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Abstract

Data augmentation using generative models has emerged as a powerful paradigm
for enhancing performance in computer vision tasks. However, most existing
augmentation approaches primarily focus on optimizing intrinsic data attributes –
such as fidelity and diversity – to generate visually high-quality synthetic data, while
often neglecting task-specific requirements. Yet, it is essential for data generators
to account for the needs of downstream tasks, as training data requirements can
vary significantly across different tasks and network architectures. To address
these limitations, we propose UTILGEN, a novel utility-centric data augmentation
framework that adaptively optimizes the data generation process to produce task-
specific, high-utility training data via downstream task feedback. Specifically, we
first introduce a weight allocation network to evaluate the task-specific utility of
each synthetic sample. Guided by these evaluations, UTILGEN iteratively refines
the data generation process using a dual-level optimization strategy to maximize the
synthetic data utility: (1) model-level optimization tailors the generative model to
the downstream task, and (2) instance-level optimization adjusts generation policies
– such as prompt embeddings and initial noise – at each generation round. Extensive
experiments on eight benchmark datasets of varying complexity and granularity
demonstrate that UTILGEN consistently achieves superior performance, with an
average accuracy improvement of 3.87% over previous SOTA. Further analysis of
data influence and distribution reveals that UTILGEN produces more impactful and
task-relevant synthetic data, validating the effectiveness of the paradigm shift from
visual characteristics-centric to task utility-centric data augmentation.

1 Introduction

Recent advances in generative models, particularly diffusion models [1, 2, 3, 4, 5, 6, 7], have
significantly advanced data augmentation by enabling the creation of photorealistic images. Such
text-to-image systems are capable of generating diverse and high-fidelity samples, and empirical
evidence has shown their potential to enhance downstream model performance [8].

Current generative data augmentation approaches can be categorized into two main paradigms:
fidelity preservation and diversity enhancement. The former employs techniques such as LoRA-based
fine-tuning [9] to align synthetic data with real-world distributions [10, 11], while the latter employs
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Figure 1: Comparison of high-utility samples within the same category (Persian cats) across two
different tasks. White Persian cats (left) are more useful in Task 1, while golden ones (right) are more
beneficial in Task 2, highlighting the diverse data requirements in different downstream tasks.

varied prompts or feature perturbations to enhance data diversity [12, 13]. Although effective in
generating visually high-quality data, these methods solely optimize the intrinsic data attributes (e.g.,
fidelity and diversity), often struggling to directly optimize the task-specific utility of synthetic data.
In practice, different tasks and model architectures may require distinct training data distributions
for optimal performance [14], as exemplified in Figure 1. Despite this, most existing methods lack
mechanisms to adapt data generation process based on the needs of specific downstream tasks. This
limitation motivates our investigation into utility-centric data augmentation, in which synthetic data
is explicitly optimized to enhance task performance rather than merely meet visual standards.

To go beyond the above limitation, an effective mechanism is needed to assess the task-specific utility
of synthetic data, thereby providing explicit optimization signals to guide the data augmentation
process. However, evaluating utility through full training and testing cycles is computationally
prohibitive. Therefore, the core challenges in developing utility-centric data augmentation are: (1)
How to efficiently evaluate the task-specific utility of synthetic data without exhaustive training? and
(2) How to systematically improve the task-specific utility of synthetic data?

In this work, we propose UTILGEN, a novel utility-centric data augmentation framework, which can
adaptively optimize the data generation process to produce task-specific, high-utility training data
based on downstream task feedback. Specifically, we introduce Task-Oriented Data Valuation, which
quantifies the task-specific utility of synthetic data through a meta-learned weight allocation network
[15, 16, 17]. The network is optimized to minimize the classifier’s validation loss by adaptively
weighting the losses of training samples via estimation of their utility. The trained valuation network
serves as an efficient utility predictor, enabling assessment of task-specific utility for newly generated
samples without the need for costly retraining cycles. Guided by the utility signals, we employ an
integrated dual-level optimization strategy: (1) Model-Level Generation Capability Optimization that
tailors the data generator to downstream tasks through Direct Preference Optimization (DPO), and
(2) Instance-Level Generation Policy Optimization that optimizes the generation policies (i.e., prompt
embedding and initial noise) to maximize the task-specific utility of synthetic data. Compared to
previous advanced data augmentation methods which focus on optimizing intrinsic data characteristics,
our proposed method achieves an average accuracy improvement of 3.87% across eight benchmark
datasets. To the best of our knowledge, this is the first generative augmentation method where
ResNet-50 [18] trained solely on 3× synthetic data surpasses its real-data-trained counterpart on
several benchmarks. Before delving into the details, we summarize our contributions as follows:

• Motivated by the observation that training data requirements differ across tasks and network
architectures, we introduce a novel paradigm shift in data augmentation. Instead of focusing
solely on optimizing intrinsic data attributes, we emphasize enhancing the task-specific utility
of synthetic data. This utility-centric approach adaptively optimizes the generation process
according to downstream task needs, enabling more targeted and effective data augmentation.

• To efficiently evaluate the task-specific utility of synthetic data, we introduce a meta-learned
weight allocation network that measures the utility of synthetic data without requiring costly
retraining. These utility signals drive a dual-level optimization framework that enhances both the
model generation capability and the generation policies, resulting in high-utility synthetic data
tailored to downstream tasks.

• Our method achieves state-of-the-art performance with an average improvement of 3.87% in
accuracy across eight benchmarks, while also demonstrating exceptional versatility by delivering
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consistent performance gains across diverse architectures (e.g., ResNeXt[19], WideResNet [20],
and MobileNet[21]). Through training trajectory analysis, we validate the rationality of task
utility measurement based on the weight network. Furthermore, analyses of data influence and
distribution reveals that UTILGEN generates data with higher task relevance and stronger positive
impact on model performance.

