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Abstract

Nonverbal vocalizations are an essential com-
ponent of human communication, conveying
rich information without linguistic content.
However, the computational analysis of non-
verbal vocalization faces significant challenges
due to a lack of lexical anchors in the data, com-
pounded by biased distributions of imbalanced
multi-label data. While disentangled represen-
tation learning has shown promise in isolating
specific speech features, its application to non-
verbal speech remains unexplored. In this pa-
per, we introduce N-CORE, a novel supervised
framework designed to disentangle representa-
tions in nonverbal vocalizations by leveraging
N views of the audio sample to learn invariance
to specific perturbed features. We find that N-
CORE achieves competitive performance com-
pared to the baseline methods when tested for
emotion and speaker classification tasks on the
VIVAE, ReCANVo, and ReCANVo-Balanced
datasets. We further propose an emotion per-
turbation function for audio signals that pre-
serves speaker information, and validate speech
transformation functions on nonverbal vocal-
izations. Our work informs research directions
on the application of paralinguistic speech, in-
cluding privacy-preserving encoding, clinical
diagnoses of atypical speech, and longitudinal
analysis of communicative development.

1 Introduction

Nonverbal vocalizations (NVVs) are a fundamental
component of human communication, encompass-
ing a diverse range of non-speech sounds such as
laughter, sighs, cries, and other sounds that convey
rich affective information without relying on lin-
guistic content (Cowen et al., 2019). Interpreting
these paralinguistic signals is vital for comprehen-
sive modeling of human communication and the
development of emotionally intelligent Al systems
(Tzirakis et al., 2023). However, the computational
analysis of NVVs presents unique challenges that
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Figure 1: Comparison of mel-spectrograms from verbal
(top) and nonverbal vocalizations (NVVs; bottom). The
syllabic structure of word-based speech results in spe-
cific temporal variations that are less common in NVVs.

differentiate them from conventional speech pro-
cessing tasks.

A primary challenge in NVV analysis is the
scarcity of annotated data. Unlike speech corpora
that can leverage millions of hours of recorded
content, NVV datasets are typically limited to
hundreds of hours of data (Baird et al., 2022;
Koudounas et al., 2025), which leads to the sub-
optimal performance of modern data-hungry ma-
chine learning (ML) and deep learning (DL) meth-
ods. This limitation is exacerbated by the substan-
tial bias caused by the low diversity in emotion
and speaker labels in these datasets. For exam-
ple, models trained on these limited datasets of-
ten encode speaker characteristics like pitch range,
vocal timbre, and articulation patterns that con-
found affective computing, and affective features
such as dynamic intensity, prosodic contours, and
fundamental frequency (FO) variations that con-



found speaker identification (Pei et al., 2024). This
leads to poor generalization across demographic
groups and emotional categories, especially in low-
resource datasets.

Several ML methods have attempted to address
these challenges through various audio representa-
tion learning approaches. Foundation models such
as HuBERT (Hsu et al., 2021b) and Wav2Vec2
(Baevski et al., 2020) have demonstrated remark-
able success in learning generalized speech repre-
sentations that can be fine-tuned for downstream
tasks. These models are predominantly trained on
verbal corpora, where canonical phoneme struc-
tures and linguistic content serve as strong struc-
tural priors. In contrast, NVVs lack the phoneme-
based priors these models exploit, causing them
to struggle when encoding paralinguistic sounds
(Lane et al., 2015; Tzirakis et al., 2023). Figure
1 illustrates these differences by comparing mel-
spectrograms of verbal speech and NVVs, high-
lighting how verbal speech has more complex spec-
tral variability and clear transitions in temporal seg-
mentation as compared to NVVs, which may assist
representation learning (Nagamine et al., 2015).

Disentangled representation learning (DRL), the
process of separating different informational fac-
tors in data, has been extensively explored in the
speech domain for tasks including emotion recogni-
tion (Yuan et al., 2024; Xi et al., 2022), depression
detection (Ravi et al., 2022), and voice conversion
(Zuo et al., 2024; Wang et al., 2021a). However,
applying DRL methods to NV Vs presents unique
challenges due to the absence of lexical anchors
and how their prosodic characteristics simultane-
ously encode both speaker and emotion informa-
tion. Conventional DRL methods on speech data
often depend on augmentation strategies that pre-
serve lexical content while altering specific features
(Tu et al., 2024; Hsu et al., 2019); however, in the
absence of lexical content invariant to perturba-
tions, a single transformation may either disrupt
useful information or allow uninformative artifacts
to persist in the signal.

In this paper, we investigate DRL in NVVs. Our
contributions are summarized as follows:

* We propose N-CORE (N-View COnsistency
REgularization), a novel framework for super-
vised DRL of NV Vs by using N perturbed
views of an audio signal.

* We propose a novel transformation method to
perturb emotion components in NVV while

retaining speaker characteristics. We further
examine the validity of an existing speaker
perturbation method on NV Vs.

* We comprehensively benchmark audio foun-
dation models, DRL methods, and state-
of-the-art representation learning methods
on emotion and speaker classification tasks
across three NVV datasets. To the best of our
knowledge, we are the first to study DRL in
NVVs.

