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Abstract001

Nonverbal vocalizations are an essential com-002
ponent of human communication, conveying003
rich information without linguistic content.004
However, the computational analysis of non-005
verbal vocalization faces significant challenges006
due to a lack of lexical anchors in the data, com-007
pounded by biased distributions of imbalanced008
multi-label data. While disentangled represen-009
tation learning has shown promise in isolating010
specific speech features, its application to non-011
verbal speech remains unexplored. In this pa-012
per, we introduce N-CORE, a novel supervised013
framework designed to disentangle representa-014
tions in nonverbal vocalizations by leveraging015
N views of the audio sample to learn invariance016
to specific perturbed features. We find that N-017
CORE achieves competitive performance com-018
pared to the baseline methods when tested for019
emotion and speaker classification tasks on the020
VIVAE, ReCANVo, and ReCANVo-Balanced021
datasets. We further propose an emotion per-022
turbation function for audio signals that pre-023
serves speaker information, and validate speech024
transformation functions on nonverbal vocal-025
izations. Our work informs research directions026
on the application of paralinguistic speech, in-027
cluding privacy-preserving encoding, clinical028
diagnoses of atypical speech, and longitudinal029
analysis of communicative development.030

1 Introduction031

Nonverbal vocalizations (NVVs) are a fundamental032

component of human communication, encompass-033

ing a diverse range of non-speech sounds such as034

laughter, sighs, cries, and other sounds that convey035

rich affective information without relying on lin-036

guistic content (Cowen et al., 2019). Interpreting037

these paralinguistic signals is vital for comprehen-038

sive modeling of human communication and the039

development of emotionally intelligent AI systems040

(Tzirakis et al., 2023). However, the computational041

analysis of NVVs presents unique challenges that042

Figure 1: Comparison of mel-spectrograms from verbal
(top) and nonverbal vocalizations (NVVs; bottom). The
syllabic structure of word-based speech results in spe-
cific temporal variations that are less common in NVVs.

differentiate them from conventional speech pro- 043

cessing tasks. 044

A primary challenge in NVV analysis is the 045

scarcity of annotated data. Unlike speech corpora 046

that can leverage millions of hours of recorded 047

content, NVV datasets are typically limited to 048

hundreds of hours of data (Baird et al., 2022; 049

Koudounas et al., 2025), which leads to the sub- 050

optimal performance of modern data-hungry ma- 051

chine learning (ML) and deep learning (DL) meth- 052

ods. This limitation is exacerbated by the substan- 053

tial bias caused by the low diversity in emotion 054

and speaker labels in these datasets. For exam- 055

ple, models trained on these limited datasets of- 056

ten encode speaker characteristics like pitch range, 057

vocal timbre, and articulation patterns that con- 058

found affective computing, and affective features 059

such as dynamic intensity, prosodic contours, and 060

fundamental frequency (F0) variations that con- 061
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found speaker identification (Pei et al., 2024). This062