2 Related Work

2.1 Training Data Valuation

Understanding the role of training data in model performance is crucial for data-efficient learning
[22, 23, 24, 25, 26] and optimizing model behavior [27, 28, 29, 30, 31]. To better understand
how training data affects model behavior, many studies have aimed to quantitatively assess the
influence of individual examples on model performance [32, 33, 34, 35, 36, 37, 38, 39]. Existing
approaches for evaluating data value can be classified into two categories: (1) Retraining-based
approaches, such as Data Shapley [33, 34, 40, 41] and C-score [35], which quantify data influence
through expensive model retraining across different training subsets. For the utility evaluation
of large-scale synthetic datasets, these methods become computationally prohibitive due to their
inherent complexity. (2) Gradient-based methods [32, 42, 43, 44] that estimate data influence by
analyzing gradient interactions between training and test points, either through static snapshot analysis
or dynamic trajectory examination. Although these approaches avoid model retraining, they still
incur significant computational overhead, particularly when performing complex operations such
as Hessian matrix inversion [45]. To evaluate the utility of synthetic data, our method employs a
weight allocation network [15, 16, 17] to efficiently assess data utility, avoiding the costly retraining
or complex computations required by earlier approaches.

2.2 Training Data Augmentation

The availability of high-quality training data has been fundamental to the success of deep learning,
enabling models to capture complex patterns, learn meaningful representations, and generate accurate
predictions [46, 47, 48, 49, 50]. The methodology of training data augmentation has progressed from
traditional techniques to advanced generative approaches [51, 10, 11, 52, 12, 53, 54]. Traditional
methods, such as mixup [55, 56], erasing [57, 58], and cropping [59], commonly rely on predefined
transformations to augment dataset diversity. However, they are inherently limited to local pixel-
level modifications. While Generative Adversarial Networks (GANs) [60] enabled synthetic image
generation, they often face challenges in maintaining semantic consistency and distribution alignment
[61, 62]. Recent advances in diffusion models, such as Stable Diffusion [4] and GLIDE [63], have
demonstrated superior capabilities in generating synthetic data. To enhance diversity, methods such
as GIF [12], ALIA [52], and DISEF [13] employ varied prompts or feature perturbations in the
latent space. Meanwhile, techniques like RealFake [10], DistDiff [64], and DataDream [11] focus on
improving image fidelity by aligning synthetic data distributions with the target domain. Nevertheless,
these methods primarily address intra-class distribution alignment without evaluating which types
of data better support downstream tasks. In contrast, our approach adaptively tailors the generation
process to downstream tasks, producing high-utility data specifically optimized for target applications.

3 Method

In this section, the framework of our utility-centric generative data augmentation system is presented,
as illustrated in Fig. 2. Specifically, the proposed approach comprises three key components: (1)
Task-Oriented Data Valuation (Sec. 3.1), which quantitatively assesses the utility of synthetic data
for downstream tasks; (2) Model-Level Generation Capability Optimization (Sec. 3.2), which tailors
the generative model to align with the training data preferences of the downstream task via DPO;
and (3) Instance-Level Generation Policy Optimization (Sec. 3.3), which adapts generation policy to
maximize the task-specific utility of the synthetic data.
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Figure 2: The UTILGEN framework for feedback-driven data augmentation, comprising three
key stages: (1) Task-Oriented Data Valuation (Sec. 3.1); (2) Model-Level Generation Capability
Optimization (Sec. 3.2); (3) Instance-Level Generation Policy Optimization (Sec. 3.3).

3.1 Task-Oriented Data Valuation (TODV)

It is noted that individual training instances exhibit heterogeneous influences on model performance
during the training process [32], with certain data samples potentially introducing negative influences.
This observation has motivated a line of research to mitigate model overfitting to data samples with
negative influences, such as training sample re-weighting strategies implemented through learnable
weight networks[15, 16, 17]. Moreover, it is recognized that these learned weights can be implicitly
interpreted as indicators of each sample’s utility for downstream tasks [15]. Drawing inspiration from
this insight, we propose Task-Oriented Data Valuation, which employs a weight network trained via
meta-learning to quantitatively assess the utility of synthetic data for downstream tasks.

Specially, given a classifier fθ, the weight ωi assigned to each sample xi is derived through a
loss-based process as follows:

ωi = Wϕ (L(f(xi; θ), yi)) , (1)
where Wϕ denotes an MLP network with a single hidden layer. This network is trained to predict
normalized weights within the range [0, 1], where higher values reflect samples with greater utility.

To develop such a weight network Wϕ capable of measuring task-specific data utility, we adopt a
bi-level optimization strategy comprising two iterative steps:

Classifier training: To enhance the generalization capability of the weight network and mitigate
distribution shift in subsequent generation optimization stages, we first perform textual inversion [65]
to learn class-specific identifiers [Ii] from a small set of real images per class. Using these learned
identifiers, we generate synthetic data Dg with class-conditioned prompts ci of the form “a photo
of [Ii]”. The synthetic data is then combined with the real training data to form a merged dataset
Dmerge = (Dr ∪Dg), where Dr denotes the real data. The classifier parameters θ are optimized using
a weighted loss computed over Dmerge = {(xi, yi)}Ni=1:

θ∗(ϕ) = argmin
θ

1

N

N∑
i=1

ωiL(f(xi; θ), yi), (2)

Weight network training: Given the classifier’s updated parameters, the weight network parameters
ϕ are trained to minimize the loss on the validation set Dv = {(xj , yj)}Mj=1:

ϕ∗(θ) = argmin
ϕ

1

M

M∑
j=1

L (f(xj ; θ
∗(ϕ)), yj) . (3)

This bi-level optimization framework establishes a dynamic feedback loop between data valuation
and model training. By quantifying data utility through learned weights, the trained weight network
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is subsequently used to guide the optimization of the data generation process. The full procedure for
TODV is described in Algorithm 1.

