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Abstract

Offline reinforcement learning (RL) enables policy learning from fixed datasets without fur-
ther environment interaction, making it particularly valuable in high-risk or costly domains.
Extreme @-Learning (XQL) is a recent offline RL method that models Bellman errors using
the Extreme Value Theorem, yielding strong empirical performance. However, XQL and
its stabilized variant MXQL suffer from notable limitations: both require extensive hyper-
parameter tuning specific to each dataset and domain, and also exhibit instability during
training. To address these issues, we proposed a principled method to estimate the tem-
perature coefficient § via quantile regression under mild assumptions. To further improve
training stability, we introduce a value regularization technique with mild generalization,
inspired by recent advances in constrained value learning. Experimental results demonstrate
that the proposed algorithm achieves competitive or superior performance across a range of
benchmark tasks, including D4RL and NeoRL2, while maintaining stable training dynamics
and using a consistent set of hyperparameters across all datasets and domains.

1 Introduction

Deep reinforcement learning (DRL) has achieved impressive results across a broad range of domains, including
navigation (Mirowski et al.,2018)), healthcare (Yu et all[2021a), robotics (Haarnoja et al.,|2018)), and games
(Mnih et al., [2015; |Silver et al.2016). Recent advances in offline reinforcement learning (offline RL) (Kumar
et al., 2020} |[Levine et al., |2020; Kostrikov et al.l |2021}; |Garg et al., [2023) have extended the capability of
DRL by enabling agents to learn solely from static datasets, without requiring further interaction with the
environment. This paradigm shift is particularly promising in domains where data collection is expensive,
risky, or impractical.

Among the recent developments, the offline version of extreme Q-learning (XQL) (Garg et al., |2023)) intro-
duces a novel perspective by modeling the Bellman error distribution using the Extreme Value Theorem
(EVT), assuming it follows a Gumbel distribution. This theoretical insight leads to an in-sample learn-
ing algorithm that has demonstrated competitive performance on standard offline RL benchmarks such as
D4RL. However, XQL exhibits notable instability during training, as reported in follow-up work (Omura
et al., [2024). To address this issue, MXQL (Omura et al [2024)) introduces a variant that stabilizes training
through a Maclaurin-series-based approximation of the original XQL loss.

Despite these efforts, several challenges remain. Both XQL and MXQL are sensitive to hyperparameter
choices—particularly the temperature coefficient—which often require dataset-specific tuning to achieve
optimal performance, making them impractical for real-world applications. This sensitivity can lead to sig-
nificant performance degradation when hyperparameters are changed, as demonstrated in Figure[I] Besides,
even the stabilized MXQL variant can experience training instability under certain conditions (see Figure.
These limitations motivate our central research question:

Can we design an algorithm based on offline XQL that maintains stability and strong per-
formance across diverse domains and offline datasets, using a single, consistent set of hy-
perparameters?
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Figure 1: Comparison of XQL performance using dataset-specific tuning versus consistent hyperparameters
across the domain. In some scenarios, performance degrades notably without dataset-specific tuning.

To address this issue, we propose a principled method for estimating the temperature coefficient 8 via quantile
regression under mild assumptions, thereby eliminating the need for dataset-specific tuning. Building on this,
we introduce a value regularization approach with mild generalization, inspired by prior work on doubly
constrained value learning (Mao et al. [2024). The performance of the proposed algorithm matches or
exceeds that of the state-of-the-art model-free offline RL algorithms across a variety of domains and dataset

types in diverse offline RL benchmarks, including D4RL (Fu et al. 2020) and NeoRL2 (Gao et al., 2025),
without the need for domain-specific hyperparameter tuning.

2 Related Works

2.1 Offline Reinforcement Learning

Our work builds primarily on the literature of offline reinforcement learning (offline RL), a subfield of
reinforcement learning that aims to learn optimal policies from a fixed dataset without any further interaction
with the environment. A central challenge in offline RL is that many online off-policy methods tend to
underperform due to extrapolation error (Fujimoto et al.l 2019) or distributional shift (Levine et al., 2020)).
To address these issues, offline RL algorithms often augment standard off-policy methods with a penalty
term that measures the divergence between the learned policy and the behavior policy used to collect the
data (Fujimoto & Gul [2021)). Existing offline RL approaches vary in how they formulate the problem,
including methods that constrain the learned policy to remain close to the behavior policy
[2023; [Fujimoto & Gu, 2021} [Li et all 2022), approaches that incorporate pessimistic value estimation to
avoid overestimation of out-of-distribution actions (An et al., 2021; Yu et al. [2021b; Kostrikov et al. [2021}
[Kumar et al. 2020), and techniques that leverage deep architectures such as large autoregressive models
(Chen et al 2021; | Janner et all 2021) or generative models (Janner et al. 2022; |Ajay et all 2022} Wang|
let al., 2022} [Zhang et al., 2025)).

)

In our work, we specifically focus on improving an existing offline RL method, Extreme @Q-Learning (XQL)
(Garg et all 2023)), which is potentially unstable and sensitive to hyperparameters as discussed in the
introduction. Implicit value regularization (IVR) was later proposed as a new paradigm that reinterprets
XQL through an in sample value regularization perspective and derives Exponential Q-Learning (EQL) as an
equivalent formulation 2023). However, the authors also note that EQL introduces exponential
terms in the value updates, which can lead to highly unstable gradients and pronounced sensitivity to
hyperparameter choices in practice 2023). Prior work (Omura et all [2024) proposed a method
to stabilize XQL by applying a Maclaurin expansion to the original objective function. However, this
MXQL variant still relies on a manually tuned temperature parameter 8 and therefore does not address the
fundamental challenge of selecting 8 in a robust and data driven manner.
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2.2 Quantile regression in reinforcement learning

Quantile regression serves as a foundational framework in distributional reinforcement learning. Its prac-
tical application was popularized by QR-DQN (Dabney et al., 2018Db)), which approximates the return dis-
tribution using a discrete set of quantiles learned through quantile-regression losses. Building upon this
foundation, subsequent methods have sought more flexible and stable representations of the return quantile
function. These include Implicit Quantile Networks (IQN) and non-crossing variants that explicitly enforce
monotonicity across quantile levels (Dabney et all 2018a; |Zhou et al. [2020). More recently, the implicit
expectile-quantile network (IEQN) (Jullien et al.l [2025) extends IQN with a dual expectile-quantile regres-
sion objective that jointly learns quantiles and expectiles of the return distribution, provably converging to
the true value distribution in the limit of infinite estimated quantile and expectile fractions. In this spirit,
our method also employs quantile regression to parameterize an implicit value function.