leads to poor generalization across demographic063

groups and emotional categories, especially in low-064

resource datasets.065

Several ML methods have attempted to address066

these challenges through various audio representa-067

tion learning approaches. Foundation models such068

as HuBERT (Hsu et al., 2021b) and Wav2Vec2069

(Baevski et al., 2020) have demonstrated remark-070

able success in learning generalized speech repre-071

sentations that can be fine-tuned for downstream072

tasks. These models are predominantly trained on073

verbal corpora, where canonical phoneme struc-074

tures and linguistic content serve as strong struc-075

tural priors. In contrast, NVVs lack the phoneme-076

based priors these models exploit, causing them077

to struggle when encoding paralinguistic sounds078

(Lane et al., 2015; Tzirakis et al., 2023). Figure079

1 illustrates these differences by comparing mel-080

spectrograms of verbal speech and NVVs, high-081

lighting how verbal speech has more complex spec-082

tral variability and clear transitions in temporal seg-083

mentation as compared to NVVs, which may assist084

representation learning (Nagamine et al., 2015).085

Disentangled representation learning (DRL), the086

process of separating different informational fac-087

tors in data, has been extensively explored in the088

speech domain for tasks including emotion recogni-089

tion (Yuan et al., 2024; Xi et al., 2022), depression090

detection (Ravi et al., 2022), and voice conversion091

(Zuo et al., 2024; Wang et al., 2021a). However,092

applying DRL methods to NVVs presents unique093

challenges due to the absence of lexical anchors094

and how their prosodic characteristics simultane-095

ously encode both speaker and emotion informa-096

tion. Conventional DRL methods on speech data097

often depend on augmentation strategies that pre-098

serve lexical content while altering specific features099

(Tu et al., 2024; Hsu et al., 2019); however, in the100

absence of lexical content invariant to perturba-101

tions, a single transformation may either disrupt102

useful information or allow uninformative artifacts103

to persist in the signal.104

In this paper, we investigate DRL in NVVs. Our105

contributions are summarized as follows:106

• We propose N-CORE (N-View COnsistency107

REgularization), a novel framework for super-108

vised DRL of NVVs by using N perturbed109

views of an audio signal.110

• We propose a novel transformation method to111

perturb emotion components in NVV while112

retaining speaker characteristics. We further 113

examine the validity of an existing speaker 114

perturbation method on NVVs. 115

• We comprehensively benchmark audio foun- 116

dation models, DRL methods, and state- 117

of-the-art representation learning methods 118

on emotion and speaker classification tasks 119

across three NVV datasets. To the best of our 120

knowledge, we are the first to study DRL in 121

NVVs. 122

2 Related Work 123

2.1 Machine Learning for Nonverbal 124

Vocalizations and Paralinguistic Speech 125

Early work using ML to process NVVs relied pre- 126

dominantly on hand-engineered feature sets, with 127

Schuller et al. (2013) establishing the ComParE 128

acoustic feature set that captured spectral, prosodic, 129

and voice quality parameters for paralinguistic anal- 130

ysis of social signals, conflict, and emotion, with 131

application to autism diagnosis. This was further 132

refined by the Geneva Minimalistic Acoustic Pa- 133

rameter Set (GeMAPS) and extended GeMAPS 134

(eGEMAPS) frameworks Eyben et al. (2015), pro- 135

viding a standardized feature extraction framework 136

optimized for affective computing applications. 137

These approaches have been successfully employed 138

for classifying NVVs (Lefter and Jonker, 2017; 139

Narain et al., 2020), typically using traditional ma- 140

chine learning classifiers such as Support Vector 141

Machines (Cortes and Vapnik, 1995) and Random 142

Forests (Breiman, 2001). 143

The advent of deep learning (DL) has signifi- 144

cantly advanced the processing of NVVs, learning 145

representations directly from raw waveforms and 146

bypassing manual feature engineering. Convolu- 147

tional neural networks (CNNs) like ResNet-50 (He 148

et al., 2016) have been used to process paralin- 149

guistic speech for understanding nonverbal emo- 150

tion (Hsu et al., 2021a), speaker classification (Xu 151

et al., 2024), and judging singing voice quality (Xu 152

et al., 2022). The emergence of self-supervised 153

learning has revolutionized ML for speech, with 154

models like Wav2Vec2 (Baevski et al., 2020) and 155

HuBERT (Hsu et al., 2021b) achieving state-of- 156

the-art performance on various speech processing 157

benchmarks. While these models were primarily 158

trained on linguistic content, they have strong trans- 159

fer learning capabilities in paralinguistic tasks (Tzi- 160

rakis et al., 2023; Shah and Johnson, 2025; Phukan 161
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et al., 2025), although with performance limita-162