Algorithm 1 Task-Oriented Data Valuation (TODV)

Input: Training data Dr ∪ Dg = {(xi, yi)}Ni=1; validation data Dv = {(xj , yj)}Mj=1

Required: Classifier parameters θ ; weight network parameters ϕ; max iteration T .

1: Initialize θ(0), ϕ(0) randomly
2: for t = 0 to T − 1 do
3: Sample batch {(xi, yi)}ni=1 from Dr ∪ Dg
4: Sample batch {(xj , yj)}mj=1 from Dv
5: Predict weights {ω(t)

i }
n
i=1 for the batch {(xi, yi)}ni=1 that reflect their task-specific utility (Eq. 1)

6: Update θ(t+1) using the loss weighted by {ω(t)
i }

n
i=1 (Eq. 2)

7: Update ϕ(t+1) (Eq. 3)
8: end for

Output: Optimized weight network parameter ϕT

3.2 Model-Level Generation Capability Optimization (MLCO)

Although standard diffusion models demonstrate remarkable capabilities in generating visually
high-quality images, their outputs often fail to meet the specific data requirements of downstream
applications. To address this misalignment, we propose an iterative DPO framework that adapts the
generative model to downstream task-specific data preferences.

Each optimization cycle begins by prompting the diffusion model with prompts ci of the form “a
photo of [Ii]”, where class-specific identifiers [Ii] are obtained via textual inversion [65], to generate
a synthetic dataset Dsyn = {(xi)}Mi=1. The pre-trained weight network Wϕ subsequently evaluates
each sample’s utility via the weight score ωi = Wϕ(L(f(xi; θ), yi)), where L(f(xi; θ), yi) is the
loss of the classifier fθ on sample xi with its label yi. Based on these scores, high-utility samples xwi
and low-utility samples xli are paired to construct a preference dataset:

Dpreference = {(ci, xwi , xli) | Wϕ(L(f(xwi ; θ), ywi )) >Wϕ(L(f(xli; θ), yli))}Ni=1, (4)

We then use the preference dataset Dpreference to fine-tune the diffusion model’s U-Net ψ using DPO,
with the optimization objective formulated according to the Diffusion DPO [66].

LDPO(ψ) =− E(xw
0 ,x

l
0)∼Dpreference,t∼U(0,T ),xw

t ∼q(xw
t |xw

0 ),xl
t∼q(x

l
t|x

l
0)

[log σ (−βTω(λt) (∆Lw −∆Ll))] ,
(5)

∆Lw = ∥ϵw − ϵψ(x
w
t , t)∥2 − ∥ϵw − ϵref(x

w
t , t)∥2

∆Ll = ∥ϵl − ϵψ(x
l
t, t)∥2 − ∥ϵl − ϵref(x

l
t, t)∥2.

(6)

Here, ϵψ and ϵref denote the noise predictions from the trainable and reference U-Nets, respectively.
The forward diffusion process q(xt|x0) adds noise to x0 at timestep t, where t is sampled from
U(0, T ). β balances preference alignment and KL regularization, while σ(·) is the sigmoid activation
in the loss. λt is the signal-to-noise ratio [67] and ω(λt) is weighting function [1].

Through iterative DPO fine-tuning, we progressively adapt the diffusion model’s generative capability
according to the downstream task’s preferences for the training data. This process enables better
alignment between the model’s output distribution and the target application requirements.

3.3 Instance-Level Generation Policy Optimization (ILPO)

While MLPO tailors the generative model to the downstream task at a coarse level, ILPO performs
fine-grained refinement of the generation policy by jointly optimizing the prompt embeddings and
the initial noise. The overall optimization objective is formulated as:

(p∗, ϵ∗T ) = argmax
p,ϵT

E [Wϕ(L(f(g(p, ϵT ); θ), y))] , (7)
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(a)   Data Distribution Visualization (b)  Utility-Aware Weight Distributions

Figure 3: (a) Feature space visualization on the Flower dataset [68]shows that our synthetic data
achieves closer alignment with the real data distribution compared to vanilla Stable Diffusion. (b)
Utility-aware weight distributions for synthetic and real data on the Flower dataset [68], showing
sample utility scores for downstream tasks.

Algorithm 2 Instance-Level Generation Policy Optimization (ILPO)

Input: K classes: {c1, ..., cK}; number of images to generate for each class: {N1, . . . , NK}, where Nk is the
number of samples to generate for class ck
Required: Diffusion model g(·, ·) fine-tuned by MLCO; Textual Inversion technology TI(·, ·) using few-shot
real images per class Dk = {xk1 , ..., xkN} for each ck;

1: for each class k ∈ {1, ...,K} do
2: // Prompt Embedding Optimization
3: Initialize pk ← TI(ck,Dk)
4: p∗k ← pk (Eq. 8) ▷ Optimize to maximize data utility
5: // Noise Optimization
6: for i = 1 to Nk do
7: Sample noise ϵT ∼ N (0, I)
8: ϵ′T ← ϵT by (Eq. 9) ▷ Inject semantic information representing high-utility data
9: x′i ← g(p∗k, ϵ

′
T ) ▷ Generate high-utility data

10: Dsynth ← Dsynth ∪ {x′i}
11: end for
12: end for

Output: High-utility synthetic dataset Dsynth

where p denotes the prompt embedding, ϵT represents the initial noise vector, g(·) is the diffusion
model, f(·; θ) is the downstream classifier, y is the ground-truth label, and L(·) is the classification
loss. The optimization process consists of two synergistic components:

Prompt embedding optimization: Building upon the class-specific identifiers [Ii] learned through
textual inversion [65], we optimize the prompt embeddings pi = E(“a photo of [Ii]”) using gradient-
based optimization, where E(·) denotes the text encoder. This process aims to maximize the
utility score predicted by the pre-trained weight network. To preserve semantic alignment during
optimization, a CLIP-based regularization term LCLIP = − cos(E(xi), ei) is applied, where xi is the
generated image, E(·) is the CLIP image encoder and ei = avg(E({xj}) is the mean embedding of
a set of target-class real images {xj}. The complete prompt optimization objective is:

p∗ = argmax
p

[Wϕ(L(f(g(p, ϵT ); θ), y))− λLCLIP] , (8)

where λ controls the regularization strength. This joint optimization enhances sample utility while
preserving semantic coherence with the original class concept.