2 Related Work

2.1 Machine Learning for Nonverbal
Vocalizations and Paralinguistic Speech

Early work using ML to process NV Vs relied pre-
dominantly on hand-engineered feature sets, with
Schuller et al. (2013) establishing the ComParE
acoustic feature set that captured spectral, prosodic,
and voice quality parameters for paralinguistic anal-
ysis of social signals, conflict, and emotion, with
application to autism diagnosis. This was further
refined by the Geneva Minimalistic Acoustic Pa-
rameter Set (GeMAPS) and extended GeMAPS
(eGEMAPS) frameworks Eyben et al. (2015), pro-
viding a standardized feature extraction framework
optimized for affective computing applications.
These approaches have been successfully employed
for classifying NVVs (Lefter and Jonker, 2017;
Narain et al., 2020), typically using traditional ma-
chine learning classifiers such as Support Vector
Machines (Cortes and Vapnik, 1995) and Random
Forests (Breiman, 2001).

The advent of deep learning (DL) has signifi-
cantly advanced the processing of NVVs, learning
representations directly from raw waveforms and
bypassing manual feature engineering. Convolu-
tional neural networks (CNNs) like ResNet-50 (He
et al., 2016) have been used to process paralin-
guistic speech for understanding nonverbal emo-
tion (Hsu et al., 2021a), speaker classification (Xu
et al., 2024), and judging singing voice quality (Xu
et al., 2022). The emergence of self-supervised
learning has revolutionized ML for speech, with
models like Wav2Vec2 (Baevski et al., 2020) and
HuBERT (Hsu et al., 2021b) achieving state-of-
the-art performance on various speech processing
benchmarks. While these models were primarily
trained on linguistic content, they have strong trans-
fer learning capabilities in paralinguistic tasks (Tzi-
rakis et al., 2023; Shah and Johnson, 2025; Phukan



et al., 2025), although with performance limita-
tions due to domain mismatch in their training and
evaluation datasets. Specifically tailored to NVVs,
Koudounas et al. (2025) developed Voc2Vec, which
implements a self-supervised learning objective to
pre-train the Wav2Vec2 architecture over multiple
NVV datasets.

In clinical applications, ML approaches have
been instrumental in analyzing atypical vocaliza-
tions. Bone et al. (2017) developed a classification
framework to identify distinctive acoustic signa-
tures in the vocalizations of children with autism
spectrum disorder (ASD). Similarly, Narain et al.
(2022) demonstrated that ML methods could effec-
tively classify affective and communicative func-
tions in NVVs from individuals with ASD. Further,
these techniques have been applied to speech ther-
apy (Mulfari et al., 2021), automatic speech recog-
nition (Mulfari et al., 2023), and speech conversion
(Doshi et al., 2021) for individuals with atypical
speech.

2.2 Disentangled Representation Learning in
Speech

DRL aims to separate different informational fac-
tors in data, enabling models to extract and ma-
nipulate independent semantic dimensions (Wang
et al., 2024b). In speech processing, DRL typi-
cally focuses on separating speaker characteristics,
linguistic content, emotion, or other features from
each other (Williams, 2022). This separation is
valuable for tasks such as voice conversion (Luong
and Tran, 2021), speech recognition (Trinh and
Braun, 2022), and emotion recognition (Yuan et al.,
2024), where isolating specific attributes leads to
improved performance. Many DRL methods for
speech leverage lexical content and phoneme se-
quences in speech (Hsu et al., 2019), which act
as a stable anchor against the disentanglement of
various attributes like emotion or speaker identity,
which are conveyed through prosodic modulations
(Chu et al., 2006). The application of these tech-
niques to NVVs, which lack explicit lexical an-
chors and have entangled speaker and emotion in-
formation in their prosodic features, remains an
unexplored domain, motivating us to investigate
DRL in NVVs.

A prominent approach for DRL involves a gra-
dient reversal layer (GRL) (Ganin and Lempit-
sky, 2015), enabling end-to-end training of clas-
sifiers invariant to characteristics like domain (Lu
et al., 2022) and speaker identity (Oneatd et al.,

2021). Autoencoder-based methods are also widely
used to learn disentangled latent spaces by impos-
ing specific constraints on the latent distribution
(Yingzhen and Mandt, 2018; Nam et al., 2024).
Subsequent frameworks like NANSY (Choi et al.,
2021) and ContentVec (Qian et al., 2022) learn
speaker-invariant speech representations by encour-
aging models to learn similar representations for
two audio samples with different speaker informa-
tion; however, this sole perturbed sample may not
expose the model to the spectrum of varied features
that may exist in a dataset. Further, these methods
are limited to DRL for speaker-invariant represen-
tations, as they rely solely on speaker perturbation.
To address these gaps, we propose N-CORE, which
uses NV views of perturbed samples from an audio
signal for increased sample diversity, and an emo-
tion perturbation method that preserves valuable
speaker information.

