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Abstract

Contemporary face recognition systems use feature templates
extracted from face images to identify persons. To enhance
privacy, face template protection techniques are widely em-
ployed to conceal sensitive identity and appearance informa-
tion stored in the template. This paper identifies an emerg-
ing privacy attack form utilizing diffusion models that could
nullify prior protection. The attack can synthesize high-
quality, identity-preserving face images from templates, re-
vealing persons’ appearance. Based on studies of the diffu-
sion model’s generative capability, this paper proposes a de-
fense by rotating templates to a noise-like distribution. This
is achieved efficiently by spherically and linearly interpolat-
ing templates on their located hypersphere. This paper further
proposes to group-wisely divide and drop out templates’ fea-
ture dimensions, to enhance the irreversibility of rotated tem-
plates. The proposed techniques are concretized as a novel
face template protection technique, SlerpFace. Extensive ex-
periments show that SlerpFace provides satisfactory recogni-
tion accuracy and comprehensive protection against inversion
and other attack forms, superior to prior arts.

1 Introduction
Face recognition (FR) is a biometric way to identify per-
sons by facial appearance. Contemporarily, face recognition
is enabled by comparing identity-discriminative feature vec-
tors, or face templates, extracted from face images via deep
neural networks (DNN).

Face templates are commonly considered sensitive data,
as they carry identity and appearance information inferable
of a specific person. To meet growing regulatory demands,
face template protection (FTP) methods are proposed to
conceal original templates, and securely represent them
with an irreversible and revocable reference form (ISO/IEC
2022), known as protective templates. These methods can be
broadly divided into three categories: Crypto-based meth-
ods (Boddeti 2018; Jindal et al. 2020; Engelsma, Jain, and
Boddeti 2022) process templates with encryption or secu-
rity protocols in high latency and computation costs. Hash-
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Figure 1: Paradigm of DM inversion attacks. It receives
templates as conditional contexts and synthesizes identity-
descriptive images. While unprotected templates and prior
FTP arts are experimentally found vulnerable to inversion
attacks, this paper presents a novel SlerpFace method as an
effective defense. It deteriorates DM to let it generate im-
ages with obfuscated facial semantics and lower similarity
scores, hence preserving privacy.

based methods (Mohan et al. 2019; Dang et al. 2020; Kim
et al. 2021; Rathgeb et al. 2022; Dusmanu et al. 2021) turn
templates into randomized codewords. Yet, they are less tol-
erant of minor facial attribute variations and hence could
downgrade recognition. Recently, transform-based meth-
ods (Phillips et al. 2019; Abdellatef et al. 2020; Hahn
and Marcel 2022; Shahreza, Hahn, and Marcel 2023) have
gained increasing attention as they are appealing in both ac-
curacy and cost. They obtain protective templates via care-
fully designed transformations that obfuscate their binding
with the original ones.

Transform-based methods, however, could bear two pri-
vacy bottlenecks. First, they usually must pre-negotiate
some secure parameters or secrets for the transformation,
which once exposed would compromise privacy. Second,
they could also be susceptible to privacy attacks, where re-
construction (Mai et al. 2018; Shahreza, Hahn, and Marcel
2022; Shahreza and Marcel 2023a) models using genera-
tive adversarial networks (GAN) or autoencoders (AE) and
score-based techniques (Razzhigaev et al. 2021; Dong et al.
2023; Lai et al. 2021; Wang et al. 2021) may manage to
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recover partial facial appearance from protective templates,
rendering protection less effective.

This paper further investigates an emerging type of at-
tack, based on recent grave advances in diffusion models
(DM) (Ho, Jain, and Abbeel 2020). DM synthesizes high-
quality images from randomly sampled noise through a
learned denoising process, where the image’s content can
be designated by an optional context condition (Lu et al.
2024; Ren et al. 2024). This paper identifies a new privacy
threat from DM’s capability, referred to as inversion attacks:
Taking templates as the context, DM may invert face im-
ages that preserve the templates’ identity, hence revealing
the persons’ face, as depicted in Fig. 1. Such DMs have been
made possible by recent image synthesis arts (Kansy et al.
2023; Boutros et al. 2023). This paper identifies inversion at-
tacks as more dreadful than previous attack forms, warrant-
ing special attention in future research: For the first time, it
enables recovering both high-quality and identity-preserving
face images from templates, imposing exacerbated threats.
Prior transform-based arts are also proven vulnerable to in-
version attacks, later demonstrated in Sec. 4.3.