3 Preliminaries

The problem is formulated as an Markov decision process (MDP), which is represented by the tuple
(S, A, P,r,7y), where S denotes the state space, A represents the action space, P : § x A — Ag char-
acterizes the transition dynamics; r : S x A4 — R is the reward function; v € [0,1) is the discount factor. We
aim to learn a policy 7 : § — A4 to maximize cumulative discounted rewards (Sutton & Bartol 2018). In
offline RL setting, the policy learning is conducted on a dataset D consisting a set of trajectories (1, ..., 77).
Each trajectory is composed of a group of transitions {(s¢, as, ¢, s5)}.

Advantage Weighted Regression One class of off policy methods updates the policy using value func-
tions for weighted regression, commonly referred to as Advantage Weighted Regression (AWR) (Peng et al.
2019). In AWR, the policy is updated according to:

n(as) exp(W) wals),

where p denotes the behavior policy and the temperature parameter 5 controls the degree of conservatism.
Empirically, prior works (Xu et al., 2023; [Park et all [2024)) show that AWR is highly sensitive to the choice
of B: smaller values can lead to overfitting or instability, while larger values produce overly conservative
policies.

Extreme -Learning Extreme Q-Learning (XQL) (Garg et all 2023) is an algorithm being capable of
solving both online and offline RL tasks. It directly models the maximal value using Extreme Value Theory
(EVT) with the assumption that the error in Q-functions follow a Gumbel distribution. In our work, we
especially focus on the offline part of XQL. Specifically, offline XQL leverages an objective for optimizing a
soft value function V over dataset D:

T(V) = Esa~pexp ((Q(s,a) = V(s))/B) = (Q(s,a) = V(s)/8) — 1, (1)

where @ is the @Q-function optimized via minimizing mean-squared Bellman error and 3 is the temperature
hyperparameter. Furthermore, XQL learns a policy with an advantage-weighted regression (Peng et al.
[2019; Nair et al., 2020) (AWR) style update:

7" = argmax E(, 4)p [e(Q(s’“)_V(s))/ﬂ log 7Ti| ) (2)

In practice, we find that XQL is sensitive to the hyperparameter 3, and its optimal value varies significantly
across environments and offline datasets, as shown in Appendix and Figure [I] Revisiting Egs. [T and
we observe that the temperature parameter § in the exponential terms plays a critical role in the stability
of both value and policy updates, and is likely a key source of the hyperparameter sensitivity observed in
XQL.
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4 Revisiting Extreme ()-Learning with Quantile Regression

4.1 Estimating $ under Mild Assumptions

Since the formulation of XQL is sensitive to the hyperparameter 8, we show in this section that 5 can be
generalized to a state-dependent function $(s) and learned under mild assumptions. We begin by stating the
assumptions used in our subsequent analysis involving the estimated Q-function @, the optimal Q-function
Q* and the soft value function V. It is worth noting that these assumptions are either identical or closely
aligned with those used in prior works (Hui et al. 2023} |Garg et al., [2023).

Assumption 1 ((Hui et al., |2023)). Given a state-dependent function 5(s) and a heteroscedastic Gumbel
noise €(s,a) ~ G(0,B(s)):
6(57 (L) = Q*(s7 a) - Q(Sv a)'

Assumption 2. Given a state-dependent Gumbel noise model G(0, 8(s)):
(Q(s,a) = V(s)) ~ =G(0, 5(s)).

Remark on Assumption This assumption is identical to the Gumbel error model used in Double
Gumbel Q-learning (Hui et al., 2023), where the learned @-function is modeled as @Q* perturbed by Gumbel-
distributed errors arising from the max-operator in the Bellman equation. It provides an analytically
tractable characterization of the heteroscedastic, state-dependent approximation error in deep Q-learning,
which is more realistic than homoscedastic Gaussian noise.

Remark on Assumption Assumption [2|is similar to the one used in XQL (Garg et al., [2023), except
that it allows for a state-dependent noise model. It reduces exactly to the XQL assumption when the noise
scale is constant, i.e., 5(s) = S.

With the above assumptions in place, we now present Proposition [I] followed by Proposition [2} which
provides key theoretical support for estimating S(s).

Proposition 1. Under Assumptions (1| and @, given an optimal Q-function Q* and V*(s) = max, Q*(s,a),
the following equation holds:

V*(s) = (s) log / exp (Cg;((‘i’)“)) da.

Proof. See Appendix [B1] O

Proposition [I] establishes a relationship between the optimal @Q-function and value function. To extend this
relationship to the estimated functions used in practice, we define an estimated value function inspired by
the structure in Proposition [T}

Definition 1. Given a Q-function estimation and a state-dependent temperature parameter B(s), we define

the following value function:
V(s) = B(s) log/exp (Qﬁ(f;;l)) da.

Remark on Definition V(s) can be interpreted as a SoftArgMax (Hui et al., 2023) of Q(s, a), aligning
with the principles of MaxEnt RL and Extreme Q-Learning. Since we assume the 3(s) scale is consistent
across Assumptions [1| and [2] it enables a coherent formulation of both V'(s) and V (s) (Definition . For
simplicity, we use the notation V(s) throughout the paper. Empirical evidence supporting the consistency
of the 3(s) scale is presented in the experimental section.

Based on Proposition[I]and Definition[l] we can construct an estimation of 3(s) based on the value functions:
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Proposition 2 (Estimating 5(s)). Under Assumptions |1| and @ given V (s) = E[V*(s)], there exists:
wB(s) = V(s) = V(s),

where w = 0.57721 is identified as the Fuler—Mascheroni constant.
Proof. See Appendix [B:2] O

In this case, 4(s) can be estimated by computing [V (s) — V (s)]/w. However, how to estimate both V(s) and
V(s) remains an open question. In the next section, we propose an estimation method based on quantile
regression.

4.2 Learning Value Functions with Quantile Regression

In this section, we demonstrate how the learning of V'(s) and V(s) can be formulated as a quantile regression
problem. Under Assumption [2| the cumulative distribution function (CDF) of the Gumbel distribution
enables us to interpret the value functions as quantiles, as established in Propositions [ and [4]

Proposition 3. For a Q-function and value function satisfying Assumption@, and with oy = 1 — exp(—1),

there exists:
P(Q(s,a) < V(s)) = ax,

which shows that V (s) corresponds to the aq-quantile of Q(s,a) under its CDF.
Proof. See Appendix [B23] O

Similarly, by applying the results from Proposition [2, we obtain the following for V.

