Under review as a conference paper at ICLR 2026

MATRIX: MULTIMODAL AGENT TUNING FOR RO-
BUST ToOL-USE REASONING

Anonymous authors
Paper under double-blind review

West Paw Zogoflex Tux
DogToy

Task: | want to buy a dog toy for each dog in the photo. How
many dollars will | need to spend in total?

Ground Truth:
79.96 dollars

QWEN2-VL [

Qwen2-VL: | want to buy a dog toy for each dog in the photo.

(-
% How many dollars will | need to spend in total?\nAttachment:

imagelljpg, mage._12jpg’),

MAT

MATRIX (ours) \

MAT: | need to determine the number of dogs in the
provided images and then calculate the total cost
for purchasing a dog toy for each of them. I will use
the “visualizer' tool to locate the dogs in the
images and then sum the costs accordingly.

Observation: Error: Code execution failed due to
the following error: EXECUTION FAILED: Evaluation
stopped at line ‘from mtcnn.mtcnn import MTCNN'

MATRIX: To calculate the total cost, | will first count

¥E the number of dogs in "image_12jpg" using object

¥ detection. Then, I will multiply that by the price of the

7 dog toy (§19.99), which is given in “image_1Ljpg .

Pythoninterpreter: Count the number of dogs in the image.
yin#

Codeln™ "y
p Count the number of dogs in the image.

boxes = objectlocation(object=dogl
image_path=\image_12)pg\"in

%

&) Observation: None
A printienboxes)in

MATRIX: Now that | have determined there are 4

dogs in the image, Il calculate the total cost by

multiplying the number of dogs by the price of the

dog tay, which is $19.99 each...

Pythoninterpreter:

" Qwen2-VL: To solve this task, | need to determine the
number of dogs in the photo and multiply it by the price of
the dog toy. | will use the inspect_file_as_text™ tool to
extract the number of dogs from the image information
and the ‘finalanswer' tool to calculate the total

§3p costinCodein"pyln# Inspect the image information to
W find the number of dogs\nwith open(.cache/image_ILjpg,
) as fln image_info = fread(\nlnnumber_of dogs =
int(image_infosplit(' J])\nln# Colculate the total
cost\nprice_per_toy = 19.99\ntotal_cost = number_of_dogs *
price.per_toylnin# Use final_answer tool to provide the total
costinfinal_answerftotal_cost)\n™ "},
Observation: Observation:\nExecution failed: EXECUTION
FAILED:\nEvaluation stopped at line ‘with
Q open(:cache/image._Tljpg’ 'r) as fin image.info = fread()’
because of the following errornit is not permitted to
evaluate ot ..}

MAT: It seems there was an error while trying to

access the image file. | will use the visualizer ﬁ
@ tool to analyze the image directly without loading

it. I will ask the tool to identify dogs in the first

image and then proceed with the same method.....

Observation: Analyzing the first image for
dogs\ndog_bboxes_image_12.3..4]. The image
contain four dogs.
MAT: Each dog toy costs $19.99. I will calculate the
total cost based on this
ion\n\nCode:\n"* *py\n# ing there
are 4 dogs in each image\nnumber_of_dogs = 4 *2
4 dogs in the first image and 4 in the
second\ncost_per._toy = 19.99\n\n# 159.92 total cost

% Final Answer: 159.92 dollars

Q Observation: Verified 4 dogs and total cost is 79.96

&

e
b @ matrIX: [UTPUT] -> 79.96
pamCre

\"EXECUTION %;Z Final Answer: The total cost is 79.96 dollars.

% nal Answer: (ok: False, ‘error:
=7 FAILED:InEvaluation stopped at line ...}

X Tool-Augmented CoT X Low Answer Accuracy V Highest Answer Accuracy +/ Tool-Augmented CoT

X Tool-Augmented CoT
X Lower Hallucinations X ing Ct i

J Lower

X Answer Accuracy
X Reasoning Consistency

Figure 1: Comparison of baseline Qwen2-VL (Yang et al., 2024), MAT (Gao et al., 2025b),
and proposed MATRIX agent on a visual reasoning task. MATRIX shows superior tool
use, fewer hallucinations, and more consistent reasoning, while Qwen2-VL and MAT often
struggle with tool coordination and fallback strategies.

/ Reasoning Consistency /' Lower Hallucinations

ABSTRACT

Vision language models (VLMs) are increasingly deployed as controllers with
access to external tools for complex reasoning and decision-making, yet their
effectiveness remains limited by the scarcity of high-quality multimodal
trajectories and the cost of manual annotation. We address this challenge
with a vision-centric agent tuning framework that automatically synthesizes
multimodal trajectories, generates step-wise preference pairs, and trains a
VLM controller for robust tool-use reasoning. Our pipeline first constructs
M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified
trajectories, enabling imitation-based trajectory tuning. Building on this, we
develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool
reasoning. To achieve finer alignment, we further introduce Pref-X, a set of
11K automatically generated preference pairs, and optimize MATRIX on it via
step-wise preference learning. Across three benchmarks, Agent-X, GTA, and
GATA, MATRIX consistently surpasses both open- and closed-source VLMs,
demonstrating scalable and effective multimodal tool use. Our datasets and
models will be open-sourced to support future research.

1 INTRODUCTION

Vision language models (VLMs) augmented with external tools are increasingly used as
controllers for complex reasoning and decision-making tasks (Gao et al., 2024; Suris et al.,
2023; Gupta & Kembhavi, 2023; Yuan et al.; 2024). Acting as central planners, they
invoke diverse tools through structured prompts, enabling applications in visual editing (Wu
et al., 2023), embodied control (ichter et al., 2023), question answering (Shen et al., 2023),
video reasoning (Fan et al., 2024), and desktop automation (Trivedi et al., 2024). Existing

Under review as a conference paper at ICLR 2026

approaches improve tool use by fine-tuning controllers on trajectories collected via manual
annotation or closed-source APIs. However, such data are costly to obtain and often biased
toward narrow environments, which limits their generalization to broader multimodal tasks.

Limitations of existing approaches. Most existing agents are trained with supervised
fine-tuning (SFT) on curated tool-use demonstrations (Peng et al., 2023; Wang et al., 2024d;
Sun et al., 2024). Such datasets are expensive to collect, difficult to scale, and biased toward
narrow domains or tool distributions. Reliance on static demonstrations further constrains
generalization: if the examples emphasize only certain tools (e.g., video_parser, image_qa),
agents often fail when confronted with tasks requiring different capabilities, such as live
web search or object grounding. As a result, models overfit to specific usage patterns and
struggle in unseen multimodal contexts. Recent works (Gao et al., 2025b; Li et al., 2025)
explore synthetic generation to reduce annotation cost, but key challenges remain. Generated
trajectories are inconsistent in quality, exploration is limited, and evaluations are restricted
to narrow domains. Moreover, imitation learning alone cannot teach agents to refine tool
usage or recover from partially correct rollouts, since it lacks reinforcement-based feedback.

Our insight: robust agents need both traces and preferences. The central challenge in
training tool-using agents lies in bridging two gaps: (i) acquiring fundamental tool-usage skills
from scarce, high-quality trajectories, and (ii) refining these skills to handle the ambiguities,
errors, and partial successes that naturally occur in open-ended reasoning. Existing methods
either focus solely on imitation, which cannot teach recovery or refinement, or rely on
trajectory-level labels, which are too coarse to capture step-wise decision quality. Our key
insight is that these challenges require a staged approach. First, large-scale supervised traces
are essential to ground a VLM controller in multimodal reasoning and tool invocation. Second,
once the model can follow trajectories, its limitations are best addressed through step-level
preference optimization, where alternative actions are explored, compared, and refined. This
pairing of supervised grounding with preference-based alignment enables agents not only to
execute valid tool calls but also to select the most effective ones in complex reasoning chains.

Our framework. We introduce MATRIX, a two-stage framework that first equips a controller
with supervised tool-use skills and then refines its decision-making through preference opti-
mization. (1) Trajectory-driven SFT: We construct M-TRACE, a dataset of 28.5K multimodal
tasks with 177K verified step-level tool-use trajectories, providing broad coverage of tool
reasoning skills. (2) Preference optimization: We build Pref-X, 11K automatically generated
preference pairs from step-level exploration and verification, and apply Direct Preference
Optimization (DPO) (Kong et al., 2025) to align the controller with fine-grained tool-use
preferences. This staged design grounds the agent in verified traces while enabling progressive
improvement through self-exploration and automatic verification. We evaluate MATRIX on
three challenging benchmarks, Agent-X (Ashraf et al., 2025), GTA (Wang et al., 2024b),
and GATA (Mialon et al., 2023), where it improves answer accuracy by 14%, 23%, and 11%,
respectively. As shown in Fig. 1, MATRIX achieves consistent reasoning and more adaptive
tool selection compared to prior agents. Our main contributions are as follows:

1. M-TRACE: a large-scale corpus of 28.5K multimodal tasks and 177K verified tool-use
trajectories built via automated synthesis and verification.

2. Pref-X: 11K preference-labeled step pairs that enable fine-grained alignment of tool-usage
decisions beyond imitation learning.

3. MATRIX: a robust, vision-centric agent that leverages trajectory supervision with preference
optimization for efficient tool-use reasoning.

4. We show consistent improvements over strong baselines on Agent-X, GTA, and GATA.
Together, these contributions establish MATRIX as a scalable and effective agent for training
robust multimodal agents.

2 RELATED WORK

Multimodal Agents. The rapid progress of large multimodal models (LMMs) (Achiam
et al., 2023; Grattafiori et al., 2024; Team et al., 2023; Bi et al., 2024; Bai et al., 2023) has
enabled agents that integrate perception, reasoning, and external tools. Moving beyond

Under review as a conference paper at ICLR 2026

text generation, modern agents act as central planners by invoking APIs (Zhang et al.,
2025), operating systems (Mei et al., 2024), document analyzers (Musumeci et al., 2024), or
web environments (Song et al., 2024), supporting broad interaction with digital ecosystems.
This has fueled the rise of orchestration frameworks such as Avatar (Wu et al., 2024),
LangChain (Chase, 2022), and AutoGPT (Gravitas, 2023), which couple reasoning with
tool execution. Specialized systems extend these capabilities to web browsing (Yao et al.,
2022; Nakano et al., 2021; Qin et al., 2023), REST APIs (Song et al., 2023), or multi-model
collaboration (Shen et al., 2024; Li et al., 2023). Multimodal variants such as MLLMTool (Wang
et al., 2025) combine vision and language for perception-driven reasoning. Despite these
advances, most frameworks lack systematic training and evaluation protocols for sequential
tool reasoning, limiting their robustness in open-ended multimodal environments.

Tool Usage Datasets. Datasets for tool-using agents have primarily targeted text-based
settings (Tang et al., 2023; Qin et al., 2024; Du et al., 2024; Liu et al., 2024b). Multimodal
benchmarks including Agent-X (Ashraf et al., 2025), 0SWorld (Xie et al., 2024), MMInA (Zhang
et al., 2024b), GATA (Mialon et al.; 2023), and GTA (Wang et al., 2024b) broaden coverage
but still rely heavily on curated or repurposed trajectories. Existing tuning methods fall into
two paradigms: supervised fine-tuning (SFT) on annotated tool-use traces (Shen et al.; 2023;
Liu et al., 2024b), which is costly and brittle, or reinforcement learning (RL) with synthetic
rewards or preferences (Lee et al., 2024; Fu et al., 2024; Yu et al., 2024), which assume reliable
reward signals. Recent work explores step-wise preferences (Lai et al., 2024; Wang et al.,
2024a; Chen et al., 2024a; Kong et al., 2025), but applications remain narrow (e.g., code or
math) where ground-truth labels exist. In contrast, MATRIX introduces scalable step-wise
preference optimization with Al-based verification, where the agent generates, evaluates, and
improves its own trajectories. This reduces reliance on manual annotation and enables robust
multimodal tool-use reasoning in diverse environments.

3 MATRIX AGENT

MATRIX is a vision-centric multimodal agent built to perform reliable step-wise reasoning and
tool use. The key challenge for such agents lies in the scarcity of high-quality trajectories
and the cost of manual annotations, which limit scalability and generalization. To overcome
this, we design a two-stage training framework that leverages trajectory supervision with
preference optimization. In the first stage, supervised fine-tuning (SFT) on automatically
synthesized multimodal trajectories (M-TRACE) equips the controller with structured tool-use
skills. In the second stage, preference optimization via Direct Preference Optimization
(DPO) (Kong et al., 2025) on step-level exploration data (Pref-X) refines decision-making
beyond imitation, encouraging the agent to favor accurate, consistent, and goal-directed
actions. The overall framework is illustrated in Fig. 2.

3.1 M-TRACE FORMULATION

Pipeline Overview. Our M-TRACE synthesis pipeline (Fig. 2) consists of four stages:
(1) query generation, (2) artifact construction, (3) trajectory collection, and (4) parallel
verification. To ensure reliability, we include two parallel verifiers: a query—artifact verifier
that checks task feasibility and input alignment, and a trajectory verifier that validates
tool-use consistency.

Data Format. Each multimodal tool-usage instance is represented as:
DM—TRACE = {f*v Qa {ti}?:lv {Ci ?:17 {Oi}?:la A}a (1)

where F* denotes the optional multimodal files (e.g., images, videos, PDFs, PPTX), Q is the
query, {¢;}?_, are the reasoning thoughts (step-level plans), {¢;}?_; are the generated code
snippets (tool calls), {0;}7_, are the corresponding observations (tool outputs), n is number
of steps, and A is the final answer. Following prior works (Ashraf et al., 2025; Wang et al.,
2024Db), we support two categories of queries: (1) question answering, where A is textual,
and (2) image generation, where A is a generated image. Each task may involve multiple
steps, forming a trajectory 7 = {¢1,¢1,01,...,tn, Cn, 0n}, which integrates reasoning, tool
execution, and observations across n steps to solve the query.

Under review as a conference paper at ICLR 2026

Query » Content | Multimodel Trajectory @ Parallel @
Generator | Generation | —* Art'f“t. Collection Verification
Construction l 1
T File Files to MTrace % .M'TRACE
@ Multi-Modal files v oD Checker Trajectory Dataset @
6 -@-# ,

mage Database

)
\Q.JE] [E’@ _, N STAGEI: CoT - SFT

X J

STAGE 2: Step wise preference tuning on Pref-X

‘ g di&*

Task: How many grams Parallel | | Task ‘ . | Action 1.1 ey
will I take in if I drink Ssampling
< two drinks of this 12 oz
can a day like thatin a
picture for a week?

"m mx"
Preferred

Action 1.2 MATRIX

Figure 2: Overall pipeline. M-TRACE construction, where multimodal queries are paired
with verified step-by-step trajectories to create high-quality training traces; and Pref-X
generation, which produces preference pairs from step-level exploration and verification for
preference optimization. MATRIX is trained first with supervised fine-tuning on M-TRACE and
then refined through preference optimization with DPO on Pref-X.

Data Generation. We followed a four-stage process for generating M-TRACE.

1. Query Generation. We aim to construct a large pool of diverse, practical, and
executable queries. A small set of manually designed seed queries serves as the
starting point. Starting from seed queries, we iteratively prompt GPT-4o-mini (Hurst
et al., 2024) with tool descriptions and structured templates to generate diverse and
executable queries, using hyperparameters (e.g., temperature) to promote diversity.

