
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MATRIX: Multimodal Agent Tuning for Ro-
bust Tool-Use Reasoning

Anonymous authors
Paper under double-blind review

Task: I want to buy a dog toy for each dog in the photo. How
many dollars will I need to spend in total?

Ground Truth:
 79.96 dollars

Qwen2-VL: I want to buy a dog toy for each dog in the photo.
How many dollars will I need to spend in total?\nAttachment:
image11.jpg, mage_12.jpg"},
.
Observation: None

Low Answer Accuracy

X
X

MAT: I need to determine the number of dogs in the
provided images and then calculate the total cost
for purchasing a dog toy for each of them. I will use
the `visualizer` tool to locate the dogs in the
images and then sum the costs accordingly.

Final Answer: 159.92 dollars

Highest Answer Accuracy Tool-Augmented CoT

Reasoning Consistency Lower Hallucinations

MATRIX: Now that I have determined there are 4
dogs in the image, I'll calculate the total cost by
multiplying the number of dogs by the price of the
dog toy, which is $19.99 each....

QWEN2-VL

MAT MATRIX (ours)

MATRIX: To calculate the total cost, I will first count
the number of dogs in `image_12.jpg` using object
detection. Then, I will multiply that by the price of the
dog toy ($19.99), which is given in `image_11.jpg`.
PythonInterpreter: Count the number of dogs in the image.
Code:\n```py\n#
Count the number of dogs in the image.
boxes = objectlocation(object=\"dog\",
image_path=\"image_12.jpg\")\n
print(len(boxes))\n```

PythonInterpreter:
Code:\n```py\n#
Calculate total cost\nprice = 19.99\n
num_dogs = 4\n
total_cost = price * num_dogs\n
print(round(total_cost, 2))\n```

MATRIX: [OUTPUT] -> 79.96

Final Answer: The total cost is 79.96 dollars.

Observation: Error: Code execution failed due to
the following error: EXECUTION FAILED: Evaluation
stopped at line 'from mtcnn.mtcnn import MTCNN'

MAT: It seems there was an error while trying to
access the image file. I will use the `visualizer`
tool to analyze the image directly without loading
it. I will ask the tool to identify dogs in the first
image and then proceed with the same method.....

Observation: Analyzing the first image for
dogs\ndog_bboxes_image_1.2.3....4]. The image
contain four dogs.

MAT: Each dog toy costs $19.99. I will calculate the
total cost based on this
assumption.\n\nCode:\n```py\n# Assuming there
are 4 dogs in each image\nnumber_of_dogs = 4 * 2
4 dogs in the first image and 4 in the
second\ncost_per_toy = 19.99\n\n# 159.92 total cost
....

Lower Hallucinations
Answer Accuracy Tool-Augmented CoT

Reasoning Consistency Lower Hallucinations

Observation: Observation:\nExecution failed: EXECUTION
FAILED:\nEvaluation stopped at line 'with
open('.cache/image_11.jpg', 'r') as f:\n image_info = f.read()'
because of the following error:\nIt is not permitted to
evaluate ot ...}

Final Answer: {'ok': False, 'error': \"EXECUTION
FAILED:\\nEvaluation stopped at line}

Observation: Verified 4 dogs and total cost is 79.96

Tool-Augmented CoT

Reasoning Consistency

Qwen2-VL: To solve this task, I need to determine the
number of dogs in the photo and multiply it by the price of
the dog toy. I will use the `inspect_file_as_text` tool to
extract the number of dogs from the image information
and the `final_answer` tool to calculate the total
cost.\nCode:\n```py\n# Inspect the image information to
find the number of dogs\nwith open('.cache/image_11.jpg',
'r') as f:\n image_info = f.read()\n\nnumber_of_dogs =
int(image_info.split(' ')[1])\n\n# Calculate the total
cost\nprice_per_toy = 19.99\ntotal_cost = number_of_dogs *
price_per_toy\n\n# Use final_answer tool to provide the total
cost\nfinal_answer(total_cost)\n```"},

XX
X

X
X

Figure 1: Comparison of baseline Qwen2-VL (Yang et al., 2024), MAT (Gao et al., 2025b),
and proposed MATRIX agent on a visual reasoning task. MATRIX shows superior tool
use, fewer hallucinations, and more consistent reasoning, while Qwen2-VL and MAT often
struggle with tool coordination and fallback strategies.

Abstract
Vision language models (VLMs) are increasingly deployed as controllers with
access to external tools for complex reasoning and decision-making, yet their
effectiveness remains limited by the scarcity of high-quality multimodal
trajectories and the cost of manual annotation. We address this challenge
with a vision-centric agent tuning framework that automatically synthesizes
multimodal trajectories, generates step-wise preference pairs, and trains a
VLM controller for robust tool-use reasoning. Our pipeline first constructs
M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified
trajectories, enabling imitation-based trajectory tuning. Building on this, we
develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool
reasoning. To achieve finer alignment, we further introduce Pref-X, a set of
11K automatically generated preference pairs, and optimize MATRIX on it via
step-wise preference learning. Across three benchmarks, Agent-X, GTA, and
GAIA, MATRIX consistently surpasses both open- and closed-source VLMs,
demonstrating scalable and effective multimodal tool use. Our datasets and
models will be open-sourced to support future research.

1 Introduction

Vision language models (VLMs) augmented with external tools are increasingly used as
controllers for complex reasoning and decision-making tasks (Gao et al., 2024; Surís et al.,
2023; Gupta & Kembhavi, 2023; Yuan et al., 2024). Acting as central planners, they
invoke diverse tools through structured prompts, enabling applications in visual editing (Wu
et al., 2023), embodied control (ichter et al., 2023), question answering (Shen et al., 2023),
video reasoning (Fan et al., 2024), and desktop automation (Trivedi et al., 2024). Existing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

approaches improve tool use by fine-tuning controllers on trajectories collected via manual
annotation or closed-source APIs. However, such data are costly to obtain and often biased
toward narrow environments, which limits their generalization to broader multimodal tasks.
Limitations of existing approaches. Most existing agents are trained with supervised
fine-tuning (SFT) on curated tool-use demonstrations (Peng et al., 2023; Wang et al., 2024d;
Sun et al., 2024). Such datasets are expensive to collect, difficult to scale, and biased toward
narrow domains or tool distributions. Reliance on static demonstrations further constrains
generalization: if the examples emphasize only certain tools (e.g., video_parser, image_qa),
agents often fail when confronted with tasks requiring different capabilities, such as live
web search or object grounding. As a result, models overfit to specific usage patterns and
struggle in unseen multimodal contexts. Recent works (Gao et al., 2025b; Li et al., 2025)
explore synthetic generation to reduce annotation cost, but key challenges remain. Generated
trajectories are inconsistent in quality, exploration is limited, and evaluations are restricted
to narrow domains. Moreover, imitation learning alone cannot teach agents to refine tool
usage or recover from partially correct rollouts, since it lacks reinforcement-based feedback.
Our insight: robust agents need both traces and preferences. The central challenge in
training tool-using agents lies in bridging two gaps: (i) acquiring fundamental tool-usage skills
from scarce, high-quality trajectories, and (ii) refining these skills to handle the ambiguities,
errors, and partial successes that naturally occur in open-ended reasoning. Existing methods
either focus solely on imitation, which cannot teach recovery or refinement, or rely on
trajectory-level labels, which are too coarse to capture step-wise decision quality. Our key
insight is that these challenges require a staged approach. First, large-scale supervised traces
are essential to ground a VLM controller in multimodal reasoning and tool invocation. Second,
once the model can follow trajectories, its limitations are best addressed through step-level
preference optimization, where alternative actions are explored, compared, and refined. This
pairing of supervised grounding with preference-based alignment enables agents not only to
execute valid tool calls but also to select the most effective ones in complex reasoning chains.
Our framework. We introduce MATRIX, a two-stage framework that first equips a controller
with supervised tool-use skills and then refines its decision-making through preference opti-
mization. (1) Trajectory-driven SFT: We construct M-TRACE, a dataset of 28.5K multimodal
tasks with 177K verified step-level tool-use trajectories, providing broad coverage of tool
reasoning skills. (2) Preference optimization: We build Pref-X, 11K automatically generated
preference pairs from step-level exploration and verification, and apply Direct Preference
Optimization (DPO) (Kong et al., 2025) to align the controller with fine-grained tool-use
preferences. This staged design grounds the agent in verified traces while enabling progressive
improvement through self-exploration and automatic verification. We evaluate MATRIX on
three challenging benchmarks, Agent-X (Ashraf et al., 2025), GTA (Wang et al., 2024b),
and GAIA (Mialon et al., 2023), where it improves answer accuracy by 14%, 23%, and 11%,
respectively. As shown in Fig. 1, MATRIX achieves consistent reasoning and more adaptive
tool selection compared to prior agents. Our main contributions are as follows:

1. M-TRACE: a large-scale corpus of 28.5K multimodal tasks and 177K verified tool-use
trajectories built via automated synthesis and verification.

2. Pref-X: 11K preference-labeled step pairs that enable fine-grained alignment of tool-usage
decisions beyond imitation learning.

3. MATRIX: a robust, vision-centric agent that leverages trajectory supervision with preference
optimization for efficient tool-use reasoning.

4. We show consistent improvements over strong baselines on Agent-X, GTA, and GAIA.
Together, these contributions establish MATRIX as a scalable and effective agent for training
robust multimodal agents.

2 Related Work

Multimodal Agents. The rapid progress of large multimodal models (LMMs) (Achiam
et al., 2023; Grattafiori et al., 2024; Team et al., 2023; Bi et al., 2024; Bai et al., 2023) has
enabled agents that integrate perception, reasoning, and external tools. Moving beyond

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

text generation, modern agents act as central planners by invoking APIs (Zhang et al.,
2025), operating systems (Mei et al., 2024), document analyzers (Musumeci et al., 2024), or
web environments (Song et al., 2024), supporting broad interaction with digital ecosystems.
This has fueled the rise of orchestration frameworks such as Avatar (Wu et al., 2024),
LangChain (Chase, 2022), and AutoGPT (Gravitas, 2023), which couple reasoning with
tool execution. Specialized systems extend these capabilities to web browsing (Yao et al.,
2022; Nakano et al., 2021; Qin et al., 2023), REST APIs (Song et al., 2023), or multi-model
collaboration (Shen et al., 2024; Li et al., 2023). Multimodal variants such as MLLMTool (Wang
et al., 2025) combine vision and language for perception-driven reasoning. Despite these
advances, most frameworks lack systematic training and evaluation protocols for sequential
tool reasoning, limiting their robustness in open-ended multimodal environments.
Tool Usage Datasets. Datasets for tool-using agents have primarily targeted text-based
settings (Tang et al., 2023; Qin et al., 2024; Du et al., 2024; Liu et al., 2024b). Multimodal
benchmarks including Agent-X (Ashraf et al., 2025), OSWorld (Xie et al., 2024), MMInA (Zhang
et al., 2024b), GAIA (Mialon et al., 2023), and GTA (Wang et al., 2024b) broaden coverage
but still rely heavily on curated or repurposed trajectories. Existing tuning methods fall into
two paradigms: supervised fine-tuning (SFT) on annotated tool-use traces (Shen et al., 2023;
Liu et al., 2024b), which is costly and brittle, or reinforcement learning (RL) with synthetic
rewards or preferences (Lee et al., 2024; Fu et al., 2024; Yu et al., 2024), which assume reliable
reward signals. Recent work explores step-wise preferences (Lai et al., 2024; Wang et al.,
2024a; Chen et al., 2024a; Kong et al., 2025), but applications remain narrow (e.g., code or
math) where ground-truth labels exist. In contrast, MATRIX introduces scalable step-wise
preference optimization with AI-based verification, where the agent generates, evaluates, and
improves its own trajectories. This reduces reliance on manual annotation and enables robust
multimodal tool-use reasoning in diverse environments.

3 MATRIX Agent

MATRIX is a vision-centric multimodal agent built to perform reliable step-wise reasoning and
tool use. The key challenge for such agents lies in the scarcity of high-quality trajectories
and the cost of manual annotations, which limit scalability and generalization. To overcome
this, we design a two-stage training framework that leverages trajectory supervision with
preference optimization. In the first stage, supervised fine-tuning (SFT) on automatically
synthesized multimodal trajectories (M-TRACE) equips the controller with structured tool-use
skills. In the second stage, preference optimization via Direct Preference Optimization
(DPO) (Kong et al., 2025) on step-level exploration data (Pref-X) refines decision-making
beyond imitation, encouraging the agent to favor accurate, consistent, and goal-directed
actions. The overall framework is illustrated in Fig. 2.

3.1 M-TRACE Formulation

Pipeline Overview. Our M-TRACE synthesis pipeline (Fig. 2) consists of four stages:
(1) query generation, (2) artifact construction, (3) trajectory collection, and (4) parallel
verification. To ensure reliability, we include two parallel verifiers: a query–artifact verifier
that checks task feasibility and input alignment, and a trajectory verifier that validates
tool-use consistency.
Data Format. Each multimodal tool-usage instance is represented as:

DM-TRACE = {F*,Q, {ti}n
i=1, {ci}n

i=1, {oi}n
i=1,A}, (1)

where F* denotes the optional multimodal files (e.g., images, videos, PDFs, PPTX), Q is the
query, {ti}n

i=1 are the reasoning thoughts (step-level plans), {ci}n
i=1 are the generated code

snippets (tool calls), {oi}n
i=1 are the corresponding observations (tool outputs), n is number

of steps, and A is the final answer. Following prior works (Ashraf et al., 2025; Wang et al.,
2024b), we support two categories of queries: (1) question answering, where A is textual,
and (2) image generation, where A is a generated image. Each task may involve multiple
steps, forming a trajectory τ = {t1, c1, o1, . . . , tn, cn, on}, which integrates reasoning, tool
execution, and observations across n steps to solve the query.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Query
Generator

PROMPT

Content
Generation

Multimodel
Artifact

Construction

File
Combinations

Image Database

Multi-Modal files

Trajectory
Collection

Files to MTrace
Checker

Parallel
Verification

M-TRACE
Trajectory Dataset

STAGE 1: CoT - SFT

STAGE 2: Step wise preference tuning on Pref-X

Task: How many grams
will I take in if I drink
two drinks of this 12 oz
can a day like that in a
picture for a week?