Proposition 4. Under Assumptions and @ for a Q-function, let V(s) = E[V*(s)], and define ag =
1 — exp(—exp(w)). Then, there exists:

P(Q(s,a) < V(s)) = as,

which shows that V (s) corresponds to the as-quantile of Q(s,a) under its CDF.
Proof. See Appendix [B4] O

Based on the preceding propositions, we have established that V(s) and V (s) correspond to the a;- and
ag-quantiles of Q(s,a) under its cumulative distribution function. Consequently, it is natural to estimate
V(s) and V(s) using quantile regression, and to estimate 5(s) based on the resulting estimates of V(s) and

V(s).

Definition 2 (Quantile Regression). The quantile regression objective is defined as:
Lo(u,7) =u- (1 —I(u <0)),
where u =y — § is the residual, T € [0,1] is the target quantile level, and 1(-) denotes the indicator function.

To learn V(s) and V(s), we parameterize them using t; and 1y, respectively. Leveraging the quantile
regression objective defined in Definition [2| we formulate the learning objectives for Vi, (s) and Vi, (s) as
follows:

3
4

T (1) = E(s.a)~p Lar(Qo(s, @) = Vy, (5), a1).

j(¢2) = E(s,a)ND ‘CQT(Q«Q(Sa a) - vwz (5)7 OQ)'
For a Q-function satisfying Assumption [1} Q(s,a) + wp(s) is an unbaised estimation of the optimal Q-
function @*(s,a). By Proposition |2} the estimator for @Q* can be further expressed as Q(s, a)+(V(s) =V (s)).
Therefore, the @Q-function, parameterized by 6, is learned using the mean-squared Bellman error :

3)
(4)

L0(8) = Eqeron [Q0(5.0) + (T (5) = Vi (8)) — r(s.0) — 173, ()] (5)
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Algorithm 1 Quantile Q-Learning

Require: Initialized networks Qg, Vi, , Vy,, dataset D, mild generalization and policy constraint hyperpa-
rameters A and ¢
1: for each gradient step do

2: Sample a batch of transitions from dataset D
3: Update value networks by minimizing Egs. [7
4: Update @Q-function Qg by minimizing Eq.
5: Update policy 74 by maximizing Eq. [f]

6: end for

Using the estimator B(s) = (Vy,(s) — Vi, (s))/w and a KL-constrained policy objective, we can obtain a

G-free AWR-style policy objective with a policy constraint weight (:

w(@o(s,a) = Vi, (5)) | w(Qo(s,a) = Vy, (5))
C(Vd& (S) - le (S)) Vibz (S) - Vibl (S)

The detailed derivation can be found in Appendix [A] Thus far, we have established the basic formulation

of our proposed algorithm, a (-free variant of XQL, which we refer to as Quantile )-Learning. Further
enhancements to this approach will be presented in the following sections.

£x(8) = Egoapmexp ( ) log (s, ). (6)

4.3 Regulating Value Functions with Mild Generalization

By estimating [ via quantile regression, we construct a [-free variant of XQL. However, similarly to the
original XQL, this approach remains fully in-sample and has been shown to be overly conservative (Mao
et al.l |2024)). To address this crucial issue, we introduce mild generalization into the quantile regression
objective.

A straightforward approach is to apply Doubly Mild Generalization (DMG) (Mao et al.l [2024)) directly to
Eq and Eq However, approximating V*(s") = max, r(|sy @*(s’,a’) by sampling actions from =(- | s)
and taking the as-quantile of Qp(s’,a’) can introduce extrapolation error (Fujimoto et all |2019]), which
may propagate throughout the learning process. To mitigate this, we conservatively estimate V*(s') by
subtracting wB(s’), with 8(s’) providing an estimation of uncertainty. Applying this conservative estimation
systematically to all value functions throughout mild generalization leads to V(s’) as the ap-quantile of
Q(s',a’), and V (s) as the a;-quantile of Q(s,a’), whereby ag = 1 —exp(— exp(—w)). Ablation results in the
experiment section demonstrate the effectiveness of this modification. The updated objective for training
the value networks incorporating mild generalization can therefore be expressed as:

j(wl) = IE(s,a)N’D £qT(Q9(S7 CL) - V’Llil (3)7 051) + I['ES’N’D,a’Nﬂ'(~|s’) A Eqr(Q9(5/7 Cl/) - VT/Jl (S/)a Oéo),

. N (7)

j(d)z) = IE(s,a)r\/’D Lqr(QO(Sv a) - Vd& (S)a a2) + Es’~D,a’~7\'(~|s’) A £qT(Q9(S/7 a/) - Vd& (S/)v al)'
In this objective, a mild generalization hyperparameter \ is introduced to control the degree of generalization
applied. Empirically, we find that A = 1 works well in most cases.

5 Experiments

5.1 Experimental Setting and Baseline Methods

Benchmark Datasets We conduct experiments on two offline RL benchmarks: the widely used D4RL
suite (Fu et al. [2020) and the more challenging, near-real-world NeoRL2 benchmark (Gao et al., [2025)),
which incorporates real-world complexities such as high-latency transitions and global safety constraints. For
D4RL, our evaluation spans locomotion tasks (Hopper, HalfCheetah, and Walker2d) across various dataset
types, including medium, medium-replay, and medium-expert. We also evaluate on the Adroit manipulation
tasks (Pen, Door, and Hammer), as well as the AntMaze-Umaze task under both fixed and randomized
initial states and goals. For NeoRL2, we assess performance on the RocketRecovery and SafetyHalfCheetah
tasks.