2. Artifact Construction. Unlike prior works that sample files first, we adopt a query-
first strategy, ensuring tighter alignment between queries and resources. This is
crucial as real tasks often require heterogeneous inputs (e.g., DOCX, PPTX, XLSX,
PDF) and multiple resources. For each query, GPT-40-mini Speciﬁes the file type
and draft content; images are retrieved via BGE (Chen et al., 2024b) embeddings
with similarity search while non-image files are programmatlcally generated.

3. Trajectory Collection. A zero-shot ReAct-style agent (Yao et al., 2023a) powered
by GPT-40-mini generates multi-step trajectories. Given a query and artifacts,
the agent produces step-wise thoughts, executable tool calls, and corresponding
observations. Only valid executions are retained, ensuring high-quality reasoning
traces.

4. Parallel Verification. Two verifiers ensure robustness: (i) the query-artifact verifier
checks task feasibility and input relevance, and (ii) the trajectory verifier validates
tool usage, arguments, and outputs. Following prior verification protocols (Liu
et al., 2024b; Wang et al.; 2023; Gao et al., 2025b), GPT-4o-mini filters noisy or
inconsistent samples, discarding ill-posed queries and trajectories.

Data Sources. To diversify visual context, we collect ~100K image—caption pairs from
eight datasets: COCO (Lin o dl , 2014), ChartQA (Masry et al., 2022), LLaVA (Liu et al.,

2024a), SAM (Kirillov et al., 2023), TextVQA (Singh et al.,)l‘)) WebCelebrity (Liu et al.,
2015), Web-Landmark (Wey (\nd et al., 2020), and WlklArt (Saleh & Elgammal, 2015). We
further enrich coverage with ShareGPT 4V (Zhang et al.,; 2024a) captions, spanning charts,
documents, science QA, visual reasoning, and art.

M-TRACE Analysis. After verification, M-TRACE yields 28.5K multimodal tasks with 27.5K
associated artifacts, distilled from 43.5K initial candidates. These tasks produce 177K verified
trajectories, ensuring both scale and quality. The dataset is diverse across several dimensions:
(i) File types: M=TRACE spans over 10 formats—including images, documents, spreadsheets,

Under review as a conference paper at ICLR 2026

0.0% 10.0%
Finance 15.1%
Culture 13.4%

Environment 7.0%

pdf Entertainment 6.8%
183% Heatth | 5.5%
Others 5.4%

Nature | 7%
Travel - 4.6%

(b)
14,000
12,044
12,000
File inspector | 127% Web Search [353%
10,000
= 8,000
=3
Visual T o
Segmentation | © 6,000
mage 4,000 2,913
Generation ..
2,000 1,272
Object —— 501 308 133 468
Localization | 2®% 0 e
Ny 2 3 4 5 6 7 8 9
— Image Question (2w
Answering .) No. of Steps
(c) (d)

Figure 3: Statistics of M-TRACE. (a) File-type distribution, (b) Domain coverage, (c¢) Tool
usage, (d) Step complexity.

audio, video, and slides—capturing realistic multimodal contexts, with additional coverage of
formats like HTML and JSON (Fig. 3a). (ii) Knowledge domains: Tasks cover 16 categories
such as finance, health, culture, environment, and history, ensuring broad topical coverage
(Fig. 3b). (iii) Tool usage: Trajectories invoke a wide range of tools, with web search
most common, followed by image QA, file inspection, visualization, and Python execution,
mirroring real-world problem solving (Fig. 3¢). (iv) Step complezity: Tasks vary in reasoning
depth, with most requiring 2-5 steps and some up to 9, reflecting both practical and complex
reasoning cases (Fig. 3d).

3.2 STAGE 1: SUPERVISED FINE-TUNING (SFT) wiTH TOOL-USE REASONING

Step-wise reasoning with ReAct. We use Qwen2-VL-7B (Yang et al., 2024) as the
controller, an open-source VLM with integrated vision-language grounding. To equip the
controller with structured tool-usage skills, we adopt the ReAct paradigm (Yao et al., 2023D),
where reasoning unfolds step by step. At each step i, the controller first generates a thought t;
(a natural language plan) and then produces a corresponding code snippet ¢; to invoke a tool.
Compared with fixed formats (e.g., JSON), Python-style code provides greater flexibility for
diverse input—output types and seamless integration with real tools.

Formally, given a query (), optional external resources F*, and history H; =

{t1,¢1,01,...,ti—1,¢i—1,0;—1}, the controller chooses a tool and arguments by maximiz-
ing:
t?ac: zargrtnax P@(ti7ci | Q7'F*7Hi)7 (2)
iyCi

where o; is the observed outcome of executing c;.

Tool integration. Unlike symbolic simulations, the agent executes real tools spanning
categories such as web search, visual perception, image generation/editing, file inspection,
multimodal reasoning, and a broad set of Python libraries (see Tab. 5). This setup grounds

Under review as a conference paper at ICLR 2026

reasoning in executable actions, ensuring realistic trajectories and better generalization to
practical tasks. Further implementation details are provided in Appendix §A.1.

Training objective. Given a trajectory 7 = {t1,¢1,01,...,tn, Cn, 0, } paired with query Q
and resources J*, the controller is optimized with a step-level cross-entropy objective:

Lsrr = E(Q, 7+ 7, A)~Dy-race [- Z log Py (ti, ci | Q, F~, Hi)] (3)
=1

Crucially, the final answer A is not supervised, forcing the controller to rely on tool interactions
rather than memorized knowledge. This design grounds the model in executable tool use
and sets the stage for further refinement with preference optimization.

3.3 STAGE 2: PREFERENCE TUNING

While SFT equips the controller with high-quality demonstrations, it remains restricted to
imitation, limiting the ability to refine tool usage, recover from partially correct rollouts,
or adapt beyond static trajectories. To overcome this, we leverage step-wise preference
optimization on 11K preference pairs (Pref-X), enabling the agent to compare candidate
actions and learn to favor accurate, consistent, and semantically useful behaviors. This
reinforcement-style refinement improves robustness and adaptability across multimodal tasks
(see Fig. 4).

Formulation. As in Stage 1, we adopt the ReAct framework (Yao et al., 2023b), where
at step i, the agent generates an action a; = (¢;,¢;) consisting of a natural-language
thought t; and executable code c;. Given query Q, optional artifacts F*, history h; =
{t1,¢1,01,...,ti—1,¢i—1,0;—1}, and tool set T, the controller selects:

ti,c; = argItnaXTre(tivci | Q,f*vhiaT)v (4)

v i,Ci
where 7y is the Stage 1 SFT-initialized controller.

Preference data synthesis. We construct Pref-X, a dataset of 11K preference pairs.
Starting from seed queries in M-TRACE, an LLM (e.g., Qwen2.5-7B) expands queries and
specifies artifact types. Relevant images are retrieved via embedding search, while documents
(DOCX, PPTX, XLSX, PDF) are synthesized programmatically. Each task thus consists of
(Q, F*), enriched with realistic multimodal context (see Appendix §A).

Step exploration and verification. At step 4, the controller proposes multiple candidates
{a},...,a"}, each executed to yield outcomes {0}, ...,0"}. An LLM-based verifier, conditioned
on (Q, h;), compares these outcomes and selects the most reliable action a!™ = (¢f, ¢f). The
remaining candidates form the dispreferred set DS, A task with m steps yields m(n — 1)
preference pairs:

D= {(xivafre’a?is) I (S [17m]}' (5)
Pref-X pipeline. Unlike traditional RLHF approaches based on PPO (Schulman et al.,
2017), which require reward modeling and costly reinforcement learning updates, Direct
Preference Optimization (DPO) directly optimizes over preference pairs (Rafailov et al., 2023).
It leverages a fixed reference policy to stabilize training, avoids the need for explicit reward
models, and is significantly more computationally efficient. This makes DPO particularly
well-suited for step-wise preference tuning, where fine-grained comparisons are abundant but
full reinforcement learning would be prohibitively expensive. To create preference-labeled
trajectories, we combine two complementary components: step sampling and step verification.
Instead of relying on static demonstrations, we employ an online exploration scheme (Fig. 2)
where the agent iteratively samples actions and verifies their quality within each task.

At step i, the controller proposes n candidate actions {a},a?,...,al}, each decomposed into
(tk, c¥), which are executed to yield observations {o},...,0"}. We then prompt an LLM-based
verifier with the query @, history h;, candidate actions, and corresponding observations, and
select the most reliable action (tF, ¢}, oF). This process expands the trajectory step by step

A A)
until the task is solved.

Under review as a conference paper at ICLR 2026

Table 1: Overall results on Agent-X. Best values in each column (within open/closed-
source) are in bold, and second-best are underlined. Metrics are detailed in Appendix

Model \ Step-by-Step | Deep Reasoning \ Outcome

‘ Gs Tp Tace ‘ Face Cs Fp Sace ‘ Gace G; Tgcc

Closed-source

Gemini-2.5-Pro 0.40 0.36 0.81 0.72 0.48 0.64 0.73 0.40 0.56 0.62
GPT-4o0 0.60 0.47 0.72 0.81 0.57 0.79 0.59 0.37 0.70 0.68
OpenAI-o4-mini 042 032 0.89 | 0.71 0.51 0.60 0.80 | 0.45 0.67 0.63
Open-source

Phi-4-VL-Instruct 0.13 0.21 0.24 0.61 0.19 0.47 0.40 0.11 0.26 0.42
InternVL2.5-8B 0.45 0.31 0.47 0.68 0.47 0.52 0.60 0.28 0.55 0.58
Gemma-3-4B 026 030 0.78 | 0.61 0.54 0.38 0.54 0.27 0.67 0.60
InternVL3-8B 0.46 034 054 | 0.68 045 0.70 0.40 0.20 0.59 0.62
VideoLLaMA3-7B 0.45 028 046 | 0.65 0.46 0.62 0.54 0.28 0.54 0.54
Quen2-VL-7B 0.51 039 054 | 0.62 0.41 0.34 0.38 0.25 0.55 0.57
Ours

MATRIX (Ours) ‘ 0.59 044 091 ‘ 0.71 048 0.88 0.71 ‘ 0.39 0.76 0.77

Baseline Improvement (Qwen2-VL-7B) | +8% +5% +37% +9% +7% +54% +33% +14% +21% +20%

*Closed-source results shown for reference; best/second-best highlighting applies only to Open-source models.

The preference data is constructed in a pairwise manner: for each input z;, the selected best
action a}'® = (tf, cf) serves as the preferred label, while the remaining candidates {a } .«
form the dispreferred set DS, A single task with m steps thus yields m(n — 1) preference
pairs, summarized as

D = {(zi,a{"",af™) | i € [1,m]}. (6)
Objective. Given the constructed dataset D, we optimize the controller using the Direct
Preference Optimization (DPO) objective (K()nﬂ et al., 2025):
_ mo(ay®|zs) 7o (af'*|z:)
£(0) = ~E(g, e gt [log 7 (B(log Tt} — log Tl))] (7)

where . is the reference controller (obtained after supervised fine-tuning), 8 controls
deviation from the reference, and o(-) is the logistic function.

Training scheme. The final MATRIX controller is trained in two phases: (i) Trajectory-
driven SFT on 177K verified traces (M-TRACE), grounding step-wise tool reasoning. (ii)
Preference tuning on 11K preference pairs (Pref-X), where the agent self-explores, generates
candidate actions, and updates via the DPO objective. This staged design allows the agent to
benefit from verified traces while progressively improving decision-making through exploration
and preference alignment. A summary of the training loop is given in Algorithm 1.

4 RESULTS

We evaluate MATRIX across three challenging multimodal agent benchmarks. Agent-
X (Ashraf et al., 2025) comprises 828 tasks spanning six environments (e.g., web browsing,
driving, sports), requiring fine-grained step-wise reasoning. GTA (Wang et al., 2024b)
consists of 229 real-world queries paired with authentic tools and multimodal inputs, em-
phasizing long-horizon tool usage. GAIA (\[mlou et al., 2023) provides 106 open-ended
multimodal questions covering diverse reasoning levels and task domains.

We benchmark against: (i) closed- source controllers (GPT-4, GPT-4o0), (ii) open-source
controllers (LLaVA-NeXT-8B (Liu et al., 2024a), InternVL2-8B ((hen et al., 2024¢), Qwen2-
VL-7B (Yang et al., 2024), MiniCPM-V- 8 5B (Yao et al., 2024)), and (iii) agent baselines
(Lego (Tmm, 2023), Sibyl (Wang et al., 2024c¢), Warm- up Act (Mialon et al., 2023), HF
Agent (HuggingFace Contributors, 2()24)) Beyond head-to-head comparisons, we conduct
ablations on data generation and preference tuning, and provide qualitative case studies
illustrating how MATRIX solves complex multimodal tasks through adaptive tool reasoning.

Under review as a conference paper at ICLR 2026

Table 2: Results on GTA and GAIA benchmarks. Bold numbers indicate the best
performance among open-source models, underline denotes the second best.

Method ‘ Controller ‘ GTA ‘ GAIA

| AnsAcc | Level 1l Level 2 Level 3 AnsAcc
Closed-source Controllers
Lego Agent GPT-4 46.59 - - - -
Lego Agent GPT-40 41.52 - - - -
Sibyl Agent GPT-4-turbo - 43.40 27.90 7.70 29.70
Warm-up Agent | GPT-4-turbo - 30.20 15.10 0.00 17.60
HF Agent GPT-40 57.05 47.17 31.40 11.54 33.40
HF Agent GPT-40-mini 57.69 33.96 27.91 3.84 26.06
Open-source Controllers
HF Agent InternVL2-8B 32.05 7.55 4.65 0.00 4.85
HF Agent MiniCPM-V-8.5B 33.97 13.21 5.81 0.00 7.27
HF Agent Qwen2-VL-7B 42.31 16.98 8.14 0.00 9.70
T3-Agent MAT-MiniCPM-V-8.5B 52.56 26.42 11.63 3.84 15.15
T3-Agent MAT-Qwen2-VL-7B 53.85 26.42 15.12 3.84 16.97
Ours
MATRIX Agent | Tuned Qwen2-VL-7B | 65.38 + 4% | 29.15 + 4% 19.28 + 2% 6.84 + 3% 21.47 + 3%
Improvement over Quwen2-VL-7B | +23.07% | +1217% +11.14% +6.84 +11.77%

*The variance and error study are given in Appendiz§ C.1

4.1 EXPERIMENTAL SETUP

Implementation. We adopt Qwen2-VL-7B (Yang et al., 2024) as the controller and fine-
tune the language backbone with LoRA (TTu et al., 2022). Training runs for five epochs on
M-TRACE using LoRA rank 32 applied to query, key, and value projections in all attention
layers. We optimize with AdamW (Ir=1 x 1079), cosine annealing, batch size 2 per device,
and a 10,240-token context window. Experiments use 4xH200 GPUs, and inference is
performed without sampling or verification for fair comparison.

Evaluation Metrics. Following prior works (Ashraf et al., 2025; Wang et al., 2024b;
Gao et al., 2025a), we evaluate performance of Agent-X using three modes: Step-by-Step
(correctness of individual tool-use steps), Deep Reasoning (coherence and factual accuracy
of multi-step reasoning), and Outcome (overall task-solving success via final answers and tool
execution). For GTA and GATA, we report AnsAcc, with GATA results further broken down
by difficulty levels (Level 1, Level 2, and Level 3).