DPO

Parallel
Sampling

MATRIX

 Action 1.1

 Action 1.2

Task

Task

Preferred

Dis-Preferred

 QUERIES Tools list

Thought 1 Code 1

Thought 2 Code 2

Controller Thought 1 Code 1

Thought 3 Code 3

Figure 2: Overall pipeline. M-TRACE construction, where multimodal queries are paired
with verified step-by-step trajectories to create high-quality training traces; and Pref-X
generation, which produces preference pairs from step-level exploration and verification for
preference optimization. MATRIX is trained first with supervised fine-tuning on M-TRACE and
then refined through preference optimization with DPO on Pref-X.

Data Generation. We followed a four-stage process for generating M-TRACE.

1. Query Generation. We aim to construct a large pool of diverse, practical, and
executable queries. A small set of manually designed seed queries serves as the
starting point. Starting from seed queries, we iteratively prompt GPT-4o-mini (Hurst
et al., 2024) with tool descriptions and structured templates to generate diverse and
executable queries, using hyperparameters (e.g., temperature) to promote diversity.

2. Artifact Construction. Unlike prior works that sample files first, we adopt a query-
first strategy, ensuring tighter alignment between queries and resources. This is
crucial as real tasks often require heterogeneous inputs (e.g., DOCX, PPTX, XLSX,
PDF) and multiple resources. For each query, GPT-4o-mini specifies the file type
and draft content; images are retrieved via BGE (Chen et al., 2024b) embeddings
with similarity search, while non-image files are programmatically generated.

3. Trajectory Collection. A zero-shot ReAct-style agent (Yao et al., 2023a) powered
by GPT-4o-mini generates multi-step trajectories. Given a query and artifacts,
the agent produces step-wise thoughts, executable tool calls, and corresponding
observations. Only valid executions are retained, ensuring high-quality reasoning
traces.

4. Parallel Verification. Two verifiers ensure robustness: (i) the query–artifact verifier
checks task feasibility and input relevance, and (ii) the trajectory verifier validates
tool usage, arguments, and outputs. Following prior verification protocols (Liu
et al., 2024b; Wang et al., 2023; Gao et al., 2025b), GPT-4o-mini filters noisy or
inconsistent samples, discarding ill-posed queries and trajectories.

Data Sources. To diversify visual context, we collect ∼100K image–caption pairs from
eight datasets: COCO (Lin et al., 2014), ChartQA (Masry et al., 2022), LLaVA (Liu et al.,
2024a), SAM (Kirillov et al., 2023), TextVQA (Singh et al., 2019), WebCelebrity (Liu et al.,
2015), Web-Landmark (Weyand et al., 2020), and WikiArt (Saleh & Elgammal, 2015). We
further enrich coverage with ShareGPT4V (Zhang et al., 2024a) captions, spanning charts,
documents, science QA, visual reasoning, and art.
M-TRACE Analysis. After verification, M-TRACE yields 28.5K multimodal tasks with 27.5K
associated artifacts, distilled from 43.5K initial candidates. These tasks produce 177K verified
trajectories, ensuring both scale and quality. The dataset is diverse across several dimensions:
(i) File types: M-TRACE spans over 10 formats—including images, documents, spreadsheets,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

.jpg

20.2%

.pdf

18.3%

.xlsx
14.5%

.png

12.1%

Food
7.9%

.docx
5%

Travel
3.7%

Entertainment
3.4%

Social
3.3%

Other
2.3%

.mp4

1.7%

.pptx

0.9%

(a) (b)

File inspector 12.7 %

Image Editing 3.2 %

 Visual
Segmentation

7.3 %

 Image
Generation

3.3 %

 Object
Localization

12.8 %

Face Detection 4.0 %
Image Question
 Answering

21.4 %

Web Search 35.3 %

(c) (d)

Figure 3: Statistics of M-TRACE. (a) File-type distribution, (b) Domain coverage, (c) Tool
usage, (d) Step complexity.

audio, video, and slides—capturing realistic multimodal contexts, with additional coverage of
formats like HTML and JSON (Fig. 3a). (ii) Knowledge domains: Tasks cover 16 categories
such as finance, health, culture, environment, and history, ensuring broad topical coverage
(Fig. 3b). (iii) Tool usage: Trajectories invoke a wide range of tools, with web search
most common, followed by image QA, file inspection, visualization, and Python execution,
mirroring real-world problem solving (Fig. 3c). (iv) Step complexity: Tasks vary in reasoning
depth, with most requiring 2–5 steps and some up to 9, reflecting both practical and complex
reasoning cases (Fig. 3d).

3.2 Stage 1: Supervised Fine-Tuning (SFT) with Tool-Use Reasoning

Step-wise reasoning with ReAct. We use Qwen2-VL-7B (Yang et al., 2024) as the
controller, an open-source VLM with integrated vision-language grounding. To equip the
controller with structured tool-usage skills, we adopt the ReAct paradigm (Yao et al., 2023b),
where reasoning unfolds step by step. At each step i, the controller first generates a thought ti

(a natural language plan) and then produces a corresponding code snippet ci to invoke a tool.
Compared with fixed formats (e.g., JSON), Python-style code provides greater flexibility for
diverse input–output types and seamless integration with real tools.
Formally, given a query Q, optional external resources F∗, and history Hi =
{t1, c1, o1, . . . , ti−1, ci−1, oi−1}, the controller chooses a tool and arguments by maximiz-
ing:

t⋆
i , c⋆

i = arg max
ti,ci

Pθ(ti, ci | Q,F∗,Hi), (2)

where oi is the observed outcome of executing ci.
Tool integration. Unlike symbolic simulations, the agent executes real tools spanning
categories such as web search, visual perception, image generation/editing, file inspection,
multimodal reasoning, and a broad set of Python libraries (see Tab. 5). This setup grounds

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

reasoning in executable actions, ensuring realistic trajectories and better generalization to
practical tasks. Further implementation details are provided in Appendix §A.1.
Training objective. Given a trajectory τ = {t1, c1, o1, . . . , tn, cn, on} paired with query Q
and resources F∗, the controller is optimized with a step-level cross-entropy objective:

LSFT = E(Q,F∗,τ,A)∼DM-TRACE

[
−

n∑
i=1

log Pθ(ti, ci | Q,F∗,Hi)
]
. (3)

Crucially, the final answerA is not supervised, forcing the controller to rely on tool interactions
rather than memorized knowledge. This design grounds the model in executable tool use
and sets the stage for further refinement with preference optimization.

3.3 STAGE 2: Preference Tuning

While SFT equips the controller with high-quality demonstrations, it remains restricted to
imitation, limiting the ability to refine tool usage, recover from partially correct rollouts,
or adapt beyond static trajectories. To overcome this, we leverage step-wise preference
optimization on 11K preference pairs (Pref-X), enabling the agent to compare candidate
actions and learn to favor accurate, consistent, and semantically useful behaviors. This
reinforcement-style refinement improves robustness and adaptability across multimodal tasks
(see Fig. 4).
Formulation. As in Stage 1, we adopt the ReAct framework (Yao et al., 2023b), where
at step i, the agent generates an action ai = (ti, ci) consisting of a natural-language
thought ti and executable code ci. Given query Q, optional artifacts F∗, history hi =
{t1, c1, o1, . . . , ti−1, ci−1, oi−1}, and tool set T , the controller selects:

t⋆
i , c⋆

i = arg max
ti,ci

πθ(ti, ci | Q,F∗, hi, T), (4)

where πθ is the Stage 1 SFT-initialized controller.
Preference data synthesis. We construct Pref-X, a dataset of 11K preference pairs.
Starting from seed queries in M-TRACE, an LLM (e.g., Qwen2.5-7B) expands queries and
specifies artifact types. Relevant images are retrieved via embedding search, while documents
(DOCX, PPTX, XLSX, PDF) are synthesized programmatically. Each task thus consists of
(Q,F∗), enriched with realistic multimodal context (see Appendix §A).
Step exploration and verification. At step i, the controller proposes multiple candidates
{a1

i , . . . , an
i }, each executed to yield outcomes {o1

i , . . . , on
i }. An LLM-based verifier, conditioned

on (Q, hi), compares these outcomes and selects the most reliable action apre
i = (t⋆

i , c⋆
i). The

remaining candidates form the dispreferred set Ddis
i . A task with m steps yields m(n− 1)

preference pairs:
D = {(xi, apre

i , adis
i) | i ∈ [1, m]}. (5)

Pref-X pipeline. Unlike traditional RLHF approaches based on PPO (Schulman et al.,
2017), which require reward modeling and costly reinforcement learning updates, Direct
Preference Optimization (DPO) directly optimizes over preference pairs (Rafailov et al., 2023).
It leverages a fixed reference policy to stabilize training, avoids the need for explicit reward
models, and is significantly more computationally efficient. This makes DPO particularly
well-suited for step-wise preference tuning, where fine-grained comparisons are abundant but
full reinforcement learning would be prohibitively expensive. To create preference-labeled
trajectories, we combine two complementary components: step sampling and step verification.
Instead of relying on static demonstrations, we employ an online exploration scheme (Fig. 2)
where the agent iteratively samples actions and verifies their quality within each task.
At step i, the controller proposes n candidate actions {a1

i , a2
i , . . . , an

i }, each decomposed into
(tk

i , ck
i), which are executed to yield observations {o1

i , . . . , on
i }. We then prompt an LLM-based

verifier with the query Q, history hi, candidate actions, and corresponding observations, and
select the most reliable action (t⋆

i , c⋆
i , o⋆

i). This process expands the trajectory step by step
until the task is solved.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall results on Agent-X. Best values in each column (within open/closed-
source) are in bold, and second-best are underlined. Metrics are detailed in Appendix

Model Step-by-Step Deep Reasoning Outcome
Gs Tp Tacc Facc Cs Fp Sacc Gacc G∗

a Ts
acc

Closed-source
Gemini-2.5-Pro 0.40 0.36 0.81 0.72 0.48 0.64 0.73 0.40 0.56 0.62
GPT-4o 0.60 0.47 0.72 0.81 0.57 0.79 0.59 0.37 0.70 0.68
OpenAI-o4-mini 0.42 0.32 0.89 0.71 0.51 0.60 0.80 0.45 0.67 0.63
Open-source
Phi-4-VL-Instruct 0.13 0.21 0.24 0.61 0.19 0.47 0.40 0.11 0.26 0.42
InternVL2.5-8B 0.45 0.31 0.47 0.68 0.47 0.52 0.60 0.28 0.55 0.58
Gemma-3-4B 0.26 0.30 0.78 0.61 0.54 0.38 0.54 0.27 0.67 0.60
InternVL3-8B 0.46 0.34 0.54 0.68 0.45 0.70 0.40 0.20 0.59 0.62
VideoLLaMA3-7B 0.45 0.28 0.46 0.65 0.46 0.62 0.54 0.28 0.54 0.54
Qwen2-VL-7B 0.51 0.39 0.54 0.62 0.41 0.34 0.38 0.25 0.55 0.57
Ours
MATRIX (Ours) 0.59 0.44 0.91 0.71 0.48 0.88 0.71 0.39 0.76 0.77
Baseline Improvement (Qwen2-VL-7B) +8% +5% +37% +9% +7% +54% +33% +14% +21% +20%

*Closed-source results shown for reference; best/second-best highlighting applies only to Open-source models.

The preference data is constructed in a pairwise manner: for each input xi, the selected best
action apre

i = (t⋆
i , c⋆

i) serves as the preferred label, while the remaining candidates {aj
i}j ̸=⋆

form the dispreferred set Ddis
i . A single task with m steps thus yields m(n− 1) preference

pairs, summarized as
D = {(xi, apre

i , adis
i) | i ∈ [1, m]}. (6)

Objective. Given the constructed dataset D, we optimize the controller using the Direct
Preference Optimization (DPO) objective (Kong et al., 2025):

L(θ) = −E(xi,apre
i

,adis
i

)∼D

[
log σ

(
β

(
log πθ(apre

i
|xi)

πref(apre
i

|xi) − log πθ(adis
i |xi)

πref(adis
i

|xi)
))]

, (7)

where πref is the reference controller (obtained after supervised fine-tuning), β controls
deviation from the reference, and σ(·) is the logistic function.
Training scheme. The final MATRIX controller is trained in two phases: (i) Trajectory-
driven SFT on 177K verified traces (M-TRACE), grounding step-wise tool reasoning. (ii)
Preference tuning on 11K preference pairs (Pref-X), where the agent self-explores, generates
candidate actions, and updates via the DPO objective. This staged design allows the agent to
benefit from verified traces while progressively improving decision-making through exploration
and preference alignment. A summary of the training loop is given in Algorithm 1.