Under review as submission to TMLR

Domain Dataset ‘ BC TD3+BC CQL IQL XQL MXQL ‘ QQL (Ours)
hopper-med-exp 52.5 98.0 105.4 91.5 111.2 110.7 112.5+1.3
hopper-med 52.9 59.3 58.5 66.3 T74.2 80.9 77.3 + 3.8
hopper-med-rep 18.1 60.9 95.0 94.7 100.7 102.7 101.1£2.1
halfcheetah-med-exp 55.2 90.7 91.6 86.7 94.2 92.1 94.3 £ 1.8
Gym Locomotion halfcheetah-med 42.6 48.3 44.0 474 483 47.7 49.5 + 0.3
halfcheetah-med-rep 36.6 44.6 45.5 442 452 45.7 46.6 + 0.3
walker2d-med-exp 107.5 110.1 108.8 112.7 112.7 111.2 113.2+0.3
walker2d-med 75.3 83.7 725 783 84.2 83.8 85.2 +1.3
walker2d-med-rep 26.0 81.8 772 739 822 83.6 90.2 £+ 2.1
pen-human 99.7 10.0 58.9 106.2 105.3 122.1 128.3 £+ 4.1
pen-cloned 99.1 52.7 14.7 1141 112.6 1174 115.2 + 4.7
Adroit door-human 9.4 -0.1 13.3 13,5 13.2 18.3 21.1 + 5.6
door-cloned 3.4 -0.2 -0.1 9.0 1.1 1.8 8.8 +4.1
hammer-human 12.6 2.4 0.3 6.9 7.3 14.7 84+ 3.1
hammer-cloned 8.9 0.9 0.3 11.6 1.1 11.1 8.0+ 4.4
AntMaze antmaze-umaze 68.5 98.5 94.8 84.0 90.3 88.3 88.5 + 6.1
antmaze-umaze-diverse | 64.8 71.3 53.8 795 772 53.2 81.3 £ 4.1

Table 1: Main Experimental Results on D4RL. Average normalized performance on Gym Locomotion,
Adroit, and AntMaze tasks. All hyperparameters for our QQL method are kept consistent across all
environments and datasets, while baseline algorithms are individually tuned for each setting. Results are
averaged over 5 random seeds.

Baseline Methods Our approach is compared against a diverse set of offline RL baselines, encompassing
various design principles. These include policy-constrained methods such as Behavior Cloning (BC) and
TD3+BC (Fujimoto & Gul 2021); conservative model-free algorithms like CQL (Kumar et al., 2020)); in-
sample learning methods including IQL (Kostrikov et al., |2021)) and XQL (Garg et al., 2023); a stabilized
variant of XQL, MXQL (Omura et al. 2024); an uncertainty-aware method, EDAC (An et al., [2021)); and
the batch-constrained off-policy algorithm BCQ (Fujimoto et al., |2019)).

Hyperparameter Setting For every task-dataset combination we fix the generalization coefficient to
A = 1.0 and the policy constraint weight to ¢ = 1.0. Using this single hyperparameter setting for all
of our experiments (Table highlights the robustness of our method, whereas baseline algorithms are
evaluated with the dataset-specific, tuned hyperparameters reported in prior work. We also compare our
approach and XQL under a consistent hyperparameter setting across tasks, revealing that the original XQL
algorithm suffers from performance degradation without per-task tuning, while our method maintains strong
performance (Table |3). The detailed hyperparameter settings for the baseline algorithms are provided in

Appendix [F]

5.2 Main Results

In this section, the results of the proposed algorithm are presented on D4RL datasets, and its performance
is compared with baseline methods. Our approach consistently outperforms or matches state-of-the-art in-
sample and model-free offline RL baselines under dataset-specific hyperparameter tuning using a unified
hyperparameter setting across diverse domains (Locomotion, Adroit, and AntMaze) and dataset types. The
results are summarized in Table [[I Furthermore, training curve comparisons are presented between two
improved versions of XQL: MXQL and our proposed QQL. As shown in Figure 2a] QQL demonstrates more
stable training dynamics, with lower standard deviation, and achieves more optimal performance. In terms
of computational cost, QQL requires approximately 1.6x the wall-clock training time of XQL (4 hours vs.
2.5 hours for 1M timesteps on an RTX 4070), primarily due to the additional quantile regression and value
estimation. We consider this overhead acceptable given the gains in stability and final performance.
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Dataset | DATA | BC CQL EDAC BCQ TD3+BC XQL | QQL (Ours)
RocketRecovery | 75.27 | 72.75 74.32  65.65  76.46 79.74 81.1 83.244.7
SafetyHalfCheetah | 73.56 | 70.16 71.18  53.11  54.65 68.58 66.2 60.3+4.1

Table 2: Main Experimental Results on NeoRL2. Average normalized performance on RocketRecovery
and SafetyHalfCheetah tasks. All hyperparameters for our QQL method are kept consistent, while baseline
algorithms are individually tuned for each setting. The DATA column reports the normalized scores of the
trajectories contained in the offline datasets. Results are averaged over 3 random seeds.
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QQL demonstrates more stable training behavior across tasks sults demonstrate that the proposed approach
compared to MXQL. effectively stabilizes Q-value estimation.

Figure 2: QQL Performance and Ablation Analysis. We visualize the following results: @ Training
stability comparison between QQL and MXQL. (]ED Q-value plots demonstrating the stabilization effect of
value regularization and conservative estimation.

5.3 Comparison with Consistent Hyperparameter Setting

We compare the performance of our method with XQL (Garg et al., 2023)) under a consistent hyperparameter
setting across diverse datasets and domains. As shown in Table [3] XQL suffers significant performance
degradation when using the consistent hyperparameters across settings, while our method maintains strong
performance. This highlights the robustness and generality of our approach.

5.4 Ablation Studies

Ablations on Value Regulation and Conservative Estimation Ablation studies are performed to
isolate the contributions of Value Regulation (VR) and Conservative Estimation (CE) to the performance
and stability of the QQL algorithm. Experiments on HalfCheetah Medium, Walker2d Medium Replay, and
Hopper Medium Expert (Figure[3]) compare the full QQL method with variants that exclude value regulation
(QQL w/o VR) or conservative estimation (QQL w/o CE), as described in the methodology section.

Removing either component results in noticeable performance drops, while omitting both leads to substantial
degradation. This highlights the role of value regulation in mitigating overestimation and stabilizing value
estimates for robust offline learning, and the importance of conservative estimation in encouraging pessimistic
value functions to better handle distributional shifts and limited coverage.
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Domain ‘ Gym Locomotion  Adroit AntMaze

XQL (Dataset-specific tuning) 83.7£2.7 40.6£6.3 83.8+6.9
XQL (Consistent per domain) 75.5+3.6 38.6+4.5 69.6+10.7
XQL (Consistent across all domalnb 73.6+4.1 37.8+4.1 67.3+9.2
QQL (Consistent across all domains) ‘ 85.6t1.4 48.3+4.3 84.9+5.1

Table 3: Comparisons with Consistent Hyperparameters We compare our approach—using a single,
consistent set of hyperparameters—against three XQL variants: (1) with dataset-specific tuning, (2) with
domain-level consistent hyperparameters, and (3) with a single set shared across all domains. Performance
is reported as the average D4RL score across all dataset types and tasks within each domain. Detailed
hyperparameter settings for the different XQL variants are provided in Appendix[F.1] All results are averaged
over 5 random seeds.