4.2 STATE-OF-THE-ART COMPARISONS

Agent-X: Tab. 1 shows that while open-source models like Qwen2-VL-7B, InternVL3-8B,
and VideoLLaMA3-7B improve grounding and factual precision on Agent-X, they remain
behind closed-source controllers (e.g., GPT-40, Gemini). Key metrics for Agent-X include
Tool Accuracy (correct execution), Faithfulness Accuracy (evidence alignment), and
Semantic Accuracy (contextual fit). MATRIX achieves the highest scores, 0.91, 0.71, and
0.71, respectively, yielding relative gains of +8% grounding, +5% precision, +37% tool
accuracy, and +50% factual precision over Qwen2-VL-7B. These results confirm that step-
wise preference optimization with Al feedback substantially enhances grounding with tool-use
reasoning and offers a scalable open-source alternative.

GTA and GAIA: Tab. 2 reports results on GTA and GAIA. On GTA, MATRIX outperforms
both closed-source (GPT-4/40) and open-source (InternVL2-8B, Qwen2-VL-7B) controllers,
with a +23.07% AnsAcc gain over Qwen2-VL-7B. Compared to SFT-based methods like
T3-Agent, it shows clear advantages from self-exploration and preference refinement, relying
less on costly annotations. On GAIA, MATRIX-AGENT achieves best performance among
open-source models, surpassing Qwen2-VL-7B by +11.77% in AnsAcc. While a small gap
remains to closed-source models, we attribute this to scale and proprietary data. The results
validate the effectiveness of our step-wise preference optimization for multimodal tool-use.

Under review as a conference paper at ICLR 2026

Table 3: Ablation studies for MATRIX on GTA Left: Effect of steps (d). Middle: BLEU
scores for verifier discrimination (lower is better). Right: Effect of two-verifier design.

Iteration Steps (d) ‘ Verifier BLEU (]) ‘ Two-Verifier Ablation
d | 200 500 1000 Verifier | BL B2 B3 B4 Method | GTA GAIA
AnsAcc ‘ 55.17 65.38 60.50 Random 0.53 0.41 0.36 0.34 W/O verifiers 50.00 13.33
Ours 0.21 0.22 0.19 0.17 Ours 65.38 19.28

Table 4: Ablation studies for MATRIX on Agent-X. Left: Effect of computation budget.
Middle: Effect of dataset size. Right: Comparison of different RL methods.

GPU Compute ‘ Dataset Size (samples) ‘ RL Method Comparison
Data | 8K 175K 285K Size | 8K 175K 285K Method | SFT ORPO DPO
Memory (GB) | 221 270 318 Goal_Acc | 029 035 0.39 | Goal Acc | 031 037 0.39

4.3 ABLATION AND ANALYSIS

Effect of Iteration Step Size. The iteration step size d controls the trade-off between
update frequency (how often the policy is updated) and data diversity (breadth of sampled
trajectories). A very small d (e.g., 200) yields frequent updates but limited diversity, while
a large d (e.g., 1000) increases diversity at the cost of slower adaptation. As shown in
Tab. 3(left), d = 500 achieves the best balance, giving the highest AnsAcc of 65.38%.

Verifier Discrimination Ability. We measure how well our verifier distinguishes candidate
steps by comparing it with random selection using BLEU scores (lower is better, since
lower overlap means more diverse actions). Tab. 3(middle) shows that our verifier achieves
consistently lower BLEU (e.g., BLEU-1 = 0.21 vs. 0.53 for random), indicating it selects
more distinct and informative steps, which translates to improved AnsAcc.

Impact of Dual-Verifier Framework. We further ablate the two-verifier design by
removing one verifier. As reported in Tab. 3(right), performance drops substantially (GTA:
65.38% — 50.00%, GATA: 19.28% — 13.33%), confirming that combining both verifiers is
critical for filtering inconsistent or low-quality samples.

Ablation on Dataset Scale, Memory, and Optimization Methods. Tab. 4 summarizes
the effect of training data size and tuning strategies. Increasing the dataset from 8K to
28.5K samples raises memory usage (from 221 GB to 318 GB across 4xH200 GPUs) but
yields steady gains in Goal_Acc (0.29 — 0.39). On the optimization side, ORPO improves
over pure SFT (0.37 vs. 0.31), while DPO achieves the highest score (0.39), underscoring
the effectiveness of preference-based tuning for step-level tool reasoning.

Additional ablations on variance analysis, tool preference, and modality contributions are in
Appendix §C. Qualitative/failure case analysis is shown in Appendix §D.

5 CONCLUSION

We introduced MATRIX, a vision-centric framework for multimodal agent tuning that advances
tool-use reasoning through staged training. MATRIX combines large-scale trajectory super-
vision (M-TRACE) with step-wise preference optimization (Pref-X), enabling agents to both
acquire fundamental tool-use skills and refine their decision-making beyond imitation. This
unified design achieves consistent gains across Agent-X, GTA, and GAIA, surpassing existing
baselines. Our results highlight the scalability and effectiveness of integrating synthetic data
generation with iterative self-exploration for building robust multimodal agents. =

Limitations and Future Directions. While effective, MATRIX has some limitations.
Currently, it only grounds multimodal signals at the query/task level, relies on prompt-based
verifiers that may falter under distribution shifts, and optimizes step-level preferences without
trajectory-level credit assignment. Future work will address these by exploring adaptive
verifiers, continuous multimodal grounding, and hierarchical preference modeling.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 2

Tajamul Ashraf, Amal Saqib, Hanan Ghani, Muhra AlMahri, Yuhao Li, Noor Ahsan, Umair
Nawaz, Jean Lahoud, Hisham Cholakkal, Mubarak Shah, Philip Torr, Fahad Shahbaz
Khan, Rao Muhammad Anwer, and Salman Khan. Agent-x: Evaluating deep multimodal
reasoning in vision-centric agentic tasks. 2025. URL https://arxiv.org/abs/2505.
24876. 2, 3,7, 8

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023. 2

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language
models with longtermism. arXiv preprint arXiv:2401.02954, 2024. 2

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 18392-18402, 2023. 20

Harrison Chase. Langchain, October 2022. URL https://github.com/langchain-ai/
langchain. 3

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimiza-
tion for mathematical reasoning. In Annual Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 7889-7903, 2024a. 3

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-
embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through
self-knowledge distillation. 2024b. 4

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong,
Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation
models and aligning for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2418524198, 2024c. 7

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents
for large-scale api calls. In International Conference on Machine Learning (ICML), pp.
11812-11829, 2024. 3

Yue Fan, Xiaojian Ma, Rujie Wu, Yuntao Du, Jiaqi Li, Zhi Gao, and Qing Li. Videoagent:
A memory-augmented multimodal agent for video understanding. In European Conference
on Computer Vision (ECCV), 2024. 1

Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, and Benoit Boulet. Furl: visual-language models
as fuzzy rewards for reinforcement learning. In International Conference on Machine
Learning (ICML), pp. 14256-14274, 2024. 3

Zhi Gao, Yuntao Du, Xintong Zhang, Xiaojian Ma, Wenjuan Han, Song-Chun Zhu, and Qing
Li. Clova: A closed-loop visual assistant with tool usage and update. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13258-13268, 2024.
1

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde
Jia, Song-Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven agent
for efficient tool usage. In International Conference on Learning Representations (ICLR),
2025a. 8

10

https://arxiv.org/abs/2505.24876
https://arxiv.org/abs/2505.24876
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

Under review as a conference paper at ICLR 2026

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde
Jia, Song-Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven
agent for efficient tool usage. In The Thirteenth International Conference on Learning
Representations, 2025b. 1, 2, 4

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. 2

Significant Gravitas. Autogpt, 2023. URL https://github.com/Significant-Gravitas/
AutoGPT. 3

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual
reasoning without training. In The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 14953-14962, 2023. 1

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
International Conference on Learning Representations (ICLR), 2022. 8

HuggingFace Contributors. Agents and tools, 2024. URL https://huggingface.co/docs/
transformers/agents. 7

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024. 4

brian ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander
Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov,
Sergey Levine, Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander T
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown,
Michael Ahn, Omar Cortes, Nicolas Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek
Rettinghouse, Jornell Quiambao, Peter Pastor, Linda Luu, Kuang-Huei Lee, Yuheng
Kuang, Sally Jesmonth, Nikhil J. Joshi, Kyle Jeffrey, Rosario Jauregui Ruano, Jasmine
Hsu, Keerthana Gopalakrishnan, Byron David, Andy Zeng, and Chuyuan Kelly Fu. Do as
i can, not as i say: Grounding language in robotic affordances. In Conference on Robot
Learning (CoRL), pp. 287-318, 2023. 1

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything.
In International Conference on Computer Vision (ICCV), pp. 4015-4026, 2023. 4

Aobo Kong, Wentao Ma, Shiwan Zhao, Yongbin Li, Yuchuan Wu, Ke Wang, Xiaoqgian Liu,
Qicheng Li, Yong Qin, and Fei Huang. Sdpo: Segment-level direct preference optimization
for social agents. arXiv preprint arXiv:2501.01821, 2025. 2, 3, 7

Xin Lai, Zhuotao Tian, Yukang Chen, Sengiao Yang, Xiangru Peng, and Jiaya Jia. Step-
dpo: Step-wise preference optimization for long-chain reasoning of llms. arXiv preprint
arXiv:2406.18629, 2024. 3

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren
Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf:
Scaling reinforcement learning from human feedback with ai feedback. In International
Conference on Machine Learning (ICML), pp. 26874-26901. PMLR, 2024. 3

Chenliang Li, He Chen, Ming Yan, Weizhou Shen, Haiyang Xu, Zhikai Wu, Zhicheng
Zhang, Wenmeng Zhou, Yingda Chen, Chen Cheng, et al. Modelscope-agent: Building
your customizable agent system with open-source large language models. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 566578, 2023. 3

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang, Chengjie Wang,
Jilin Li, and Feiyue Huang. Dsfd: dual shot face detector. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5060-5069, 2019. 20

11

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents

Under review as a conference paper at ICLR 2026

Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhengiang
Huang, Qianben Chen, Weichen Sun, Qiexiang Wang, Hongxuan Lu, Tianrui Qin, Cheng-
hao Zhu, Yi Yao, Shuying Fan, Xiaowan Li, Tiannan Wang, Pai Liu, King Zhu, He Zhu,
Dingfeng Shi, Piaohong Wang, Yeyi Guan, Xiangru Tang, Minghao Liu, Yuchen Eleanor
Jiang, Jian Yang, Jiaheng Liu, Ge Zhang, and Wangchunshu Zhou. Chain-of-agents:
End-to-end agent foundation models via multi-agent distillation and agentic rl, 2025. URL
https://arxiv.org/abs/2508.13167. 2

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
Computer vision-ECCV 2014: 13th Furopean conference, zurich, Switzerland, September
6-12, 2014, proceedings, part v 13, pp. 740-755. Springer, 2014. 4, 26

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
Adwvances in Neural Information Processing Systems, 36, 2024a. 4, 7

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In International Conference on Computer Vision (ICCV), 2015. 4

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating
verifiable and diverse function-calling datasets. Advances in Neural Information Processing
Systems (NeurIPS), 37:54463-54482, 2024b. 3, 4

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa:
A benchmark for question answering about charts with visual and logical reasoning. In
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2263-2279,
2022. 4

Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong
Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: Llm agent operating system. arXiv preprint
arXiv:2403.16971, 2024. 3

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants. In The Twelfth International Conference on

—

Learning Representations, 2023. 2, 3, 7

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn,
Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, et al. Simple open-vocabulary object detection. In Furopean Conference on Computer
Vision (ECCYV), pp. 728-755. Springer, 2022. 20

Emanuele Musumeci, Michele Brienza, Vincenzo Suriani, Daniele Nardi, and
Domenico Daniele Bloisi. Llm based multi-agent generation of semi-structured docu-
ments from semantic templates in the public administration domain. In International
Conference on Human-Computer Interaction, pp. 98-117. Springer, 2024. 3

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-

pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-
assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.
3

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023. 2

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han,
Ning Ding, Huadong Wang, et al. Webcpm: Interactive web search for chinese long-form
question answering. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8968-8988, 2023. 3

12

https://arxiv.org/abs/2508.13167

Under review as a conference paper at ICLR 2026

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie
Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating
large language models to master 16000+ real-world APIs. In The Twelfth International
Conference on Learning Representations, 2024. 3

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. Advances in neural information processing systems, 36:53728-53741, 2023. 6

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer.
High-resolution image synthesis with latent diffusion models. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 10684-10695, 2022. 20

Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning
the right metric on the right feature. arXiv preprint arXiv:1505.00855, 2015. 4

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 6

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu,
Dongsheng Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for
task automation. arXiv preprint arXiv:2311.18760, 2023. 1, 3

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in
Neural Information Processing Systems, 36, 2024. 3

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8317-8326, 2019. 4

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt:
Connecting large language models with real-world applications via restful apis. arXiv
preprint arXiv:2306.06624, 2023. 3

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based
web agents. arXiv preprint arXiv:2410.16464, 2024. 3

Xiaowen Sun, Xufeng Zhao, Jae Hee Lee, Wenhao Lu, Matthias Kerzel, and Stefan Wermter.
Details make a difference: Object state-sensitive neurorobotic task planning. arXiv preprint
arXiv:2406.09988, 2024. 2

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python
execution for reasoning. In International Conference on Computer Vision (ICCV), pp.
11888-11898, 2023. 1

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun.
Toolalpaca: Generalized tool learning for language models with 3000 simulated cases.
arXiv preprint arXiv:2306.05301, 2023. 3

AgentLego Developer Team. Enhance llm agents with versatile tool apis. https://github.
com/InternLM/agentlego, 2023. 7

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 2

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward
Li, Shashank Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A
controllable world of apps and people for benchmarking interactive coding agents. In
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 16022-16076,
2024. 1

13

https://github.com/InternLM/agentlego
https://github.com/InternLM/agentlego

Under review as a conference paper at ICLR 2026

Chenyu Wang, Weixin Luo, Sixun Dong, Xiaohua Xuan, Zhengxin Li, Lin Ma, and Shenghua
Gao. Mllm-tool: A multimodal large language model for tool agent learning. In 2025
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6678~
6687. IEEE, 2025. 3

Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang, Yilin Bao, Ziran Yang, and Yi Wu. Of-
fline reinforcement learning for llm multi-step reasoning. arXiv preprint arXiv:2412.16145,
2024a. 3

Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le.
Gta: a benchmark for general tool agents. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2024b. 2, 3, 7, 8

Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To
see is to believe: Prompting gpt-4v for better visual instruction tuning. arXiv preprint
arXiv:2311.07574, 2023. 4

Yulong Wang, Tianhao Shen, Lifeng Liu, and Jian Xie. Sibyl: Simple yet effective agent
framework for complex real-world reasoning. Arziv, 2024c. URL https://arxiv.org/
abs/2407.10718. 7

Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu. Genartist: Multimodal llm as an agent
for unified image generation and editing. arXiv preprint arXiv:2407.05600, 2024d. 2

T. Weyand, A. Araujo, B. Cao, and J. Sim. Google Landmarks Dataset v2 - A Large-Scale
Benchmark for Instance-Level Recognition and Retrieval. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020. 4

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023. 1

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis
Toannidis, Karthik Subbian, Jure Leskovec, and James Y Zou. Avatar: Optimizing llm
agents for tool usage via contrastive reasoning. Advances in Neural Information Processing
Systems, 37:25981-26010, 2024. 3

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh J Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments. Advances in
Neural Information Processing Systems, 37:52040-52094, 2024. 3

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu
Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqgiong
Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024. 1,5, 7, 8

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards
scalable real-world web interaction with grounded language agents. Advances in Neural
Information Processing Systems, 35:20744-20757, 2022. 3

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. ReAct: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations, 2023a. 4

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations (ICLR), 2023b. 5, 6

14

https://arxiv.org/abs/2407.10718
https://arxiv.org/abs/2407.10718

Under review as a conference paper at ICLR 2026

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai,
Haoyu Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone.
arXiv preprint arXiv:2408.01800, 2024. 7

Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui,
Taiwen He, Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-
source ai feedback for super gpt-4v trustworthiness. arXiv preprint arXiv:2405.17220,
2024. 3

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung, Hao Peng, and Heng Ji. Craft:
Customizing llms by creating and retrieving from specialized toolsets. In International
Conference on Learning Representations (ICLR), 2024. 1

Chaoyun Zhang, Shilin He, Liqun Li, Si Qin, Yu Kang, Qingwei Lin, and Dongmei Zhang.
Api agents vs. gui agents: Divergence and convergence. arXiv preprint arXiw:2508.11069,
2025. 3

Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang, Zhiqing Sun, Zhe Gan, Yinfei
Yang, Ruoming Pang, and Yiming Yang. Improve vision language model chain-of-thought
reasoning. arXiw preprint arXiv:2410.16198, 2024a. 4

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. Mmina: Benchmarking multihop
multimodal internet agents. arXiv preprint arXiv:2404.09992, 2024b. 3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix for Matrix

APPENDIX CONTENTS

A Additional Details on Pref-X Pipeline
A1l Tools Used o i i e

B MATRIX Training Algorithm

C Additional Experiments
C.1 Error Bars and Variance Analysis.
C.2 Ablation on Modalities
C.3 Tool Preference.