3 Methodology

In this section, we describe N-CORE, our proposed
supervised DRL framework to encode NVVs by
isolating emotion- and speaker-specific informa-
tion. Our method uses HUBERT as a backbone
encoder and applies audio perturbations to sup-
press either emotion or speaker information while
preserving the inverse features. We generate N
perturbed views per audio sample to encourage in-
variance across a broader distribution of irrelevant
variations, regulated by a pairwise distance loss
for consistency regularization. Finally, we use two
classification heads, one with a GRL mechanism,
to simultaneously learn required features while per-
forming supervised disentanglement of emotion
and speaker information in the representations. We
train the model via a composite objective that bal-
ances regularization, cross-entropy, and gradient
reversal losses. Figure 2 presents the architecture
of the N-CORE framework.

3.1 Problem Formulation

Let X represent an acoustic signal encompassing
an NVV with a positive label y* and a negative
label y~. We aim to learn a representation model
R = f(X) that maps X to a learned embedding
z € RP, encapsulating the core components of
the NVV represented by y* while discarding in-
formation that describes y~. Specifically, if the
learning objective is to classify for the emotion la-
bel y.,  must retain information pertinent to the
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Figure 2: Our proposed framework, N-CORE, to classify for label y and disentangle features that inform the label
y~ . Perturbation functions p. or ps are used to create N views of X for consistency regularization. Cross-entropy
loss is used for classifying ¢y with classification head A, and a GRL is used for adversarial disentanglement with

respect to y~ using classification head h~.

underlying emotion expressed in X while remain-
ing uninformative with respect to speaker label y;.
Conversely, when classifying for y,, « should en-
capsulate speaker-specific traits from X while dis-
carding affective content descriptive of y.. Achiev-
ing such disentanglement is challenging given the
inherent entanglement of emotion- and speaker-
related information in the acoustic signal.

3.2 Representation Learner

We use the HuBERT-Base model (Hsu et al.,
2021b) pre-trained on 960 hours of speech data
from the LibriSpeech dataset (Panayotov et al.,
2015) as our feature encoder for its representation
learning capabilities in both emotion and speaker
recognition tasks (Wang et al., 2021b). HuBERT
learns a neural embedding x from the raw audio
signal X by encoding essential phonetic, prosodic,
and stylistic information (Kharitonov et al., 2021),
asxz = HuBERT(X).

3.3 Feature-Invariant Audio Perturbation

Emotion Perturbation. We aim to disrupt affec-
tive information in the audio signal while preserv-
ing speaker characteristics. The emotion perturba-
tion function p. comprises three transformations:
1) We compute the Short-Time Fourier Transform
(STFT) of X, resulting in a spectrogram S(X') with
Nspec NON-overlapping frequency bands. We ran-
domly permute 7; of these bands, retaining the
rhythm and energy essential for speaker identifica-
tion (Quatieri et al., 1994), while distorting content
information (Davis and Johnsrude, 2003). 2) We

normalize intensity by adjusting the waveform’s
RMS to a fixed target 1y in order to suppress dy-
namic intensity correlated with emotion features
(Koolagudi and Rao, 2012). 3) We flatten the pitch
of the speaker to the average in their pitch con-
tour fo, effectively flattening prosodic variance and
the affective content it withholds (Mozziconacci,
2002).

Speaker Perturbation. We adopt the audio trans-
formation pipeline designed by Choi et al. (2021)
for the NANSY framework to perturb speaker in-
formation while preserving the underlying content
information. Similar to ContentVec (Qian et al.,
2022), the speaker perturbation function ps com-
prises three transformations: 1) scaling formant
frequencies by a factor of p;; 2) scaling FO in every
frame by ps, and 3) applying a random equalizer
to account for channel variations.

3.4 N Perturbed Views

Prior work on feature-invariant representation
learning (Qian et al., 2022; Tu et al., 2024; Wang
et al., 2024a) typically generates only a single per-
turbed version of each input and then enforces in-
variance between them. This one-shot strategy in-
herently constrains the diversity of transformations
exposed to the model, making it less robust to un-
seen distortions.

In contrast, our approach samples N distinct
perturbations drawn independently from the orig-
inal audio signal X. By exposing the model to a
spectrum of variations, we increase the range of
uninformative factors the encoder is encouraged to



ignore, reduce reliance on any single perturbation
pattern, and promote the learned feature space to
consistently encode all N views of X into a tight
cluster in the representation space. Multiple per-
turbations are especially crucial in NVVs, in the
absence of lexical anchors that could be preserved
after perturbation (Ko et al., 2015). We regular-
ize the pairwise distances among all views of = by
measuring the average squared distance across all
unique pairs as a loss function:
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where the denominator term denotes the number
of unique pairs among z’s N + 1 views, including
the unperturbed representation. This loss encour-
ages the model to create the same representation
for all views of x, disentangling label-relevant in-
formation from uninformative features.

3.5 Classification

We project  to two separate classification heads h™
and A~ that use cross-entropy to classify for labels
y™ and y~, respectively. This step operates solely
on the unperturbed x, and none of its augmented
views. Both heads share the same underlying struc-
ture: a two-layer multilayer perceptron (MLP) with
a ReLU activation and dropout in between. To en-
force invariance to y—, we precede h~ with a GRL
that scales embeddings by —c«, encouraging the
model to disentangle and suppress features corre-
sponding to ¥y~ in its learned representations. We
obtain losses Lcg and Lgrr, as follows:

K+
Lcg = — Z y]:r log [hﬂxﬂw 2)
kt=1
P
LGRL = — Z y,— log [h_ (GRLQ(:C))LC_
k=1
3)

3.6 Training Objective

Our model is trained by optimizing a composite
objective function comprising the three losses ob-
tained from equations 1, 2, and 3, calculated for
each input audio embedding x and its /V perturbed
views.