Dataset | Setting | 0.25 0.5 1.0 2.0 4.0

A=1.0 (¢ varies) | 113.2+0.3 113.1+0.3 112.5+1.3 112.9+0.3 112.6+0.6
¢=1.0 (A varies) | 110.7£3.2 111.64+2.1 112.5+£1.3 112.14+1.7 112.6+0.3

)
( )
/\—IO(Cvarles) 50.0£0.1  49.6£0.1  49.5+0.3  49.4+0.1 49.1 £ 0.1
—10(Avarles) 49.6£0.1  49.6£0.1  49.5+0.3  49.6£0.1  49.6+0.2
( )
( )

hopper-med-exp

halfcheetah-med

90.9£0.8 90.4+1.2 90.2+2.1 89.9£1.5 88.4+0.4
888 14 90.5+£1.0 90.2+21 885+0.6 89.3+0.6

= 1.0 (¢ varies

walker2d-med-rep —10

A varies

Table 4: Ablations on A and (. Average normalized performance on D4RL tasks. The first row for each
task shows performance when varying ¢ with fixed A = 1.0, and the second row shows performance when
varying A with fixed ¢ = 1.0.

These results demonstrate that both VR and CE are essential for effective offline RL. Their complementary
effects yield a more stable and performant learning algorithm. All ablation experiments use consistent
hyperparameter settings.

Additionally, a comparison of the Q-values from the original QQL method against those from QQL without
value regularization and without conservative estimation was plotted. The results demonstrate that both
value regularization and conservative estimation help stabilize Q-value estimation and improve conservative-
ness. The ablation study is performed on the Hopper Medium Expert dataset, with the results shown in

Figure

Ablations on the Hyperparameters A and ( Ablation studies are conducted to investigate the impact
of the mild generalization coefficient A\ and the policy constraint weight (. Experiments are performed on
three Gym Locomotion tasks: HalfCheetah Medium, Walker2d Medium Replay, and Hopper Medium Expert.
For both A and {, we fix one hyperparameter at 1.0 while varying the other over the set [0.25,0.5,1.0, 2.0,4.0].
The results are summarized in Table @

The ablation results show that the scores exhibit minimal variation with changes in the hyperparameters
A and ¢, demonstrating the robustness of the proposed QQL method to these hyperparameters. The abla-
tion results show that the scores exhibit minimal variation with changes in the hyperparameters A and (,
demonstrating the robustness of the proposed QQL method to these hyperparameters.

5.5 Experiments on 5(s) Scale

In Definition |1, we actually assume that the 5(s) scale of Assumption [I| and Assumption 2| is similar, as
discussed in the remark of Definition In this section, we provide empirical evidence by leveraging the
results from a toy example. Additional empirical support, including a residual analysis on D4RL tasks, is
provided in Appendix [H]
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Figure 3: Ablation Studies on Value Regulation and Conservative Estimation Comparison of QQL
performance to its variant without value regulation (w/o VR) and its variant without conservative estimation
(w/o CE) adapted in the methodology section. The hyperparameters are consistent across variants.
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Figure 4: Toy Example for 3(s) Scale. Empirical distributions of —Q(s, a), along with the corresponding
fitted Gumbel distributions and their estimated location, scale, and goodness-of-fit p-values.

Toy Example Construction. To illustrate that Assumption [2| can be approximately satisfied given As-
sumption[} we construct a toy example where the Q-value estimation process aligns with the desired Gumbel
properties. Under Assumption [l} we model —Q(s, a) as a Gumbel-distributed random variable with location
—Q*(s,a) and scale B(s). We fix the state s and generate —Q*(s,a) using a randomly initialized neural
network that takes action a as input. To simulate —Q(s,a), we add Gumbel noise g(s) ~ G(0, 5(s)) to
the output of the network. To test Assumption [2] we sample actions from a Gaussian policy and analyze
the resulting distribution of —Q(s, a) values to check whether it retains the Gumbel form. The procedure
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involves computing —Q*(s,a) for each sampled action, adding Gumbel noise, and comparing the empirical
distribution of —Q(s,a) to a theoretical Gumbel distribution. We fix the Gumbel noise scale at §(s) = 1
and vary the standard deviation of the Gaussian policy over a range of values.

Results and Discussion. Figuredisplays the empirical distributions of —Q(s, a) under varying Gaussian
policy variances, overlaid with Gumbel distributions fitted via maximum likelihood estimation. The strong
alignment between the empirical histograms and the fitted Gumbel curves, which is confirmed with high p-
values in a goodness-of-fit test, shows that the distribution of —Q(s, a) maintains its Gumbel form despite the
stochasticity of Gaussian sampling. The shape and scale of these fitted distributions are primarily controlled
by the additive Gumbel noise used in the simulation. This supports our premise that the scale parameter
B(s) stays consistent between Assumptions 1| and [2| even when actions are sampled from a distribution
rather than being deterministically fixed.

6 Conclusion and Future Work

In this work, we have addressed critical limitations of prior Extreme @-Learning (XQL) approaches—namely,
the need for dataset-specific hyperparameter tuning and the instability of training. We have introduced
a novel method for estimating the temperature coefficient 5 via quantile regression, requiring only mild
statistical assumptions. To further bolster stability, we have incorporated a value regularization mechanism
inspired by constrained value learning that encourages mild generalization while preserving performance.

Empirical results across diverse offline RL benchmarks, including D4RL and NeoRL2, validate our approach:
it achieves performance that is competitive with—or even surpasses—XQL and its stabilized variant MXQL,
while avoiding the hyperparameter overfitting and erratic training behavior they exhibit. Crucially, our
method maintains robust performance using a consistent set of hyperparameters across all tasks and domains,
highlighting its practicality and general applicability in real-world high-stakes settings.