To address privacy issues, this paper proposes a novel
transform-based FTP method, SlerpFace. It effectively im-
proves prior arts’ inadequate protection against secret expo-
sure and different attacks, thus improving privacy.

Considering inversion attacks as the primary threat, this
paper finds that DM’s performance can deteriorate by alter-
ing the context’s distribution. Specifically, when replacing
authentic templates with randomly sampled Gaussian noise
as context, DM is obfuscated from producing face images
with a consistent identity, which is desirable for privacy.
Drawing insights, this paper proposes to transform the orig-
inal templates toward being alike sample-wise noises while
maintaining discriminative identities. This is efficiently
achieved by spherically and linearly interpolating (slerp)
templates on their located hypersphere. The noises serve as
secrets for transformation. This paper further addresses the
noises’ exposure by grouping and randomly dropping out
protective templates’ feature dimensions, where the division
of groups is learnable to optimize recognizability. To the au-
thors’ knowledge, SlerpFace is the first FTP method to study
resistance to inversion attacks. Extensive experiments sug-
gest that it effectively prevents inversion and other attack
forms as the protective templates are securely obfuscated. It
also outperforms prior arts in accuracy and cost.

This paper’s contributions are three-fold: (1) It identifies
the inversion attack as a severe privacy threat to transform-
based template protection and analyzes the attack model’s
generative capability. (2) It suggests spherical linear interpo-
lation as an effective defense, by rotating templates towards
sample-wise noises. It further proposes feature grouping and
dropout to enhance templates’ privacy under secret expo-
sure, and learnable feature grouping to improve recogniz-
ability. (3) It presents a novel FTP method, SlerpFace. Ex-
periments demonstrate its superior privacy protection, better
accuracy, and lower cost than prior arts.

2 Related Work
2.1 Face Recognition
Modern FR systems recognize persons by comparing their
face templates. Templates are feature vectors extracted
from face images using DNNs, where angular margin
losses (Deng et al. 2019; Huang et al. 2020; Kim, Jain, and
Liu 2022) are most employed during training to earn tem-
plates with identity discrepancy that facilitates recognition.
They produce normalized templates that can be considered
as unit vectors onto a hypersphere. During inference, cosine
similarities are calculated to find the closest match.

2.2 Face Template Protection
This paper divides FTP methods into three branches:
Crypto-based methods (Boddeti 2018; Jindal et al. 2020;
Engelsma, Jain, and Boddeti 2022) use homomorphic en-
cryption to turn templates into ciphertexts and perform cal-
culations thereon. Their shortages involve high computation
costs and reliance on the secrecy of encryption keys.

Hash-based methods use one-way schemes such as fuzzy
commitment (Mohan et al. 2019; Gilkalaye, Rattani, and
Derakhshani 2019), fuzzy vault (Dong et al. 2021; Rathgeb
et al. 2022), locality-sensitive hashing (Dang et al. 2020),
discretization (Xu et al. 2020), and trainable models (Chen
et al. 2019) to map templates into irreversible protective
codewords or hash values. Unfortunately, they often fail to
achieve satisfactory recognition accuracy, as their means are
less tolerant of the intra-identity variability inherent in fa-
cial attributes, resulting in false negatives. Recently, Iron-
Mask (Kim et al. 2021) and ASE (Dusmanu et al. 2021)
achieve protection with improved accuracy, by rotating tem-
plates to randomly chosen codewords and affining them into
random subspace, respectively.

Transform-based methods apply task-specific transforma-
tions like feature reduction (Pillai et al. 2011; Hahn and
Marcel 2022), mixing (Phillips et al. 2019; Abdellatef et al.
2020) and rotation (Shahreza, Hahn, and Marcel 2023)
to convert templates into protective forms, obscuring their
bindings with the original ones. They differ from hash-based
methods in must keep confidential some pre-negotiated se-
crets that designate the transformation. They could be sus-
ceptible to privacy attacks, as later experiments reveal. This
paper proposes a novel transform-based method, SlerpFace,
that can address the above inadequacies.