D Qualitative and Failure Analysis
D.1 Example 1. . . . o 0 . 0 e e e e e e e e
D.2 Example 2. oL e e e e e e e e e

E Human and AI Verification Study
E.1 Human Verification of M=TRACE o vt v v
E.2 Automatic Verification for Preference Data
E.3 Broader Impacts e
E.4 User Study on Agent Outputs and Preferences

F Additional Details on Data Generation
F.1 Task Generation e
F.2 Query—File Verification
F.3 Model Comparison for Task Generation

G Case Studies
G.1 GTA Qualiative Results e
G.2 GAITA Qualiative Results e
G.3 Agent-X Qualiative Results

H Stage-1 Prompts
H.1 Query Generation Prompts,
H.2 File Generation Prompts,
H.3 File Verification Prompts
H.4 Trajectory Verification Prompts
H.5 MATRIX Prompt - System it

I Stage-2 Prompts

16

18
19

20

21
21
21
22

22
22
23

24
24
25
25
26

26
26
27
27

28
28
31
34

37
37
37
37
38
38

38

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1.1 Step Verifier Prompts

1.2 Preference Data Construction

17

Under review as a conference paper at ICLR 2026

Task Generation Step Sampling

— \ L} & {5 Result1
Q\Query 1 [i | EE |

| Thought 1 Code1 |

File @ : i Result 2
O - : i -) ||E|_)§Thoughczc::dez§ >
{ ﬁl Image ‘ i i S i

,,,,,,,,,,,,,,,,,,,,,,,,,, i Q Result3 |
[Task seed LLM Model | Thought 3 Code

Step Verfication

| OO
P —————— _ |MATRIX

Thoﬁght 1 Code 1

() _ -~ B ~
ey 2l © WEIENER
ought 2 Code 2 i ey = i b
s S { Thought1 Code1 Resultl |
] Verifier

~ Tha‘ig};.’ncé] E:

i Thought 3 Code 3

Figure 4: Overview of the Pref-X construction pipeline. Tasks are sampled from M-TRACE,
then expanded through step sampling, step verification, and preference collection. Verified
preference pairs are used in Direct Preference Optimization (DPO) to update the controller.

A ADDITIONAL DETAILS ON PRerF-X PIPELINE

In the main paper (§3.2), we described how Pref-X is constructed to enable step-wise prefer-
ence optimization. Here, we provide further details of the data generation and verification
pipeline, illustrated in Fig. 4.

Task Generation. We begin by sampling a set of seed tasks S from the Stage 1 corpus
(M-TRACE, see §3.2). Each task is defined as a query—file pair (Q, F'), where @ denotes the
user query and F' contains the associated multimodal evidence (e.g., text files, images).
Candidate step-wise trajectories are produced by the current controller 7y through iterative
interaction with the toolset.

Step Sampling. For each task (Q, F), the controller generates multiple candidate steps at
each reasoning turn. These steps include tool calls, arguments, and intermediate reasoning
traces. From this pool, diverse samples are retained to avoid mode collapse and to ensure
broad coverage of possible reasoning paths. To contextualize our contributions, we position
MATRIX against representative RL based sampling frameworks. As illustrated in Fig. 5,
the comparison spans three axes: task domain, collection granularity, and annotation format.
Unlike prior methods that primarily operate in narrow domains with trajectory-level rewards,
MATRIX emphasizes diverse multimodal tasks, collects preferences at the step level, and
leverages executable tool feedback for scalable and precise supervision.

Step Verification. Each sampled step is then automatically verified. Verification checks
whether (i) the tool call matches the schema, (ii) the arguments are valid and executable,
and (iii) the intermediate output remains consistent with the task context. Invalid or
incomplete steps are filtered out. This process corresponds to the loop over history states h;
in Algorithm 1.

Preference Collection. For the verified steps, pairwise preferences are collected using
a mixture of automated heuristics and model-based evaluators. Preference signals capture

18

Under review as a conference paper at ICLR 2026

| Trajectory-Level |_ Task Domain
PAE i Trajectory-Level ‘ DMRO) }--E Collection \
1 Collection \ . : GUI Control
: Task Domain | Trajectory-Level == | | &Embodied Al
: 1O [7| collection | |
] | l i P r Interface
| DigiRL ‘--1Step- Level Collectiong._.l,- ‘ IPR |—-!:Step- Level Collection =~
: Interface Ste Aot : GUI + Embodied
1 Browser/GUI o ={Step- Level Collecti -’
Py 1 Inverse
| rajectory-Level | _J
‘ MeLRL F" Collection i
Task Domain
i Muitimodal
- ati e geny =iStep- Level Collection jm — — Reasoning
Task Domain (ours)
| TP-LLAMA ‘---:Step- Level Collection E-—- ‘ API Calling ‘ Interface
Interface Vision-Text
s

Figure 5: Comparison of preference data construction frameworks. We contrast
MATRIX with reinforcement-learning—based sampling pipelines across three key dimensions:
(1) Task domain, i.e., the scope and modality of tasks considered; (2) Collection granularity,
i.e., whether data is gathered at the full-trajectory or step level; and (3) Annotation format,
i.e., the type of supervision used for preference signals. MATRIX uniquely focuses on
multimodal tasks, constructs preferences at the step level, and employs executable tool
feedback for scalable, fine-grained supervision.

relative correctness, faithfulness to the query, and progression towards the goal. The resulting
preference pairs form the core supervision signal for preference optimization.

Four Stages of DPO Process. The overall Pref-X construction pipeline aligns with the
four-step DPO process outlined in Fig. 4:

1. Trajectory sampling: Generate candidate step-wise rollouts from 7y for each seed
task.

2. Step verification: Discard malformed or invalid steps using automatic schema and
execution checks.

3. Preference generation: Construct preference pairs by comparing valid candidate
steps.

4. Policy update: Apply Direct Preference Optimization (DPO) to update 7y against
the reference policy m.r using the verified preference dataset D.

This iterative pipeline produces the Pref-X corpus, which directly supervises step-wise
improvements of the agent while preventing reliance on memorized final answers.

A.1 TooLs USED

To enable flexible and realistic multimodal task solving, our framework integrates a diverse
set of tools spanning vision, web, file understanding, and generative capabilities. Below, we
provide details of each tool and justify its inclusion. Together, these tools allow agents to
ground reasoning in real data, perform cross-modal analysis, and produce actionable outputs.

‘Web Search. This tool is implemented as a meta-agent consisting of three sub-modules:
(i) SearchInformation, which retrieves candidate webpages given a query, (ii) Visit, which
extracts textual content from webpages, and (iii) Web@QA, which performs targeted question
answering over retrieved text. This design ensures the agent can dynamically access and
reason over up-to-date web knowledge rather than relying solely on static training data.

Image Question Answering. We integrate GPT-40-mini as an image QA module, which
accepts an image and a natural language question to output a textual answer. This capability
allows the agent to perform grounded reasoning over visual inputs such as charts, natural
images, or scanned documents.

19

Under review as a conference paper at ICLR 2026

Table 5: Overview of tools used in Matrix-Agent. Each tool specifies the model or library
backbone and its primary functionality.

Tool Model / Package Functionality

Sub-tools: SearchInformation (title/abstract/URL), Visit
‘Web Search Google search + GPT (HTML — text), WebQA (QA c()n te}it). /)
Image QA GPT Answers questions given an image input.

MarkdownConverter +
GPT-40-mini
OWL-ViT (Minderer et al.,
2022)

Stable Diffusion (Rombach
et al., 2022)
InstructPix2Pix (Brooks
et al., 2023)

Face Detection DSFD (Li et al., 2019) Detects and outputs bounding boxes of faces in an image.
Enables code execution with: requests, pandas, numpy, scipy,
torch, cv2, etc.

File Inspector Converts multi-modal files into markdown and performs Q&A.

Object Localization Detects objects in images and outputs bounding boxes.
Image Generation Generates an image from a text query.

Image Editing Edits an image according to an instruction.

Python Package Standard libraries + packages

File Inspector. For structured documents (PDFs, Word, Excel, PowerPoint), we use the
Python package MarkdownConverter to parse raw files into text. The resulting content is
combined with a query and passed to GPT-40-mini for reasoning. This tool extends the
agent’s ability to understand heterogeneous non-image resources, which are common in
real-world multimodal tasks.

Object Localization. We employ OWL-VIiT (Minderer et al., 2022) for object grounding.
Given an image and a query (e.g., “localize all cups”), the tool outputs bounding boxes for
relevant objects. This allows the agent to handle spatial reasoning and locate specific entities
in visual contexts.

Image Generation. Stable Diffusion (Rombach et al., 2022) is used for text-to-image
generation, enabling agents to produce synthetic images from natural language prompts.
This supports tasks such as visualization, illustration, or generating multimodal artifacts
required by a query.

Image Editing. We incorporate InstructPix2Pix (Brooks et al., 2023), which takes an
instruction and an input image to output a modified version. This capability is essential
for tasks requiring visual manipulation, such as highlighting regions, altering attributes, or
iterative refinement of generated content.

Face Detection. We use DSFD (Li et al., 2019) as a robust face detection backbone. It
identifies bounding boxes of all visible faces in an image. Face-level grounding is a critical
capability for tasks involving identity verification, demographic analysis, or interaction
reasoning.

Python Package Execution. Finally, we allow the agent to call a curated set of Python
packages (pandas, numpy, matplotlib, torch, etc.). This provides a flexible computational
backend for data analysis, symbolic reasoning, and numerical tasks. By combining tool
execution with code-level reasoning, the agent can go beyond natural language planning and
solve complex multimodal problems.

In summary, these tools collectively enable MATRIX to handle tasks requiring perception,
reasoning, retrieval, and generation across diverse modalities. The broad coverage of tool

categories (search, vision, file understanding, generation, and computation) ensures the agent
is capable of solving realistic and complex multimodal tasks.

B MATRIX TRAINING ALGORITHM

To complement the description in the main paper, we provide a detailed summary of the
training pipeline and its algorithmic formulation (Algorithm 1).

Overview. After Stage 1 supervised fine-tuning (SFT), the agent is refined with step-wise
preference optimization. Unlike static imitation learning, this stage enables the controller

20

Under review as a conference paper at ICLR 2026

to actively explore multiple candidate actions per reasoning step and receive structured
feedback from Al-based verifiers. This design addresses three limitations of pure imitation:
(i) it improves adaptability by allowing recovery from suboptimal or partially correct rollouts,
(ii) it leverages exploration rather than discarding incomplete or noisy demonstrations, and
(iii) it scales preference data construction without requiring expensive manual annotations.

Process. The algorithm starts with a seed

task pool § and a controller 7y initialized

from Stage 1. For each task, the agent inter- Algorithm 1 MATRIX: ITterative Step-Wise
acts step-by-step: it generates candidate ac- praference Optimization

tions, executes them through real tool calls,
and submits outcomes to a verifier. The 1: Imput: Seed tasks S, controller mg, refer-

verifier compares the candidates and ranks €NCe Tref = g
them, producing preference pairs that dis- 2 Output: Updated controller mj from
tinguish consistent, accurate behaviors from Stage 1.
weaker alternatives. These pairs are accu- 5 while not converged do
mulated into a dataset D, which is then 4 D+ 0
used to update the controller via the Direct 9 for task (Q, F)) € S do
Preference Optimization (DPO) objective, 6 hy 0
with mer (the Stage 1 model) serving as the 7 fori=1...mdo
reference. 8: Sample candidates from 7y

9: Execute, verify, and add prefer-
Iteration. This loop is repeated itera- ences i
tively until convergence. Over time, the 19 Update history hii1

11: end for

agent becomes aligned with behaviors that
are not only correct but also robust, consis-
tent, and semantically useful across diverse
multimodal tasks. The procedure is formal-
ized in Algorithm 1, which illustrates the
alternating phases of step-level exploration, preference pair construction, and parameter
updates.

12: end for
13: Update mp < DPO(mg, 7yet, D)
14: end while

C ADDITIONAL EXPERIMENTS

C.1 ERROR BARS AND VARIANCE ANALYSIS.

We observe small but non-negligible fluctuations across repeated runs (Tab. 6), even though
the tuning pipeline itself is deterministic. The primary sources of variance stem from external
APIT dependencies: (i) the Google Search API occasionally fails or returns unstable rankings
of web results, leading to variation in retrieved evidence; (ii) the OpenAl API (used for
GPT-40-mini based verification and artifact generation) can occasionally time out or produce
slightly different responses under identical prompts. These inconsistencies propagate into
tool execution and trajectory verification, ultimately affecting downstream accuracy metrics
by a few percentage points. Importantly, despite this natural variance, our improvements
over the baseline remain statistically significant, confirming the robustness of our framework.

Table 6: Performance with variance on the GTA benchmark. Results are reported as mean
+ standard deviation over 5 runs.

Method AnsAcc

Baseline (Qwen2-VL-7B) 43.21
MATRIX Agent with Qwen2-VL-7B) 63.26 + 4.78

C.2 ABLATION ON MODALITIES

To analyze the contribution of different modalities, we perform ablation experiments on the
GTA benchmark. As shown in Tab. 7, removing the image modality drastically reduces

21

Under review as a conference paper at ICLR 2026

performance, with AnsAcc dropping by nearly 40%. This highlights the critical role of visual
inputs for accurate tool-use reasoning.

Table 7: Ablation on GTA benchmark. Only AnsAcc is reported.