Looking ahead, a natural extension of this work is to adapt our approach to the online reinforcement learning
setting by leveraging developments in online variants of Extreme Q-Learning. Integrating our quantile-based
temperature estimation and value regularization into the online learning framework could improve training
stability in interactive environments. This generalization has the potential to make Extreme @Q-Learning
more robust and widely applicable in real-time decision-making scenarios.
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A Derivation of Policy Objective

A common challenge in policy learning arises when the sampling policy u(- | -) is suboptimal, which
often results in overly conservative estimates from in-sample approaches. To address this issue, ex-
isting methods like Advantage-Weighted Regression (AWR) aim to mitigate such inherent conservative-
ness. Specifically, the AWR-style policy objective minimizes the cross-entropy loss C(p* || 7), where
p(a | s) o< pla | s)exp(Q(s,a)/B(s)). We define the normalizer V(s) = B(s) [pu(a | s) exp(Q(s’a))da.

B(s)
Thus, p* can be expressed as p*(a | s) = p(a | s) exp(%).

Given that p* shares the same support as p and is considered a superior policy, we construct a less conser-
vative policy m by remaining close to p*. Consequently, the following objective is maximized:

m§XEs~D,a~w¢(-|s)Q9(sva) — VE(s,0)~DKL(p" || 74 (- | 5)). (8)
This objective is equivalent to:
Max Bp vy (15)Qo(s.0) ~ VE(s.0)~0[exp((Qols, a) = Vi, ) /B(s)) log ms (a | 5)]. (9)

Here, v = (B(s), where ( is a positive, adjustable parameter referred to as the policy constraint weight,
balancing policy optimization and the conservative constraint.

Furthermore, Eq. [0 resembles the MaxEnt RL objective and possesses a closed-form solution:

7*(a]5) = p*(a | 5)exp (Q”‘V”)

B(s)
B Q(s,a) —V'(s) Q(s,a) —V(s)
= p(a | s)exp (Cﬂ(s) ) exp (B(s) ) :
where V'(s) = B(s) [ p*(a ]| s) exp((gés(’;)))da serves as a normalizer. Based on this, the policy optimization

objective is modified to minimize the KL divergence between 7* and 7. In practice, V;, and V;,, approximate
the normalizers V (s) and V'(s), respectively, leading to the following policy optimization objective:

Q@(S,a)qum(s) QO(saa)fvwl(s) >10g7r (5 a)
C((Vigpa(s) = Vg () )+ (Viga(s) = Vi () Jw e

mgx E(s,0)~D €xp (

B Omitted Proofs

B.1 Proof for Proposition 1

To begin with, we introduce the following lemmas:
Lemma 1 (Gumbel|[1935)). Given a continuous random variable o and a Gumbel noise g ~ G(0,0), the

following identity exists:
ﬂlog/exp <a;—g> do = Blog/exp (g) da+ g.

Proof.
Blog/exp (O‘gg> da = ﬂlog/exp (g n g) do
(3o
— Blogexp (Z) n mog/exp (g) da
- mog/exp (;) do+g.
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O

Lemma 2 (Hui et al|[2023). Given a optimal Q-function Q* and a state-dependent gumbel noise g(s) ~
G(0,5(s)), the following equation holds:

max Q" (s.0) = A(s) log [ exp (Q(s’@

B(s)

) da + g(s). (10)

Proof. See prior work (Hui et al., 2023). O
With the lemmas above, we’re ready to provide the proof for Proposition 1:

Proof. By definition, V*(s) = max, Q*(s, a), and according to Lemma [2 we have:

V*(s) = B(s) log / exp (QB(Z;‘)) da + g(s).

And by Lemmal [T] it exists:
V() = o) tog [[exp (LI g,

= B(s) log/exp <Q;(<i’)a)> da.

The last part is completed by directly applying Assumption 1. O

B.2 Proof for Proposition 2

Given V(s) = E[V*(s)], Proposition 1 and Assumption 1, we can construct the proof for Proposition 2:

B(s) log/exp (Q;Z’)a)) da — B(s) log/exp (W) da‘|

_E5(s) llog /exp (Q*ﬁ(&)@) da — log / exp (Q;((?)a)> da + 281

=E[g(s)] = wp(s).
The final equation leverages a property of the Gumbel distribution to compute the expectation:

Elg] = w8, where g~ G(0,5).

Proof.

V(is)—V(s)=E

B.3 Proof for Proposition 3

Leveraging Assumption 2 and the properties of the Gumbel distribution, we can construct the following
proof:

Proof.

where we denote g(s) ~ G(0, 8(s)).
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B.4 Proof for Proposition 4

Similar to the proof of Proposition 3, the proof of Proposition 4 can be constructed using Assumption 2,
Proposition 2, and the properties of the Gumbel distribution:

Proof.
P(Q(s,a) < V(s)) =1 = P((Q(s,a) > V(s))
=1—=P(=g(s) —wB(s) > 0)
=1-P(g(s) < —wb(s))
=1 — exp(—exp(w)),
where we denote g(s) ~ G(0, B(s)). O

C Analysis of the Error Model

For completeness, this section provides a formal exposition of the Rust—-McFadden model and the Gumbel
Error Model (GEM), both of which underpin the theoretical foundation of extreme value theory in reinforce-
ment learning. For a more comprehensive treatment, we refer the reader to (Garg et all 2023} McFadden),

1072).

C.1 Rust—-McFadden Model for Markov Decision Processes

We consider a Markov decision process (MDP) in which the observed stochasticity in rewards arises not from
intrinsic environmental randomness, but from an unobserved latent variable. Formally, the complete state
is modeled as a tuple (s, z), where s € S denotes the observable state and z represents a latent component
that governs reward uncertainty. The associated state—action value and value functions are defined as:

Q(s,z,a) = R(s,2z,a) + YEgyp((s,a) [Ex s [V(s', 2],
Vs, z) = max Q(s,z,a).
ac

The following lemma establishes a critical equivalence between this latent-variable formulation and soft
(entropy-regularized) MDPs under standard structural assumptions.

Lemma 3 (Garg et al.|2023). Suppose the following conditions hold:

1. Conditional Independence (CI): The latent variable z' depends only on the next observable state
s, ie.,
p(s', 2 | s,z,a) =p(z' | s")p(s' | s,a).

2. Additive Separability (AS): The reward function decomposes additively as
R(s,a,z) =r(s,a) + €(z,a),

where 1(s,a) is the deterministic component and €(z,a) captures latent perturbations.