tions due to domain mismatch in their training and163

evaluation datasets. Specifically tailored to NVVs,164

Koudounas et al. (2025) developed Voc2Vec, which165

implements a self-supervised learning objective to166

pre-train the Wav2Vec2 architecture over multiple167

NVV datasets.168

In clinical applications, ML approaches have169

been instrumental in analyzing atypical vocaliza-170

tions. Bone et al. (2017) developed a classification171

framework to identify distinctive acoustic signa-172

tures in the vocalizations of children with autism173

spectrum disorder (ASD). Similarly, Narain et al.174

(2022) demonstrated that ML methods could effec-175

tively classify affective and communicative func-176

tions in NVVs from individuals with ASD. Further,177

these techniques have been applied to speech ther-178

apy (Mulfari et al., 2021), automatic speech recog-179

nition (Mulfari et al., 2023), and speech conversion180

(Doshi et al., 2021) for individuals with atypical181

speech.182

2.2 Disentangled Representation Learning in183

Speech184

DRL aims to separate different informational fac-185

tors in data, enabling models to extract and ma-186

nipulate independent semantic dimensions (Wang187

et al., 2024b). In speech processing, DRL typi-188

cally focuses on separating speaker characteristics,189

linguistic content, emotion, or other features from190

each other (Williams, 2022). This separation is191

valuable for tasks such as voice conversion (Luong192

and Tran, 2021), speech recognition (Trinh and193

Braun, 2022), and emotion recognition (Yuan et al.,194

2024), where isolating specific attributes leads to195

improved performance. Many DRL methods for196

speech leverage lexical content and phoneme se-197

quences in speech (Hsu et al., 2019), which act198

as a stable anchor against the disentanglement of199

various attributes like emotion or speaker identity,200

which are conveyed through prosodic modulations201

(Chu et al., 2006). The application of these tech-202

niques to NVVs, which lack explicit lexical an-203

chors and have entangled speaker and emotion in-204

formation in their prosodic features, remains an205

unexplored domain, motivating us to investigate206

DRL in NVVs.207

A prominent approach for DRL involves a gra-208

dient reversal layer (GRL) (Ganin and Lempit-209

sky, 2015), enabling end-to-end training of clas-210

sifiers invariant to characteristics like domain (Lu211

et al., 2022) and speaker identity (Oneaţă et al.,212

2021). Autoencoder-based methods are also widely 213

used to learn disentangled latent spaces by impos- 214

ing specific constraints on the latent distribution 215

(Yingzhen and Mandt, 2018; Nam et al., 2024). 216

Subsequent frameworks like NANSY (Choi et al., 217

2021) and ContentVec (Qian et al., 2022) learn 218

speaker-invariant speech representations by encour- 219

aging models to learn similar representations for 220

two audio samples with different speaker informa- 221

tion; however, this sole perturbed sample may not 222

expose the model to the spectrum of varied features 223

that may exist in a dataset. Further, these methods 224

are limited to DRL for speaker-invariant represen- 225

tations, as they rely solely on speaker perturbation. 226

To address these gaps, we propose N-CORE, which 227

uses N views of perturbed samples from an audio 228

signal for increased sample diversity, and an emo- 229

tion perturbation method that preserves valuable 230

speaker information. 231

3 Methodology 232

In this section, we describe N-CORE, our proposed 233

supervised DRL framework to encode NVVs by 234

isolating emotion- and speaker-specific informa- 235

tion. Our method uses HuBERT as a backbone 236

encoder and applies audio perturbations to sup- 237

press either emotion or speaker information while 238

preserving the inverse features. We generate N 239

perturbed views per audio sample to encourage in- 240

variance across a broader distribution of irrelevant 241

variations, regulated by a pairwise distance loss 242

for consistency regularization. Finally, we use two 243

classification heads, one with a GRL mechanism, 244

to simultaneously learn required features while per- 245

forming supervised disentanglement of emotion 246

and speaker information in the representations. We 247

train the model via a composite objective that bal- 248

ances regularization, cross-entropy, and gradient 249

reversal losses. Figure 2 presents the architecture 250

of the N-CORE framework. 251

3.1 Problem Formulation 252

Let X represent an acoustic signal encompassing 253

an NVV with a positive label y+ and a negative 254

label y−. We aim to learn a representation model 255

R = f(X) that maps X to a learned embedding 256

x ∈ RD, encapsulating the core components of 257

the NVV represented by y+ while discarding in- 258

formation that describes y−. Specifically, if the 259

learning objective is to classify for the emotion la- 260

bel ye, x must retain information pertinent to the 261
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Figure 2: Our proposed framework, N-CORE, to classify for label y+ and disentangle features that inform the label
y−. Perturbation functions pe or ps are used to create N views of X for consistency regularization. Cross-entropy
loss is used for classifying y+ with classification head h+, and a GRL is used for adversarial disentanglement with
respect to y− using classification head h−.