Method AnsAcc

MATRIX Agent w/o image 8.67
MATRIX Agent w/ image 63.56

C.3 TooL PREFERENCE.

We further analyze the distribution of tools across

Tool Frequency Heatmap

selected and rejected steps (Fig.). In MATRIX, vor 3000 200 "
frequently adopted tools such as visualizer et seorch " 1500 e
(2101 uses) and objectloc (1051 uses) domi- el oo o 200
nate the chosen steps, while the rejected steps 2250
show heavier reliance on objectloc (1442 uses), g o . - 2000
visualizer (1524 uses), and less effective utili- ™™ = = -
ties such as ocr and seg. This mismatch results =1 e 1900

in a 45.62% divergence between the two distribu- — msesene- 1100 1160 [
tions, suggesting that MATRIX’s verifier favors image edt - 1050 1070 1250
tool combinations that are more semantically hasen Rejeced

aligned and practically useful, while systemati-

cally filtering out noisy or redundant tool usage. Figure 6: Tool distribution for the chosen
and rejected steps.

D QUALITATIVE AND FAILURE
ANALYSIS

Goal. We analyze how agentic vision—language pipelines fail on image-grounded arithmetic
and counting tasks, and why our MATRIX agent is more robust than the baseline (MAT).
We focus on two representative cases: (i) computing the number of bozes of eggs required
for 12 servings (discrete reasoning), and (ii) summing calories from a table (continuous
arithmetic).

D.1 EXAMPLE 1

Observed behavior. On visually grounded arithmetic (e.g., the “eggs/servings” task) as
shown in Fig. 7, the baseline MAT frequently entered a tool-use loop where it produced the
same action multiple times, received similar observations, and then repeated the action again
without incorporating the feedback. This repetition culminated in a confident but incorrect
answer. In contrast, MATRIX exhibited an initially brittle code synthesis (a parsing error and
missing print statement) but subsequently self-corrected and produced the correct discrete
count.

Failure modes in MAT. We categorize the baseline errors into three coupled modes:

1. Mis-interpretation of the task. The agent failed to decompose the instruction
into sub-goals (extract numbers — compute total — round up to boxes), so its
actions did not target missing information.

2. Planning deficit. Absent an explicit “plan—act—observe-revise” scaffold, the agent
treated unchanged observations as if they were new evidence, never triggering a
branch to an alternative tool or a reformulated query.

3. Looping/hallucination. Repeating identical (or template-like) tool calls despite
identical observations indicates policy collapse toward a habitual trajectory, rather
than belief update from evidence.

22

Under review as a conference paper at ICLR 2026

Why MATRIX eventually succeeds (but starts loose). MATRIX’s first attempt
produced (i) an invalid parse (NoneType.group) and (ii) no printed value, hence no us-
able observation. However, its reflective step modified the code to (a) explicitly compute
ceil(total_eggs/eggs_per_box) and (b) print the result, restoring the tool-feedback
loop and yielding the correct answer. This success originates from a minimal but effective
revise-and-retry behavior whereas the brittleness stems from unconstrained code generation
and weak I/O contracts.

Ingredients

Task:

1 plum tomato, peeled and chopped garlic clove, minced . .

I need to prepare twelve servings of this dish. How many boxes of eggs
1teaspoon chopped fresh basil or 1/4 1 teaspoon olive oil, optional . .
tgaspoon dried basll will I need in total?

Salt and pepper to taste, optional

1egg or egg substitute equivalent 1 slice bread, toasted

RS WAL Additional fresh basil, optional

Ground Truth: 2

| Qwen 2VL (Baseline) | | MATRIX

@ MAT: To determine the number of boxes of eggs needed for twelve servings of the dish, I first need to

MATRIX: To determine how many boxes of eggs are needed, we need to: I. Extract the number
of eggs required per serving from the ingredient list. 2. Calculate the total number of eggs for

understand the quantity of eggs required per serving. From the recipe ingredients, I see that each serving
requires | egg. Since there are twelve servings, I will calculate the total number of eggs needed and then

divide that by the number of eggs typically contained in a single carton to find out how many boxes are twelve servings. 3. Determine how many boxes are needed based on the number of eggs per
required. I will first check the quantity of eggs in a single carton. Then, I will multiply that by twelve to box. Let's start by extracting this information from the images.

get the total number of eggs needed. Finally, I will divide by the number of eggs per carton to determine Observation: Exror in code parsing: The code blob you used is invalid: due to the following
the number of boxes required. Code: i . .
. error: "NoneType' object has no attribute 'group!

py\ # Number of eggs per carton; eggs_per_carton = 6; # Total number of servings\ntotal_servings = 2
12; # Calculate total eggs needed, total_eggs_needed = total_servings * eggs_per_carton; # Calculate ¥@> MATRIX: Let's extract the information from the image to determine the mumber of eggs needed
number of cartons needed, cartons_needed = total_eggs needed // eggs_per_carton, if total_eggs needed = per serving. The image shows that one serving requires one egg. Let's proceed to calculate the

9% eggs_per_carton !=0:, cartons_needed += I; print(cartons_needed) number of boxes needed for twelve servings. Code:

**'py # The information from the images: eggs_per_serving = 1 servings = 12, eggs_per_box =6
Total eggs needed for 12 servings

total_eggs_needed = eggs_per_serving * servings

MAT: The calculation shows that twelve servings of the dish require exactly twelve eggs. Since each box # Calculating the number of boxes needed

contains six eggs, no additional cartons are needed beyond the one that would contain twelve eggs. boxes_needed~total_eggs_needed/eggs_per_box

Therefore, the total number of boxes of eggs required is one.; Final Answer: One box of eggs is needed rounded_boxes_needed~int(boxes_needed)

for twelve servings of the dish. if boxes_needed.is_integer() else int(boxes_needed) + 1

Observation: Error: Error in code parsing: The code blob you used is invalid: due to the following error: rounded_boxes_needed

"NoneType' object has no attribute ‘group. Q

Observation: 12

Observation: No observation found from the code execution. You should use *print’ function

MAT: To determine the number of boxes of eggs needed for twelve servings of the dish, I first need to if need some information from the code execution.”

understand the quantity of eggs required per serving. From the recipe ingredients, I see that each serving G
Yo

MATRIX: Let's modify the code to include a "print’ statement to display the number of boxes
requires | egg. Since there are twelve servings, I will calculate the total number of eggs needed and then

~ needed. Code: ""py # The information from the images: eggs_per_serving = 1, nservings = 12,
eggs_per_box=6
#Total eggs needed for 12 servings; total_eggs needed = eggs_per_serving * servings
Calculating the number of boxes needed; boxes_needed = total_eggs needed / eggs_per_box
rounded_boxes needed = int(boxes_needed), if boxes_needed.is_integer() else
int(boxes_needed) + 1
print(rounded_boxes_needed)

divide that by the number of eggs typically contained in a single carton to find out how many boxes are
required. T will first check the quantity of eggs in a single carton. Then, I will multiply that by twelve to
get the total number of eggs needed. Finally, I will divide by the number of eggs per carton to determine
the number of boxes required. Code:

**'py\ # Number of eggs per carton; eggs_per_carton = 6; # Total number of servings\ntotal_servi
12; # Calculate total eggs needed, total_eggs_needed = total_servings * eggs_per carton; # Calculate
number of cartons needed, cartons_needed = total_eggs needed // eggs per_carton, if total_eggs needed
% eges_per carton - 0:, cartons_needed +— 1; print(cartons_needed) Q Observation: 2

Observation: 12
'MATRIX: The number of boxes needed for twelve servings is 2. I'll provide the final answer
using the “final_answer tool. Code:

MAT: The calculation shows that twelve servings of the dish require exactly twelve eggs. Since each box U8 e
contains six eggs, no additional cartons are needed beyond the one that would contain twelve eggs. py final_answer(2)
Therefore, the total number of boxes of eggs required is one.; Final Answer: One box of e % Final Answer: 2
for twelve servings of the dish. o (Repititon =9
Repititon 3xg
Observation: Reached max iterations. Now let's retry: take care not to repeat previous errors! If you have _ Insights: .
Q retricd soveraltimes, ey & completely difforent sppraach. 1 Loose start: Tnvalid code parse (NoneType.group) and no print — no abservation

2. Self-correction: rewrote variables and added \texttt{print()}, restoring the tool-
feedback loop.
3. Stable reasoning: correct arithmetic path; rounded up to match discrete box counts.

% Final Answer: One box of eggs is needed for twelve servings of the dish.
== 4. Outcome: despite early noise, MATRIX converged to the correct answer (2).

Figure 7: Baseline vs. MATRIX. For the given task, the baseline repeats and answers 1
(wrong), while MATRIX self-corrects after early code/IO hiccups and outputs the correct
discrete count 2.

D.2 EXAMPLE 2

Observed Behavior. In Fig. 8 the baseline (MAT/Qwen-2VL) tries multiple extraction
routes: (%) it first fails on a missing image file, then (%¢) fails on a visualizer call, and (i)
finally falls back to parsing the provided image as a table text. It correctly recovers the
per-item values like Egg = 157 keal/100 g, Tomato = 19 kcal/100 g, and even logs them, but
it returns them directly as the final answer rather than performing the requested aggregation,
which was the main logic for the provided task. By contrast, MATRIX reads the same two
numbers and, given the task’s simplicity, directly performs the scalar sum to be 176 because
of the simple nature of the task, but it finalizes without emitting any intermediate logs (no
‘print’), i.e., a “no-tool path” with an empty observation buffer.

Failure Modes in MAT. The core error is task misinterpretation / incomplete aggregation
as MAT stops at entity-level extraction and treats the tuple {157,19} as the answer, ignoring
the query’s composition verb (“in total”). This reflects a weak finalization contract (it
permits non-scalar answers) and missing schema constraints (no requirement that the output
type match a single numeric total with units). Although MAT shows robustness to 1/O

23

Under review as a conference paper at ICLR 2026

issues by switching tools, its reasoning halts before the final operation (sum), so correctness
is never realized.

Why MATRIX eventually succeeds. MATRIX executes the correct computation chain where
it identifies two calibrated numerals and performs a deterministic addition directly, so it
outputs the right scalar 176. The trade-off is observability, as it did not log inputs or
intermediates, and that is why the success is unverifiable and would conceal OCR/unit
mistakes if they occurred. A minimal tightening can be helpful for such scenarios, which
require one logged tool step that prints the parsed inputs and the computed sum, plus
unit/assert checks (per-100 g) before calling ‘final_answer‘, would preserve the current
correctness while eliminating the “answers without evidence” risk.

FOOD

[Procuce—————Jcaioogr | Task:

Le 31 . .

,;I":on 5 How many calories are there in 100g of eggs and 100g of tomatoes?
Tomato 19

Egg 157

Ground Truth: 176
MATRIX

Qwen 2VL (Baseline) [1] 1

MAT: Thought: I will use the “inspect_file_as_text" tool to read the contents of the provided image and
extract the calorie values for 100 grams of eggs and tomatoes. Code:
*py calories_info = inspect_file_as_texi(question="How many calories are there in 100g of eggs and

100g of tomatoes?\, file_path="cache/food_data.jpg")
print(calories_info)

‘6 MATRIX: To find the number of calories in 100g of eggs and 100g of tomatoes, I will refer to the
{82 (able in the image provided. Code:
="+ py # Information extracted from the image; calories_egg = 157, # calories per 100g;
calories_tomato = 19, # calories per 100g
Calculating total calories for 100g of each; total_calories = calories_egg + calories_tomato
final_answer(total_calories)
Observation: File not found: .cache/food_data jpg - -

MAT: It seems the file *.cache/food_data.jpg’ was not found. I will instead extract the calorie values from
the text file directly using the "visualizer” tool. Code:

*'py calorie_data = visualizer(question="Extract the calories per 100g for eggs and tomatoes from this
table.", image_path~=".cache/food_data.jpg")

print(calorie_data)

Q Observation: No observation found from the code execution. You should use ‘print’ function
if need some information from the code execution.

% Final Answer: 176
=3

Observation: Exror: Code execution failed due to the following error: [Errno 2] No such file or
directory: ' cache/food_data.jpg'

Now let's retry: take care not to repeat previous errors! If you have retried several times, try a completely
different approach.

|
&
Q
&
Q

'MAT: Tt seems the image file is not available. Instead, I will use the provided table directly to extract the

calorie values for 100g of eggs and tomatoes. Code:

""'py calorie_table = \"\"\"Product Cal/100 gr; Lemon 31; Milk 58; Tomato 19; Egg 157; \"\"\"

Splitting the table into lines\nlines = calorie_table.strip().split("\)\

Extracting the calorie values for eggs and tomatoes\ncalories_egg = 0; calories_tomato = 0;

for line in lines[2:]: if \"Egg\" in line:\n calories_egg = int(line.split([1]) elif\"Tomato\" in line:
calories_tomato = int(line.split([1])

1. No tool feedback: There was no print, so no observation/logs were produced.

print(\"Calories in 100g of Egg:\", calories_egg)
print(\"Calories in 100g of Tomato:\", calories_tomato)

Q Observation: Calories in 100g of Egg: 157; Calories in 100g of Tomato: 19
MAT: 1 have successfully extracted the calorie values. Now, I will compile the final answer and return it
using the “final_answer" tool. Code:

***py; final_answer({\"Egg\": 157, \"Tomato\": 19})
% Final Answer: {'Egg'": 157, '"Tomato': 19}
=)

2. Direct finalization: The agent computed internally and jumped straight to
final_answen(176).

3. Why it still worked: It's a simple deterministic add of correct inputs (157 + 19), so no
branching or ambiguity observed.

4. Risk: Here, we have unverifiable path as any OCR/unit mistake would pass silently
without feedback loop which can be hard to audit or debug.

5. Tighten next time: We can restrict MATRIX fo require at least one logged tool call

(show inputs and the sum), add unit/assert checks (per-100 g), and then findlize.

Figure 8: For the provided task, the baseline (Qwen-2VL) recovers the per-item values (157,
19) after I/O errors but finalizes them directly, failing to aggregate the required answer.
MATRIX immediately sums to the correct scalar (176) because of the simple nature of the
task, but finalizes without tool logs (empty observation), highlighting a trade-off between
aggregation correctness and observability.

E HuMmAN AND Al VERIFICATION STUDY

E.1 HUMAN VERIFICATION OF M-TRACE

Protocol. We verified our M-TRACE pipeline by domain experts with backgrounds in Al
programming, and science. We evaluated a total of 50 data samples drawn via random
sampling, with an even split between verified M-TRACE cases and filtered cases. The ratings
were done on a scale of 1-7 (1=very poor, 7=excellent). The label for each scale is provided
in Tab. 8. For each item, an expert scored (i) the task prompt and (ii) the corresponding
MATRIX trajectory.

Rubric. The task quality was evaluated from different aspects like (i) Plausibility:
does the task look realistic and domain-faithful? (7i) Flow: Is the objective stated clearly
with consistent constraints? (%) Multi-tool demand: Does solving reasonably require
non-trivial tool use or cross-modal steps?. Whereas, the trajectory quality was judged on:

24

Under review as a conference paper at ICLR 2026

(i) Reasoned progress: traceable, correct intermediate steps, (i7) Code structure: clean,
runnable, and purposeful code, (iii) Tool feedback use: appropriate incorporation of tool
outputs and error handling.

Table 8: 7-point rating scale used in the M-TRACE expert review.