4 Results

We evaluate MATRIX across three challenging multimodal agent benchmarks. Agent-
X (Ashraf et al., 2025) comprises 828 tasks spanning six environments (e.g., web browsing,
driving, sports), requiring fine-grained step-wise reasoning. GTA (Wang et al., 2024b)
consists of 229 real-world queries paired with authentic tools and multimodal inputs, em-
phasizing long-horizon tool usage. GAIA (Mialon et al., 2023) provides 106 open-ended
multimodal questions covering diverse reasoning levels and task domains.
We benchmark against: (i) closed-source controllers (GPT-4, GPT-4o), (ii) open-source
controllers (LLaVA-NeXT-8B (Liu et al., 2024a), InternVL2-8B (Chen et al., 2024c), Qwen2-
VL-7B (Yang et al., 2024), MiniCPM-V-8.5B (Yao et al., 2024)), and (iii) agent baselines
(Lego (Team, 2023), Sibyl (Wang et al., 2024c), Warm-up Act (Mialon et al., 2023), HF
Agent (HuggingFace Contributors, 2024)). Beyond head-to-head comparisons, we conduct
ablations on data generation and preference tuning, and provide qualitative case studies
illustrating how MATRIX solves complex multimodal tasks through adaptive tool reasoning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results on GTA and GAIA benchmarks. Bold numbers indicate the best
performance among open-source models, underline denotes the second best.

Method Controller GTA GAIA
AnsAcc Level 1 Level 2 Level 3 AnsAcc

Closed-source Controllers

Lego Agent GPT-4 46.59 - - - -
Lego Agent GPT-4o 41.52 - - - -
Sibyl Agent GPT-4-turbo - 43.40 27.90 7.70 29.70
Warm-up Agent GPT-4-turbo - 30.20 15.10 0.00 17.60
HF Agent GPT-4o 57.05 47.17 31.40 11.54 33.40
HF Agent GPT-4o-mini 57.69 33.96 27.91 3.84 26.06

Open-source Controllers

HF Agent InternVL2-8B 32.05 7.55 4.65 0.00 4.85
HF Agent MiniCPM-V-8.5B 33.97 13.21 5.81 0.00 7.27
HF Agent Qwen2-VL-7B 42.31 16.98 8.14 0.00 9.70
T3-Agent MAT-MiniCPM-V-8.5B 52.56 26.42 11.63 3.84 15.15
T3-Agent MAT-Qwen2-VL-7B 53.85 26.42 15.12 3.84 16.97

Ours

MATRIX Agent Tuned Qwen2-VL-7B 65.38 ± 4% 29.15 ± 4% 19.28 ± 2% 6.84 ± 3% 21.47 ± 3%

Improvement over Qwen2-VL-7B +23.07% +12.17% +11.14% +6.84 +11.77%
*The variance and error study are given in Appendix§ C.1

4.1 Experimental Setup

Implementation. We adopt Qwen2-VL-7B (Yang et al., 2024) as the controller and fine-
tune the language backbone with LoRA (Hu et al., 2022). Training runs for five epochs on
M-TRACE using LoRA rank 32 applied to query, key, and value projections in all attention
layers. We optimize with AdamW (lr=1× 10−6), cosine annealing, batch size 2 per device,
and a 10,240-token context window. Experiments use 4×H200 GPUs, and inference is
performed without sampling or verification for fair comparison.
Evaluation Metrics. Following prior works (Ashraf et al., 2025; Wang et al., 2024b;
Gao et al., 2025a), we evaluate performance of Agent-X using three modes: Step-by-Step
(correctness of individual tool-use steps), Deep Reasoning (coherence and factual accuracy
of multi-step reasoning), and Outcome (overall task-solving success via final answers and tool
execution). For GTA and GAIA, we report AnsAcc, with GAIA results further broken down
by difficulty levels (Level 1, Level 2, and Level 3).

4.2 State-of-the-art Comparisons

Agent-X: Tab. 1 shows that while open-source models like Qwen2-VL-7B, InternVL3-8B,
and VideoLLaMA3-7B improve grounding and factual precision on Agent-X, they remain
behind closed-source controllers (e.g., GPT-4o, Gemini). Key metrics for Agent-X include
Tool Accuracy (correct execution), Faithfulness Accuracy (evidence alignment), and
Semantic Accuracy (contextual fit). MATRIX achieves the highest scores, 0.91, 0.71, and
0.71, respectively, yielding relative gains of +8% grounding, +5% precision, +37% tool
accuracy, and +50% factual precision over Qwen2-VL-7B. These results confirm that step-
wise preference optimization with AI feedback substantially enhances grounding with tool-use
reasoning and offers a scalable open-source alternative.
GTA and GAIA: Tab. 2 reports results on GTA and GAIA. On GTA, MATRIX outperforms
both closed-source (GPT-4/4o) and open-source (InternVL2-8B, Qwen2-VL-7B) controllers,
with a +23.07% AnsAcc gain over Qwen2-VL-7B. Compared to SFT-based methods like
T3-Agent, it shows clear advantages from self-exploration and preference refinement, relying
less on costly annotations. On GAIA, Matrix-Agent achieves best performance among
open-source models, surpassing Qwen2-VL-7B by +11.77% in AnsAcc. While a small gap
remains to closed-source models, we attribute this to scale and proprietary data. The results
validate the effectiveness of our step-wise preference optimization for multimodal tool-use.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation studies for MATRIX on GTA Left: Effect of steps (d). Middle: BLEU
scores for verifier discrimination (lower is better). Right: Effect of two-verifier design.

Iteration Steps (d) Verifier BLEU (↓) Two-Verifier Ablation

d 200 500 1000
AnsAcc 55.17 65.38 60.50

Verifier B1 B2 B3 B4
Random 0.53 0.41 0.36 0.34
Ours 0.21 0.22 0.19 0.17

Method GTA GAIA
w/o verifiers 50.00 13.33
Ours 65.38 19.28

Table 4: Ablation studies for MATRIX on Agent-X. Left: Effect of computation budget.
Middle: Effect of dataset size. Right: Comparison of different RL methods.

GPU Compute Dataset Size (samples) RL Method Comparison
Data 8K 17.5K 28.5K

Memory (GB) 221 270 318
Size 8K 17.5K 28.5K

Goal_Acc 0.29 0.35 0.39
Method SFT ORPO DPO

Goal_Acc 0.31 0.37 0.39

4.3 Ablation and Analysis

Effect of Iteration Step Size. The iteration step size d controls the trade-off between
update frequency (how often the policy is updated) and data diversity (breadth of sampled
trajectories). A very small d (e.g., 200) yields frequent updates but limited diversity, while
a large d (e.g., 1000) increases diversity at the cost of slower adaptation. As shown in
Tab. 3(left), d = 500 achieves the best balance, giving the highest AnsAcc of 65.38%.
Verifier Discrimination Ability. We measure how well our verifier distinguishes candidate
steps by comparing it with random selection using BLEU scores (lower is better, since
lower overlap means more diverse actions). Tab. 3(middle) shows that our verifier achieves
consistently lower BLEU (e.g., BLEU-1 = 0.21 vs. 0.53 for random), indicating it selects
more distinct and informative steps, which translates to improved AnsAcc.
Impact of Dual-Verifier Framework. We further ablate the two-verifier design by
removing one verifier. As reported in Tab. 3(right), performance drops substantially (GTA:
65.38% → 50.00%, GAIA: 19.28% → 13.33%), confirming that combining both verifiers is
critical for filtering inconsistent or low-quality samples.
Ablation on Dataset Scale, Memory, and Optimization Methods. Tab. 4 summarizes
the effect of training data size and tuning strategies. Increasing the dataset from 8K to
28.5K samples raises memory usage (from 221 GB to 318 GB across 4×H200 GPUs) but
yields steady gains in Goal_Acc (0.29 → 0.39). On the optimization side, ORPO improves
over pure SFT (0.37 vs. 0.31), while DPO achieves the highest score (0.39), underscoring
the effectiveness of preference-based tuning for step-level tool reasoning.
Additional ablations on variance analysis, tool preference, and modality contributions are in
Appendix §C. Qualitative/failure case analysis is shown in Appendix §D.

5 Conclusion

We introduced MATRIX, a vision-centric framework for multimodal agent tuning that advances
tool-use reasoning through staged training. MATRIX combines large-scale trajectory super-
vision (M-TRACE) with step-wise preference optimization (Pref-X), enabling agents to both
acquire fundamental tool-use skills and refine their decision-making beyond imitation. This
unified design achieves consistent gains across Agent-X, GTA, and GAIA, surpassing existing
baselines. Our results highlight the scalability and effectiveness of integrating synthetic data
generation with iterative self-exploration for building robust multimodal agents. =

Limitations and Future Directions. While effective, MATRIX has some limitations.
Currently, it only grounds multimodal signals at the query/task level, relies on prompt-based
verifiers that may falter under distribution shifts, and optimizes step-level preferences without
trajectory-level credit assignment. Future work will address these by exploring adaptive
verifiers, continuous multimodal grounding, and hierarchical preference modeling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 2

Tajamul Ashraf, Amal Saqib, Hanan Ghani, Muhra AlMahri, Yuhao Li, Noor Ahsan, Umair
Nawaz, Jean Lahoud, Hisham Cholakkal, Mubarak Shah, Philip Torr, Fahad Shahbaz
Khan, Rao Muhammad Anwer, and Salman Khan. Agent-x: Evaluating deep multimodal
reasoning in vision-centric agentic tasks. 2025. URL https://arxiv.org/abs/2505.
24876. 2, 3, 7, 8

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023. 2

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language
models with longtermism. arXiv preprint arXiv:2401.02954, 2024. 2

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 18392–18402, 2023. 20

Harrison Chase. Langchain, October 2022. URL https://github.com/langchain-ai/
langchain. 3

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimiza-
tion for mathematical reasoning. In Annual Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 7889–7903, 2024a. 3

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-
embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through
self-knowledge distillation. 2024b. 4

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong,
Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation
models and aligning for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 24185–24198, 2024c. 7

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents
for large-scale api calls. In International Conference on Machine Learning (ICML), pp.
11812–11829, 2024. 3

Yue Fan, Xiaojian Ma, Rujie Wu, Yuntao Du, Jiaqi Li, Zhi Gao, and Qing Li. Videoagent:
A memory-augmented multimodal agent for video understanding. In European Conference
on Computer Vision (ECCV), 2024. 1

Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, and Benoit Boulet. Furl: visual-language models
as fuzzy rewards for reinforcement learning. In International Conference on Machine
Learning (ICML), pp. 14256–14274, 2024. 3

Zhi Gao, Yuntao Du, Xintong Zhang, Xiaojian Ma, Wenjuan Han, Song-Chun Zhu, and Qing
Li. Clova: A closed-loop visual assistant with tool usage and update. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13258–13268, 2024.
1

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde
Jia, Song-Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven agent
for efficient tool usage. In International Conference on Learning Representations (ICLR),
2025a. 8

10

https://arxiv.org/abs/2505.24876
https://arxiv.org/abs/2505.24876
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde
Jia, Song-Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven
agent for efficient tool usage. In The Thirteenth International Conference on Learning
Representations, 2025b. 1, 2, 4

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. 2

Significant Gravitas. Autogpt, 2023. URL https://github.com/Significant-Gravitas/
AutoGPT. 3

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual
reasoning without training. In The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 14953–14962, 2023. 1

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
International Conference on Learning Representations (ICLR), 2022. 8

HuggingFace Contributors. Agents and tools, 2024. URL https://huggingface.co/docs/
transformers/agents. 7

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024. 4

brian ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander
Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov,
Sergey Levine, Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander T
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown,
Michael Ahn, Omar Cortes, Nicolas Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek
Rettinghouse, Jornell Quiambao, Peter Pastor, Linda Luu, Kuang-Huei Lee, Yuheng
Kuang, Sally Jesmonth, Nikhil J. Joshi, Kyle Jeffrey, Rosario Jauregui Ruano, Jasmine
Hsu, Keerthana Gopalakrishnan, Byron David, Andy Zeng, and Chuyuan Kelly Fu. Do as
i can, not as i say: Grounding language in robotic affordances. In Conference on Robot
Learning (CoRL), pp. 287–318, 2023. 1

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything.
In International Conference on Computer Vision (ICCV), pp. 4015–4026, 2023. 4

Aobo Kong, Wentao Ma, Shiwan Zhao, Yongbin Li, Yuchuan Wu, Ke Wang, Xiaoqian Liu,
Qicheng Li, Yong Qin, and Fei Huang. Sdpo: Segment-level direct preference optimization
for social agents. arXiv preprint arXiv:2501.01821, 2025. 2, 3, 7

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-
dpo: Step-wise preference optimization for long-chain reasoning of llms. arXiv preprint
arXiv:2406.18629, 2024. 3

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren
Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf:
Scaling reinforcement learning from human feedback with ai feedback. In International
Conference on Machine Learning (ICML), pp. 26874–26901. PMLR, 2024. 3

Chenliang Li, He Chen, Ming Yan, Weizhou Shen, Haiyang Xu, Zhikai Wu, Zhicheng
Zhang, Wenmeng Zhou, Yingda Chen, Chen Cheng, et al. Modelscope-agent: Building
your customizable agent system with open-source large language models. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 566–578, 2023. 3

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang, Chengjie Wang,
Jilin Li, and Feiyue Huang. Dsfd: dual shot face detector. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5060–5069, 2019. 20

11

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://huggingface.co/docs/transformers/agents
https://huggingface.co/docs/transformers/agents

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhenqiang
Huang, Qianben Chen, Weichen Sun, Qiexiang Wang, Hongxuan Lu, Tianrui Qin, Cheng-
hao Zhu, Yi Yao, Shuying Fan, Xiaowan Li, Tiannan Wang, Pai Liu, King Zhu, He Zhu,
Dingfeng Shi, Piaohong Wang, Yeyi Guan, Xiangru Tang, Minghao Liu, Yuchen Eleanor
Jiang, Jian Yang, Jiaheng Liu, Ge Zhang, and Wangchunshu Zhou. Chain-of-agents:
End-to-end agent foundation models via multi-agent distillation and agentic rl, 2025. URL
https://arxiv.org/abs/2508.13167. 2

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September
6-12, 2014, proceedings, part v 13, pp. 740–755. Springer, 2014. 4, 26

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
Advances in Neural Information Processing Systems, 36, 2024a. 4, 7

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In International Conference on Computer Vision (ICCV), 2015. 4