Liotal = AREG*LREG +ACE LcE—AGRL'LGrL (4)
where Areg, Acg, and AgrL represent scaling fac-

tors that regulate the contribution of each loss to-
wards L. The optimizer minimizes Ly by

maximizing the negative term Lgrr, designed to
learn representations that are invariant to the sec-
ondary label 5.

4 Experimental Settings

4.1 Datasets

We evaluate our methods on three NVV datasets:
Variably Intense Vocalizations of Affect and Emo-
tion (VIVAE) (Holz et al., 2022), Real-World Com-
municative and Affective Nonverbal Vocalizations
(ReCANVo) (Johnson et al., 2023), and ReCAN Vo-
Balanced. For each dataset, we evaluate perfor-
mance on emotion and speaker recognition tasks.
We use a train/test split of 80/20 for all datasets.
Detailed dataset statistics are presented in A.2.
VIVAE. The VIVAE corpus comprises 1,085
non-speech emotion vocalizations produced by 11
non-professional female actors, 20-39 years old,
who were instructed to express six affective states:
achievement/triumph, sexual pleasure, surprise,
anger, fear, and physical pain across multiple inten-
sity levels.

ReCANVo. The ReCANVo dataset contains
7,077 NVVs collected from eight non- and
minimally-speaking individuals, ranging in age
from 6-23 years old and diagnosed with vari-
ous neurodevelopmental disorders, including ASD,
cerebral palsy, and genetic neurodevelopmental dis-
orders. Classes with sample counts across all partic-
ipants reaching n>100 were taken from this dataset,
yielding a derived dataset of 6,551 utterances dis-
tributed among seven functions: delighted, dysreg-
ulated, frustrated, laughter, request, self-talk, and
social. This derived dataset is highly imbalanced
with an imbalance factor of 18.66.
ReCANVo-Balanced. We use a multi-stage sam-
pling procedure to create a balanced subset from
ReCANVo by extracting 100 samples for each emo-
tion class. Within each emotion category, partici-
pant diversity was maximized by systematically dis-
tributing the sample selection, with the constraint
that no single participant would contribute a major-
ity of samples for any given emotion class.

4.2 Baselines

We conduct a comprehensive benchmark of es-
tablished audio ML methods on NVVs. Specifi-
cally, we evaluate HuBERT (Hsu et al., 2021b),
Wav2Vec2 (Baevski et al.,, 2020), Voc2Vec
(Koudounas et al., 2025), HuBERT-ER and
HuBERT-SID (Yang et al., 2021), HuBERT-GRL



and Wav2Vec2-GRL (Ganin and Lempitsky, 2015),
SACE (Dutta and Ganapathy, 2024), ContentVec
(Qian et al., 2022), and our proposed method, N-
CORE. Detailed implementation details are given
in Appendix A.1.

5 Experimental Results

5.1 Emotion Classification with Speaker
Disentanglement

Table 1 presents the results for emotion recognition.
Foundation Models. In line with previous re-
search on emotion and speaker classification (Wang
et al., 2021b), HuBERT consistently achieves
the highest performance across all metrics in all
datasets compared to the Wav2Vec2 family of mod-
els. The Voc2Vec model was trained exclusively on
NV Vs, allowing it to outperform Wav2Vec2 with
the same architecture, demonstrating the advan-
tage of domain-specific pre-training. Further, its
self-supervised training objective may enable it to
avoid overfitting and classification unfairness (Liu
et al., 2021), as demonstrated by the differential in
F1-Score and UAR compared to Wav2Vec2. How-
ever, despite being specifically designed for NVVs,
Voc2Vec underperforms HUBERT on ReCANVo
and ReCANVo-Balanced while matching its perfor-
mance on VIVAE, suggesting that domain-specific
pre-training may not solely surpass the representa-
tion learning power of a more suitable model.
Domain-Specific Models. Notably, neither
HuBERT-ER nor HuBERT-SID outperforms
the baseline HuBERT model, which may be
attributed to the domain shift between the spoken
word datasets used during finetuning and the
NVV datasets used for this evaluation. Further,
fine-tuning on a smaller corpus limits these models’
generalizability to out-of-distribution data.
Gradient Reversal-based Models. The addition
of GRL improves performance for both HuBERT
and Wav2Vec2 models across all datasets. These
results support our hypothesis that using adversar-
ial training to explicitly disentangle speaker infor-
mation leads to more robust representations less
influenced by speaker-specific characteristics and
biases.

DRL Frameworks. ContentVec outperforms
SACE across all datasets, which can be attributed
to its superior HuBERT backbone compared to
SACE’s Wav2Vec2 backbone. N-CORE outper-
forms all methods on VIVAE and ReCANVo-
Balanced but falls short for ReCANVo in terms

of F1 and UAR, which may be due to the dataset’s
interweaved speaker and emotion distributions,
where models could be relying on speaker char-
acteristics to classify for emotions due to a biased
sample distribution (see 6), and N-CORE’s supe-
rior DRL capabilities ended up penalizing its per-
formance. ReCANVo-Balanced mitigates this im-
balance, and N-CORE outperforms all methods
here.