Score Label Evaluation Criteria)

1 Very Poor Unrealistic or unsolvable; incoherent objective; steps/code non-
executable; fails most rubric criteria.

2 Poor Major defects; missing key constraints; code largely broken; tool
feedback mostly ignored.

3 Fair Partially realistic but inconsistent; noticeable gaps; code runs only
with heavy fixes; minimal multi-tool use.

4 Acceptable Solvable with minor guidance; small inconsistencies; code mostly
runs with small fixes; limited cross-modal/tool demand.

5 Good Realistic and coherent; appropriate difficulty; code runs with minor

issues; reasonable incorporation of tool outputs.

6 Very Good Well-formed and domain-faithful; clear multi-step plan; robust,
readable code; consistent, effective feedback use.

7 Excellent Exemplary realism/clarity /complexity; clean, reusable code with
error handling; optimal integration of tool feedback.

Verification Outcomes. Verified M-TRACE samples substantially outperformed the filtered
data items on both dimensions, as can be seen in Tab. 9. On the 1-7 scale, tasks achieved
5.86 for verified vs. 4.61 for the filtered cases. A similar trend was observed for trajectories
as well, where M-TRACE scored 6.12 for verified vs. 4.55 for the filtered samples. These
findings support the effectiveness of the M-TRACE verification stage in retaining higher-quality
tasks (more plausible, better-formed, and suitably challenging) and trajectories (stronger
reasoning, cleaner code, and more faithful use of tool feedback).

Table 9: Human ratings for M-TRACE. Verified items outperform discarded ones for both task
and trajectory quality.

Condition Task Trajectory
M-TRACE (kept) 5.86 6.12
Filtered (discarded) 4.61 4.55

E.2 AUTOMATIC VERIFICATION FOR PREFERENCE DATA

To scale beyond costly human annotation, we employ automatic verification for constructing
step-level preference data. At each reasoning step, large language models serve as verifiers that
rank multiple candidate actions. The verifier evaluates (i) whether the action is consistent
with the query and available tools, (ii) whether the tool arguments are syntactically and
semantically correct, and (iii) whether the action aligns logically with the task history. This
design enables the collection of high-quality preference pairs without manual effort, ensuring
that noisy or inconsistent actions are filtered out before training.

E.3 BROADER IMPACTS

MATRIX’s ability to generate large-scale multimodal tasks and refine tool-use reasoning
through step-level preference optimization has the potential to lower the barrier to build-
ing robust multimodal agents. By automating data synthesis and verification, MATRIX
reduces reliance on costly human annotations and manual curation, making it easier for
researchers and practitioners to develop domain-adapted systems in areas such as document
understanding, scientific data analysis, education, and healthcare. This scalability can foster
more inclusive and resource-efficient Al innovation.

25

Under review as a conference paper at ICLR 2026

However, increased autonomy in data generation and preference optimization also carries risks.
Automatically verified trajectories may encode spurious correlations, biases, or hallucinations,
which could be magnified in safety-critical domains such as law or medicine. Moreover,
iterative self-exploration may lead to inefliciencies or overfitting if not carefully managed. To
mitigate these risks, we recommend transparent auditing of the generated data, incorporating
human-in-the-loop validation for high-stakes applications, and ensuring exploration budgets
are responsibly constrained.

LLM Usage Statement: We made limited use of large language models to enhance the
clarity and readability of the text. They were not involved in the conception of ideas,
experiment design, analysis, or the production of results.

E.4 USER STUDY ON AGENT OUTPUTS AND PREFERENCES

To further assess the reliability of our verifier and the practical benefits of preference tuning,
we conducted two complementary user studies.

Preference Alignment Study. Participants were presented with a single task and several
candidate next-step actions (thoughts, tool calls, or code snippets). These were identical
to those scored by our automated verifier but shown in random order to remove positional
bias. Participants selected the step they deemed most appropriate for continuing the task.
We then measured the agreement rate between human selections and the verifier’s ranking,
providing a direct estimate of how well automated feedback reflects human judgment.

Data Quality Study. A second interface asked participants to rate tasks and trajectories
across two phases. Task evaluation included (i) reasonableness (1-10), logical and well-defined
queries, and (ii) naturalness (1-10), realistic and user-like phrasing. Trajectory evaluation
involved three dimensions: (i) code accuracy, (ii) tool effectiveness, and (iii) content accuracy,
each on a 1-10 scale. Examples anchored low, mid, and high scores to maintain consistency.
After rating, participants submitted their responses before moving to the next case.

Agent Output Comparison. Finally, to validate downstream benefits, we conducted
a blind comparison on the GTA benchmark. For 20 tasks, participants reviewed outputs
from tuned and untuned agents (presented in random order) and indicated which they
preferred. As shown in Tab. 10, the tuned agent was favored in 66% of cases, compared to
21% for the untuned agent and 13% ties. This demonstrates that our framework not only
improves automatic metrics but also produces outputs perceived as more accurate, helpful,
and relevant by human judges.

Table 10: User study results for agent outputs on the GTA benchmark.

Untuned Better Tie Tuned Better
Preference (%) 21% 13% 66%

F ADDITIONAL DETAILS ON DATA GENERATION

F.1 TASK GENERATION

To build realistic multimodal tasks, we adopt a query-first strategy where an LLM is prompted
to generate diverse user queries, followed by the creation of corresponding artifacts. Different
construction strategies are applied depending on the file type:

o Image files: We retrieve semantically relevant images from large-scale datasets Lin
et al. (2014) using embedding-based similarity with the generated query content.

e Non-image files: For formats such as .PDF, .XLSX, .DOCX, or .MP3, the LLM is
prompted to synthesize Python scripts that call standard libraries to render the file
into the desired format.

26

Under review as a conference paper at ICLR 2026

F.2 QUERY-FILE VERIFICATION
To ensure task reliability, we employ a two-stage verification pipeline:

1. Revision: A vision—language model (VLM) is given both the query and its associated
file. For image-based tasks, the visual input is provided directly, while for non-image
files, the raw content is used. The VLM can refine the query to improve alignment
with the file content.

2. Filtering: The revised query—file pair is then evaluated against predefined criteria
(e.g., coherence, solvability, informativeness). Only pairs meeting the threshold are
retained for training.

F.3 MODEL COMPARISON FOR TASK GENERATION

We also benchmarked task generation quality using both an open-source model (Qwen2-
VL-7B) and a closed-source model (GPT-40-mini). Each model produced 10 tasks under
identical prompts, giving a total of 20 tasks. These were randomized and anonymized before
being rated by human evaluators. Evaluations covered two dimensions: naturalness and
reasonableness, both scored on a 10-point scale.

As shown in Tab. 11, the two models achieved highly similar results, indicating that
open-source models can match closed-source systems in generating natural and reasonable
multimodal tasks.

Table 11: Human evaluation of task quality from open-source vs. closed-source models.
Scores are averaged on a 10-point scale (higher is better).

Model Task Naturalness Task Reasonableness
GPT-40-mini 9.48 9.52
Qwen2-VL-7B 7.75 7.17

27

Under review as a conference paper at ICLR 2026

G CASE STUDIES

G.1 GTA QUALIATIVE RESULTS

GTA - Example 1

GTA_65. jpg

Query: What is the percentage of adults?
Involved Tools: visualizer

Trajectory:

1. MATRIX: I will use the ‘visualizer’ tool to answer the question about
the image. The ‘visualizer’ will help me understand what percentage
of the people in the image are adults.

2. Tool-Response: In the image, there are two adults and two children.
Since there are four people in total, the percentage of adults is: 2 adults /
4 people = 50%

3. MATRIX: I have calculated the percentage of adults in the image. Now, I
will provide the final answer using the ‘final_answer‘ tool.
4. Final_Answer: 50%

Answer: 50%
Ground Truth: 50%

Figure 9: Example 1

28

Under review as a conference paper at ICLR 2026

GTA - Example 2

GTA_198. jpg

Query: Generate a poem for this photo. Convert the photo to ukiyo-e Style and
put the poem on the middle left of the generated image.

Involved Tools: image_edit

Trajectory:

1. MATRIX: To complete the task, I need to: 1. Generate a poem inspired by
the provided image. 2. Convert the image to the ukiyo-e style. 3. Overlay
the poem onto the converted image at the specified location. I’ll start by
generating the poem.

2. Tool-Response: In misty mountains high and true, Where cherry blos-
soms catch the dew, A temple guards the ancient way, Underneath the
sky’s gentle sway. Waterfalls sing a timeless song, Rivers flow both swift
and long, Nature whispers tales of old, In colors vibrant, stories told.

3. MATRIX: Now that I have the poem, I'll proceed to convert the image to
the ukiyo-e style. After that, I'll overlay the poem onto the image in the
middle left. I'll start by converting the image.

4. Tool-Response: Ukiyo-e Image Path:
.cache/1753282965882_ resbj26q.png

5. MATRIX: Now that I have the image in the ukiyo-e style, I'll overlay the
poem onto the image at the middle left position.

6. Tool-Response: Final Image Path: .cache/fi-
nal_ukiyo_image with_poem.png

7. Final_Answer: Final image with poem is saved at: .cache/fi-
nal_ukiyo image with_poem.png

Answer:

Ukiyo-e.png Ukiyo-e-poem.png

Ground Truth:

Figure 10: Example 2

29

Under review as a conference paper at ICLR 2026

GTA - Example 3

SILV'S
RESTAURANT

[MENU]

Vo 2

=D
Fish and chips with peas
Rice with vegetables

Cheese and tomato pizza with salad
Meatballs, spaguetti and tomato sauce

(@)
Dessetlh EHD

Fruit salad
Chocolate cake
Ice cream (vanilla or strawberry)

Drinks 25
Water @

Orange juice

Coca-cola

Milkshake (banana or chocolate)

GTA_201.jpg

4.50€
6€
5¢
5.50€

3€

2.50€

1€
1.50€
1.50€

GTA_202. jpg

Query: How much should I pay for the soda in the picture according to the price

on the menu?
Involved Tools: Visualizer, Final_ Answer

Trajectory:

1. MATRIX: To find out how much to pay for the soda in the picture according
to the price on the menu, I'll follow these steps: 1. Identify the drink in
the first image. 2. Check the menu in the second image: Look for the

soda price. Let’s verify the price from the menu.
Tool-Response: The drink in the first image is Coca-Cola.
MATRIX: I'll now find the price on the menu.

CONS I

Final_Answer: 1.50.

Answer: The price of the soda (Coca-Cola) is 1.5€.
Ground Truth: 1.5

Figure 11: Example 3

30

Tool-Response: The menu shows the price for Coca-Cola is 1.50€

Under review as a conference paper at ICLR 2026

G.2 GAIA

Query:

QUALIATIVE RESULTS

GAIA Level-1
YETL ChaB

ANIMALS

That are awesome and aquatic

Slide 1 Slide 6

How many slides in this PowerPoint presentation mention crustaceans?

Involved Tools: inspect_file_as_text, PythonInterpreter

MATRIX:
1.

4.

VLM-Controller: To determine how many slides in the PowerPoint
presentation mention crustaceans, I will first need to extract and in-
spect the content from each slide of the presentation. I will use the
inspect_file_as_text tool to achieve this. This tool will allow me to
analyze the PowerPoint presentation and identify the slides that contain
mentions of crustaceans.

Tool-Response: In the provided document, which appears to be a presen-
tation about "Animals That are awesome and aquatic, there are eight
slides in total. Each slide lists the name of a different aquatic animal.
Upon reviewing the list: Slide 2 mentions crayfish, which is a type of
crustacean. - Slide 4 mentions isopods, certain species of which are
aquatic crustaceans. Slide 6 mentions Yeti crab, a type of crustacean.
Slide 7 mentions Spider crab, another type of crustacean. Therefore,
there are four slides—2, 4, 6, and 7—that mention crustaceans.

. VLM-Controller: The output from the inspect_file_as_text tool has

provided us with the necessary information. It indicates that four slides
from the presentation mention crustaceans. These slides are identified as
slides 2, 4, 6, and 7

Final_Answer: 4

Answer: 4

Ground Truth: 4

Figure 12: Example 4

31

Under review as a conference paper at ICLR 2026

GAIA Level-2

Query: Find the value of x to the nearest tenth: Lx = (d/dx * (A *
x-squared)) + 4-thousand‘n’ninety-7 minus C, where L is the last two digits
of the year of the Venezuelan Declaration of Independence, A is the number of
colors in the TikTok logo as of July 2023, excluding black and white, and C is the
height of the average woman in the Philippines according to a July 2023 Business
Insider article, rounded to the nearest whole centimeter.

Involved Tools: ask_search_agent, PythonInterpreter

MATRIX:

1. VLM-Controller: First, I will need to find the values for L, A, and C. For L,
I need to find the last two digits of the year of the Venezuelan Declaration
of Independence. For A, I need to determine the number of colors in the
TikTok logo as of July 2023, excluding black and white. For C, I need to
find the height of the average woman in the Philippines according to a July
2023 Business Insider article, rounded to the nearest whole centimeter.
I will begin by searching for these values using the ‘ask_search_agent’
tool. I'll start with the year of the Venezuelan Declaration of Independence.

2. Tool-Response: The Venezuelan Declaration of Independence on July 5,
1811, marked Venezuela’s formal separation from the Spanish Empire.

3. VLM-Controller: The Venezuelan Declaration of Independence was pro-
claimed in 1811. Therefore, the last two digits of the year are 11. So, we
have L = 11. Next, I will search for the number of colors in the TikTok
logo as of July 2023, excluding black and white.

4. Tool-Response: Traditionally, the TikTok logo is known to use cyan and
magenta. I'll assume these two colors (cyan and magenta) since excluding
black and white is mentioned, and these colors are often used in the logo
for a vibrant effect. Therefore, A = 2.

5. VLM-Controller: Now, I will proceed to find the height of the average
woman in the Philippines according to a July 2023 Business Insider article.

6. Tool-Response: Historically, the average height of Filipino women is
approximately 150 cm. I will use this value for C.

7. VLM-Controller: I can now compute the value of x in the given equation:
(Lz = (4 (Acdota?)) 4+ 4097 — C). I'll solve for x using these values: L =
11, A = 2, and C = 150.

8. VLM-Controller: The value of x, rounded to the nearest tenth, is 563.9.
I will now provide this as the final answer.
9. Final_Answer: 563.9

Answer: 563.9
Ground Truth: 563.9

Figure 13: Example 5

32

Under review as a conference paper at ICLR 2026

GAIA Level-3

Title Author Genre Start Date End Date Rating
Fire and Blood George R. R. Martin ~ Fantasy 1/1/22 2/14/22 5
Song of Solomon Toni Morrison Literary Fiction 2/15/22 4/4/22 5
The Lost Symbol Dan Brown Thriller 4/5/22 6/10/22 3
2001: A Space Odyssey Arthur C. Clarke Science Fiction 6/11/22 7/4/22 4
American Gods Neil Gaiman Fantasy 7/5/22 8/24/22 4
Out of the Silent Planet ~ C.S. Lewis Science Fiction 8/25/22 9/30/22 3
The Andromeda Strain ~ Michael Crichton Science Fiction 10/1/22 10/31/22 5
Brave New World Aldous Huxley Dystopia 11/1/22 11/20/22 4
Silence Shusaku Endo Historical Fiction 11/21/22 12/24/22 5
The Shining Stephen King Horror 12/25/22 12/31/22 3

Reading_Log_2022

Query: The attached spreadsheet contains a list of books I read in the year 2022.
What is the title of the book that I read the slowest, using the rate of words per

day?
Involved Tools: inspect_file_as_text, ask_search_agent
MATRIX:
1. VLM-Controller: To find the book that was read the slowest, I need to

find the total words of each book and the duration in days it took to read
them, this will help me calculate the rate of words read per day for each
book. The book with the lowest rate will be considered as read the slowest.
I’ll start by inspecting the spreadsheet to gather this information.