Noise optimization: The quality of synthetic images is influenced by both the text prompt and the
random Gaussian noise. Yet, since each image generation requires independently sampled noise,
directly optimizing noise vectors via gradient ascent to improve utility is computationally prohibitive.
Recent studies [69, 70, 71] show that the discrepancy between denoising and inversion Classifier-Free
Guidance (CFG) scales can be leveraged to implicitly inject prompt semantic information into the
initial noise. Leveraging this observation, we adapt the methodology to optimize the initial noise,
enabling it to incorporate semantic information of high-utility data. Formally, the noise optimization
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Table 1: Classification performance across eight datasets using ResNet-50 [18] as the backbone
classifier. UTILGEN and DataDream [11] generate synthetic data guided by 16-shot real images
per class, while other methods use the full real dataset as guidance for generation. The top block
shows results using synthetic data only, while the bottom includes joint training (synthetic + full real
dataset). Each method produces synthetic data at 5× the scale of the original real dataset.

Method Real Syn IN-1k-S IN-100-S Cal101 DTD CUB PETs Food-S Flowers Avg

Training on Synthetic Data Only

SD v2.1 [4] ✓ 24.35 27.96 14.74 7.92 23.43 26.05 24.02 31.41 22.49
GIF [12] ✓ 28.95 31.94 20.39 13.19 27.54 29.73 25.94 56.12 29.23
GAP [72] ✓ 25.84 30.94 18.70 11.01 29.49 27.46 25.31 53.66 27.80
DataDream [11] ✓ 30.35 35.48 23.61 13.24 35.38 34.77 28.41 65.15 33.30
UtilGen ✓ 33.72 40.94 29.31 13.52 43.32 37.25 31.87 67.43 37.17
△ over previous SOTA +3.37 +5.46 +5.70 +0.28 +7.94 +2.48 +3.46 +2.28 +3.87

Joint Training with Real Data

Real Dataset ✓ 36.34 38.58 43.55 16.32 21.03 28.78 19.88 73.34 34.73
SD v2.1 [4] ✓ ✓ 43.26 49.86 59.35 28.82 43.52 52.35 40.32 79.58 49.63
GIF [12] ✓ ✓ 49.85 54.12 67.60 33.45 43.80 58.21 41.39 84.47 54.11
GAP [72] ✓ ✓ 46.58 53.14 66.97 32.87 47.46 57.86 43.77 84.84 54.19
DataDream [11] ✓ ✓ 52.16 57.68 73.38 34.84 53.43 60.83 47.44 89.60 58.67
UtilGen ✓ ✓ 54.56 61.54 75.62 36.06 57.53 64.64 52.72 93.62 62.04
△ over real dataset +18.22 +22.96 +32.07 +19.74 +36.50 +35.86 +32.84 +20.28 +27.31
△ over previous SOTA +2.40 +3.86 +2.24 +1.22 +4.10 +3.81 +5.28 +4.02 +3.37

process is defined as:

ϵ′t = DDIM-Inversionωw(DDIMωl
(ϵt, p

∗)). (9)

where ωl and ωw are the CFG scales for the denoising process DDIM(·) and the inversion process
DDIM-Inversion(·), respectively. The condition ωl > ωw enables the implicit injection of semantic
information into the initial noise. The entire process of ILPO is outlined in Algorithm 2.

The synergistic integration of MLCO (Sec.3.2) and ILPO (Sec.3.3) enables UTILGEN to synthesize
data that closely aligns with real data feature distributions, as visualized in Fig.3(a). This approach
simultaneously achieves higher utility scores (Fig.3(b)), demonstrating enhanced task relevance and
superior data utility in downstream applications.

4 Experiments

4.1 Experimental Setup

Benchmarks. We evaluate the effectiveness of UTILGEN across eight datasets spanning three classi-
fication tasks: coarse-grained classification (ImageNet-1k-Subset [73], ImageNet-100-Subset [73],
and Caltech 101 [74]), fine-grained classification (Oxford Pets [75], Food-S [76], Flowers 102 [68],
and CUB-200-2011 [77]), and texture classification (DTD [78]). Specifically, ImageNet-1k-Subset
and Food-S are subsets of ImageNet-1K and Food101 [76], respectively, each containing 100 ran-
domly selected images per class. ImageNet-100-Subset is constructed by randomly sampling 100
animal-related classes from the original ImageNet-1K [73], with 100 randomly selected images per
class. Further benchmark details are provided in Appendix F.

Baselines. To compare our utility-centric approach with existing methods that focus on optimizing
intrinsic data characteristics, we select GIF [12] and DataDream [11] as representative baselines.
Specifically, GIF [12] enhances diversity by applying feature perturbations, while DataDream [11]
improves fidelity through domain alignment using LoRA fine-tuning of the diffusion model. Addition-
ally, we include GAP [72], which uses feedback from the downstream model to generate adversarial
prompts that maximize the model’s loss on the generated images. This enables a direct comparison
between its loss-based feedback strategy and the utility-based feedback mechanism employed by
UTILGEN. For fair comparison, we adopt Stable Diffusion v2.1 [4] (SD v2.1) as the backbone
generator across all baseline methods. The implementation details of UTILGEN are in Appendix B.
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Figure 4: Comparison of synthetic images generated by SD v2.1, GIF [12], GAP [72], DataDream
[11], and UTILGEN.