5.2 Speaker Classification with Affect
Disentanglement

Table 2 presents the results for speaker recognition.
Foundation Models. For the ReCANVo and
ReCANVo-Balanced datasets, Voc2Vec performs
notably worse than HuBERT and Wav2Vec2, de-
spite ReCANVo being a part of its pre-training
corpus. Voc2Vec also uses the VIVAE dataset for
pre-training, on which it performs the best, fol-
lowed by HUBERT and Wav2Vec2, respectively.
Domain-Specific Models. HuBERT-ER shows
competitive performance in speaker identification
capabilities compared to the baseline model and
even the specialized HuBERT-SID model on Re-
CANVo, but exhibits a substantial drop on VIVAE,
highlighting the importance of task-specific pre-
training. However, the model performs poorly on
ReCANVo-Balanced, suggesting that it could suc-
cessfully be using affective information to classify
speakers on ReCANVo.

Gradient Reversal-based Methods. On the VI-
VAE dataset, both models demonstrate substantial
performance gains after disentanglement. On Re-
CANVo and ReCANVo-Balanced, the HuBERT
model shows a slight improvement in performance
after emotion disentanglement, whereas Wav2Vec2
experiences a minor decline relative to its baseline.
DRL Frameworks. ReCANVo’s data imbalance
proves to be challenging for N-CORE across both
datasets. However, the model outperforms all
other methods on the uniformly distributed VI-
VAE and ReCANVo-Balanced datasets. Notably,
ContentVec outperforms all methods on ReCAN Vo
despite being trained to be invariant to speakers,
indicating that speaker perturbation may not trans-
form all speaker features, and that models can still
benefit from it.

5.3 Data Analysis

ReCANVo’s data imbalance reflects real-life data
distributions, where multi-label data often exhibit
inherent biases (Schultheis et al., 2022). In this



Model VIVAE ReCANVo ReCANVo-Balanced

Acc F1 UAR | Acc F1 UAR | Acc F1 UAR

HuBERT 58.06 5651 56.81 | 66.97 5507 5453 | 32.86 28.89 32.86
Wav2Vec2 5115 50.69 5049 | 61.94 5045 49.61 | 2429 1589 2429
Voc2Vec 57.60 57.07 57.03 | 61.17 5321 5224 | 2929 27.79 29.29
HuBERT-ER | 53.00 47.60 51.19 | 65.60 52.87 51.84 | 32.86 2942 32.86
HuBERT-SID | 57.14 5626 5651 | 63.54 5439 5454 | 32.14 3059 32.14
HuBERT + GRL | 5991 59.16 59.20 | 67.73 57.66 57.28 | 35.71 33.59 35.71
Wav2Vec2 + GRL | 53.00 51.69 51.85 | 6346 5299 5331 | 32.14 30.19 32.14
SACE 53.00 5147 5214 | 64.00 52.83 53.61 | 27.86 2397 27.86
ContentVec 59.91 5941 5927 | 65.06 5697 55.94 | 3143 27.74 3143
N-CORE | 64.06 63.01 63.52 | 67.96 5574 5490 | 42.86 39.53 42.86

Table 1: Comparison of model performance on the emotion classification task for VIVAE, ReCANVo, and
ReCANVo-Balanced. The best results are highlighted in bold and the second-best results are underlined.

Model VIVAE ReCANVo ReCANVo-Balanced

Acc F1  UAR | Acc F1I  UAR | Acc FI  UAR

HuBERT 60.83 5690 5872 | 93.97 9238 9291 | 77.86 77.93 77.59
Wav2Vec2 56.68 54.58 5527 | 9420 9240 9231 | 7500 73.86 75.31
Voc2Vec 6590 6507 6513 | 90.92 89.84 89.32 | 72.14 7112 7219
HuBERT-ER | 51.61 46.05 48.69 | 93.82 9230 9251 | 5929 5537 56.62
HuBERT-SID | 59.91 58.09 5826 | 9336 91.62 9221 | 7643 76.05 7555
HuBERT + GRL | 7143 67.65 69.12 | 9451 9327 93.63 | 77.14 7778 77.84
Wav2Vec2 + GRL | 64.06 59.90 61.08 | 9344 9172 91.59 | 72.86 7277 72.64
SACE 50.69 4679 48.16 | 9275 90.78 91.05 | 60.71 58.68 58.49
ContentVec 6590 64.59 64.85 | 95.96 9495 9513 | 7643 76.16 76.32
N-CORE | 7512 7425 7454 | 9497 93.61 9349 | 80.71 80.01 80.43

Table 2: Comparison of model performance on the speaker classification task for VIVAE, ReCANVo, and ReCANVo-
Balanced. The best results are highlighted in bold and the second-best results are underlined.

context, affective vocalizations reflect the idiosyn-
cratic behaviors of individual autistic speakers, and
since the vocalizations are not acted, some samples
may naturally lie between two emotional categories.
These facets limit model performance for emotion
classification despite the dataset’s relatively large
number of samples, with performance deteriorating
significantly on ReCANVo-Balanced.