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating
verifiable and diverse function-calling datasets. Advances in Neural Information Processing
Systems (NeurIPS), 37:54463–54482, 2024b. 3, 4

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa:
A benchmark for question answering about charts with visual and logical reasoning. In
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2263–2279,
2022. 4

Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong
Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: Llm agent operating system. arXiv preprint
arXiv:2403.16971, 2024. 3

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants. In The Twelfth International Conference on
Learning Representations, 2023. 2, 3, 7

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn,
Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, et al. Simple open-vocabulary object detection. In European Conference on Computer
Vision (ECCV), pp. 728–755. Springer, 2022. 20

Emanuele Musumeci, Michele Brienza, Vincenzo Suriani, Daniele Nardi, and
Domenico Daniele Bloisi. Llm based multi-agent generation of semi-structured docu-
ments from semantic templates in the public administration domain. In International
Conference on Human-Computer Interaction, pp. 98–117. Springer, 2024. 3

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-
assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.
3

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023. 2

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han,
Ning Ding, Huadong Wang, et al. Webcpm: Interactive web search for chinese long-form
question answering. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8968–8988, 2023. 3

12

https://arxiv.org/abs/2508.13167

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie
Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating
large language models to master 16000+ real-world APIs. In The Twelfth International
Conference on Learning Representations, 2024. 3

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. Advances in neural information processing systems, 36:53728–53741, 2023. 6

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, 2022. 20

Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning
the right metric on the right feature. arXiv preprint arXiv:1505.00855, 2015. 4

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 6

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu,
Dongsheng Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for
task automation. arXiv preprint arXiv:2311.18760, 2023. 1, 3

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in
Neural Information Processing Systems, 36, 2024. 3

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In The IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8317–8326, 2019. 4

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt:
Connecting large language models with real-world applications via restful apis. arXiv
preprint arXiv:2306.06624, 2023. 3

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based
web agents. arXiv preprint arXiv:2410.16464, 2024. 3

Xiaowen Sun, Xufeng Zhao, Jae Hee Lee, Wenhao Lu, Matthias Kerzel, and Stefan Wermter.
Details make a difference: Object state-sensitive neurorobotic task planning. arXiv preprint
arXiv:2406.09988, 2024. 2

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python
execution for reasoning. In International Conference on Computer Vision (ICCV), pp.
11888–11898, 2023. 1

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun.
Toolalpaca: Generalized tool learning for language models with 3000 simulated cases.
arXiv preprint arXiv:2306.05301, 2023. 3

AgentLego Developer Team. Enhance llm agents with versatile tool apis. https://github.
com/InternLM/agentlego, 2023. 7

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 2

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward
Li, Shashank Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A
controllable world of apps and people for benchmarking interactive coding agents. In
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 16022–16076,
2024. 1

13

https://github.com/InternLM/agentlego
https://github.com/InternLM/agentlego

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chenyu Wang, Weixin Luo, Sixun Dong, Xiaohua Xuan, Zhengxin Li, Lin Ma, and Shenghua
Gao. Mllm-tool: A multimodal large language model for tool agent learning. In 2025
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6678–
6687. IEEE, 2025. 3

Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang, Yilin Bao, Ziran Yang, and Yi Wu. Of-
fline reinforcement learning for llm multi-step reasoning. arXiv preprint arXiv:2412.16145,
2024a. 3

Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le.
Gta: a benchmark for general tool agents. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2024b. 2, 3, 7, 8

Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To
see is to believe: Prompting gpt-4v for better visual instruction tuning. arXiv preprint
arXiv:2311.07574, 2023. 4

Yulong Wang, Tianhao Shen, Lifeng Liu, and Jian Xie. Sibyl: Simple yet effective agent
framework for complex real-world reasoning. Arxiv, 2024c. URL https://arxiv.org/
abs/2407.10718. 7

Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu. Genartist: Multimodal llm as an agent
for unified image generation and editing. arXiv preprint arXiv:2407.05600, 2024d. 2

T. Weyand, A. Araujo, B. Cao, and J. Sim. Google Landmarks Dataset v2 - A Large-Scale
Benchmark for Instance-Level Recognition and Retrieval. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020. 4

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023. 1

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis
Ioannidis, Karthik Subbian, Jure Leskovec, and James Y Zou. Avatar: Optimizing llm
agents for tool usage via contrastive reasoning. Advances in Neural Information Processing
Systems, 37:25981–26010, 2024. 3

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh J Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments. Advances in
Neural Information Processing Systems, 37:52040–52094, 2024. 3

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu
Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong
Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024. 1, 5, 7, 8

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards
scalable real-world web interaction with grounded language agents. Advances in Neural
Information Processing Systems, 35:20744–20757, 2022. 3

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. ReAct: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations, 2023a. 4

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations (ICLR), 2023b. 5, 6

14

https://arxiv.org/abs/2407.10718
https://arxiv.org/abs/2407.10718

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai,
Haoyu Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone.
arXiv preprint arXiv:2408.01800, 2024. 7

Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui,
Taiwen He, Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-
source ai feedback for super gpt-4v trustworthiness. arXiv preprint arXiv:2405.17220,
2024. 3

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung, Hao Peng, and Heng Ji. Craft:
Customizing llms by creating and retrieving from specialized toolsets. In International
Conference on Learning Representations (ICLR), 2024. 1

Chaoyun Zhang, Shilin He, Liqun Li, Si Qin, Yu Kang, Qingwei Lin, and Dongmei Zhang.
Api agents vs. gui agents: Divergence and convergence. arXiv preprint arXiv:2503.11069,
2025. 3

Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang, Zhiqing Sun, Zhe Gan, Yinfei
Yang, Ruoming Pang, and Yiming Yang. Improve vision language model chain-of-thought
reasoning. arXiv preprint arXiv:2410.16198, 2024a. 4

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. Mmina: Benchmarking multihop
multimodal internet agents. arXiv preprint arXiv:2404.09992, 2024b. 3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix for Matrix

Appendix Contents

A Additional Details on Pref-X Pipeline 18
A.1 Tools Used . 19

B MATRIX Training Algorithm 20

C Additional Experiments 21
C.1 Error Bars and Variance Analysis. 21
C.2 Ablation on Modalities . 21
C.3 Tool Preference. 22

D Qualitative and Failure Analysis 22
D.1 Example 1 . 22
D.2 Example 2 . 23

E Human and AI Verification Study 24
E.1 Human Verification of M-TRACE . 24
E.2 Automatic Verification for Preference Data 25
E.3 Broader Impacts . 25
E.4 User Study on Agent Outputs and Preferences 26

F Additional Details on Data Generation 26
F.1 Task Generation . 26
F.2 Query–File Verification . 27
F.3 Model Comparison for Task Generation . 27

G Case Studies 28
G.1 GTA Qualiative Results . 28
G.2 GAIA Qualiative Results . 31
G.3 Agent-X Qualiative Results . 34

H Stage-1 Prompts 37
H.1 Query Generation Prompts . 37
H.2 File Generation Prompts . 37
H.3 File Verification Prompts . 37
H.4 Trajectory Verification Prompts . 38
H.5 MATRIX Prompt - System . 38

I Stage-2 Prompts 38

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

I.1 Step Verifier Prompts . 39
I.2 Preference Data Construction . 39

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Task Seed LLM Model Task

Controller

Tool Calling

Verifier

Task Generation

Preference Tuning

Query

File

Image

Thought 1 Code 1

Thought 2 Code 2
Thought 1 Code 1 Result 1

Controller

Step Sampling

Result 1

Result 2

Result 3

Step Verfication

Thought 1 Code 1

Thought 2 Code 2

Thought 3 Code 3

Thought 1 Code 1

Thought 3 Code 3

Figure 4: Overview of the Pref-X construction pipeline. Tasks are sampled from M-TRACE,
then expanded through step sampling, step verification, and preference collection. Verified
preference pairs are used in Direct Preference Optimization (DPO) to update the controller.

A Additional Details on Pref-X Pipeline

In the main paper (§3.2), we described how Pref-X is constructed to enable step-wise prefer-
ence optimization. Here, we provide further details of the data generation and verification
pipeline, illustrated in Fig. 4.

Task Generation. We begin by sampling a set of seed tasks S from the Stage 1 corpus
(M-TRACE, see §3.2). Each task is defined as a query–file pair (Q, F), where Q denotes the
user query and F contains the associated multimodal evidence (e.g., text files, images).
Candidate step-wise trajectories are produced by the current controller πθ through iterative
interaction with the toolset.

Step Sampling. For each task (Q, F), the controller generates multiple candidate steps at
each reasoning turn. These steps include tool calls, arguments, and intermediate reasoning
traces. From this pool, diverse samples are retained to avoid mode collapse and to ensure
broad coverage of possible reasoning paths. To contextualize our contributions, we position
MATRIX against representative RL based sampling frameworks. As illustrated in Fig. 5,
the comparison spans three axes: task domain, collection granularity, and annotation format.
Unlike prior methods that primarily operate in narrow domains with trajectory-level rewards,
MATRIX emphasizes diverse multimodal tasks, collects preferences at the step level, and
leverages executable tool feedback for scalable and precise supervision.

Step Verification. Each sampled step is then automatically verified. Verification checks
whether (i) the tool call matches the schema, (ii) the arguments are valid and executable,
and (iii) the intermediate output remains consistent with the task context. Invalid or
incomplete steps are filtered out. This process corresponds to the loop over history states hi

in Algorithm 1.

Preference Collection. For the verified steps, pairwise preferences are collected using
a mixture of automated heuristics and model-based evaluators. Preference signals capture

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Trajectory-Level
CollectionPAE

WebRL

DMPO

ETOGUI Control

GUI Control
& Embodied AI

Browser/GUI

GUI + Embodied

Matrix Agent
(ours)

DigiRL IPR

StepAgent-
Inverse

Step- Level Collection

Trajectory-Level
Collection

Trajectory-Level
Collection

Trajectory-Level
Collection

Step- Level Collection

Step- Level Collection

Step- Level Collection
Multimodal
Reasoning

Vision-Text
+Tools

API Calling

API /tool calls

TP-LLAMA Step- Level Collection

Task Domain

Interface

Task Domain

Interface

Task Domain

Interface

Task Domain

Interface

Figure 5: Comparison of preference data construction frameworks. We contrast
MATRIX with reinforcement-learning–based sampling pipelines across three key dimensions:
(1) Task domain, i.e., the scope and modality of tasks considered; (2) Collection granularity,
i.e., whether data is gathered at the full-trajectory or step level; and (3) Annotation format,
i.e., the type of supervision used for preference signals. MATRIX uniquely focuses on
multimodal tasks, constructs preferences at the step level, and employs executable tool
feedback for scalable, fine-grained supervision.

relative correctness, faithfulness to the query, and progression towards the goal. The resulting
preference pairs form the core supervision signal for preference optimization.

Four Stages of DPO Process. The overall Pref-X construction pipeline aligns with the
four-step DPO process outlined in Fig. 4:

1. Trajectory sampling: Generate candidate step-wise rollouts from πθ for each seed
task.

2. Step verification: Discard malformed or invalid steps using automatic schema and
execution checks.

3. Preference generation: Construct preference pairs by comparing valid candidate
steps.

4. Policy update: Apply Direct Preference Optimization (DPO) to update πθ against
the reference policy πref using the verified preference dataset D.

This iterative pipeline produces the Pref-X corpus, which directly supervises step-wise
improvements of the agent while preventing reliance on memorized final answers.

A.1 Tools Used

To enable flexible and realistic multimodal task solving, our framework integrates a diverse
set of tools spanning vision, web, file understanding, and generative capabilities. Below, we
provide details of each tool and justify its inclusion. Together, these tools allow agents to
ground reasoning in real data, perform cross-modal analysis, and produce actionable outputs.
Web Search. This tool is implemented as a meta-agent consisting of three sub-modules:
(i) SearchInformation, which retrieves candidate webpages given a query, (ii) Visit, which
extracts textual content from webpages, and (iii) WebQA, which performs targeted question
answering over retrieved text. This design ensures the agent can dynamically access and
reason over up-to-date web knowledge rather than relying solely on static training data.
Image Question Answering. We integrate GPT-4o-mini as an image QA module, which
accepts an image and a natural language question to output a textual answer. This capability
allows the agent to perform grounded reasoning over visual inputs such as charts, natural
images, or scanned documents.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Overview of tools used in Matrix-Agent. Each tool specifies the model or library
backbone and its primary functionality.

Tool Model / Package Functionality

Web Search Google search + GPT Sub-tools: SearchInformation (title/abstract/URL), Visit
(HTML → text), WebQA (Q&A on text).

Image QA GPT Answers questions given an image input.
File Inspector MarkdownConverter +

GPT-4o-mini Converts multi-modal files into markdown and performs Q&A.

Object Localization OWL-ViT (Minderer et al.,
2022) Detects objects in images and outputs bounding boxes.

Image Generation Stable Diffusion (Rombach
et al., 2022) Generates an image from a text query.

Image Editing InstructPix2Pix (Brooks
et al., 2023) Edits an image according to an instruction.

Face Detection DSFD (Li et al., 2019) Detects and outputs bounding boxes of faces in an image.
Python Package Standard libraries + packages Enables code execution with: requests, pandas, numpy, scipy,

torch, cv2, etc.