A research direction parallels to us is image protec-
tion (Mi et al. 2023, 2024, 2022; Zhang et al. 2024b,a;
Liu et al. 2024; Yuan et al. 2022, 2024). They focus on
the protection of the image transmitted to service providers,
whereas SlerpFace is dedicated to ensuring the security of
the stored face feature.

2.3 Privacy Attacks
This paper studies attacks that attempt to recover facial ap-
pearances from templates and compromise privacy. They
can be divided into three folds by attack means.

Reconstruction attacks query the FR system with attacker-
owned face images to obtain corresponding templates. They
then use generative adversarial networks (Truong et al.
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Figure 2: (a) DM’s generative capability: Consistent identity
faces from authentic templates, but deteriorates with noise
templates, causing semantic variation. (b) Slerp rotation at
d=3: Query, positive, and negative templates rotate in the
same direction, maintaining margin differences.

2022; Shahreza and Marcel 2023a,b) or autoencoders (Cole
et al. 2017; Mai et al. 2018) trained on image-template pairs
to learn an inverse fit that generates synthetic images.

Score-based attacks (Razzhigaev et al. 2021; Vendrow
and Vendrow 2021; Dong et al. 2023; Lai et al. 2021; Wang
et al. 2021; Shahreza and Marcel 2023b) instigate through
the knowledge of similarity scores. It recursively optimizes
model-generated images by querying and maximizing their
FR similarity scores with images in the database.

This paper further introduces inversion attacks, where dif-
fusion models (Boutros et al. 2023; Kansy et al. 2023) re-
ceive templates as their contexts to generate images preserv-
ing the same identity, thus revealing persons’ faces. Inver-
sion attacks impose more dreadful threats as they can gener-
ate high-quality, identity-preserving images.

3 Methodology
3.1 Motivation
In practical applications, FR typically occurs between a
server and its clients, with the server acting as an FR ser-
vice provider that pre-trains the recognition model and en-
rolls identity templates to create a database. The database
and model are shared with local devices or clients, who use
them to recognize query faces locally. To protect templates’
sensitive information, FTP’s goal is to design a transforma-
tion that turns database templates t⃗ into protective forms p⃗

via secret parameters k⃗, making them safer to share.
We consider inversion attacks as the primary threat to

shared templates. A DM is a generative model concretized
as g : (⃗ϵ, t⃗) → X . Taking random Gaussian noise ϵ⃗ as in-
put and template t⃗ as context, it synthesizes a face image X
descriptive of t⃗’s identity, thus nullifying privacy. Testifying
the attack’s generative capability, we first train a DM using a
pipeline from IDiff-Face (Boutros et al. 2023). Then, we in-
fer it multiple times with a fixed template extracted from an
authentic face image via a pre-trained FR model. The details
of DM and its training are aligned with IDiff-Face. As shown
in Fig. 2(a1), the inverted images exhibit consistent facial
appearances, i.e.,, the same elderly woman wearing glasses.
This suggests that DM can generate identity-preserving face
images of high quality.

Prior image synthesis arts (Lugmayr et al. 2022; Boutros
et al. 2023) also use randomly sampled contexts as a prac-
tice to let DM generate unseen concepts, e.g., new identities.

In Fig. 2(a2), we further choose a fixed noise template that
each of its feature dimensions is randomly sampled from
Gaussian distribution. Taking it as DM’s context, we find
the inversion deteriorates: Though high-quality face images
are still being generated, they no longer preserve a “hypoth-
esized” identity but vary in semantics such as gender and
age. We attribute the downgrade to the distributional dis-
crepancy between noise and authentic templates. Studies (Li
et al. 2021; Shen et al. 2020; Chen et al. 2022) prove that
templates follow a priori distributions that help preserve se-
mantics. Randomly drawn noise most likely falls in a differ-
ent distribution that is close to semantics’ decision bounds,
rendering uncertainties in images’ facial appearance.

We leverage the observation as a means to prevent inver-
sion attacks. Given that randomly sampled noise templates
deteriorate the attack, an intuitive idea to protect templates
is to “move” them toward the noise distribution, hence di-
minishing their discriminative semantics.