Universally, speaker identification proves more
challenging on the VIVAE dataset across all mod-
els, with significantly lower performance compared
to ReCANVo. This dataset contains acted vocal-
izations from adults, where emotional expressive-
ness tends to converge on shared cultural templates
for what each affective vocalization is expected to
sound like. This reduces inter-speaker variability
by masking natural speaker-specific cues, making
it more difficult for models to distinguish between
speakers, especially compared to spontaneous, real-
world vocalization datasets like ReCANVo. Disen-

tanglement was particularly effective for speaker
classification on VIVAE, suggesting that DRL ex-
cels for datasets containing relatively homogeneous
speakers.

All the models demonstrated remarkably high
performance on speaker identification for Re-
CANVo, which may be due to the diverse age
range of the dataset and the idiosyncratic forms of
NV Vs across individuals with autism (Pegado et al.,
2020), making the accurate speaker classification a
relatively easier ML task. The competitive perfor-
mance of all models on the small-scale ReCAN Vo-
Balanced dataset shows that even a relatively small
corpus of NVVs can help create effective speaker
recognition systems for unique populations.

5.4 Cross-Verification of Perturbation

We conducted a cross-verification experiment to
validate the efficacy of our affect and speaker per-
turbation functions by applying each to both clas-



sification tasks in VIVAE, and our results are pre-
sented in Table 3. Applying speaker perturbation
ps to speaker classification or emotion perturbation
Pe to emotion classification significantly degrades
performance, indicating the successful disruption
of cues that the respective perturbation function
targets. Conversely, applying the inverse pairing
for the tasks leads to improved performance, indi-
cating that the model learns to become invariant
to the perturbed features, and that the respective
transformations do not disrupt features informative
to the classification task. This experiment validates
our proposed pe, and the applicability of both these
transformations to NVVs.

. Performance
Task | Perturbation Acc. Fi  UAR
Pe 75.12 74.25 74.54
Speaker Ps 7097 66.16 68.21
Emotion Pe 61.29 61.18 60.64
Ds 64.06 63.01 63.52

Table 3: Cross-Verification of signal perturbation effi-
cacy using N-CORE on VIVAE. The best results are
highlighted in bold.

5.5 Optimal number of perturbations

To identify the optimal number of perturbations
(N) for N-CORE, we evaluated the model’s classi-
fication accuracy on VIVAE while varying N from
1 to 7, with results presented in 3. We find that
N = 5 leads to the best result for this dataset;
however, this may vary with dataset size and the
distribution of multi-labeled samples.

64.5
64.0
63.5
g 63.0

62.5

Accuracy

62.0
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61.0

3 4 5
Number of Perturbed Views

Figure 3: Accuracy vs. number of perturbed views with
N-CORE for emotion classification on VIVAE. The y-
axis is limited from 61.0 to 64.5 for clarity.

5.6 Ablation Study

We conduct a systematic ablation study on N-
CORE to evaluate the individual contribution of

its components, and the results are presented in
Table 4. Our findings show a clear progression in
performance across all metrics as we sequentially
add GRL, regularization loss, and especially N
perturbed views to the base HUBERT model.

Component Performance
HB GRL RL NV | Acc F1  UAR
v 58.06 56.51 56.81
v v 5991 59.16 59.20
v v v 61.75 61.03 60.98
v v o/ \ 64.06 63.01 63.52

Table 4: Ablation studies were conducted on the N-
CORE for emotion recognition in VIVAE. The abbrevi-
ations HB, GRL, RL, and NV refer to HuBERT, Gradi-
ent Reversal Layers, Regularization Loss, and N-Views,
respectively. The final row corresponds to the entire
framework. The best results are highlighted in bold.

6 Conclusion

In this paper, we investigated DRL specifically on
NVVs. We proposed N-CORE, a novel disentan-
glement method using NV-views of perturbed audio
signals to disentangle relevant features from un-
informative ones. Our experiments demonstrate
that multi-view perturbation enhances performance
compared to traditional single-view approaches,
with N-CORE achieving competitive performance
on both emotion and speaker classification tasks
for VIVAE and ReCANVo-Balanced datasets. We
further propose a signal transformation pipeline
that perturbs emotions in speech signals while pre-
serving speaker information. Further, we validate
previous perturbation techniques, finding that these
transformations are generalizable to NVVs.

Our work further establishes that DRL is indeed
achievable for NV Vs and applies to both typical
and atypical paralinguistic speech. This opens sev-
eral promising directions for future research and
applications, including privacy-preserving encod-
ing of NVVs, disentangled voice conversion for
NVVs, and the clinical analysis of vocalizations
from non- and minimally-speaking individuals. N-
CORE further empowers longitudinal studies of
communicative development through NVVs that
remain invariant to changes in speaker character-
istics over time. The modular design of N-CORE
allows it to scale with advances in DL, potentially
benefiting from larger foundation models as they
become available. Our work is an important step
toward more inclusive and accurate computational
models of human paralinguistic communication.