If the perturbations €(z,a) are independent and identically distributed according to the Gumbel distribution
G(0,8), then the optimal value functions satisfy the soft-Bellman equations with entropy regularization pa-
rameter B. Specifically, the state—action value function admits the decomposition Q(s, z,a) = q(s,a)+€(z,a),
and the marginal value function is given by v(s) = E,[V (s, 2)].

Consequently, a maximum entropy MDP (MaxEnt MDP) is distributionally equivalent to a standard MDP
augmented with i.i.d. Gumbel noise in the reward, provided that the CI and AS conditions are satisfied.

This equivalence is further strengthened by the following converse result.
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Corollary 1 . Consider an MDP that satisfies the Bellman optimality equation and admits
a policy of the form w(a | s) = softmax(Q(s,a)/B). If the randomness in observed rewards arises from
i.7.d. latent variables and the AS and CI conditions hold, then these latent variables must follow a Gumbel
distribution.

C.2 Gumbel Error Model (GEM)

The Gumbel Error Model (GEM) (Garg et all [2023)) provides a distributional perspective on value esti-
mation by modeling Bellman errors as Gumbel-distributed perturbations. This framework elucidates how
uncertainty propagates through value iteration and justifies entropy regularization from a statistical stand-
point.

C.2.1 Model Foundations

Let {Qii)(s, a)}M, denote M independent estimators of the state-action value function at iteration ¢, and
define the expected Q-function as Q:(s,a) = E[Q+(s, a)]. Within the GEM framework, @; evolves according
to the recursion:

Qt+1(87 a) =7(s,a) +YEyp(s,a) [Eet [n;z}x (Qt(s', a') + e(s', a’))” , (11)

ii.d.
~Y

where ¢(s’,a’) G(0, 8) are Gumbel noise terms with scale parameter 8 > 0.

A key property of the Gumbel distribution is that the expectation of the perturbed maximum admits a
closed-form expression:

E. [n};}x (Q(s',a) + (s, a'))} = L2 [Q(s', ),

where L2[Q] := Blog Y, exp(Q(s,a)/B) denotes the log-sum-exp (LSE) operator. Substituting this identity
yields the soft-Bellman update:

Qiy1(s,a) =r(s,a) + YEg~p(s,a) {Lf, [Qi(s, a/)ﬂ :

Under this dynamics, the policy 7(a | s) = softmax(Q(s,a)/3) is soft-optimal and maximizes the entropy-
regularized expected return.

C.2.2 Error Dynamics under Deterministic Transitions

In the special case of deterministic dynamics, i.e., s’ = f(s,a), the distributional evolution of Q-values can
be characterized more precisely. Let Z:(s,a) ~ G(Q:(s,a),3) denote a random variable representing the
Q-value at time ¢, with independence across state—action pairs. By the Gumbel-max theorem, the maximum
over actions satisfies:

max Zy(s',d') ~ G(L2[Qu(s',d)], B).

The Bellman update then takes the form:

Ziy1(s,a) = 7(s,a) +ymax Z;(s',a’).

This formulation recovers a standard Bellman operator acting on Gumbel-distributed Q-values, thereby
inheriting standard convergence guarantees under mild regularity conditions.

D Doubly Mild Generalization

In this section, for completeness, we provide a brief introduction to Doubly Mild Generalization
, which is used in our proposed algorithm. Offline RL is fundamentally challenged by extrapolation
errors and value overestimation, both of which stem from the tendency of value functions to over-generalize
to out-of-distribution (OOD) actions. While in-sample learning approaches, such as Implicit Q-Learning
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(IQL) (Kostrikov et all [2021)), circumvent this issue by entirely restricting policy updates to the support
of the empirical behavior policy, they forgo the potential benefits of controlled generalization beyond the
observed data. This dichotomy gives rise to two opposing failure modes:

1. Over-Generalization: When value estimates are queried at OOD actions, erroneous predictions
are propagated through Bellman backups, often leading to unstable or divergent learning dynamics.

2. Under-Generalization (Non-Generalization): Strict in-sample methods constrain the learned
policy to lie within the convex hull of observed actions, thereby limiting policy improvement and
potentially yielding suboptimal performance.

To reconcile these extremes, the Doubly Mild Generalization (DMG) framework was recently proposed
by (Mao et al) 2024). DMG introduces a principled compromise that permits mild generalization while
preserving robustness, by jointly regulating both action selection and value propagation.

The framework comprises two core mechanisms:

o Mild Action Generalization: The learned policy (- | s) is allowed to explore a local neighborhood
around the support of the empirical behavior policy u(- | s), formalized by the constraints:

supp(u(- | s)) € supp(r(- | s)), (12)
min |la; — az|| < €, (13)
ar~m(-|s) agevp(-|s)
where €, > 0 is a small tolerance parameter, and p denotes the empirical behavior policy derived
from the offline dataset.

o Mild Generalization Propagation: The Bellman update blends value estimates from both gen-
eralized and in-sample actions via a convex combination:

TomcQ(s,a) == R(s,a) + YEgup(s,a) [N max [Q(s',a')]+(1—A) max Q(s',a")|, (14)

a’~m(-|s’) a’~p(-|s’)

where A € [0,1] controls the trade-off between policy-driven generalization and conservative in-
sample estimation. Notably, the first term enables mild optimism through policy-guided exploration,
while the second term ensures robustness by anchoring the update to the empirical data distribution.

Under this design, DMG enjoys provable performance guarantees under both oracle and adversarial gener-
alization regimes, as established in (Mao et al., 2024).

E Conservative Estimation Analysis

This section provides a more detailed discussion of the conservative estimation introduced in

To initiate the analysis, consider the quantity Q(s’,a’) employed in Doubly Mild Generalization (DMG),
where s’ ~ D and o’ ~ 7(- | ¢’). Since (s',a’) resides outside the support of the dataset, it is inherently
excluded from the fitted Q-iteration (FQI) process. Accordingly, Assumption (1] is not imposed on Q(s’,a’).
Instead, this quantity is interpreted as the value Q. (s’,a’) under policy 7. Therefore, it then follows that:

Proposition 5. For a pair (s',a’) with ' ~D and o’ ~ w(-| §'), there exists:
Q(s',ad") = Qx(s',d") < Qr (s, d") = Q*(5', d").
In particular, Q(s’,a’) serves as a conservative estimate of the optimal action-value function @Q*(s,a’), i.e.,

Q(s',a") < Q*(s',a’) for all (s',a"). Moreover, when the policy 7 is an improved, near-optimal policy, the
degree of conservatism is expected to be relatively mild.
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Recall that the optimal value function satisfies the identity

VH(s') = B(s') log/exp<Q*ﬁ(i;;)QI)> da'.