3.2 Rotation via Spherical Linear Interpolation
Let d be the feature dimension of templates. Recall in
Sec. 2.1 that templates can be considered as unit vectors lo-
cated on a d-dimensional hypersphere for most modern FR.
To move template t⃗ toward noise distribution thus equals ro-
tating t⃗ on the hypersphere to the direction of a noise tem-
plate k⃗. We refer to k⃗ as key template as it represents a secret
that designates the rotation. Prior methods implement rota-
tion of t⃗ by multiplying it with an orthogonal matrix M⃗d×d.
However, to derive a random M⃗ is rather time-consuming,
especially for large d (Schreiber and Van Loan 1989; Chen
et al. 2023). Instead, we adopt an efficient way in light of a
computer graphic study (Shoemake 1985). It suggests that a
3D object can be smoothly rotated by interpolating its co-
ordinates on a sphere. We refer to the technique as spheri-
cal linear interpolation, or slerp. We generalize slerp to d-
dimension and rotate t⃗ as:

p⃗ =
sin((1− α)θ)

sin θ
t⃗+

sin(αθ)

sin θ
k⃗, (1)

where p⃗ denotes the rotated protective template and k⃗ is
sample-wisely chosen for each t⃗. θ = arccos

(
t⃗⊤k⃗

∥t⃗∥∥k⃗∥

)
de-

notes the included angle between t⃗ and k⃗, and α is a hyper-
parameter that controls the degree of rotation.

Based on previous discussions, we expect rotating t⃗ to-
ward k⃗ to deteriorate inversion attacks by obfuscating DMs
from generating face images aligned with t⃗’s identity. Sec-
tion 4.3 later testified to its effectiveness of protection.

Rotation also maintains templates’ recognizability. Fig-
ure 2(b) exemplifies the effect of slerp at d=3. Let
t⃗, t⃗pos, t⃗neg denote a query template and two templates with
the same or different identities in the database, respectively.
Initially, the angular margin between t⃗, t⃗pos is smaller than
that between t⃗, t⃗neg as FR encourages templates to have
small intra-class and large inter-class margins. Slerp rotates
them toward key k⃗ by the same degree to obtain correspond-
ing protective p⃗, p⃗pos, p⃗neg . We highlight that the relative
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Figure 3: Pipeline of SlerpFace: (1) Train an FR model to extract and group feature maps as templates. (2) Protect templates
by independently rotating feature groups toward a key template and applying random dropout based on learnable weights. (3)
During inference, extract a query template. (4) Match it with enrolled templates using the same rotation and dropout.

difference among their margins is maintained as p⃗pos re-
mains a closer match of p⃗. Hence, p⃗ will not be falsely recog-
nized. To apply slerp in practice, denote P⃗ = {p⃗1, . . . , p⃗n}
as a set of n database templates, protected by the server
using corresponding keys K⃗ = {k⃗1, . . . , k⃗n}. The server
shares {P⃗ , K⃗} with its clients. Given a query template t⃗q , a
client try rotating it with each k⃗i∈[n] to obtain p⃗qi and match
with p⃗i. The relative marginal difference before and after
rotation is maintained, hence the client can compare similar-
ities to find the closest match.

3.3 Feature Grouping and Dropout
Rotating templates effectively gains resiliency against in-
version attacks. Its protection is yet not intact, as we find
the original t⃗ can still be recovered by any malicious client
knowing of {p⃗, k⃗}. Specifically, let {ti, pi, ki}i∈[d] be the re-
spective feature dimensions of {t⃗, p⃗, k⃗}. Equation 1 can be
rewritten as a full-rank linear system of d equations with d
unknowns {t1, . . . , td}:

pi =
sin((1− α)θ)

sin θ
ti +

sin(αθ)

sin θ
ki, i ∈ [d]. (2)

The client can thus employ numerical calculation tech-
niques, e.g., the Newton-Raphson method (Lindstrom and
Bates 1988), to approximately solve Eq. 2 and obtain an es-
timated ⃗̃t ≈ t⃗. This will break the irreversibility of FTP and
nullify its protection.