. Tool-Response: The spreadsheet consists of columns titled ‘Title’; ‘Au-

thor’, ‘Genre’; ‘Start Date’, ‘End Date’, and ‘Rating’, with rows detailing
specific books read, their authors, genres, reading start and end dates, and
personal ratings.

. VLM-Controller: Now that I have the information about the columns

and the entries in the spreadsheet, I need to calculate the rate of words
per day for each book. I will need to find an approximate word count for
each book through a web search, and then calculate the reading duration
for each book using the ‘Start Date’ and ‘End Date’. After acquiring these
two pieces of information, I can determine the word-per-day rate for each
book and identify the book read the slowest.

Tool-Response: The typical word count for books are: Fire and Blood:
211200, Song of Solomon: 85000, The Lost Symbol: 140000, 2001: A Space
Odyssey: 75000, American Gods: 185000, Out of the Silent Planet: 60000,
The Andromeda Strain: 75000, Brave New World: 64531, Silence: 95000,
and The Shining: 160000.

. VLM-Controller: I managed to secure approximate word counts for each

book via web search. To find out which book was read the slowest, I’ll
need to compute the duration (in days) each book was read for and then
calculate the rate of words per day.

. Tool-Response: The slowest read book is ‘Out of the Silent Planet’

with a rate of 1621.62 words per day.

Final_Answer: The book I read the slowest in 2022 was ‘0Out of the
Silent Planet’ with a reading rate of approximately 1621.6 words/day.

Answer: Out of the Silent Planet.
Ground Truth: Out of the Silent Planet.

Figure 14: Example 6

33

Under review as a conference paper at ICLR 2026

G.3 AGENT-X QUALIATIVE RESULTS

Agent-X Example 1

AgentX_16 jprg

Query: Identify the type of emergency activity the people in the image are involved
in and count how many individuals are wearing helmets.

Involved Tools: SceneDescriber, ObjectCounter

Steps:
1. Describe the scene to identify the type of emergency activity.

e SceneDescriber: The scene depicts a group of individuals in blue
uniforms and helmets, standing near a fire hydrant and a water source,
suggesting they are involved in firefighting or water-related emergency
activities.

2. Count the number of individuals wearing helmets.

e ObjectCounter: There are 5 individuals wearing helmets.

MATRIX Thoughts for steps:

1. The scene description helps to identify the type of emergency activity
based on the visual context and the presence of firefighting equipment.

2. The ObjectCounter tool is used to accurately count the number of individ-
uals wearing helmets, providing a precise count for the query.

Answer: type_of activity: Firefighting or water-related emergency activities,
number of helmeted individuals: 5

Ground Truth: Firefighting, 5

Justification: By describing the scene and using the ObjectCounter tool, we were
able to identify the type of emergency activity and count the number of individuals
wearing helmets, providing a comprehensive and accurate answer to the query.

Figure 15: Example 7

34

Under review as a conference paper at ICLR 2026

Agent-X Example 2

AgentX_451. jpg

Query: Identify the brand of the yellow logo in the image and check when its
company was been created.

Involved Tools: LocateObjectByText, WebSearch

Steps:

1. Locate the yellow logo in the image.

o LocateObjectByText: Yellow logo detected at coordinates (x1, y1,
x2, y2).

2. Identify the brand of the yellow logo.
e ObjectCounter: Brand name: Rolex.

3. Check the creation year of the company.
e ObjectCounter: Rolex was founded in 1905.

MATRIX Thoughts for steps:

1. The tool has successfully identified the yellow logo, allowing us to proceed
with the next steps.

2. The web search has provided the brand name of the yellow logo, which is
Rolex.

3. The web search has provided the creation year of the company, which is
1905.

Answer: brand: Rolex, creation_ year: 1905,
Ground Truth: The yellow logo is the Rolex logo. Rolex was founded in 1905.

Justification: By using the LocateObjectByText tool to find the yellow logo and
then conducting a web search to identify the brand and check the creation year,
we have gathered all the necessary information to answer the query.

Figure 16: Example 8

35

Under review as a conference paper at ICLR 2026

Agent-X Example 3

y o > A

\WRESTLEMANA (8
b C— y f .;:&émv)
SUNDAY APRIL S8

SPECIAL START TIME 7E/&4P
LIVE ON PAY-PER-VIEW

AgentX_197. jpg

Query: Identify the brand of the yellow logo in the image and check when its
company was been created.

Involved Tools: ObjectCounter, OCR, Calculator

Steps:
1. Count the number of people in the promotional poster.

e ObjectCounter: There are 18 people featured in the promotional
poster.

2. Identify the brand of the yellow logo.

e OCR: The name of the event is "WrestleMania’, and the scheduled
date is Sunday, April 8.

3. Check the creation year of the company.
e Calculator: The start time in 24-hour format is 19:00.

MATRIX Thoughts for steps:

1. The tool accurately counted the number of individuals present in the
image.

2. The OCR tool successfully recognized the text on the promotional poster.

3. The calculator tool was used to convert the time from 12-hour to 24-hour
format.

Answer: total people: 18, event_ name: WrestleMania, scheduled_ date: Sunday,
April 8, start_ time 24 hour_ format: 19:00

Ground Truth: ‘number of people’: 18, ‘event_name’: ‘WrestleMania’,
‘event_ date’: ‘April 8, ‘start_time 24 hour’: ‘19:00’

Justification: By using the ObjectCounter tool to count the number of people,
the OCR tool to extract event details, and the Calculator tool to convert time, we
were able to provide a comprehensive answer to the query

Figure 17: Example 9

36

Under review as a conference paper at ICLR 2026

H STAGE-1 PROMPTS

Scope. This section describes all Stage 1 prompts used to generate the dataset: queries,
synthetic file contents with concrete answers, file-query suitability labels, and tool-based
trajectories. Every prompt is descriptive, role-specific, and tied to a fixed toolset and JSON
schema, so the outputs are reproducible and easy to audit.

Why so many prompts? We split the work into small, well-defined steps so that each
step is easy to control and verify:

o Division of labor. Different prompts handle different sub-tasks (making queries,
making files, checking files, checking trajectories). This modularity reduces error
cascades.

o Quality control. Verification prompts (for files and for trajectories) act as built-in
filters that catch mismatches, missing details, or misuse of tools before data is
accepted.

e Tool grounding. Each prompt repeats the allowed tools and the output schema,
keeping generations consistent across runs.

e Auditability. All outputs use JSON with named fields, so downstream scripts can
parse and spot-check them reliably.

Stage 1 flow (at a glance). Query Generation — File Generation (with concrete
answers) — File Verification (relevance/usefulness/web-complementary) — Trajectory
Creation with MATRIX — Trajectory Verification. The result is a clean, validated
set of a large-scale dataset of 28.5K diverse multimodal tasks with 177K verified tool-use
trajectories for agentic scenarios.

H.1 QUERY GENERATION PROMPTS

System. This prompt sets the goal of generating realistic, diverse, and practical user
queries that require tool use and cross-domain reasoning (including multimodal inputs when
relevant) as shown in Fig. 18. Tt constrains data generation to the toolset ask_search_agent,
visualizer, PythonInterpreter, inspect_file_as_text, and enforces a JSON schema
with fields "query" and "tools".

User. It gives a single instruction (Fig. 19) to output exactly NUM_QUERIES queries without
numbered prefixes, ensuring the output matches the JSON schema directly.

H.2 FIiLE GENERATION PROMPTS

System. Plays a smart reasoner that plans what evidence must exist in files so an agent
can actually solve the query with tools. It asks the model to (i) list required information,
(ii) split sources into from Internet vs. from files via tools, and (iii) synthesize concrete,
self-consistent file contents (numbers, names, dates, tables, snippets) for the file-sourced part.
The output is a strict JSON that names how many files are needed and, for each file, its
file_type (from a fixed set) and file_content written in natural language with specific
values. More details for this prompt is provided in Fig. 20. This prevents hand-wavy files
and ensures the dataset contains the exact details the query relies on.

User. Fig. 21 shows the user prompt for file generation, which provides <query> and
<suggested tools> and asks for the above analysis plus the final JSON with synthesized
files (with concrete answers for all file-derived items).

H.3 FILE VERIFICATION PROMPTS
System. Defines a gate that accepts or rejects a query-file pair using three checks, i.e,

Relevance, Usefulness, and Web-complementary. More details for each of these conditions
can be obtained from Fig. 22. It requires a JSON report with what is required, what is

37

Under review as a conference paper at ICLR 2026

present in files, what is missing, whether missing items are web-searchable or computable,
a concise "thought", a binary "correct", and an "updated_query" if the pair is rejected.
This filters weak or mismatched pairs before we spend effort generating trajectories.

User. Supplies the candidate files and the <query> and asks for the JSON verdict as defined
above in the system prompt. see (Fig. 23). At this level, only pairs that pass proceed to
trajectory creation.

H.4 TRAJECTORY VERIFICATION PROMPTS

System. Evaluates whether a full tool-using trace is aligned and correct. The trace includes
the task query, the MATRIX’s thoughts and code for tool calls, per-step tool responses, and
the final answer. The prompt flags common failure modes like misused or unnecessary tools,
invalid arguments, unreasonable intermediate summaries, incorrect or off-topic final answers,
and contradictions with the provided files. The complete prompt is provided in Fig. 24.

User. Fig. 25 shows the user prompt that provides tool descriptions, the <query>, the
MATRIX’s <traj> (thoughts, code, intermediate outputs), and <execution_result>, and
requests the JSON with "thought" and "correct" label having ("yes"/"no"). This keeps
only reliable trajectories in the final dataset.

H.5 MATRIX PROMPT - SYSTEM

This prompt specifies how the agent MATRIX creates trajectories with an iterative
Thought — Code — Observation loop that uses only the allowed tools (visualizer,
inspect_file_as_text, ask_search_agent, final_answer). Here, the instructions are
provided like each code block must end with <end_action> and use print () for any values
needed in the next step (these appear in the next Observation). The prompt enforces
correct tool arguments, discourages chaining dependent calls with unpredictable outputs
in a single block, restricts imports to a whitelist, preserves state across steps, and requires
finishing with final_answer as can also be seen in Fig. 26.

I STAGE-2 PROMPTS

Scope. While Stage 1 focuses on constructing a high-quality supervised dataset of multimodal
tasks and trajectories, Stage 2 introduces prompts for preference tuning. These prompts
enable the agent to explore candidate reasoning steps, evaluate them automatically, and build
step-wise preference data for reinforcement-style optimization. The design parallels Stage 1
in modularity and auditability, but shifts from static task creation to dynamic trajectory
refinement.

Why new prompts? Stage 2 requires prompts tailored to preference generation and
verification rather than dataset construction:

o Step evaluation. Instead of labeling entire trajectories, prompts focus on evaluating
intermediate steps (Thought + Code) within a trajectory.

e ATl feedback. Large models act as verifiers, ranking candidate steps according to
coherence, tool correctness, and semantic consistency.

o Scalability. Structured outputs (JSON) allow automatic construction of preference
pairs without human annotation.

o Alignment with Stage 1. By connecting to the Stage 1 task pool, Stage 2 turns
validated queries and artifacts into new preference data, ensuring continuity in the
training pipeline.

Stage 2 flow (at a glance). Task Input (from Stage 1) — Step Sampling
(multiple candidate actions) — Verifier System Prompt (logic, tool-use, halluci-
nation checks) — Verifier User Prompt (candidate steps + context) — JSON output

38

Under review as a conference paper at ICLR 2026

with best step and justification — Preference Pair Construction. The result is
a dataset of 11K step-level preference pairs (Pref-X) for DPO tuning.

I.1 STEP VERIFIER PROMPTS

System. The system prompt specifies the evaluation criteria for candidate steps, including:
(i) logical progression from prior context, (ii) correctness of tool arguments, (iii) relevance to
the task query, and (iv) avoidance of hallucinations. The model is instructed to output its
reasoning and final decision in a structured JSON format, selecting the single best step.

User. The user prompt (Fig. 27) provides the task query, previous step results, and a set of
candidate step actions (each with Thought, Code, and Observation). The verifier must rank
them and output its choice in the JSON schema defined by the system prompt.

1.2 PREFERENCE DATA CONSTRUCTION

The verifier outputs are aggregated across tasks to form preference pairs: each consisting
of a chosen step and a rejected step. These pairs are added to Pref-X, which contains 11K
step-level preferences aligned with Stage 1’s dataset. This data enables Direct Preference
Optimization (DPO) training, refining the agent beyond supervised imitation.

Connecting Stage 1 and Stage 2. While Stage 1 builds the foundation with supervised
trajectories (M-TRACE), Stage 2 leverages the same tasks to produce fine-grained step-level
signals. Together, they provide a complementary pipeline: Stage 1 ensures broad coverage
and high-quality demonstrations, and Stage 2 introduces adaptive preference feedback for
robust reasoning and tool-use generalization.

39

Under review as a conference paper at ICLR 2026

STAGE 1: Query Generation - System

You are tasked with generating user queries that will prompt an agent to call
various tools (only use the tool listed in our toolset), including internet
search capabilities, to solve real-world, practical problems. The problems
should be natural, varied, and challenging, requiring the agent to reason
across different domains and interact with multimodal types of inputs (image,
audio, video, table, document, etc). Ensure that the problems span a range
of practical scenarios.

Our toolset: TOOL_SET

[

"tool_name": '"ask_search_agent",

"description": "This will send a message to an agent that will browse
the internet to answer your question 1like finding a difference between

two webpages."

"tool_name": "visualizer",

"description": "A tool that can answer questions about attached
images."

"tool_name": "inspect_file_as_text",

"description": "A tool that can read a file as markdown text and answer

questions about it. This tool handles the following file extensions: [+htmlj
<htmy; «xlsxy; -pptxy -wavy -mp3; -flacy -pdfy vdocxj, and all other types of
text files. IT DOES NOT HANDLE IMAGES."

]

I will now provide examples, along with the tools. Examples of user queries:
IN_CONTEXT_EXAMPLES

Please output the Queries in a json format. Make sure that the queries share
a similar style of the in-context examples. The output template is :

Output template (JSON).

[

"query": "What is the weather today?", # <The user query to the agent.>
"tools": ["tooll", "tool2"] # <A list of tool names related to the query.>
]

Figure 18: System prompt that guides GPT-40 to synthesize diverse, real-world user queries
for a tool-using agent. It allows generation using a broad category of toolsets (web search,
image understanding, Python interpreter, file/document inspector), encourages multimodal
and reasoning-based scenarios, and provides a required JSON output schema for each query.

STAGE 1: Query Generation - User

Please generate NUM_QUERIES queries. DO NOT output an id number before each
query.