File Inspector. For structured documents (PDFs, Word, Excel, PowerPoint), we use the
Python package MarkdownConverter to parse raw files into text. The resulting content is
combined with a query and passed to GPT-4o-mini for reasoning. This tool extends the
agent’s ability to understand heterogeneous non-image resources, which are common in
real-world multimodal tasks.
Object Localization. We employ OWL-ViT (Minderer et al., 2022) for object grounding.
Given an image and a query (e.g., “localize all cups”), the tool outputs bounding boxes for
relevant objects. This allows the agent to handle spatial reasoning and locate specific entities
in visual contexts.
Image Generation. Stable Diffusion (Rombach et al., 2022) is used for text-to-image
generation, enabling agents to produce synthetic images from natural language prompts.
This supports tasks such as visualization, illustration, or generating multimodal artifacts
required by a query.
Image Editing. We incorporate InstructPix2Pix (Brooks et al., 2023), which takes an
instruction and an input image to output a modified version. This capability is essential
for tasks requiring visual manipulation, such as highlighting regions, altering attributes, or
iterative refinement of generated content.
Face Detection. We use DSFD (Li et al., 2019) as a robust face detection backbone. It
identifies bounding boxes of all visible faces in an image. Face-level grounding is a critical
capability for tasks involving identity verification, demographic analysis, or interaction
reasoning.
Python Package Execution. Finally, we allow the agent to call a curated set of Python
packages (pandas, numpy, matplotlib, torch, etc.). This provides a flexible computational
backend for data analysis, symbolic reasoning, and numerical tasks. By combining tool
execution with code-level reasoning, the agent can go beyond natural language planning and
solve complex multimodal problems.

In summary, these tools collectively enable MATRIX to handle tasks requiring perception,
reasoning, retrieval, and generation across diverse modalities. The broad coverage of tool
categories (search, vision, file understanding, generation, and computation) ensures the agent
is capable of solving realistic and complex multimodal tasks.

B MATRIX Training Algorithm

To complement the description in the main paper, we provide a detailed summary of the
training pipeline and its algorithmic formulation (Algorithm 1).

Overview. After Stage 1 supervised fine-tuning (SFT), the agent is refined with step-wise
preference optimization. Unlike static imitation learning, this stage enables the controller

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

to actively explore multiple candidate actions per reasoning step and receive structured
feedback from AI-based verifiers. This design addresses three limitations of pure imitation:
(i) it improves adaptability by allowing recovery from suboptimal or partially correct rollouts,
(ii) it leverages exploration rather than discarding incomplete or noisy demonstrations, and
(iii) it scales preference data construction without requiring expensive manual annotations.

Algorithm 1 MATRIX: Iterative Step-Wise
Preference Optimization
1: Input: Seed tasks S, controller πθ, refer-

ence πref = πθ

2: Output: Updated controller π⋆
θ from

Stage 1.
3: while not converged do
4: D ← ∅
5: for task (Q, F) ∈ S do
6: h1 ← ∅
7: for i = 1 . . . m do
8: Sample candidates from πθ

9: Execute, verify, and add prefer-
ences

10: Update history hi+1
11: end for
12: end for
13: Update πθ ← DPO(πθ, πref,D)
14: end while

Process. The algorithm starts with a seed
task pool S and a controller πθ initialized
from Stage 1. For each task, the agent inter-
acts step-by-step: it generates candidate ac-
tions, executes them through real tool calls,
and submits outcomes to a verifier. The
verifier compares the candidates and ranks
them, producing preference pairs that dis-
tinguish consistent, accurate behaviors from
weaker alternatives. These pairs are accu-
mulated into a dataset D, which is then
used to update the controller via the Direct
Preference Optimization (DPO) objective,
with πref (the Stage 1 model) serving as the
reference.

Iteration. This loop is repeated itera-
tively until convergence. Over time, the
agent becomes aligned with behaviors that
are not only correct but also robust, consis-
tent, and semantically useful across diverse
multimodal tasks. The procedure is formal-
ized in Algorithm 1, which illustrates the
alternating phases of step-level exploration, preference pair construction, and parameter
updates.

C Additional Experiments

C.1 Error Bars and Variance Analysis.

We observe small but non-negligible fluctuations across repeated runs (Tab. 6), even though
the tuning pipeline itself is deterministic. The primary sources of variance stem from external
API dependencies: (i) the Google Search API occasionally fails or returns unstable rankings
of web results, leading to variation in retrieved evidence; (ii) the OpenAI API (used for
GPT-4o-mini based verification and artifact generation) can occasionally time out or produce
slightly different responses under identical prompts. These inconsistencies propagate into
tool execution and trajectory verification, ultimately affecting downstream accuracy metrics
by a few percentage points. Importantly, despite this natural variance, our improvements
over the baseline remain statistically significant, confirming the robustness of our framework.

Table 6: Performance with variance on the GTA benchmark. Results are reported as mean
± standard deviation over 5 runs.

Method AnsAcc
Baseline (Qwen2-VL-7B) 43.21
MATRIX Agent with Qwen2-VL-7B) 63.26 ± 4.78

C.2 Ablation on Modalities

To analyze the contribution of different modalities, we perform ablation experiments on the
GTA benchmark. As shown in Tab. 7, removing the image modality drastically reduces

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

performance, with AnsAcc dropping by nearly 40%. This highlights the critical role of visual
inputs for accurate tool-use reasoning.

Table 7: Ablation on GTA benchmark. Only AnsAcc is reported.

Method AnsAcc
MATRIX Agent w/o image 8.67
MATRIX Agent w/ image 63.56

C.3 Tool Preference.

Figure 6: Tool distribution for the chosen
and rejected steps.

We further analyze the distribution of tools across
selected and rejected steps (Fig. 6). In MATRIX,
frequently adopted tools such as visualizer
(2101 uses) and objectloc (1051 uses) domi-
nate the chosen steps, while the rejected steps
show heavier reliance on objectloc (1442 uses),
visualizer (1524 uses), and less effective utili-
ties such as ocr and seg. This mismatch results
in a 45.62% divergence between the two distribu-
tions, suggesting that MATRIX’s verifier favors
tool combinations that are more semantically
aligned and practically useful, while systemati-
cally filtering out noisy or redundant tool usage.

D Qualitative and Failure
Analysis

Goal. We analyze how agentic vision–language pipelines fail on image-grounded arithmetic
and counting tasks, and why our MATRIX agent is more robust than the baseline (MAT).
We focus on two representative cases: (i) computing the number of boxes of eggs required
for 12 servings (discrete reasoning), and (ii) summing calories from a table (continuous
arithmetic).

D.1 Example 1

Observed behavior. On visually grounded arithmetic (e.g., the “eggs/servings” task) as
shown in Fig. 7, the baseline MAT frequently entered a tool-use loop where it produced the
same action multiple times, received similar observations, and then repeated the action again
without incorporating the feedback. This repetition culminated in a confident but incorrect
answer. In contrast, MATRIX exhibited an initially brittle code synthesis (a parsing error and
missing print statement) but subsequently self-corrected and produced the correct discrete
count.

Failure modes in MAT. We categorize the baseline errors into three coupled modes:

1. Mis-interpretation of the task. The agent failed to decompose the instruction
into sub-goals (extract numbers → compute total → round up to boxes), so its
actions did not target missing information.

2. Planning deficit. Absent an explicit “plan–act–observe–revise” scaffold, the agent
treated unchanged observations as if they were new evidence, never triggering a
branch to an alternative tool or a reformulated query.

3. Looping/hallucination. Repeating identical (or template-like) tool calls despite
identical observations indicates policy collapse toward a habitual trajectory, rather
than belief update from evidence.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Why MATRIX eventually succeeds (but starts loose). MATRIX’s first attempt
produced (i) an invalid parse (NoneType.group) and (ii) no printed value, hence no us-
able observation. However, its reflective step modified the code to (a) explicitly compute
ceil(total_eggs/eggs_per_box) and (b) print the result, restoring the tool–feedback
loop and yielding the correct answer. This success originates from a minimal but effective
revise-and-retry behavior whereas the brittleness stems from unconstrained code generation
and weak I/O contracts.

Figure 7: Baseline vs. MATRIX. For the given task, the baseline repeats and answers 1
(wrong), while MATRIX self-corrects after early code/IO hiccups and outputs the correct
discrete count 2.

D.2 Example 2

Observed Behavior. In Fig. 8, the baseline (MAT/Qwen-2VL) tries multiple extraction
routes: (i) it first fails on a missing image file, then (ii) fails on a visualizer call, and (iii)
finally falls back to parsing the provided image as a table text. It correctly recovers the
per-item values like Egg = 157 kcal/100 g, Tomato = 19 kcal/100 g, and even logs them, but
it returns them directly as the final answer rather than performing the requested aggregation,
which was the main logic for the provided task. By contrast, MATRIX reads the same two
numbers and, given the task’s simplicity, directly performs the scalar sum to be 176 because
of the simple nature of the task, but it finalizes without emitting any intermediate logs (no
‘print’), i.e., a “no-tool path” with an empty observation buffer.

Failure Modes in MAT. The core error is task misinterpretation / incomplete aggregation
as MAT stops at entity-level extraction and treats the tuple {157, 19} as the answer, ignoring
the query’s composition verb (“in total”). This reflects a weak finalization contract (it
permits non-scalar answers) and missing schema constraints (no requirement that the output
type match a single numeric total with units). Although MAT shows robustness to I/O

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

issues by switching tools, its reasoning halts before the final operation (sum), so correctness
is never realized.

Why MATRIX eventually succeeds. MATRIX executes the correct computation chain where
it identifies two calibrated numerals and performs a deterministic addition directly, so it
outputs the right scalar 176. The trade-off is observability, as it did not log inputs or
intermediates, and that is why the success is unverifiable and would conceal OCR/unit
mistakes if they occurred. A minimal tightening can be helpful for such scenarios, which
require one logged tool step that prints the parsed inputs and the computed sum, plus
unit/assert checks (per-100 g) before calling ‘final_answer‘, would preserve the current
correctness while eliminating the “answers without evidence” risk.

Figure 8: For the provided task, the baseline (Qwen-2VL) recovers the per-item values (157,
19) after I/O errors but finalizes them directly, failing to aggregate the required answer.
MATRIX immediately sums to the correct scalar (176) because of the simple nature of the
task, but finalizes without tool logs (empty observation), highlighting a trade-off between
aggregation correctness and observability.

E Human and AI Verification Study

E.1 Human Verification of M-TRACE

Protocol. We verified our M-TRACE pipeline by domain experts with backgrounds in AI,
programming, and science. We evaluated a total of 50 data samples drawn via random
sampling, with an even split between verified M-TRACE cases and filtered cases. The ratings
were done on a scale of 1-7 (1=very poor, 7=excellent). The label for each scale is provided
in Tab. 8. For each item, an expert scored (i) the task prompt and (ii) the corresponding
MATRIX trajectory.

Rubric. The task quality was evaluated from different aspects like (i) Plausibility:
does the task look realistic and domain-faithful? (ii) Flow: Is the objective stated clearly
with consistent constraints? (iii) Multi-tool demand: Does solving reasonably require
non-trivial tool use or cross-modal steps?. Whereas, the trajectory quality was judged on:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(i) Reasoned progress: traceable, correct intermediate steps, (ii) Code structure: clean,
runnable, and purposeful code, (iii) Tool feedback use: appropriate incorporation of tool
outputs and error handling.

Table 8: 7-point rating scale used in the M-TRACE expert review.

Score Label Evaluation Criteria)

1 Very Poor Unrealistic or unsolvable; incoherent objective; steps/code non-
executable; fails most rubric criteria.

2 Poor Major defects; missing key constraints; code largely broken; tool
feedback mostly ignored.

3 Fair Partially realistic but inconsistent; noticeable gaps; code runs only
with heavy fixes; minimal multi-tool use.

4 Acceptable Solvable with minor guidance; small inconsistencies; code mostly
runs with small fixes; limited cross-modal/tool demand.

5 Good Realistic and coherent; appropriate difficulty; code runs with minor
issues; reasonable incorporation of tool outputs.

6 Very Good Well-formed and domain-faithful; clear multi-step plan; robust,
readable code; consistent, effective feedback use.

7 Excellent Exemplary realism/clarity/complexity; clean, reusable code with
error handling; optimal integration of tool feedback.

Verification Outcomes. Verified M-TRACE samples substantially outperformed the filtered
data items on both dimensions, as can be seen in Tab. 9. On the 1–7 scale, tasks achieved
5.86 for verified vs. 4.61 for the filtered cases. A similar trend was observed for trajectories
as well, where M-TRACE scored 6.12 for verified vs. 4.55 for the filtered samples. These
findings support the effectiveness of the M-TRACE verification stage in retaining higher-quality
tasks (more plausible, better-formed, and suitably challenging) and trajectories (stronger
reasoning, cleaner code, and more faithful use of tool feedback).

Table 9: Human ratings for M-TRACE. Verified items outperform discarded ones for both task
and trajectory quality.

Condition Task Trajectory

M-TRACE (kept) 5.86 6.12
Filtered (discarded) 4.61 4.55

E.2 Automatic Verification for Preference Data

To scale beyond costly human annotation, we employ automatic verification for constructing
step-level preference data. At each reasoning step, large language models serve as verifiers that
rank multiple candidate actions. The verifier evaluates (i) whether the action is consistent
with the query and available tools, (ii) whether the tool arguments are syntactically and
semantically correct, and (iii) whether the action aligns logically with the task history. This
design enables the collection of high-quality preference pairs without manual effort, ensuring
that noisy or inconsistent actions are filtered out before training.

E.3 Broader Impacts

MATRIX’s ability to generate large-scale multimodal tasks and refine tool-use reasoning
through step-level preference optimization has the potential to lower the barrier to build-
ing robust multimodal agents. By automating data synthesis and verification, MATRIX
reduces reliance on costly human annotations and manual curation, making it easier for
researchers and practitioners to develop domain-adapted systems in areas such as document
understanding, scientific data analysis, education, and healthcare. This scalability can foster
more inclusive and resource-efficient AI innovation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

However, increased autonomy in data generation and preference optimization also carries risks.
Automatically verified trajectories may encode spurious correlations, biases, or hallucinations,
which could be magnified in safety-critical domains such as law or medicine. Moreover,
iterative self-exploration may lead to inefficiencies or overfitting if not carefully managed. To
mitigate these risks, we recommend transparent auditing of the generated data, incorporating
human-in-the-loop validation for high-stakes applications, and ensuring exploration budgets
are responsibly constrained.
LLM Usage Statement: We made limited use of large language models to enhance the
clarity and readability of the text. They were not involved in the conception of ideas,
experiment design, analysis, or the production of results.