This section introduces a two-fold solution to enhance pri-
vacy. First, we intuitively observe that reducing the effective
number of equations in Eq. 2 will make it an underdeter-
mined system, leading to imprecise approximations of ⃗̃t. We
achieve the reduction by feature dropout, i.e.,, randomly re-
setting a specific ratio β of p⃗’s feature dimensions to 0.

To evaluate the effectiveness of feature dropout, fixing a
k⃗, ⃗̃t’s precision can be quantified as its angle θ̃ between k⃗,
compared to θ between {t⃗, k⃗}, i.e.,, ∆θ = |θ̃ − θ|. A larger
∆θ indicates ⃗̃t is further away from the authentic t⃗, which
benefits privacy. Setting β=0.5, we experimentally draw ⃗̃t

10000 times for templates with different dimensions d, and
depict their range of ∆θ in Fig. 4(a). We find that feature
dropout is less satisfactory for a large d (e.g., 512), as its
∆θ < 5◦. On the other hand, ∆θ < 28◦ is salient when
choosing a smaller d (e.g., 16), suggesting that the client’s
estimation of ⃗̃t is more uncertain.

Though a small d would favor privacy, we cannot simply
reduce t⃗’s dimension since such feature compression com-
promises recognizability heavily. Instead, we propose fea-
ture grouping to leverage the findings, by dividing t⃗ into
smaller groups and protecting each group separately. Specif-
ically, let {t⃗1, . . . , t⃗m} be m equal-dimension groups di-
vided from a d-dimension template t⃗ and {k⃗1, . . . , k⃗m} be
the division of its key k⃗. We normalize each group to a
(d/m)-dimension hypersphere, and rotate it via slerp:

p⃗i =
sin((1− α)θi)

sin θi
t⃗i +

sin(αθi)

sin θi
k⃗i, i ∈ [m], (3)

under angles θ⃗ = {θi}i∈[m]. We perform feature dropout
on each of {p⃗1, . . . , p⃗m}, as shown in Fig. 4(b), and con-
catenate them to form the protective p⃗. During inference, the
similarity score is derived as the group-wise sum similarity
between a query t⃗q and database templates.

3.4 Learnable Feature Grouping
We experimentally find feature grouping is at the cost of
salient FR performance downgrade, later in Sec. 4.4. To ad-
dress this issue, we propose learnable feature grouping in-
spired by a model interpretability study (Lin et al. 2021).
It suggests that facial recognizability can be regarded as
the collective effort of different feature groups. Drawing in-
sight, we aim to incorporate feature dimensions into learn-
able groups that achieve the same recognizability as the en-
tire face together. Figure 5 describes our approach.

Specifically, let {Xa, Xb} be a pair of images with ei-
ther the same or different identities. We train an FR model
to extract their templates {t⃗a, t⃗b} and denote their similar-
ity as sim(⃗ta, t⃗b). To facilitate the model in producing ap-
propriate groupings of features, we branch out before its fi-
nal fully connection layer with a 1 × 1 convolution layer
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to simultaneously obtain a pair of learnable feature maps
{t⃗a′ , t⃗b′}, each with the shape of (c, h, w). We regard each
c-dimension spatial feature slice as a feature group, with
a total of m = hw groups. We calculate the similarity
between each pair of feature groups {t⃗ia′ , t⃗ib′}, denoted as
sim(⃗tia′ , t⃗ib′)i∈[m]. We then calculate their weighted sum by
group-wise weights w⃗ = {w1, . . . , wm}, which are derived
from the self-attention of feature maps. To encourage fea-
ture groups {t⃗ia′ , t⃗ib′}i∈[m] together to be as recognizable as
templates {t⃗a, t⃗b}, let n be the batch size, we establish loss:

Lg =
1

n

n∑
i=1

∥∥∥∥∥∥sim(⃗tai
, t⃗bi)−

m∑
j=1

wj sim(⃗tja′
i
, t⃗jb′i

)

∥∥∥∥∥∥
1

, (4)

to bridge and align the weighted similarity sum to the tem-
plate pair’s similarity. The general FR loss (e.g., ArcFace) is
L = Lfr + γLg , where γ is a hyper-parameter.