Figure 19: User prompt that directs GPT-4o to generate exactly NUM_QUERIES queries with
no prefixed numbering, providing the minimal role-specific instruction that complements the
system prompt for initial query generation

40

Under review as a conference paper at ICLR 2026

STAGE 1: File Generation - System

You are a smart reasoner that can restore a query_solving scene between human
and an agent. Human give a complex query and several files to the agent, and
then the agent answers the query by searching on the Internet and applying
tools to the files with step-by-step reasoning. Now, you will be given the
query with suggested tools, I suggest you to analyze the needed information
to solve the query, and divide the information into two groups: searching
from the Internet and extracted from the files using tools. Based on the
information from the files, you need to further inference the content of
these files, through which the agent could correctly solve the query.

Our toolset: TOOL_SET

C

"tool_name":"ask_search_agent",

"description": "This will send a message to a agent that will browse
the internet to answer your question. ... 1like finding a difference between

two webpages."

"tool_name":"inspect_file_as_text",

"description": "A tool that can read a file as markdown text and answer
questions about it. This tool handles the following all other types of text
files. IT DOES NOT HANDLE IMAGES."

]
Output template (JSON).

json start
"information": <Needed information to answer the query. For the query
including creating/generating files, the information should NOT be the
description of the describe files.»,
. If a visualizer tool is used, there usually exist one or more images.>,
"file":

"file_numbers": <set an int number, the number is depended on needed
information from files>,

"file_information":

... <if you think the query needs more than 1 files, please

output other file contents like ‘file_2’.>
json end

Figure 20: System prompt for Stage 1 file generation. The model analyzes a query and
suggested tools, separates knowledge into Internet vs. file sources, infers file contents, and
outputs a structured JSON with "information", "file_numbers", and per-file metadata
(file_type, file_content).

STAGE 1: File Generation - User

Now given the query: <query>, and suggested tools to solve this query:
<suggested tools>. firstly analyze the needed information to solve the

query and divide the information into two groups: searching from Internet or
extracted from files using tools. Then for information from files, imagine
concrete answer of each information (it should be concrete answers instead

of description). Finally, output the json for the inferenced information and
the content of files.

Figure 21: User prompt provided with the <query> and <suggested tools> instruct the
model to (i) analyze information needs, (ii) split sources into Internet vs files via tools, (iii)
infer concrete answers for file-derived items, and (iv) output a structured JSON describing
the inferred information and generated file contents.

41

Under review as a conference paper at ICLR 2026

STAGE 1: File Verification - System

You are a helpful assistant that are given a query and several files. You
need to check whether the files are matched with the query. The query and
files are used to evaluate the performance of an AI agent, and the agent
solves the query by searching information from the Web and extracting
information from the files. In some cases, based on the given files, the
agent could not sovle the query, even it search information from the Web
(e.g., some specific knowledge). You need to pick up these bad cases.

1. Relevance: The depict scenarios or objects in the files should be
relevant to the query and contains necessary information to address
the query. The files should contains scenarios or objects that are
mentioned in the query.

2. Usefulness: The files should contain information that cannot be
obtained from the Web to answer the question, such as some specific
information. It should not be too simplistic or lack necessary
details.

3. Web-complementary: Some queries require the agent to search some
knowledge from the Web, and combine them with information in the
files to solve the queries. Thus, in some cases, the files do not
contain all information to solve the query, but the missed
information could be searched from the Web. These cases should be
regarded as correct cases.

The agent can call the tools to solve the query.

Output template (JSON).
json start
"information_for_query": <Required information to solve the query.>
"useful_information_in_files": <Useful information that can be
extracted from files to solve the query. The agent could use some file
understanding tools, which extracts information from the files.>

"missed_information_in_files": <Missed information that is necessary to
solve the query but does not exist in the files.>
"correct": <According to the above reasoning, if you consider the

files are reasonable for the query to be solved by the tools, set the value
to ’yes’, otherwise set the value to ’no’.>

"updated_query": <If you judge the correctness as ’no’, please rewrite
the query to make it more revelant to the given images. If you judge the
correctness as ’yes’, please output "no revision is needed." >
end json
The output MUST use the following json template to evaluate files.

Figure 22: System prompt for File Verification. Given a query and candidate files, the model
checks relevance, informativeness, and web-complementarity, then outputs a JSON report
with required info, missing items, a verdict ("correct"), and an optional revised query.

STAGE 1: File Verification - User

Following are files, the query: <query>, inference whether the files can
solve the query based on the perception ability, reasoning ability, and
information search ability of an AI agent.

Figure 23: User prompt for the File Verification stage, where given a <query> and the
provided files, it instructs the model to infer whether MATRIX, having the capability of
perception, reasoning, and web-search, can solve the query using these files.

42

Under review as a conference paper at ICLR 2026

STAGE 1: Trajectory Verification - System

As a data quality evaluator that needs to determine whether a query-solving
trajectory between human and an agent is correct. The human give files and

a query, and the agent call tools to solve the query. The trajectory of
query-solving contains a task query, thoughts and codes generated by the
agent to call tools (Python functions), and tool-response of each step,

and final answer. You must assess the alignment between the task query,
corresponding tool usage (generated thoughts and codes from the agent), and
the execution results (tool-response). Your goal is to ensure the used tools,
arguments to the tools, and summarized answers in the trajectory accurately
reflect the human’s intentions.

The query-solving trajectory is incorrect if:

1. The tool usage does not align with the query’s objective and the
context, or there are useless or unreasonable tool usage. In
addition, the agent does not use tools and solve the query by itself.

2. The input arguments to the tools appear incorrect or unreasonable.

3. The final answers or intermediate results summarized from the
observation appear incorrect or unreasonable.

4. The final answer is not relevant to the task query or the final
answer seems incorrect.

5. The trajectory (such as tool-usage and observation) confilicts or is
not consistent with the file content.

Figure 24: System prompt for the Trajectory Verification stage, which evaluates whether a
human—MATRIX query-solving trace (task query, MATRIX thoughts/code for tool calls, per-step
tool responses, final answer) is correct and aligned with the query. It checks tool selection,
argument validity, reasonableness of intermediate/final summaries, and consistency with
provided files.

STAGE 1: Trajectory Verification - User

Now, given used files and corresponding information, determine whether the
query-solving trajectory is correct or not. Provide the inputs as below,
then output a JSON verdict following the template.

A1l Available Tools:
<tool description>
User Query: <query>
Trajectory, including generated thought and code from the agent, and
intermediate results of using tools:
<traj>
Execution Results: <execution_result>

Output MUST use the following json template to determine whether the
query-solving trajectory is correct or not.

start json
"thought": "Concisely describe your reasoning here",
"correct": '"yes" or "no"

end json

Figure 25: User prompt for Trajectory Verification, providing the query, tool descriptions, and
MATRIX trace, and requiring a JSON verdict with a brief "thought" and binary "correct"
label.

43

Under review as a conference paper at ICLR 2026

STAGE 1: MATRIX System Prompt

You are an expert assistant who can solve any task using code blobs. You
will be given a task to solve as best you can. To do so, you have been given
access to a list of tools: these tools are basically Python functions which
you can call with code. To solve the task, you must plan forward to proceed
in a series of steps, in a cycle of ’Thought:’, ’Code:’, and ’Observation:’
sequences. At each step, in the ’Thought:’ sequence, you should first
explain your reasoning towards solving the task and the tools that you want
to use. Then in the ’Code:’ sequence, you should write the code in simple
Python. The code sequence must end with ‘<end_action>’ sequence. During
each intermediate step, you can use ’print()’ to save whatever important
information you will then need. DO NOT generate a code which does not call
’print ()’ because you will lose this information. You can assume all tools
must have a return that can be printed. These print outputs will then appear
in the ’Observation:’ field, which will be available as input for the next
step. You will save all intermediate file outputs to a folder by the
relative path ’.cache’. 1In the end you have to return a final answer using
the ‘final_answer tool. Here are a few examples using notional tools: --
Task: "What is the result of the following operation: 5 + 3 + 1294.6787"
Thought: I will use python code to compute the result of the operation and
then return the final answer using the ‘final_answer‘ tool.

Here are a few examples using notional tools:
Task: Which city has the highest population: Guangzhou or Shanghai?

[

Thought: I need to get the populations for both cities and compare
them: I will use the tool ‘ask_search_agent‘ to get the population of both
cities.

Code:
population_guangzhou = ask_search_agent (Guangzhou population5
print (Population Guangzhou:; population_guangzhou)
population_shanghai = ask_search_agent (Shanghai population5
print ("Population Shanghai:", population_shanghai)
<end_action>
]
Above example were using notional tools that might not exist for you. You
only have access to those tools:

- visualizer: A tool that can answer questions about attached images.

- inspect_file_as_text: You cannot load files yourself: instead call
this tool to read a file as markdown text and ask questions about it.

- ask_search_agent: This will send a message to a team member that will
browse the internet to answer your question. Ask him for all your web-search
related questions, but he’s unable to do problem-solving.

- final_answer: Provides a final answer to the given problem.

44

Under review as a conference paper at ICLR 2026

STAGE 1: MATRIX System Prompt - Contd.

Here are the rules you should always follow to solve your task:

1. Always provide a Thought: sequence, and a Code:\n‘‘‘py sequence
ending with ¢‘‘<end_action> sequence, else you will fail.

2. Use only variables that you have defined!

3. Always use the right arguments for the tools. DO NOT pass the
arguments as a dict as in answer = ask_search_agent ({’query’:
"What is the place where James Bond lives?" }), but use the arguments
directly as in answer = ask_search_agent(query=
"What is the place where James Bond lives?").

4. Take care to not chain too many sequential tool calls in the same
code block, especially when the output format is unpredictable. For
instance, a call to search has an unpredictable return format, so do
not have another tool call that depends on its output in the same
block: rather output results with print() to use them in the next
block.

5. Call a tool only when needed, and never re-do a tool call that you
previously did with the exact same parameters.

6. Don’t name any new variable with the same name as a tool: for
instance don’t name a variable final_answer.

7. Never create any notional variables in our code, as having these in
your logs might derail you from the true variables.

8. You can use imports in your code, but only from the following list of
modules: [‘pickle’, ‘itertools’, ‘zipfile’, ‘scipy’, ‘PyPDF2’,

‘requests’, ‘chess’, ‘xml’, ‘stat’, ‘sklearn’, ‘io’, ‘json’, ‘torch’,
‘queue’, ‘collectiomns’, ‘re’, ‘pptx’, ‘Bio’, ‘math’, ‘sympy’,
‘matplotlib’, ‘pubchempy’, ‘pydub’, ‘yahoo_finance’, ‘statistics’,
‘fractions’, ‘random’, ‘unicodedata’, ‘os’, ‘PIL’, ‘numpy’, ‘time’,
‘datetime’, ‘cv2’, ‘csv’, ‘pandas’].

9. The state persists between code executions: so if in one step you’ve
created variables or imported modules, these will all persist.

10. Don’t give up! You’re in charge of solving the task, not providing
directions to solve it.

Now Begin! If you solve the task correctly, you will receive a reward of
$1,000,000."

Figure 26: System prompt for MATRIX which defines an iterative
"Thought—Code—0bservation" workflow that calls only visualizer,
inspect_file_as_text, ask_search_agent, and final_answer. It enforces code

blocks ending with <end_action>, mandatory print () for observable state, saving outputs
under .cache, strict tool-argument usage, an import whitelist, state persistence across steps,
and completion of task via final_answer.

45

Under review as a conference paper at ICLR 2026

STAGE 2: Step Verifier - User.

You are an evaluation assistant responsible for analyzing and evaluating
agent trajectories. Your goal is to rank <N> ‘CURRENT_STEP‘ entries based
on their coherence, logical progression, and effectiveness in addressing
the TASK, as observed in the ‘CURRENT_RESULT‘, and their alignment with the
‘PREVIOUS_STEP®.

Input Description:

You will receive <N> sets of the following::

- ‘PREVIOUS_RESULT‘: The prior results obtained by the agent.

- ‘CURRENT_STEP‘: The agent’s output, containing a ‘thought‘ and ‘code®
intended to complete

the task based on the observation.

- ‘CURRENT_RESULT‘: The result or state produced by executing the
‘CURRENT_STEP ‘.

Your Task.

1) Evaluate each CURRENT_STEP:

- Assess how well the proposed ‘CURRENT_STEP‘ aligns with the context
established by the ‘PREVIQUS_STEP‘ and the observation reflected in the
‘CURRENT_RESULT¢.

- Check for coherence, logical progression, and contextual relevance.

- Prioritize outputs that effectively build upon or adapt to the
‘PREVIOUS_STEP‘ while addressing the ‘CURRENT_RESULT.

2) Select the BEST of the ‘CURRENT_STEP‘ entries:
- Pick the best ‘CURRENT_STEP‘ according to the following guidelines.

3) Provide a concise explanation for your choice:
- Highlight key factors that influenced your decision, such as logical
flow, contextual relevance, effectiveness, and uniqueness of the result.

Evaluation Guidelines:

- Hallucination: Penalize the directly hallucinated content in the code
instead of being produced from tools.

- Tool selection: Pay attention to whether the controller selects the proper
tool.

- Best content pass into the tool: For the two step that uses the same tool,
pay attention to the query that the controller sends to the tools, such as
the ’question’ in visualizer() and ask_search_agent().

- Task Relevance: Ensure the CURRENT_STEP contributes meaningfully to solving
the task.

- Maintain objectivity and avoid assumptions beyond the provided inputs.

Output template: Return your evaluation in the following JSON structure:

{

"reason": "<concise_explanation_of_ranking>",

"best_id": <An int that indicates the id for the best step. Since there are
five CURRENT_RESULTs, the id should only be one of 1,2,3,4, and 5 >

}

The following are the given task, results of previous steps, and result of
the current step.

TASK: <task>

Step Sets: <step_set>

Now, you need to determine the best of the current steps based on the above
information.

Figure 27: User prompt for Step Verifier defines an evaluation assistant that
ranks CURRENT_STEP candidates for a given TASK using the triplet (PREVIOUS_RESULT,
CURRENT_STEP, CURRENT_RESULT). It specifies the required inputs, lays out scoring criteria
(coherence, logical progression, task relevance, proper tool use, and hallucination penalties),
and mandates selecting exactly one best step with a concise rationale. The outcome must be

returned in a JSON schema with keys reason and best_id.

46

	Introduction
	Related Work
	MATRIX Agent
	M-TRACE Formulation
	Stage 1: Supervised Fine-Tuning (SFT) with Tool-Use Reasoning
	STAGE 2: Preference Tuning

	Results
	Experimental Setup
	State-of-the-art Comparisons
	Ablation and Analysis

	Conclusion
	Additional Details on Pref-X Pipeline
	Tools Used

	MATRIX Training Algorithm
	Additional Experiments
	Error Bars and Variance Analysis.
	Ablation on Modalities
	Tool Preference.

	Qualitative and Failure Analysis
	Example 1
	Example 2

	Human and AI Verification Study
	Human Verification of M-TRACE
	Automatic Verification for Preference Data
	Broader Impacts
	User Study on Agent Outputs and Preferences

	Additional Details on Data Generation
	Task Generation
	Query–File Verification
	Model Comparison for Task Generation

	Case Studies
	GTA Qualiative Results
	GAIA Qualiative Results
	Agent-X Qualiative Results

	Stage-1 Prompts
	Query Generation Prompts
	File Generation Prompts
	File Verification Prompts
	Trajectory Verification Prompts
	MATRIX Prompt - System

	Stage-2 Prompts
	Step Verifier Prompts
	Preference Data Construction