E.4 User Study on Agent Outputs and Preferences

To further assess the reliability of our verifier and the practical benefits of preference tuning,
we conducted two complementary user studies.

Preference Alignment Study. Participants were presented with a single task and several
candidate next-step actions (thoughts, tool calls, or code snippets). These were identical
to those scored by our automated verifier but shown in random order to remove positional
bias. Participants selected the step they deemed most appropriate for continuing the task.
We then measured the agreement rate between human selections and the verifier’s ranking,
providing a direct estimate of how well automated feedback reflects human judgment.

Data Quality Study. A second interface asked participants to rate tasks and trajectories
across two phases. Task evaluation included (i) reasonableness (1–10), logical and well-defined
queries, and (ii) naturalness (1–10), realistic and user-like phrasing. Trajectory evaluation
involved three dimensions: (i) code accuracy, (ii) tool effectiveness, and (iii) content accuracy,
each on a 1–10 scale. Examples anchored low, mid, and high scores to maintain consistency.
After rating, participants submitted their responses before moving to the next case.

Agent Output Comparison. Finally, to validate downstream benefits, we conducted
a blind comparison on the GTA benchmark. For 20 tasks, participants reviewed outputs
from tuned and untuned agents (presented in random order) and indicated which they
preferred. As shown in Tab. 10, the tuned agent was favored in 66% of cases, compared to
21% for the untuned agent and 13% ties. This demonstrates that our framework not only
improves automatic metrics but also produces outputs perceived as more accurate, helpful,
and relevant by human judges.

Table 10: User study results for agent outputs on the GTA benchmark.

Untuned Better Tie Tuned Better
Preference (%) 21% 13% 66%

F Additional Details on Data Generation

F.1 Task Generation

To build realistic multimodal tasks, we adopt a query-first strategy where an LLM is prompted
to generate diverse user queries, followed by the creation of corresponding artifacts. Different
construction strategies are applied depending on the file type:

• Image files: We retrieve semantically relevant images from large-scale datasets Lin
et al. (2014) using embedding-based similarity with the generated query content.

• Non-image files: For formats such as .PDF, .XLSX, .DOCX, or .MP3, the LLM is
prompted to synthesize Python scripts that call standard libraries to render the file
into the desired format.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.2 Query–File Verification

To ensure task reliability, we employ a two-stage verification pipeline:

1. Revision: A vision–language model (VLM) is given both the query and its associated
file. For image-based tasks, the visual input is provided directly, while for non-image
files, the raw content is used. The VLM can refine the query to improve alignment
with the file content.

2. Filtering: The revised query–file pair is then evaluated against predefined criteria
(e.g., coherence, solvability, informativeness). Only pairs meeting the threshold are
retained for training.

F.3 Model Comparison for Task Generation

We also benchmarked task generation quality using both an open-source model (Qwen2-
VL-7B) and a closed-source model (GPT-4o-mini). Each model produced 10 tasks under
identical prompts, giving a total of 20 tasks. These were randomized and anonymized before
being rated by human evaluators. Evaluations covered two dimensions: naturalness and
reasonableness, both scored on a 10-point scale.
As shown in Tab. 11, the two models achieved highly similar results, indicating that
open-source models can match closed-source systems in generating natural and reasonable
multimodal tasks.

Table 11: Human evaluation of task quality from open-source vs. closed-source models.
Scores are averaged on a 10-point scale (higher is better).

Model Task Naturalness Task Reasonableness
GPT-4o-mini 9.48 9.52
Qwen2-VL-7B 7.75 7.17

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

G Case Studies

G.1 GTA Qualiative Results

GTA - Example 1

GTA_65.jpg

Query: What is the percentage of adults?

Involved Tools: visualizer

Trajectory:
1. MATRIX: I will use the ‘visualizer’ tool to answer the question about

the image. The ‘visualizer’ will help me understand what percentage
of the people in the image are adults.

2. Tool-Response: In the image, there are two adults and two children.
Since there are four people in total, the percentage of adults is: 2 adults /
4 people = 50%

3. MATRIX: I have calculated the percentage of adults in the image. Now, I
will provide the final answer using the ‘final_answer‘ tool.

4. Final_Answer: 50%

Answer: 50%

Ground Truth: 50%

Figure 9: Example 1

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

GTA - Example 2

GTA_198.jpg

Query: Generate a poem for this photo. Convert the photo to ukiyo-e Style and
put the poem on the middle left of the generated image.

Involved Tools: image_edit

Trajectory:
1. MATRIX: To complete the task, I need to: 1. Generate a poem inspired by

the provided image. 2. Convert the image to the ukiyo-e style. 3. Overlay
the poem onto the converted image at the specified location. I’ll start by
generating the poem.

2. Tool-Response: In misty mountains high and true, Where cherry blos-
soms catch the dew, A temple guards the ancient way, Underneath the
sky’s gentle sway. Waterfalls sing a timeless song, Rivers flow both swift
and long, Nature whispers tales of old, In colors vibrant, stories told.

3. MATRIX: Now that I have the poem, I’ll proceed to convert the image to
the ukiyo-e style. After that, I’ll overlay the poem onto the image in the
middle left. I’ll start by converting the image.

4. Tool-Response: Ukiyo-e Image Path:
.cache/1753282965882_resbj26q.png

5. MATRIX: Now that I have the image in the ukiyo-e style, I’ll overlay the
poem onto the image at the middle left position.

6. Tool-Response: Final Image Path: .cache/fi-
nal_ukiyo_image_with_poem.png

7. Final_Answer: Final image with poem is saved at: .cache/fi-
nal_ukiyo_image_with_poem.png

Answer:

Ukiyo-e.png Ukiyo-e-poem.png
Ground Truth:

Figure 10: Example 2

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

GTA - Example 3

GTA_201.jpg

GTA_202.jpg

Query: How much should I pay for the soda in the picture according to the price
on the menu?

Involved Tools: Visualizer, Final_Answer

Trajectory:
1. MATRIX: To find out how much to pay for the soda in the picture according

to the price on the menu, I’ll follow these steps: 1. Identify the drink in
the first image. 2. Check the menu in the second image: Look for the
soda price. Let’s verify the price from the menu.

2. Tool-Response: The drink in the first image is Coca-Cola.
3. MATRIX: I’ll now find the price on the menu.
4. Tool-Response: The menu shows the price for Coca-Cola is 1.50€
5. Final_Answer: 1.50.

Answer: The price of the soda (Coca-Cola) is 1.5€.

Ground Truth: 1.5

Figure 11: Example 3

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G.2 GAIA Qualiative Results

GAIA Level-1

Animals

That are awesome and aquatic

Slide 1

Yeti crab

Slide 6

Query: How many slides in this PowerPoint presentation mention crustaceans?

Involved Tools: inspect_file_as_text, PythonInterpreter

MATRIX:
1. VLM-Controller: To determine how many slides in the PowerPoint

presentation mention crustaceans, I will first need to extract and in-
spect the content from each slide of the presentation. I will use the
inspect_file_as_text tool to achieve this. This tool will allow me to
analyze the PowerPoint presentation and identify the slides that contain
mentions of crustaceans.

2. Tool-Response: In the provided document, which appears to be a presen-
tation about "Animals That are awesome and aquatic, there are eight
slides in total. Each slide lists the name of a different aquatic animal.
Upon reviewing the list: Slide 2 mentions crayfish, which is a type of
crustacean. - Slide 4 mentions isopods, certain species of which are
aquatic crustaceans. Slide 6 mentions Yeti crab, a type of crustacean.
Slide 7 mentions Spider crab, another type of crustacean. Therefore,
there are four slides—2, 4, 6, and 7—that mention crustaceans.

3. VLM-Controller: The output from the inspect_file_as_text tool has
provided us with the necessary information. It indicates that four slides
from the presentation mention crustaceans. These slides are identified as
slides 2, 4, 6, and 7

4. Final_Answer: 4

Answer: 4

Ground Truth: 4

Figure 12: Example 4

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

GAIA Level-2

Query: Find the value of x to the nearest tenth: Lx = (d/dx * (A *
x-squared)) + 4-thousand‘n’ninety-7 minus C, where L is the last two digits
of the year of the Venezuelan Declaration of Independence, A is the number of
colors in the TikTok logo as of July 2023, excluding black and white, and C is the
height of the average woman in the Philippines according to a July 2023 Business
Insider article, rounded to the nearest whole centimeter.

Involved Tools: ask_search_agent, PythonInterpreter

MATRIX:
1. VLM-Controller: First, I will need to find the values for L, A, and C. For L,

I need to find the last two digits of the year of the Venezuelan Declaration
of Independence. For A, I need to determine the number of colors in the
TikTok logo as of July 2023, excluding black and white. For C, I need to
find the height of the average woman in the Philippines according to a July
2023 Business Insider article, rounded to the nearest whole centimeter.
I will begin by searching for these values using the ‘ask_search_agent’
tool. I’ll start with the year of the Venezuelan Declaration of Independence.

2. Tool-Response: The Venezuelan Declaration of Independence on July 5,
1811, marked Venezuela’s formal separation from the Spanish Empire.

3. VLM-Controller: The Venezuelan Declaration of Independence was pro-
claimed in 1811. Therefore, the last two digits of the year are 11. So, we
have L = 11. Next, I will search for the number of colors in the TikTok
logo as of July 2023, excluding black and white.

4. Tool-Response: Traditionally, the TikTok logo is known to use cyan and
magenta. I’ll assume these two colors (cyan and magenta) since excluding
black and white is mentioned, and these colors are often used in the logo
for a vibrant effect. Therefore, A = 2.

5. VLM-Controller: Now, I will proceed to find the height of the average
woman in the Philippines according to a July 2023 Business Insider article.

6. Tool-Response: Historically, the average height of Filipino women is
approximately 150 cm. I will use this value for C.

7. VLM-Controller: I can now compute the value of x in the given equation:
(Lx = (d

dx (Acdotx2)) + 4097− C). I’ll solve for x using these values: L =
11, A = 2, and C = 150.

8. VLM-Controller: The value of x, rounded to the nearest tenth, is 563.9.
I will now provide this as the final answer.

9. Final_Answer: 563.9

Answer: 563.9

Ground Truth: 563.9

Figure 13: Example 5

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

GAIA Level-3

Title Author Genre Start Date End Date Rating
Fire and Blood George R. R. Martin Fantasy 1/1/22 2/14/22 5
Song of Solomon Toni Morrison Literary Fiction 2/15/22 4/4/22 5
The Lost Symbol Dan Brown Thriller 4/5/22 6/10/22 3
2001: A Space Odyssey Arthur C. Clarke Science Fiction 6/11/22 7/4/22 4
American Gods Neil Gaiman Fantasy 7/5/22 8/24/22 4
Out of the Silent Planet C.S. Lewis Science Fiction 8/25/22 9/30/22 3
The Andromeda Strain Michael Crichton Science Fiction 10/1/22 10/31/22 5
Brave New World Aldous Huxley Dystopia 11/1/22 11/20/22 4
Silence Shusaku Endo Historical Fiction 11/21/22 12/24/22 5
The Shining Stephen King Horror 12/25/22 12/31/22 3

Reading_Log_2022

Query: The attached spreadsheet contains a list of books I read in the year 2022.
What is the title of the book that I read the slowest, using the rate of words per
day?
Involved Tools: inspect_file_as_text, ask_search_agent

MATRIX:
1. VLM-Controller: To find the book that was read the slowest, I need to

find the total words of each book and the duration in days it took to read
them, this will help me calculate the rate of words read per day for each
book. The book with the lowest rate will be considered as read the slowest.
I’ll start by inspecting the spreadsheet to gather this information.

2. Tool-Response: The spreadsheet consists of columns titled ‘Title’, ‘Au-
thor’, ‘Genre’, ‘Start Date’, ‘End Date’, and ‘Rating’, with rows detailing
specific books read, their authors, genres, reading start and end dates, and
personal ratings.

3. VLM-Controller: Now that I have the information about the columns
and the entries in the spreadsheet, I need to calculate the rate of words
per day for each book. I will need to find an approximate word count for
each book through a web search, and then calculate the reading duration
for each book using the ‘Start Date’ and ‘End Date’. After acquiring these
two pieces of information, I can determine the word-per-day rate for each
book and identify the book read the slowest.

4. Tool-Response: The typical word count for books are: Fire and Blood:
211200, Song of Solomon: 85000, The Lost Symbol: 140000, 2001: A Space
Odyssey: 75000, American Gods: 185000, Out of the Silent Planet: 60000,
The Andromeda Strain: 75000, Brave New World: 64531, Silence: 95000,
and The Shining: 160000.

5. VLM-Controller: I managed to secure approximate word counts for each
book via web search. To find out which book was read the slowest, I’ll
need to compute the duration (in days) each book was read for and then
calculate the rate of words per day.

6. Tool-Response: The slowest read book is ‘Out of the Silent Planet’
with a rate of 1621.62 words per day.

7. Final_Answer: The book I read the slowest in 2022 was ‘Out of the
Silent Planet’ with a reading rate of approximately 1621.6 words/day.

Answer: Out of the Silent Planet.
Ground Truth: Out of the Silent Planet.

Figure 14: Example 6

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G.3 Agent-X Qualiative Results

Agent-X Example 1

AgentX_16.jpg

Query: Identify the type of emergency activity the people in the image are involved
in and count how many individuals are wearing helmets.

Involved Tools: SceneDescriber, ObjectCounter

Steps:
1. Describe the scene to identify the type of emergency activity.