Table 2: Performance comparison under different syn-
thesis budgets on ImageNet-100. UTILGEN scales more
effectively with increasing synthetic data ratios.

Budget SD v2.1 GIF [12] GAP [72] DataDream [11] UTILGEN

1× 12.18 13.44 15.02 17.12 18.04
3× 20.20 21.90 21.16 25.26 28.52
5× 27.96 31.94 30.94 35.48 40.94

Table 3: Comparison of intra-class diver-
sity of synthetic data on ImageNet-100.
Higher values indicate greater diversity.

Method Mean Intra-Class Diversity ↑

Stable Diffusion v2.1 0.5815
DataDream [11] 0.5238
UTILGEN 0.6054

4.2 Evaluation Results

Results on solely synthetic data. As shown in Table 1 (top), UTILGEN achieves the highest average
accuracy of 37.17% when trained solely on synthetic data, outperforming the previous best method
DataDream (33.30%) by a notable margin of +3.87%. It demonstrates strong performance across both
coarse-grained (e.g., 40.94% on IN-100-S [73]) and fine-grained tasks (e.g., 67.43% on Flowers [68]),
indicating excellent generalization despite training solely on synthetic data.

Results on real + synthetic Data. In the joint training setting (bottom of Table 1), UTILGEN
maintains its lead with an average accuracy of 62.04%, surpassing DataDream (58.67%) by +3.54%.
It achieves particularly strong gains on fine-grained datasets (e.g., 93.62% on Flowers [68]), while also
delivering consistent improvements on coarse-grained tasks. These results suggest that UTILGEN can
effectively complement real data across different task granularities, providing high-utility synthetic
samples that enhance model performance and robustness.

Synthetic data scaling effects. UTILGEN exhibits strong scalability and data augmentation efficiency.
As shown in Figure 5, scaling synthetic data from 1× to 5× the original set consistently improves
ResNet-50 [18] performance across benchmarks under both synthetic-only and joint training settings.
When trained with 3× synthetic data alone, models outperform their real-data-trained counterparts
on three datasets; at 5× scaling, this advantage extends to four datasets. To further examine how
performance scales with the synthesis budget, we compare UTILGEN with four representative
baselines under budgets. As shown in Table 2, UTILGEN consistently achieves the best results
across all budgets, and the performance gap widens as the synthesis ratio increases, demonstrating
superior scalability under large-scale generation. Additional details on augmentation efficiency and
computational cost are provided in Appendix D.

Diversity analysis of synthetic data. We evaluate the diversity of synthetic samples by computing
the mean intra-class cosine distance of CLIP (ViT-L/14) features on ImageNet-100. Compared
methods include vanilla Stable Diffusion v2.1, DataDream [11], and UTILGEN. Higher values
indicate greater intra-class diversity, which typically benefits generalization. As shown in Table 3,
UTILGEN achieves the highest intra-class diversity, indicating that its utility-guided optimization
preserves sample variety and avoids mode collapse.

Reusability of synthetic data across tasks. We further analyze the reusability of UTILGEN-
generated data across different downstream models on the ImageNet-100 dataset. Even when the
weight network is trained using ResNet-50 , the resulting synthetic data generalizes effectively to
other models such as WideResNet and CLIP. As shown in Table 4, the performance gains remain
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Figure 6: Training and test accuracy compari-
son with and without the weight network using
ResNet-50 [18] on the dataset (original Flowers
+ SD v2.1 augmented data with 1× expansion).
(a) Training convergence; (b) Test accuracy.

Table 4: Reusability of synthetic data across down-
stream models on ImageNet-100.

Classifier used to
train weight network

Downstream model
using synthetic data Method Acc. (%)

– WideResNet DataDream [11] 31.76
ResNet-50 WideResNet UTILGEN 36.40
– CLIP DataDream [11] 71.42
ResNet-50 CLIP UTILGEN 72.14

Table 5: Generalization performance across di-
verse network architectures on ImageNet-100.

Method ResNeXt-50 WideResNet-50 MobileNetV2

GIF [12] 27.54 27.84 31.24
GAP [72] 27.66 27.76 32.72
DataDream [11] 31.24 31.76 35.48
UTILGEN 37.62 37.82 40.59

consistent across architectures, indicating that high-utility samples identified by UTILGEN are not
tied to a specific model and can be reused for diverse learning objectives.

Generalization across different architectures. To assess the versatility of UTILGEN, we evaluate its
performance on three architectures: ResNeXt-50 [19], WideResNet-50 [20], and MobileNetV2 [21].
As shown in Table 5, UTILGEN consistently achieves the highest accuracy, with 500 images generated
per class, confirming the effectiveness of our approach across various network architectures.

Cost-benefit analysis compared to collecting more labeled data. Compared to manual data
collection and annotation, UTILGEN offers a highly cost-effective solution for dataset expansion.
According to the Masterpiece Group2, manually annotating 10,000 images (e.g., 100 images per
class across 100 classes) typically takes about two weeks and costs approximately $800. In contrast,
generating the same amount of data using UTILGEN requires only about 0.94 hours and $20 on 8
V100 GPUs rented from Google Cloud3. On the ImageNet-100-Subset dataset, using 5× synthetic
data produced by UTILGEN even surpasses the real-data baseline in accuracy, while requiring only
∼4.7 hours and about $100 in compute cost, as shown in Table 6.