Ethical Considerations

Potential Risks. We acknowledge the privacy
implications of technologies that can separate
speaker characteristics from communicative con-
tent. While N-CORE demonstrates benefits for
privacy-preserving representations by removing
identifying speaker information from emotion-
focused embeddings, this same capability could
potentially be misused for unauthorized voice
anonymization or modification. We emphasize that
any deployment of these technologies should ad-
here to strict privacy protocols and informed con-
sent requirements, particularly when processing
data from vulnerable populations such as non- and
minimally-speaking individuals.

Biases. Our experimental results highlight how
dataset imbalances can significantly affect model
performance. Demographic limitations of training
data may introduce biases that could impact the
equitable performance of these systems across dif-
ferent populations. We urge caution in applying
these models to populations not well-represented
in the training data.

Reproducibility Statement.  We include imple-
mentation details and hyperparameter settings for
all models in Appendix A.1. The source code for
N-CORE has been submitted for review with this
paper and will be released publicly upon accep-
tance.

Limitations

Our study primarily focuses on disentangling emo-
tion and speaker features. NVVs, however, convey
a rich spectrum of paralinguistic information, in-
cluding varying levels of intensity, different com-
municative intents beyond broad affective cate-
gories, and other subtle cues, which N-CORE does
not explicitly disentangle. The generalizability of
our findings is also constrained by the two datasets
and one derived dataset; while diverse, they do
not encompass the full variability of NV Vs across
different cultures, broader age ranges, numerous
real-world acoustic environments, or a wider array
of clinical populations. The general challenge of
limited annotated NVV data also impacts the scale
at which models can be trained and validated.
N-CORE’s performance, particularly for emo-
tion classification, was comparatively lower on the
highly imbalanced ReCANVo dataset for F1 and
UAR, and it was outperformed by other methods
for speaker classification on the same dataset. This

suggests that in scenarios with extreme data imbal-
ance or where speaker and affective cues are deeply
convoluted, our model’s strong disentanglement ca-
pabilities might not directly translate to optimal
performance for classification.
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A Appendix

A.1 Implementation Details

We conducted all our experiments on Python 3.9.21
and PyTorch 2.6.0 on an NVIDIA V100 GPU with
32 GB of dedicated memory. We set the batch
size to 16 and trained each model for 100 epochs
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with an early stopping patience of 20 while moni-
toring validation accuracy to save the best model
for each run. We used the default settings set by
each tested method’s authors. When unspecified,
we used a learning rate of 10~5 with the AdamW
optimizer, including for N-CORE. We use N = 5
for all experiments on N-CORE. We used a lin-
ear scheduler with 0.1 x the number of training
steps as warmup steps. We report the maximum
performance achieved for each model.

We implemented HuBERT!, Wav2Vec22, and
Voc2Vec2?, HuBERT-ER*, HuBERT-SID®, and
ContentVec® through the HuggingFace library. We
implemented GRL from GitHub’. We imple-
mented SACE? and from the code released by the
respective.

A.2 Dataset Distribution

Detailed dataset statistics for VIVAE, ReCAN Vo,
and ReCANVo-Balanced are presented in Tables 5,
6, and 7.

A.3 Disentanglement Training

N-CORE’s DRL dynamics for emotion classifica-
tion on VIVAE is illustrated through the loss and
accuracy curves presented in Figure 4 and Figure 5,
respectively. Figure 4 shows the emotion classifi-
cation loss decreasing and stabilizing over epochs,
while the adversarial speaker classification loss in-
creases, as intended with the use of a GRL. Concur-
rently, Figure 5 shows that the emotion classifica-
tion accuracy consistently improves until stabiliza-
tion, whereas the speaker classification accuracy
rapidly drops to random chance. These trends in-
fer the model’s success in learning representations
that are discriminative for emotion while simultane-
ously becoming invariant to speaker characteristics
over the training period.

A.4 TSNE Plots

We use TSNE plots to compare HuBERT and N-
CORE on the testing sets of VIVAE in Figures 6
and 7, and ReCANVo in Figures 8 and 9. Represen-
tations from N-CORE were generated solely using
the HuBERT backbone.

"https://huggingface.co/facebook/hubert-base-1s960
Zhttps://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/alkiskoudounas/voc2vec
*https://huggingface.co/superb/hubert-base-superb-er
Shttps://huggingface.co/superb/hubert-base-superb-sid
®https://huggingface.co/lengyue233/content-vec-best
"https://github.com/tadeephuy/GradientReversal
8https://github.com/iiscleap/ZEST/



Label | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | Total

achievement | 16 11 12 18 20 12 17 16 18 14 7 161
anger 1218|1518 | 18|20 | 14| 19|17 |16 7 | 174
fear 16|17 | 14| 18191917 18|17 |13 8 | 176
pain 171202117192 | 18] 14|19]|12]| 8 | 185
pleasure 191920 1715|1920 |20 | 18|18 | 17 | 202
surprise 1316|1920 |2 |21 |17 |210]19]14]| 7 | 187
Total | 93 | 101 | 101 | 108 | 111 | 111 | 103 | 108 | 108 | 87 | 54 | 1085

Table 5: Data distribution of the VIVAE dataset.

o

Label | PO1 | P02 | P03 | P05 | P06 | POS | P11 | P16 | Total

delighted 357 | 43 25 | 235|227 | 39 | 207 | 139 | 1272
dysregulated | 212 0 302|116 | 5 13 22 | 34 | 704
frustrated 150 56 47 | 283 | 30 | 781 27 | 162 | 1536

request 130 | 13 | 61 | 6 | 124 44 | 22 | 19 | 419
self-talk 564 | 34 | 55 | 286 | 56 | 503 | 33 | 354 | 1885
social 182 [ 2471 0 | 0o | 1 | 93 | 52| 59 | 634
laughter 0 38 8 13 0 42 0 0 101
Total 1595 \ 431 \ 498 \ 939 \ 443 \ 1515 \ 363 \ 767 \ 6551

Table 6: Data distribution of the ReCAN Vo dataset.