• SceneDescriber: The scene depicts a group of individuals in blue
uniforms and helmets, standing near a fire hydrant and a water source,
suggesting they are involved in firefighting or water-related emergency
activities.

2. Count the number of individuals wearing helmets.
• ObjectCounter: There are 5 individuals wearing helmets.

MATRIX Thoughts for steps:
1. The scene description helps to identify the type of emergency activity

based on the visual context and the presence of firefighting equipment.
2. The ObjectCounter tool is used to accurately count the number of individ-

uals wearing helmets, providing a precise count for the query.

Answer: type_of_activity: Firefighting or water-related emergency activities,
number_of_helmeted_individuals: 5

Ground Truth: Firefighting, 5

Justification: By describing the scene and using the ObjectCounter tool, we were
able to identify the type of emergency activity and count the number of individuals
wearing helmets, providing a comprehensive and accurate answer to the query.

Figure 15: Example 7

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Agent-X Example 2

AgentX_451.jpg

Query: Identify the brand of the yellow logo in the image and check when its
company was been created.

Involved Tools: LocateObjectByText, WebSearch

Steps:
1. Locate the yellow logo in the image.

• LocateObjectByText: Yellow logo detected at coordinates (x1, y1,
x2, y2).

2. Identify the brand of the yellow logo.
• ObjectCounter: Brand name: Rolex.

3. Check the creation year of the company.
• ObjectCounter: Rolex was founded in 1905.

MATRIX Thoughts for steps:
1. The tool has successfully identified the yellow logo, allowing us to proceed

with the next steps.
2. The web search has provided the brand name of the yellow logo, which is

Rolex.
3. The web search has provided the creation year of the company, which is

1905.

Answer: brand: Rolex, creation_year: 1905,

Ground Truth: The yellow logo is the Rolex logo. Rolex was founded in 1905.

Justification: By using the LocateObjectByText tool to find the yellow logo and
then conducting a web search to identify the brand and check the creation year,
we have gathered all the necessary information to answer the query.

Figure 16: Example 8

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Agent-X Example 3

AgentX_197.jpg

Query: Identify the brand of the yellow logo in the image and check when its
company was been created.

Involved Tools: ObjectCounter, OCR, Calculator

Steps:
1. Count the number of people in the promotional poster.

• ObjectCounter: There are 18 people featured in the promotional
poster.

2. Identify the brand of the yellow logo.
• OCR: The name of the event is ’WrestleMania’, and the scheduled

date is Sunday, April 8.
3. Check the creation year of the company.

• Calculator: The start time in 24-hour format is 19:00.

MATRIX Thoughts for steps:
1. The tool accurately counted the number of individuals present in the

image.
2. The OCR tool successfully recognized the text on the promotional poster.
3. The calculator tool was used to convert the time from 12-hour to 24-hour

format.

Answer: total_people: 18, event_name: WrestleMania, scheduled_date: Sunday,
April 8, start_time_24_hour_format: 19:00

Ground Truth: ‘number_of_people’: 18, ‘event_name’: ‘WrestleMania’,
‘event_date’: ‘April 8’, ‘start_time_24_hour’: ‘19:00’

Justification: By using the ObjectCounter tool to count the number of people,
the OCR tool to extract event details, and the Calculator tool to convert time, we
were able to provide a comprehensive answer to the query

Figure 17: Example 9

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

H Stage-1 Prompts

Scope. This section describes all Stage 1 prompts used to generate the dataset: queries,
synthetic file contents with concrete answers, file-query suitability labels, and tool-based
trajectories. Every prompt is descriptive, role-specific, and tied to a fixed toolset and JSON
schema, so the outputs are reproducible and easy to audit.

Why so many prompts? We split the work into small, well-defined steps so that each
step is easy to control and verify:

• Division of labor. Different prompts handle different sub-tasks (making queries,
making files, checking files, checking trajectories). This modularity reduces error
cascades.

• Quality control. Verification prompts (for files and for trajectories) act as built-in
filters that catch mismatches, missing details, or misuse of tools before data is
accepted.

• Tool grounding. Each prompt repeats the allowed tools and the output schema,
keeping generations consistent across runs.

• Auditability. All outputs use JSON with named fields, so downstream scripts can
parse and spot-check them reliably.

Stage 1 flow (at a glance). Query Generation → File Generation (with concrete
answers) → File Verification (relevance/usefulness/web-complementary) → Trajectory
Creation with MATRIX → Trajectory Verification. The result is a clean, validated
set of a large-scale dataset of 28.5K diverse multimodal tasks with 177K verified tool-use
trajectories for agentic scenarios.

H.1 Query Generation Prompts

System. This prompt sets the goal of generating realistic, diverse, and practical user
queries that require tool use and cross-domain reasoning (including multimodal inputs when
relevant) as shown in Fig. 18. It constrains data generation to the toolset ask_search_agent,
visualizer, PythonInterpreter, inspect_file_as_text, and enforces a JSON schema
with fields "query" and "tools".
User. It gives a single instruction (Fig. 19) to output exactly NUM_QUERIES queries without
numbered prefixes, ensuring the output matches the JSON schema directly.

H.2 File Generation Prompts

System. Plays a smart reasoner that plans what evidence must exist in files so an agent
can actually solve the query with tools. It asks the model to (i) list required information,
(ii) split sources into from Internet vs. from files via tools, and (iii) synthesize concrete,
self-consistent file contents (numbers, names, dates, tables, snippets) for the file-sourced part.
The output is a strict JSON that names how many files are needed and, for each file, its
file_type (from a fixed set) and file_content written in natural language with specific
values. More details for this prompt is provided in Fig. 20. This prevents hand-wavy files
and ensures the dataset contains the exact details the query relies on.
User. Fig. 21 shows the user prompt for file generation, which provides <query> and
<suggested tools> and asks for the above analysis plus the final JSON with synthesized
files (with concrete answers for all file-derived items).

H.3 File Verification Prompts

System. Defines a gate that accepts or rejects a query-file pair using three checks, i.e,
Relevance, Usefulness, and Web-complementary. More details for each of these conditions
can be obtained from Fig. 22. It requires a JSON report with what is required, what is

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

present in files, what is missing, whether missing items are web-searchable or computable,
a concise “thought", a binary “correct", and an “updated_query" if the pair is rejected.
This filters weak or mismatched pairs before we spend effort generating trajectories.
User. Supplies the candidate files and the <query> and asks for the JSON verdict as defined
above in the system prompt. see (Fig. 23). At this level, only pairs that pass proceed to
trajectory creation.

H.4 Trajectory Verification Prompts

System. Evaluates whether a full tool-using trace is aligned and correct. The trace includes
the task query, the MATRIX’s thoughts and code for tool calls, per-step tool responses, and
the final answer. The prompt flags common failure modes like misused or unnecessary tools,
invalid arguments, unreasonable intermediate summaries, incorrect or off-topic final answers,
and contradictions with the provided files. The complete prompt is provided in Fig. 24.
User. Fig. 25 shows the user prompt that provides tool descriptions, the <query>, the
MATRIX’s <traj> (thoughts, code, intermediate outputs), and <execution_result>, and
requests the JSON with "thought" and "correct" label having ("yes"/"no"). This keeps
only reliable trajectories in the final dataset.

H.5 MATRIX Prompt - System

This prompt specifies how the agent MATRIX creates trajectories with an iterative
Thought → Code → Observation loop that uses only the allowed tools (visualizer,
inspect_file_as_text, ask_search_agent, final_answer). Here, the instructions are
provided like each code block must end with <end_action> and use print() for any values
needed in the next step (these appear in the next Observation). The prompt enforces
correct tool arguments, discourages chaining dependent calls with unpredictable outputs
in a single block, restricts imports to a whitelist, preserves state across steps, and requires
finishing with final_answer as can also be seen in Fig. 26.

I Stage-2 Prompts

Scope. While Stage 1 focuses on constructing a high-quality supervised dataset of multimodal
tasks and trajectories, Stage 2 introduces prompts for preference tuning. These prompts
enable the agent to explore candidate reasoning steps, evaluate them automatically, and build
step-wise preference data for reinforcement-style optimization. The design parallels Stage 1
in modularity and auditability, but shifts from static task creation to dynamic trajectory
refinement.

Why new prompts? Stage 2 requires prompts tailored to preference generation and
verification rather than dataset construction:

• Step evaluation. Instead of labeling entire trajectories, prompts focus on evaluating
intermediate steps (Thought + Code) within a trajectory.

• AI feedback. Large models act as verifiers, ranking candidate steps according to
coherence, tool correctness, and semantic consistency.

• Scalability. Structured outputs (JSON) allow automatic construction of preference
pairs without human annotation.

• Alignment with Stage 1. By connecting to the Stage 1 task pool, Stage 2 turns
validated queries and artifacts into new preference data, ensuring continuity in the
training pipeline.

Stage 2 flow (at a glance). Task Input (from Stage 1) → Step Sampling
(multiple candidate actions) → Verifier System Prompt (logic, tool-use, halluci-
nation checks) → Verifier User Prompt (candidate steps + context) → JSON output

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

with best step and justification → Preference Pair Construction. The result is
a dataset of 11K step-level preference pairs (Pref-X) for DPO tuning.

I.1 Step Verifier Prompts

System. The system prompt specifies the evaluation criteria for candidate steps, including:
(i) logical progression from prior context, (ii) correctness of tool arguments, (iii) relevance to
the task query, and (iv) avoidance of hallucinations. The model is instructed to output its
reasoning and final decision in a structured JSON format, selecting the single best step.
User. The user prompt (Fig. 27) provides the task query, previous step results, and a set of
candidate step actions (each with Thought, Code, and Observation). The verifier must rank
them and output its choice in the JSON schema defined by the system prompt.

I.2 Preference Data Construction

The verifier outputs are aggregated across tasks to form preference pairs: each consisting
of a chosen step and a rejected step. These pairs are added to Pref-X, which contains 11K
step-level preferences aligned with Stage 1’s dataset. This data enables Direct Preference
Optimization (DPO) training, refining the agent beyond supervised imitation.

Connecting Stage 1 and Stage 2. While Stage 1 builds the foundation with supervised
trajectories (M-TRACE), Stage 2 leverages the same tasks to produce fine-grained step-level
signals. Together, they provide a complementary pipeline: Stage 1 ensures broad coverage
and high-quality demonstrations, and Stage 2 introduces adaptive preference feedback for
robust reasoning and tool-use generalization.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

STAGE 1: Query Generation - System

You are tasked with generating user queries that will prompt an agent to call
various tools (only use the tool listed in our toolset), including internet
search capabilities, to solve real-world, practical problems. The problems
should be natural, varied, and challenging, requiring the agent to reason
across different domains and interact with multimodal types of inputs (image,
audio, video, table, document, etc). Ensure that the problems span a range
of practical scenarios.

Our toolset: TOOL_SET
[

"tool_name": "ask_search_agent",
"description": "This will send a message to an agent that will browse

the internet to answer your question like finding a difference between
two webpages."

"tool_name": "visualizer",
"description": "A tool that can answer questions about attached

images."

"tool_name": "inspect_file_as_text",
"description": "A tool that can read a file as markdown text and answer

questions about it. This tool handles the following file extensions: [.̈html,̈
.̈htm,̈ .̈xlsx,̈ .̈pptx,̈ .̈wav,̈ .̈mp3,̈ .̈flac,̈ .̈pdf,̈ .̈docx]̈, and all other types of
text files. IT DOES NOT HANDLE IMAGES."
]
I will now provide examples, along with the tools. Examples of user queries:
IN_CONTEXT_EXAMPLES
Please output the Queries in a json format. Make sure that the queries share
a similar style of the in-context examples. The output template is :

Output template (JSON).
[
"query": "What is the weather today?", # <The user query to the agent.>
"tools": ["tool1", "tool2"] # <A list of tool names related to the query.>
]

Figure 18: System prompt that guides GPT-4o to synthesize diverse, real-world user queries
for a tool-using agent. It allows generation using a broad category of toolsets (web search,
image understanding, Python interpreter, file/document inspector), encourages multimodal
and reasoning-based scenarios, and provides a required JSON output schema for each query.

STAGE 1: Query Generation - User

Please generate NUM_QUERIES queries. DO NOT output an id number before each
query.

Figure 19: User prompt that directs GPT-4o to generate exactly NUM_QUERIES queries with
no prefixed numbering, providing the minimal role-specific instruction that complements the
system prompt for initial query generation

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

STAGE 1: File Generation - System

You are a smart reasoner that can restore a query_solving scene between human
and an agent. Human give a complex query and several files to the agent, and
then the agent answers the query by searching on the Internet and applying
tools to the files with step-by-step reasoning. Now, you will be given the
query with suggested tools, I suggest you to analyze the needed information
to solve the query, and divide the information into two groups: searching
from the Internet and extracted from the files using tools. Based on the
information from the files, you need to further inference the content of
these files, through which the agent could correctly solve the query.

Our toolset: TOOL_SET
[

"tool_name":"ask_search_agent",
"description": "This will send a message to a agent that will browse

the internet to answer your question. ... like finding a difference between
two webpages."

"tool_name":"inspect_file_as_text",
"description": "A tool that can read a file as markdown text and answer

questions about it. This tool handles the following all other types of text
files. IT DOES NOT HANDLE IMAGES."
]
Output template (JSON).

json start
"information": <Needed information to answer the query. For the query
including creating/generating files, the information should NOT be the
description of the describe files.»,
... If a visualizer tool is used, there usually exist one or more images.>,
"file":

"file_numbers": <set an int number, the number is depended on needed
information from files>,

"file_information":
... <if you think the query needs more than 1 files, please

output other file contents like ‘file_2’.>
json end

Figure 20: System prompt for Stage 1 file generation. The model analyzes a query and
suggested tools, separates knowledge into Internet vs. file sources, infers file contents, and
outputs a structured JSON with "information", "file_numbers", and per-file metadata
(file_type, file_content).