Since the exponential and logarithm are monotonic functions, replacing Q* with its conservative approxi-

mation @ yields a lower bound. Specifically, V(s') = B(s")log i exp(Qé‘z;’,‘;/)) da’ provides a conservative

estimate of V*(s'), and by extension, of the empirical value estimate V(s'). Under Assumption [2, V (s)

can be approximated by the aj-quantile of Q(s’,a’), yielding a mild yet principled conservative estimate of
V(s).

In light of this reasoning, during the DMG, the target for V(s’ ) is set to the aj-quantile of Q(s',a).
Accordingly, the agp-quantile of Q(s’,a’) is employed as the target for V(s').

F Baseline Hyperparameter Settings

F.1 Extreme ()-Learning

Task (Variant) | halfcheetah hopper walker2d

medium 1.0 5.0 10.0
medium-rep 1.0 2.0 5.0
medium-exp 1.0 2.0 2.0

Table 5: XQL temperature settings () with dataset-specific tuning on D4RL locomotion datasets.

Task (Variant) | pen hammer door

human 5.0 0.5 1.0
cloned 0.8 5.0 5.0

Table 6: XQL temperature settings () with dataset-specific tuning on D4RL Adroit datasets.

Hyperparameter ‘ antmaze-umaze antmaze-umaze-diverse

3 | 1.0 5.0

Table 7: XQL temperature settings (/) with dataset-specific tuning on D4RL AntMaze datasets.

This section illustrates the temperature hyperparameter 8 settings used in the Extreme @-Learning (XQL)
baseline (Garg et al. [2023) across various offline reinforcement learning (RL) tasks from the D4RL and
NeoRL2 benchmark. Dataset-specific 8 values are listed in Tables [5] [6] [7] and [8] corresponding to the
results in Table 1 and the first row of results in Table 3 in the experiment section. Domain-consistent /3
settings are shown in Table [J] and relate to the second row of Table 3, while a fully consistent setting across
all domains uses 8 = 2.0, as reported in the third row. The variability in optimal g values across tasks
highlights XQL’s sensitivity to its temperature parameter and the importance of tuning it carefully for each
environment, as also emphasized in (Garg et al., [2023). For all other hyperparameter settings, we follow the
XQL reproduction provided by (Gao & Rui, 2023).
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Hyperparameter ‘ RocketRecovery SafetyHalfCheetah
8 | 2.0 2.0

Table 8: XQL temperature settings () with dataset-specific tunning on NeoRL2 datasets.

Hyperparameter ‘ D4RL Locomotion D4RL Adroit D4RL AntMaze
B | 2.0 5.0 0.6

Table 9: XQL consistent temperature settings (8) per domain.

F.2 MXQL and Other Baselines

For MXQL (Omura et al.; 2024)), we adopt the original JAX implementation and use the exact hyperparam-
eter settings as reported in the paper. For the remaining baseline algorithms, we use the reproduced results
provided by CORL (Tarasov et al., 2022).

G Implementation Details

This section provides a comprehensive overview of the hyperparameters and implementation specifics of our
proposed QQL algorithm.

Our implementation of QQL is built upon the publicly available PyTorch implementation of Implicit Q-
Learning (IQL) from CORL (Tarasov et al., |2022). We adopt the identical neural network architecture and
retain the exact hyperparameter settings used for network updates in the original IQL implementation.

A crucial aspect of our approach is ensuring that B(s) remains positive during policy optimization. To
achieve this, we define 3(s) as the absolute value of (Vy,(s) — Vi, (s))/w. For all other procedural steps,
the direct value of (Vy,(s) — Vi, (5))/w is utilized. To prevent 3(s) from becoming infinitesimally small, we
apply a lower bound clipping, setting 8(s) > B0 = 0.1 specifically within the policy optimization routine.
For consistency across all evaluated task-dataset combinations, we fix the generalization coefficient A to 1.0
and the policy constraint weight ¢ to 1.0.

Table [10] summarizes the detailed hyperparameters employed in our QQL algorithm.

Table 10: Detailed Hyperparameters of the QQL Algorithm.

Parameter Value
V-function learning rate (o) 3x 1074
Q-function learning rate (ag) 3 x 1074
Policy learning rate (a) 3x 1074
Discount factor (7) 0.99
Target network update rate (7) 0.005
Batch size 256

5low 0.1

A 1.0

¢ 1.0
Hidden layer dimension 256
Number of hidden layers 2
Activation function ReLU
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Figure 5: Residual Analysis: HalfCheetah-Medium.
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Figure 6: Residual Analysis: HalfCheetah-Medium-Replay.
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H Residual Analysis on D4RL

To empirically evaluate the plausibility of the modeling assumptions, a residual analysis is performed using
value functions trained on the D4RL benchmark. For transition tuples (s,a,r,s’) sampled from the offline
dataset, the regression residual is defined as

E(Sva’T’ sl) = Q9(Sa a) + (‘7@02 (5) - V¢1 (5)) - ’I’(S, a) - ’7‘71/12 (5,)7

which measures the discrepancy between the predicted and target values under the assumed Bellman re-
lationship. To mitigate the effect of state-dependent variance, residuals are normalized by a learned scale
parameter (s), resulting in the normalized residual

6(5, a7 r? s/)

Enorm('S,avrvs ) = TS) (15)

This normalized residual is subsequently analyzed across the D4RL locomotion tasks to assess the distribu-
tional behavior and potential systematic deviations of the estimated value functions.
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Figure 8: Residual Analysis: Walker2d-Medium-Replay.
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Results and Discussion. For the normalized residuals €,or, on four D4RL tasks (Figures , we
report maximum-likelihood fits under both normal and logistic distributional assumptions. The empirical
histograms and cumulative distribution functions exhibit heavier tails and slight asymmetry compared to
the normal fit, while the logistic fit aligns more closely with the observed data in these regions. Consistently
across tasks, the logistic model yields lower Kolmogorov—Smirnov (KS) statistics than the normal model
(e.g., 0.138 vs. 0.236 in HalfCheetah-Medium-Replay). These empirical findings suggest that, at least in
comparison to the homoscedastic Gaussian assumption, the logistic noise model, as implied by Assumption[l]
and derived in , provides a more realistic characterization of Bellman residuals in offline
Q-learning.
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