]

22: pool [key| .append(i + k)

23: end for

24:  end for > Update the draft pool.
25: end while

26: Aq —q
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Figure 5: Performance of different tasks under threshold verification. The dotted lines in each figure are the
baselines of the dataset with the corresponding colors.

TQA 2WikiQA HotpotQA NQ  MultiNews GovReport LCC  Repobench-P

Input length 9681 8849 9458 3612 7882 8161 13516 15300
Target length 5 5 5 145 335 702 13 14
R 0.13 0.77 0.82 1.00 0.43 0.54 0.71 0.42

Table 7: The target length and overlapping rate (1) between the input and output context of each dataset used in the
main experiment.
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