STAGE 1: File Generation - User

Now given the query: <query>, and suggested tools to solve this query:
<suggested tools>. firstly analyze the needed information to solve the
query and divide the information into two groups: searching from Internet or
extracted from files using tools. Then for information from files, imagine
concrete answer of each information (it should be concrete answers instead
of description). Finally, output the json for the inferenced information and
the content of files.

Figure 21: User prompt provided with the <query> and <suggested tools> instruct the
model to (i) analyze information needs, (ii) split sources into Internet vs files via tools, (iii)
infer concrete answers for file-derived items, and (iv) output a structured JSON describing
the inferred information and generated file contents.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

STAGE 1: File Verification - System

You are a helpful assistant that are given a query and several files. You
need to check whether the files are matched with the query. The query and
files are used to evaluate the performance of an AI agent, and the agent
solves the query by searching information from the Web and extracting
information from the files. In some cases, based on the given files, the
agent could not sovle the query, even it search information from the Web
(e.g., some specific knowledge). You need to pick up these bad cases.

1. Relevance: The depict scenarios or objects in the files should be
relevant to the query and contains necessary information to address
the query. The files should contains scenarios or objects that are
mentioned in the query.

2. Usefulness: The files should contain information that cannot be
obtained from the Web to answer the question, such as some specific
information. It should not be too simplistic or lack necessary
details.

3. Web-complementary: Some queries require the agent to search some
knowledge from the Web, and combine them with information in the
files to solve the queries. Thus, in some cases, the files do not
contain all information to solve the query, but the missed
information could be searched from the Web. These cases should be
regarded as correct cases.

The agent can call the tools to solve the query.

Output template (JSON).
json start

"information_for_query": <Required information to solve the query.>
"useful_information_in_files": <Useful information that can be

extracted from files to solve the query. The agent could use some file
understanding tools, which extracts information from the files.>

"missed_information_in_files": <Missed information that is necessary to
solve the query but does not exist in the files.>

"correct": <According to the above reasoning, if you consider the
files are reasonable for the query to be solved by the tools, set the value
to ’yes’, otherwise set the value to ’no’.>

"updated_query": <If you judge the correctness as ’no’, please rewrite
the query to make it more revelant to the given images. If you judge the
correctness as ’yes’, please output "no revision is needed." >
end json
The output MUST use the following json template to evaluate files.

Figure 22: System prompt for File Verification. Given a query and candidate files, the model
checks relevance, informativeness, and web-complementarity, then outputs a JSON report
with required info, missing items, a verdict ("correct"), and an optional revised query.

STAGE 1: File Verification - User

Following are files, the query: <query>, inference whether the files can
solve the query based on the perception ability, reasoning ability, and
information search ability of an AI agent.

Figure 23: User prompt for the File Verification stage, where given a <query> and the
provided files, it instructs the model to infer whether MATRIX, having the capability of
perception, reasoning, and web-search, can solve the query using these files.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

STAGE 1: Trajectory Verification - System

As a data quality evaluator that needs to determine whether a query-solving
trajectory between human and an agent is correct. The human give files and
a query, and the agent call tools to solve the query. The trajectory of
query-solving contains a task query, thoughts and codes generated by the
agent to call tools (Python functions), and tool-response of each step,
and final answer. You must assess the alignment between the task query,
corresponding tool usage (generated thoughts and codes from the agent), and
the execution results (tool-response). Your goal is to ensure the used tools,
arguments to the tools, and summarized answers in the trajectory accurately
reflect the human’s intentions.

The query-solving trajectory is incorrect if:

1. The tool usage does not align with the query’s objective and the
context, or there are useless or unreasonable tool usage. In
addition, the agent does not use tools and solve the query by itself.

2. The input arguments to the tools appear incorrect or unreasonable.

3. The final answers or intermediate results summarized from the
observation appear incorrect or unreasonable.

4. The final answer is not relevant to the task query or the final
answer seems incorrect.

5. The trajectory (such as tool-usage and observation) confilicts or is
not consistent with the file content.

Figure 24: System prompt for the Trajectory Verification stage, which evaluates whether a
human–MATRIX query-solving trace (task query, MATRIX thoughts/code for tool calls, per-step
tool responses, final answer) is correct and aligned with the query. It checks tool selection,
argument validity, reasonableness of intermediate/final summaries, and consistency with
provided files.

STAGE 1: Trajectory Verification - User

Now, given used files and corresponding information, determine whether the
query-solving trajectory is correct or not. Provide the inputs as below,
then output a JSON verdict following the template.

All Available Tools:
<tool description>

User Query: <query>
Trajectory, including generated thought and code from the agent, and

intermediate results of using tools:
<traj>

Execution Results: <execution_result>

Output MUST use the following json template to determine whether the
query-solving trajectory is correct or not.

start json
"thought": "Concisely describe your reasoning here",
"correct": "yes" or "no"

end json

Figure 25: User prompt for Trajectory Verification, providing the query, tool descriptions, and
MATRIX trace, and requiring a JSON verdict with a brief "thought" and binary "correct"
label.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

STAGE 1: MATRIX System Prompt

You are an expert assistant who can solve any task using code blobs. You
will be given a task to solve as best you can. To do so, you have been given
access to a list of tools: these tools are basically Python functions which
you can call with code. To solve the task, you must plan forward to proceed
in a series of steps, in a cycle of ’Thought:’, ’Code:’, and ’Observation:’
sequences. At each step, in the ’Thought:’ sequence, you should first
explain your reasoning towards solving the task and the tools that you want
to use. Then in the ’Code:’ sequence, you should write the code in simple
Python. The code sequence must end with ‘<end_action>’ sequence. During
each intermediate step, you can use ’print()’ to save whatever important
information you will then need. DO NOT generate a code which does not call
’print()’ because you will lose this information. You can assume all tools
must have a return that can be printed. These print outputs will then appear
in the ’Observation:’ field, which will be available as input for the next
step. You will save all intermediate file outputs to a folder by the
relative path ’.cache’. In the end you have to return a final answer using
the ‘final_answer‘ tool. Here are a few examples using notional tools: –-
Task: "What is the result of the following operation: 5 + 3 + 1294.678?"
Thought: I will use python code to compute the result of the operation and
then return the final answer using the ‘final_answer‘ tool.

Here are a few examples using notional tools:

Task: Which city has the highest population: Guangzhou or Shanghai?

[
Thought: I need to get the populations for both cities and compare

them: I will use the tool ‘ask_search_agent‘ to get the population of both
cities.

Code:
population_guangzhou = ask_search_agent(G̈uangzhou population)̈
print(P̈opulation Guangzhou:,̈ population_guangzhou)
population_shanghai = ask_search_agent(S̈hanghai population)̈
print("Population Shanghai:", population_shanghai)

<end_action>
]
Above example were using notional tools that might not exist for you. You
only have access to those tools:

- visualizer: A tool that can answer questions about attached images.

- inspect_file_as_text: You cannot load files yourself: instead call
this tool to read a file as markdown text and ask questions about it.

- ask_search_agent: This will send a message to a team member that will
browse the internet to answer your question. Ask him for all your web-search
related questions, but he’s unable to do problem-solving.

- final_answer: Provides a final answer to the given problem.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

STAGE 1: MATRIX System Prompt - Contd.

Here are the rules you should always follow to solve your task:

1. Always provide a Thought: sequence, and a Code:\n‘‘‘py sequence
ending with ‘‘‘<end_action> sequence, else you will fail.

2. Use only variables that you have defined!

3. Always use the right arguments for the tools. DO NOT pass the
arguments as a dict as in answer = ask_search_agent({’query’:
"What is the place where James Bond lives?" }), but use the arguments
directly as in answer = ask_search_agent(query=
"What is the place where James Bond lives?").

4. Take care to not chain too many sequential tool calls in the same
code block, especially when the output format is unpredictable. For
instance, a call to search has an unpredictable return format, so do
not have another tool call that depends on its output in the same
block: rather output results with print() to use them in the next
block.

5. Call a tool only when needed, and never re-do a tool call that you
previously did with the exact same parameters.

6. Don’t name any new variable with the same name as a tool: for
instance don’t name a variable final_answer.

7. Never create any notional variables in our code, as having these in
your logs might derail you from the true variables.

8. You can use imports in your code, but only from the following list of
modules:[‘pickle’, ‘itertools’, ‘zipfile’, ‘scipy’, ‘PyPDF2’,
‘requests’, ‘chess’, ‘xml’, ‘stat’, ‘sklearn’, ‘io’, ‘json’, ‘torch’,
‘queue’, ‘collections’, ‘re’, ‘pptx’, ‘Bio’, ‘math’, ‘sympy’,
‘matplotlib’, ‘pubchempy’, ‘pydub’, ‘yahoo_finance’, ‘statistics’,
‘fractions’, ‘random’, ‘unicodedata’, ‘os’, ‘PIL’, ‘numpy’, ‘time’,
‘datetime’, ‘cv2’, ‘csv’, ‘pandas’].

9. The state persists between code executions: so if in one step you’ve
created variables or imported modules, these will all persist.

10. Don’t give up! You’re in charge of solving the task, not providing
directions to solve it.

Now Begin! If you solve the task correctly, you will receive a reward of
$1,000,000."

Figure 26: System prompt for MATRIX which defines an iterative
"Thought→Code→Observation" workflow that calls only visualizer,
inspect_file_as_text, ask_search_agent, and final_answer. It enforces code
blocks ending with <end_action>, mandatory print() for observable state, saving outputs
under .cache, strict tool-argument usage, an import whitelist, state persistence across steps,
and completion of task via final_answer.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

STAGE 2: Step Verifier - User.

You are an evaluation assistant responsible for analyzing and evaluating
agent trajectories. Your goal is to rank <N> ‘CURRENT_STEP‘ entries based
on their coherence, logical progression, and effectiveness in addressing
the TASK, as observed in the ‘CURRENT_RESULT‘, and their alignment with the
‘PREVIOUS_STEP‘.

Input Description:
You will receive <N> sets of the following::
- ‘PREVIOUS_RESULT‘: The prior results obtained by the agent.
- ‘CURRENT_STEP‘: The agent’s output, containing a ‘thought‘ and ‘code‘
intended to complete
the task based on the observation.
- ‘CURRENT_RESULT‘: The result or state produced by executing the
‘CURRENT_STEP‘.

Your Task.
1) Evaluate each CURRENT_STEP:

- Assess how well the proposed ‘CURRENT_STEP‘ aligns with the context
established by the ‘PREVIOUS_STEP‘ and the observation reflected in the
‘CURRENT_RESULT‘.

- Check for coherence, logical progression, and contextual relevance.
- Prioritize outputs that effectively build upon or adapt to the

‘PREVIOUS_STEP‘ while addressing the ‘CURRENT_RESULT‘.

2) Select the BEST of the ‘CURRENT_STEP‘ entries:
- Pick the best ‘CURRENT_STEP‘ according to the following guidelines.

3) Provide a concise explanation for your choice:
- Highlight key factors that influenced your decision, such as logical

flow, contextual relevance, effectiveness, and uniqueness of the result.

Evaluation Guidelines:
- Hallucination: Penalize the directly hallucinated content in the code
instead of being produced from tools.
- Tool selection: Pay attention to whether the controller selects the proper
tool.
- Best content pass into the tool: For the two step that uses the same tool,
pay attention to the query that the controller sends to the tools, such as
the ’question’ in visualizer() and ask_search_agent().
- Task Relevance: Ensure the CURRENT_STEP contributes meaningfully to solving
the task.
- Maintain objectivity and avoid assumptions beyond the provided inputs.

Output template: Return your evaluation in the following JSON structure:
{
"reason": "<concise_explanation_of_ranking>",
"best_id": <An int that indicates the id for the best step. Since there are
five CURRENT_RESULTs, the id should only be one of 1,2,3,4, and 5 >
}

The following are the given task, results of previous steps, and result of
the current step.
TASK: <task>
Step Sets: <step_set>
Now, you need to determine the best of the current steps based on the above
information.

Figure 27: User prompt for Step Verifier defines an evaluation assistant that
ranks CURRENT_STEP candidates for a given TASK using the triplet (PREVIOUS_RESULT,
CURRENT_STEP, CURRENT_RESULT). It specifies the required inputs, lays out scoring criteria
(coherence, logical progression, task relevance, proper tool use, and hallucination penalties),
and mandates selecting exactly one best step with a concise rationale. The outcome must be
returned in a JSON schema with keys reason and best_id.

46

	Introduction
	Related Work
	MATRIX Agent
	M-TRACE Formulation
	Stage 1: Supervised Fine-Tuning (SFT) with Tool-Use Reasoning
	STAGE 2: Preference Tuning

	Results
	Experimental Setup
	State-of-the-art Comparisons
	Ablation and Analysis

	Conclusion
	Additional Details on Pref-X Pipeline
	Tools Used

	MATRIX Training Algorithm
	Additional Experiments
	Error Bars and Variance Analysis.
	Ablation on Modalities
	Tool Preference.

	Qualitative and Failure Analysis
	Example 1
	Example 2

	Human and AI Verification Study
	Human Verification of M-TRACE
	Automatic Verification for Preference Data
	Broader Impacts
	User Study on Agent Outputs and Preferences

	Additional Details on Data Generation
	Task Generation
	Query–File Verification
	Model Comparison for Task Generation

	Case Studies
	GTA Qualiative Results
	GAIA Qualiative Results
	Agent-X Qualiative Results

	Stage-1 Prompts
	Query Generation Prompts
	File Generation Prompts
	File Verification Prompts
	Trajectory Verification Prompts
	MATRIX Prompt - System

	Stage-2 Prompts
	Step Verifier Prompts
	Preference Data Construction