Ablation study. Table 7 presents an ablation study on the IN-100-S dataset using ResNet-50 trained
solely on synthetic data (500 aasssper class). We analyze the effects of MLCO and ILPO (including
prompt embedding and initial noise optimization). Each component brings improvements over the
baseline, and combining all three achieves the best performance, surpassing the baseline by +12.98%,
demonstrating the complementary strengths of model-level and instance-level optimizations.

4.3 Mechanism Analysis

Effect of sample re-weighting on classifier training. To assess the effect of the weight allocation
network on classifier training, we compare the training trajectories of models with and without
dynamic weighting. As shown in Figure 6(a), the weighted model converges faster and achieves
higher training accuracy in earlier epochs, suggesting it effectively assigns higher weights to high-
utility samples during learning. Figure 6(b) presents the test accuracy curves, where accuracy rises
more rapidly and achieves a final improvement of 2.94% over the baseline. This gain is attributed to
the network’s ability to down-weight low-utility or noisy samples, thereby mitigating their negative

2https://mpg-myanmar.com/annotation/
3https://cloud.google.com/compute/gpus-pricing
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(a) Positive Influence Ratio (b) Data Influence Distribution (c) Data Distribution Difference

Figure 7: Data influence comparison between UTILGEN and SD v2.1, computed using influence
functions. (a) Proportion of samples with positive influence scores (influence > 0) across eight datasets.
(b) Influence score distributions showing that UTILGEN generates a higher density of samples with
stronger influence. (c) Data density difference plot highlighting that UTILGEN dominates in high-
influence regions, while SD v2.1 contributes more to low-influence areas.

Table 6: Comparison of the manual annotation
paradigm and our synthetic data paradigm in terms
of cost, time, and performance.

Method Images Time Required Cost Acc. (%)

Manual Annotation 10,000 ∼2 weeks $800 38.58

UTILGEN (1×) 10,000 ∼0.94 h $20 18.04

UTILGEN (5×) 50,000 ∼4.70 h $100 40.94

Table 7: Ablation study on ImageNet-100.
MLCO Prompt Optimization Noise Optimization Acc. (%)

27.96

✓ 28.68
✓ 36.42

✓ 37.96

✓ ✓ 32.08
✓ ✓ 39.12

✓ ✓ 39.73

✓ ✓ ✓ 40.94

impact. These results confirm that the pre-trained weight allocation network can reliably measure
sample utility and serve as a signal to guide synthetic data generation.

Data influence analysis. We measure data influence by jointly training models on synthetic datasets
generated by UTILGEN and the baseline SD v2.1, applying Influence Function [32]. Figure 7(a)
reveals that UTILGEN consistently produces a higher proportion of positively influential samples
(influence > 0) across all benchmarks. Furthermore, the influence score distribution shown in
Figure 7(b) shifts noticeably to the right, indicating that UTILGEN generates more samples with
stronger positive influence. Complementing this, Figure 7(c) highlights that UTILGEN achieves
substantially higher data density within high-influence regions, while simultaneously reducing sample
concentration in low-utility areas. Together, these results validate the effectiveness of our method in
synthesizing impactful data that better supports downstream model optimization.

5 Conclusion

In this study, we propose UTILGEN, a utility-centric data augmentation framework that shifts the
focus from optimizing intrinsic visual properties to enhancing task-specific utility. By incorporating
downstream model feedback, UTILGEN adaptively adjusts the data generation process to produce
high-utility data tailored for specific downstream tasks, thereby establishing a feedback loop between
data generation and model training. Experiments across eight benchmarks demonstrate consistent
performance gains, and in certain cases surpassing the performance of models trained solely on
real data. These results highlight the superiority of the utility-centric approach over prior methods
focusing primarily on intrinsic visual quality. These findings underscore the potential of utility-
centric generation and suggest that integrating task-specific utility alongside traditional visual quality
considerations offers a more effective paradigm for future data augmentation research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We confirm that the abstract and introduction accurately reflects the paper’s
contributions, as it clearly outlines the proposed UTILGEN framework, its adaptive opti-
mization approach, and experimental validation across diverse datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in Appendix C
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive implementation details in Appendix B and dataset
specifications in Appendix F, including methodological implementations and dataset charac-
teristics, to ensure full reproducibility of our work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our study uses exclusively publicly accessible datasets and includes the
complete implementation source code in the supplementary materials (provided as a ZIP
archive).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide comprehensive implementation details, including data partitioning,
hyperparameter settings, and additional relevant information in Appendix B and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We opted not to report error bars because the results demonstrated consistent
stability across multiple runs, reducing the necessity for such reporting. To ensure robustness,
each experiment was conducted using three different random seeds with results averaged
accordingly. Additionally, extensive evaluations across diverse datasets further strengthen
the reliability of our findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information on the computational resources used in this
work, including the types and numbers of GPUs, GPU memory usage during execution, and
overall running time. For more details, please refer to Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully examined the NeurIPS Code of Ethics and affirm that all
aspects of this research comply with its guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We provide a discussion of both positive and negative societal implications in
Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This research does not involve releasing new models or datasets, thus the
discussion of release safeguards is not applicable to our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets (e.g., ImageNet [73]) and foundation models (e.g., Stable Diffusion
[4]) used in this work are appropriately cited the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code documentation is provided in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs were used for language polishing (grammar and spelling corrections).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Visualizations of Synthetic Data

In this section, we present further visualizations of synthetic data generated by the UTILGEN. As
illustrated in Figure 8, we compare synthetic samples produced by different augmentation strategies,
including GIF (prioritizing diversity in visual features) and DataDream (emphasizing fidelity in visual
features). Figure 8 presents representative samples from UTILGEN, demonstrating semantically
consistent, visually realistic generations that preserve class-discriminative features while maintaining
diversity.
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Figure 8: Comparison of synthetic samples generated by GIF, DataDream, and UTILGEN.
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B More Implementation Details