During inference, given a query image, we extract its
learned feature map t⃗′, divide it into feature groups, and
then concatenate all groups to form a flattened template,
still denoted as t⃗′. t⃗′ is protected by group-wise rotation,
as discussed in Sec. 3.3. We further advocate an alternative
weighted dropout: As weights w⃗ reflect each group’s con-
tribution in calculating similarity, we propose to drop less
or more feature dimensions for groups of t⃗′ with higher or
lower weight, respectively, as shown in Fig. 4(c). It helps
preserve more crucial features compared to random dropout.

4 Experiments
4.1 Experimental Setup
We employ an IR-50 model, trained on the MS1Mv2 (Guo
et al. 2016) dataset on 8 GPUs in parallel with Arc-
Face loss as Lfr, as the FR backbone. We train the
model for 24 epochs using a stochastic gradient de-
scent (SGD) optimizer, choosing the total batch size,
initial learning rate, momentum, and weight decay as
256, 0.01, 0.9, 0.0005, respectively. We set parameters
(α, β, γ, c,m) as (0.9, 0.5, 1, 16, 49). Evaluation is done on
5 regular-size datasets, LFW (Learned-Miller 2014), CFP-
FP (Sengupta et al. 2016), AgeDB (Moschoglou et al. 2017),
CPLFW (Zheng and Deng 2018), and CALFW (Zheng,
Deng, and Hu 2017), and 2 large-scale datasets, IJB-
B (Whitelam et al. 2017) and IJB-C (Maze et al. 2018).

4.2 Recognition Performance
Compared methods. We compare SlerpFace with an unpro-
tected baseline and five FTP methods: ArcFace as the base-
line; Boddeti (Boddeti 2018) using Fully Homomorphic
Encryption; IronMask (Kim et al. 2021) and ASE (Dus-
manu et al. 2021), both hash-based—IronMask employs or-
thogonal matrices for template rotation into random code-
words, while ASE maps templates into random affine sub-
spaces; and transform-based MLP-Hash (Shahreza, Hahn,
and Marcel 2023) and PolyProtect (Hahn and Marcel 2022),
with MLP-Hash rotating templates via pre-negotiated or-
thogonal matrices and PolyProtect translating templates into
polynomials with specific exponents and coefficients.
Recognizability and time cost. We perform face recogni-
tion by verifying if two templates refer to the same person.
We report accuracy for LFW, CFP-FP, AgeDB, CPLFW, and
CALFW, and TPR@FPR(1e-4) for IJB-B and IJB-C. Re-
sults are summarized in Tab. 1. Here, results for IronMask
and MLP-Hash on IJB-B/C are marked as “N/A”, as Iron-
Mask’s approach to precisely match two codewords is viable
only for accuracy results, and recognition for MLP-Hash on
IJB-B/C takes prohibitive time.

Among the compared methods, FHE offers Bodddti the
highest recognizability but is vulnerable if its key is com-
promised. Methods below the horizontal line can still pro-
vide protection when the key and template leakage. Iron-
Mask and ASE demonstrate subpar performance due to their
hash-based methods’ low tolerance for intra-identity facial
attribute variations, impacting accuracy. SlerpFace surpasses
previous models on most datasets, enhancing recognizabil-
ity; however, it slightly trails PolyProtect on CFP-FP and
CPLFW, which focus on facial pose variations. The accu-
racy gap is attributed to a reduction in descriptive capabil-
ity from feature grouping, despite the groups being learn-
able. Nonetheless, note that the gap is marginal and serves
as an efficient trade-off, as SlerpFace significantly surpasses
PolyProtect in time cost and privacy.

The last two columns in Tab. 1 show the average enroll-
ment (to register into a database) and matching (to match
once with the database) time (ms) for a single template on a
personal laptop, highlighting SlerpFace’s advantage.