P = Emotion = Emotion
oA ~ =~ Speaker 60 —— Speaker

35

3.0 1

Accuracy (%)

20

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Epochs Epochs

Figure 4: Loss vs. Number of Epochs for emotion  Figure 5: Accuracy vs. Number of Epochs for emotion
classification on VIVAE. classification on VIVAE.
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Label po1 | Po2 | P03 | P05 | Po6 | POS | P11 | P16 | Total
delighted Bl B2z 12]12] 10
dysregulated | 17 0 17 16 5 13 16 16 100
frustrated 212 131312131312/ 100
request 14|13 13 6 | 14] 1313 14] 100
self-talk B 12| 131212131312 100
social 2020 0] 0 20 | 20 | 19 | 100
laughter 0 | 38 B31o 4 0 o] 100
Total \89\108\77\73\56\125\87\85\700

Table 7: Data distribution of the ReCANVo-Balanced dataset.
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Figure 6: TSNE plots for emotion classification on VIVAE.

14




-

S01
502
S03
S04
S05
S06
S07
508
S09
S10
S11

ecececce

S
%

b

S01
502
S03
S04
S05
506
S07
508
509
S10
S11

eecececce

>

ool 8 bt
c .
8 a. & &J .’:Oé

7Y )

® %
I.’..

L
et

O J

(a) N-CORE: Speaker labels highlighted.

(b) HuBERT: Speaker labels highlighted.

-«
'

° @ achievement
oo ® anger
' A o fear
. o pain
pleasure
surprise
a‘" p
LY, P 3 ;
@
LY ® v
o
o o
%@ &,
° g s og e
“ L %
[
f e
- %
& .
. e
¥ ol
¥ cag @

@ achievement
A" ® anger
s o fear
)-"s 3.' cer o pain
» pleasure
A surprise
®
$° ‘,.
[ ° o 8
o, )o &
%e ¢ <
1]
e *
@
2.8
@
o0 £ 5 e, o
L
@ 0, M0
o
L
S

oboqe @ r

(c) N-CORE: Emotion labels highlighted.

(d) HuBERT: Emotion labels highlighted.

Figure 7: TSNE plots for speaker classification on VIVAE.

15




L)
S S, T A
5o 8, e T S¥e
I A <« ia s 4
.O.c o '(UJ e . ° .
‘k *};-I.‘)dw e > 0‘3’. \
of [y ® L L Y & o
Wty g0 @ 0> A% "
“ ..‘ ‘e 2 0.0.@ P ° d
S » e O o®
1 % L2g ) o "My ®
«oy
’3*: :f *y -

delighted
dysregulated
frustrated
laughter
request
selftalk
social

delighted
dysregulated
frustrated

g P ® laughter
Ay o X | e
R f &’w}: oo social
> ®
“Re vot.g‘ % ° ”5? t(o“
"%mm QQ# e ; g~% ,’Ny . -O’“
L q.. X "! c 6. e 2 e
54 o o o« & ‘%f’ﬂ
¢ ® e Q.0 ° « © CAZ®
oby, T Mo T T e
® .‘."- “e @ .’:.D ’9 ®
o ; ’ . ° "" '*-.> \‘ ;*s
»° .;_-° L ’Q’»‘“ s o
o e HP S
. H
8 v !‘. .} ’:‘ o %@
eV om P ° ’6

P03
e o P05
Fw e, 20N E
X M e "y < ! "J'«? e
it et W N
cwl R ° o.gb. &
U R
\QQ" . ° ° , ). ’ (’." "J
w'oh e ATII Wy
e P o ) &® o
. 0% (9 <¢ .’“\;_ s

PO1

.3900 © P02
.8;7 cg . P03
S ORI
y 2 ~, =
R g e
e :nr. © J.\ "‘ 4
P'?.. (5} - -
8 [ ° o N .Qc.;’ '“‘r.".: '\5~
3 i e 2N e
- T e ) IS .f'g ® Mo By
© T ° o ° 1
i ¥ %’ ¢ o Te "0'9¢
o, ° °® do® \ ‘o
}"t‘. [ W o *-:,.'" C o <
S, 0 3° e 2
e B3 .=
°o LD o
te -

(c) N-CORE: Speaker labels highlighted.

(d) HuBERT: Speaker labels highlighted.

Figure 8: TSNE plots for emotion classification on ReCAN Vo.
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(a) N-CORE: Speaker labels highlighted. (b) HuBERT: Speaker labels highlighted.
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(c) N-CORE: Emotion labels highlighted.

(d) HuBERT: Emotion labels highlighted.

Figure 9: TSNE plots for speaker classification on ReCANVo.
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