B.1 Implementation Details of Weight Network

The weight network Wϕ is designed as a lightweight MLP with a single hidden layer. It takes the
per-sample classification loss ℓi = L(f(xi; θ), yi) as input, where f(·; θ) is the downstream classifier,
and predicts normalized sample weights ωi ∈ [0, 1] via a sigmoid activation. These weights are
used to re-weight the corresponding per-sample losses during classifier training, thereby prioritizing
examples deemed to have higher utility by the meta-learned network. The network architecture is
defined as:

Wϕ(ℓi) = σ(W2 ReLU(W1ℓi + b1) + b2) (10)

where ℓi ∈ R is the scalar loss value for the i-th sample, W1 ∈ R1×100 and W2 ∈ R100×1 are
weight matrices, and b1, b2 are bias terms. The ReLU activation introduces non-linearity, and the
final sigmoid ensures the output lies in [0, 1]. Albeit simple, this network is a universal approximator
for continuous functions and can fit a wide range of weighting functions. The training settings for
both the classifier and the weight network, including optimizers, learning rates, and batch sizes, are
summarized in Table 8.

Table 8: Training settings for the classifier and weight network.
Component Optimizer Learning Rate Batch Size

Classifier SGD (momentum=0.9) 0.01 128
Weight Network Adam 10−3 128

B.2 Implementation Details of MLCO

Algorithm 3 Model-Level Generation Capability Optimization (MLCO)

Input: Initial diffusion model gψ; class prompts {c1, ..., cK}.
Required: Batch size B; DPO learning rate η; reference model gref; weight networkWϕ; downstream classifier
fθ; loss function L; max iteration I; selection ratio ρ..

1: for iteration = 1 to I do
2: // Generation & Evaluation
3: for each class k ∈ {1, ...,K} do
4: for i = 1 to B do
5: Sample ϵT ∼ N (0, I)
6: xki ← gψ(ck, ϵT ) ▷ Generate with current model
7: ωki ←Wϕ(L(f(xki ; θ), yk)) ▷ Evaluate utility using classification loss as input
8: end for
9: end for

10: // Preference Construction
11: for each class k do
12: Sort {xki } by ωki descending
13: Select top ρ proportion of samples as Dwk , bottom ρ proportion of samples as Dlk
14: Dpref ← Dpref ∪ {(ck, xw, xl)|xw ∈ Dwk , xl ∈ Dlk}
15: end for
16: // Model Optimization
17: for each (ck, x

w, xl) in Dpref do
18: ψ ← ψ − η∇ψLDPO(gψ, gref, ck, x

w, xl) ▷ Update via Eq. 5
19: end for
20: end for

Output: Optimized diffusion model g∗ψ

The proposed Model-Level Generation Capability Optimization (MLCO) framework iteratively
improves the diffusion model’s generative ability based on utility-guided preferences. In each
iteration, the process proceeds in three stages, and he full process is illustrated in Algorithm 3.:
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• Generation & Evaluation: The current diffusion model gψ generates synthetic images for each
class prompt. Each generated sample is then evaluated by the trained weight network Wϕ to obtain
utility scores ω.

• Preference Construction: Samples within each class are ranked by their utility scores. The top ρ
and bottom ρ proportions are selected to form preference pairs Dpref.

• Model Optimization: Using Direct Preference Optimization (DPO), the model is updated to
customize its generation capability based on utility-guided preferences over training data.

Our implementation of DPO is adapted from Diffusion-DPO [66], which enables preference-based
training of diffusion models for guiding generative outputs with utility-informed preferences. The loss
function Eq. 5 used in Line 19 of Algorithm 3 follows this framework. For the detailed mathematical
derivation of Eq. 5, please refer to the original Diffusion-DPO paper [66]. The key hyperparameters
used in our DPO training process are summarized in Table 9.

Table 9: Hyperparameters used in DPO training

Batch Size Max Steps Per Class Learning Rate Gradient Accumulation Steps Beta DPO

1 400 1× 10−8 1 5000

B.3 Implementation Details of ILPO

The prompt-noise optimization process consists of two primary components: the optimization of
prompt embeddings and the initial noise used during generation. The goal is to maximize the utility
of each synthetic sample while ensuring semantic alignment with the target domain.

Prompt embedding optimization: The optimization process begins with textual inversion [65]
to establish class-specific prompt embeddings that align with target concepts. Specifically, we use
DeepSeek-R1-Distill-Qwen-1.5B [79] to select an initializer token for textual inversion [65] for each
class. After obtaining the class-specific prompt embeddings aligned with the target labels, these
embeddings are refined through gradient-based optimization to maximize the utility score of the
generated samples. The learning rate for prompt optimization is set to 0.001, and the optimization
process runs for 400 epochs to ensure convergence and meaningful results.

Table 10: Hyperparameters used in textual inversion [65]

Batch Size Learning Rate Training Steps Instance Images per Class

1 1× 10−4 400 16

Noise optimization: For noise optimization, we leverage the discrepancy between denoising and
inversion Classifier-Free Guidance (CFG) scales, which allows us to implicitly inject prompt semantic
information into the noise vector. The denoising guidance scale is set to 5.5, while the inversion
guidance scale is set to 0.

The specific hyperparameters used for this optimization process are summarized in Table 11.

Table 11: Hyperparameters used in the prompt-noise optimization process.

Prompt Learning Rate Prompt Learning Epochs Guidance Strength
(Denoise)

Guidance Strength
(Inversion)

0.001 400 5.5 0

B.4 Implementation Details of Image Generation

The image generation process is guided by the hyperparameters listed in Table 12. Instead of using
fixed prompts and random noise, both the class-specific text prompts and the initial noise vectors
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are optimized via our proposed ILPO strategy to better align with high-utility regions in the data
distribution. The Stable Diffusion v2.1 model, fine-tuned with MLCO, is employed for the generation
process, using a sampling method with 50 steps, the DDIM scheduler, and a guidance scale of 2.0.
The images are generated at a resolution of 512× 512 pixels.