4.3 Protection Against Privacy Attacks
Prior transform-based arts can be susceptible to privacy at-
tacks, where attack models may reveal facial appearances
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from templates. We compare SlerpFace with transform-
based MLP-Hash and PolyProtect using 3 SOTA attacks.
Attack setup. We set up one representative attack for each
of the 3 attack forms discussed in Sec. 2.3. (1) For inversion
attacks, we designate IDiff-Face (Boutros et al. 2023). It is a
dataset synthesis work that uses latent DMs conditioned by
templates to generate high-quality, identity-preserving im-
ages. We turn it into attacks using its DM’s generative capa-
bility. (2) For score-based attacks, we consider EG3D (Chan
et al. 2022), which surpasses the classic score-based attack
in recovery quality. It combines score-based techniques with
reconstruction, optimizing the similarity scores of GAN-
generated images. (3) For reconstruction attacks, we refer
to NbNet (Mai et al. 2018). It deconvolutes templates into
face image form via a CNN structure.

Using the LFW dataset as the source of ground truth im-
ages, we extract templates with a pre-trained FR model and
secure them using MLP-Hash, PolyProtect, and SlerpFace.
To conduct attacks, we train IDiff-Face, EG3D, and NbNet
models from scratch for the unprotected baseline and three
protection strategies, creating a total of 12 models.
Attack evaluation. Qualitatively, Fig. 6(a) exemplifies 2
sample ground truth images and the recovery from their un-
protected and 3 method-corresponding protective templates.
In corners, we mark the cosine similarity score between the
templates of ground truth and recovered images. Dissimilar
images and lower scores indicate better protection. Here, we
highlight: (1) Inversion attacks impose more severe threats
than other attack forms, as they generate both high-quality
and identity-preserving images for unprotected baseline. (2)
Prior arts fail to resist inversion as their recovered images
display both high visual similarity and scores. SlerpFace
provides better protection as its recoveries have low scores
and show changes in semantics (e.g., gender). (3) Though
score-based and reconstruction attacks themselves exhibit
lower capacities than inversion attacks, we can observe that
SlerpFace outperforms prior arts with far lower scores. No-
tably, score-based attacks recover similar images for both
samples protected by SlerpFace. We suspect this occurs as
the protective templates do not provide effective semantics
that influence the recovery, implying enhanced privacy.

Quantitatively, Tab. 2 compares the dataset-wise similar-
ity scores among different settings. We further quantify re-
covered images’ quality by similarity (Sim) and the success
rate of replay attacks (SRRA) (Shahreza and Marcel 2023a).
It replays templates of recovered images as queries to deter-
mine if they can be recognized under a FAR threshold of
1e-3. Lower Sim and SRRA suggest better protection.

4.4 Ablation Study
Component’s contribution. We proposed learnable feature
grouping and weighted dropout to improve the recognizabil-
ity of protective templates. In Tab. 3, “w/o LW” and “w/o W”
denote SlerpFace without both learnable feature grouping
and weighted dropout (equals Sec. 3.3 setting), and without
weighted dropout alone, respectively. We observe that Slerp-
Face initially suffers salient accuracy downgrades due to fea-
ture grouping. Its accuracy is promoted for 5% by learnable
feature grouping and 2% further by weighted dropout.

4.5 Security Analysis
This section further discusses that SlerpFace satisfies impor-
tant identity protection criteria (ISO/IEC 2022), known as
irreversibility, revocability, and unlinkability.
Irreversibility. It requires that revealing the original tem-
plates t⃗ from the protective p⃗ should be computationally
infeasible. A client with knowledge of p⃗ and key k⃗ might
approximate ⃗̃t ≈ t⃗ using numerical methods like Newton-
Raphson (NR) (Lindstrom and Bates 1988), which approx-
imately solve Eq. 2. We find that feature dropout hinders
approximation by reducing the equations in Eq. 2. Then, we
design an NR-based attack to show SlerpFace’s irreversibil-
ity and the effectiveness of feature dropout. We consider two
protective settings with (d,m)=(16, 49). NR can be consid-
ered as a root-finding algorithm that produces successively
better estimates ⃗̃t for t⃗. It begins with a random initial guess,
succeeding with a close estimate or failing at maximum it-
erations, after which NR reinitializes and retries.