Table 12: Hyperparameters for Training Data Synthesis
Base Model Sampling Steps Scheduler Guidance Scale Image Size

Stable Diffusion v2.1
(MLCO-fine-tuned) 50 DDIM 2.0 512×512

B.5 Implementation details of model training

The downstream classifiers are trained on four standard architectures: ResNet-50[18], ResNeXt-50
[19], WideResNet-50 [20], and MobileNetV2 [21]. All models are trained with identical hyperparam-
eters. The training configuration uses SGD optimizer with momentum 0.9 and weight decay 5e-4.
The learning rate starts at 0.01 with cosine decay schedule over 100 epochs. A fixed batch size of 256
is used for all experiments, with standard data augmentation including random horizontal flips and
crops. Each experiment is repeated three times with different random seeds to ensure reliability.

Table 13: Hyperparameters for Downstream Classifier Training

Optimizer Weight decay Initial LR Epochs Batch size

SGD (momentum=0.9) 5e-4 0.01 100 256

C Limitations

While demonstrating strong performance in enhancing synthetic data utility for downstream tasks,
UTILGEN presents two noteworthy considerations: (1) The dual-level optimization framework incurs
modest computational overhead compared to conventional augmentation methods; (2) Although
effectively improving the utility of synthetic data for downstream tasks, the approach remains
contingent upon the base generative model’s capability to produce viable initial samples. These
considerations do not substantially compromise overall performance but indicate potential avenues
for future enhancement.

D Efficiency and Cost of Data Augmentation

To evaluate the computational efficiency of UTILGEN, we compare it against three representative
generative augmentation methods: GIF [12], GAP [72], and DataDream [11]. The comparison
is conducted under a unified setup using the ImageNet-1K dataset, where each method generates
1000 synthetic images per class. We decompose the computational pipeline into three stages: (1)
Model Optimization, (2) Policy Optimization, and (3) Image Generation. UTILGEN incorporates
feedback-driven optimization components at both the model and instance levels, introducing moderate
overhead that remains manageable.

Table 14 presents the runtime taken for each stage, while Table 15 shows the peak GPU memory usage
during the execution of each stage. All methods are evaluated on a multi-GPU server equipped with
8×A100 GPUs. Despite the feedback-based optimization, our framework remains computationally
efficient. Overall, UTILGEN strikes a favorable balance between computational cost and data utility,
demonstrating its scalability and practicality for real-world deployments.

E Broader Impact

Our utility-driven augmentation approach facilitates more efficient model training while reducing
reliance on real data, especially benefiting domains with limited or private datasets. By generating
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Table 14: Computational cost (in hours) comparison on ImageNet-1K for generating 1000 images per
class. Values are estimated averages.

Method Model Optimization Policy Optimization Image Generation

GIF [12] – – ∼229.1h
GAP [72] – ∼45.1h ∼93.7h
DataDream [11] ∼10.8h – ∼40.2h
UTILGEN (Ours) ∼7.7h ∼25.1h ∼41.6h

Table 15: GPU memory usage (peak usage in GB) per stage. All values are measured during
maximum workload per module on each GPU.

Method Model Optimization Policy Optimization Image Generation

GIF [12] – – ∼25.9G
GAP [72] – ∼5.2G ∼4.5G
DataDream [11] ∼19.5G – ∼15.8G
UTILGEN (Ours) ∼20.5G ∼4.4G ∼4.3G

task-specific synthetic training data, it enhances learning efficiency and lowers dependence on large-
scale real datasets. Nonetheless, since the synthesis process is guided by a small set of real images,
the generated data may inadvertently inherit and amplify biases present in the original samples.

F Dataset Details

To evaluate UTILGEN’s performance, we utilize eight benchmark datasets spanning a variety of
classification tasks: coarse-grained classification, fine-grained classification, and texture classification.

The coarse-grained datasets include ImageNet-1k-Subset [73], ImageNet-100-Subset [73] and Caltech
101 [74]. ImageNet-1k-Subset [73] and ImageNet-100-Subset [73], both randomly sampled with 100
images per class. ImageNet-100-Subset is a subset of 100 animal-related classes from ImageNet-
1K. Caltech 101 [74] consists of 101 object categories. For fine-grained classification, we use
Oxford Pets [75], Food101-Subset [76], Flowers 102 [68], and CUB-200-2011 [77], with Food101-
Subset [76] being a curated subset of Food101 [76] containing 101 food categories. Other datasets
follow their original training and validation setups. Texture classification is evaluated using the
DTD [78] dataset, which contains 47 texture categories. Detailed dataset statistics are provided in
Table 16, summarizing the number of classes, training samples, and test samples for each dataset. It
is important to note that datasets with a higher number of classes or fewer average samples per class
present greater challenges in terms of classification and generalization.

Table 16: Statistics of the benchmark datasets
Dataset Task Type Classes Training Data Test Data
ImageNet-1k-Subset [73] Coarse-grained object classification 1000 100,000 50,000
ImageNet-100-Subset [73] Coarse-grained object classification 100 10,000 5,000
Caltech 101 [74] Coarse-grained object classification 101 3060 6084
Oxford Pets [75] Fine-grained object classification 37 3680 3669
Food101-Subset [76] Fine-grained object classification 101 10100 25,250
Flowers 102 [68] Fine-grained object classification 102 6,552 818
CUB-200-2011 [77] Fine-grained object classification 200 5,994 5,794
DTD [78] Texture classification 47 1880 1,880
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