Taking the templates from LFW, CFP-FP, and AgeDB, we
measure the cost by NR’s average count of reruns r. To ob-
tain results within finite time, we measure r for each d = 16



Method LFW CFP-FP AgeDB CALFW CPLFW IJB-B IJB-C Enrollment Matching

ArcFace 99.73 98.00 97.87 95.92 92.50 93.93 95.52 - -
Boddeti 99.73 97.86 97.81 95.84 92.41 93.88 95.47 1.99 22.4

IronMask 84.42 52.70 53.22 50.00 50.00 N/A N/A 832.22 0.25
ASE 98.77 86.80 88.48 84.12 83.42 0.00 0.00 0.79 0.19
MLP-Hash 98.82 91.40 93.67 93.07 87.12 N/A N/A 134.31 131.76
PolyProtect 99.30 94.00 95.28 94.77 89.22 87.37 89.96 1.86 1.88
SlerpFace 99.42 92.79 95.70 94.82 88.90 89.96 92.25 0.35 0.17

Table 1: Comparison of recognition accuracy and time cost among SlerpFace, baseline, and SOTAs.
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Figure 6: (a) Two sample face images and their recovered images under different attack and protective settings. Values in the
corner mark the similarity score. Dissimilar images and lower scores indicate better protection. (b) SSWL score between mated
and non-mated template pairs for unprotected baseline and SlerpFace.

Inversion Score-based Recon
Sim SRRA Sim SRRA Sim SRRA

Unprotected 0.46 98.83% 0.16 17.15% 0.12 6.50%
MLP-Hash 0.19 27.55% 0.06 0.12% 0.07 0.50%
PolyProtect 0.32 73.83% 0.06 0.07% 0.07 0.52%
SlerpFace 0.05 0.10% 0.05 0.06% 0.06 0.43%

Table 2: Quantitative privacy analysis by Sim and SRRA.

Method LFW CFP-FP AGEDB

ArcFace 99.73 98.00 97.87
w/o LW 99.37 87.13 90.73
w/o W 99.00 92.56 93.67
SlerpFace 99.42 92.79 95.70

Table 3: Components’ role to SlerpFace’s recognizability.

feature group. Hence, rm would be the ideal cost to recover
full ⃗̃t, as the attacker must succeed within each group simul-
taneously. Without dropout, it takes NR 1.01549 ≈ 2 reruns
to find a ⃗̃t. However, with dropout, it takes around 3.649 re-
runs, which is computationally infeasible. This suggests that
dropout provides strong irreversibility.

Using the framework from Mai et al. (2020), we also theo-
retically analyzed the irreversibility of SlerpFace, showing it
has better entropy (69.58 compared to 59.41) and matching
accuracy (86.20% compared to 85.36%) on CFP-FP dataset.
Revocability. It mandates that any compromised protective
templates be revocable and replaceable. This can be easily

achieved by re-enrolling t⃗ with a distinct key k⃗′.
Unlinkability. It requires that when generating different
protective templates for the same person’s identity, the gen-
erated templates cannot be associated with each other. We
measure SlerpFace’s unlinkability via system score-wise
linkability or SSWL score Dsys

↔ , an evaluation metric pro-
posed by Gomez-Barrero et al. (2017) and used in prior
arts (Mai et al. 2020). In essence, it is a [0, 1] value that mea-
sures the distributional discrepancy between template pairs
describing the same or different identities, referred to as
mated or non-mated pairs. To achieve unlinkability, the dis-
tributions of mated and non-mated pairs should be close and
with small Dsys

↔ . Figure 6(b) exhibits the pair-wise distribu-
tion for unprotected baseline and SlerpFace on the CFP-FP
dataset. While baseline having Dsys

↔ =0.94 indicates distin-
guishable distributions and undermines privacy, SlerpFace
achieves Dsys

↔ =0.05 and close distributions that are satisfac-
tory for unlinkability.

5 Conclusion
This paper studies face template protection in face recog-
nition. It first identifies diffusion-based inversion attacks
as an exacerbated privacy threat. It then proposes a novel
FTP method, SlerpFace, that effectively prevents inversion.
SlerpFace rotates templates to a noise-like distribution that
deteriorates attack models’ capability, efficiently via spher-
ical linear interpolation. It further proposes feature group-
ing and dropout, optimizable via a learnable approach, to
enhance irreversibility. Extensive experiments demonstrate
that SlerpFace outperforms SOTAs in both privacy protec-
tion and recognition performance.
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