underlying emotion expressed in X while remain-262

ing uninformative with respect to speaker label ys.263

Conversely, when classifying for ys, x should en-264

capsulate speaker-specific traits from X while dis-265

carding affective content descriptive of ye. Achiev-266

ing such disentanglement is challenging given the267

inherent entanglement of emotion- and speaker-268

related information in the acoustic signal.269

3.2 Representation Learner270

We use the HuBERT-Base model (Hsu et al.,271

2021b) pre-trained on 960 hours of speech data272

from the LibriSpeech dataset (Panayotov et al.,273

2015) as our feature encoder for its representation274

learning capabilities in both emotion and speaker275

recognition tasks (Wang et al., 2021b). HuBERT276

learns a neural embedding x from the raw audio277

signal X by encoding essential phonetic, prosodic,278

and stylistic information (Kharitonov et al., 2021),279

as x = HuBERT (X).280

3.3 Feature-Invariant Audio Perturbation281

Emotion Perturbation. We aim to disrupt affec-282

tive information in the audio signal while preserv-283

ing speaker characteristics. The emotion perturba-284

tion function pe comprises three transformations:285

1) We compute the Short-Time Fourier Transform286

(STFT) of X , resulting in a spectrogram S(X) with287

nspec non-overlapping frequency bands. We ran-288

domly permute η1 of these bands, retaining the289

rhythm and energy essential for speaker identifica-290

tion (Quatieri et al., 1994), while distorting content291

information (Davis and Johnsrude, 2003). 2) We292

normalize intensity by adjusting the waveform’s 293

RMS to a fixed target η2 in order to suppress dy- 294

namic intensity correlated with emotion features 295

(Koolagudi and Rao, 2012). 3) We flatten the pitch 296

of the speaker to the average in their pitch con- 297

tour f0, effectively flattening prosodic variance and 298

the affective content it withholds (Mozziconacci, 299

2002). 300

Speaker Perturbation. We adopt the audio trans- 301

formation pipeline designed by Choi et al. (2021) 302

for the NANSY framework to perturb speaker in- 303

formation while preserving the underlying content 304

information. Similar to ContentVec (Qian et al., 305

2022), the speaker perturbation function ps com- 306

prises three transformations: 1) scaling formant 307

frequencies by a factor of ρ1; 2) scaling F0 in every 308

frame by ρ2, and 3) applying a random equalizer 309

to account for channel variations. 310

3.4 N Perturbed Views 311

Prior work on feature-invariant representation 312

learning (Qian et al., 2022; Tu et al., 2024; Wang 313

et al., 2024a) typically generates only a single per- 314

turbed version of each input and then enforces in- 315

variance between them. This one-shot strategy in- 316

herently constrains the diversity of transformations 317

exposed to the model, making it less robust to un- 318

seen distortions. 319

In contrast, our approach samples N distinct 320

perturbations drawn independently from the orig- 321

inal audio signal X . By exposing the model to a 322

spectrum of variations, we increase the range of 323

uninformative factors the encoder is encouraged to 324
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ignore, reduce reliance on any single perturbation325

pattern, and promote the learned feature space to326

consistently encode all N views of X into a tight327

cluster in the representation space. Multiple per-328

turbations are especially crucial in NVVs, in the329

absence of lexical anchors that could be preserved330

after perturbation (Ko et al., 2015). We regular-331

ize the pairwise distances among all views of x by332

measuring the average squared distance across all333

unique pairs as a loss function:334

LREG =

∑M
i=1

∑N
j=i+1 ||xi − xj ||22
N(N+1)

2

(1)335

where the denominator term denotes the number336

of unique pairs among x’s N + 1 views, including337

the unperturbed representation. This loss encour-338

ages the model to create the same representation339

for all views of x, disentangling label-relevant in-340

formation from uninformative features.341

3.5 Classification342

We project x to two separate classification heads h+343

and h− that use cross-entropy to classify for labels344

y+ and y−, respectively. This step operates solely345

on the unperturbed x, and none of its augmented346

views. Both heads share the same underlying struc-347

ture: a two-layer multilayer perceptron (MLP) with348

a ReLU activation and dropout in between. To en-349

force invariance to y−, we precede h− with a GRL350

that scales embeddings by −α, encouraging the351

model to disentangle and suppress features corre-352

sponding to y− in its learned representations. We353

obtain losses LCE and LGRL as follows:354

LCE = −
K+∑
k+=1

y+
k+

log
[
h+(x)

]
k+

(2)355

LGRL = −
K−∑
k−=1

y−
k− log

[
h−

(
GRLα(x)

)]
k−

(3)356

3.6 Training Objective357

Our model is trained by optimizing a composite358

objective function comprising the three losses ob-359

tained from equations 1, 2, and 3, calculated for360

each input audio embedding x and its N perturbed361

views.362

Ltotal = λREG ·LREG+λCE ·LCE−λGRL ·LGRL (4)363

where λreg, λCE, and λGRL represent scaling fac-364

tors that regulate the contribution of each loss to-365

wards Ltotal. The optimizer minimizes Ltotal by366

maximizing the negative term LGRL, designed to 367

learn representations that are invariant to the sec- 368

ondary label y2. 369

4 Experimental Settings 370

4.1 Datasets 371

We evaluate our methods on three NVV datasets: 372

Variably Intense Vocalizations of Affect and Emo- 373

tion (VIVAE) (Holz et al., 2022), Real-World Com- 374

municative and Affective Nonverbal Vocalizations 375

(ReCANVo) (Johnson et al., 2023), and ReCANVo- 376

Balanced. For each dataset, we evaluate perfor- 377

mance on emotion and speaker recognition tasks. 378

We use a train/test split of 80/20 for all datasets. 379

Detailed dataset statistics are presented in A.2. 380

VIVAE. The VIVAE corpus comprises 1,085 381

non-speech emotion vocalizations produced by 11 382

non-professional female actors, 20-39 years old, 383

who were instructed to express six affective states: 384

achievement/triumph, sexual pleasure, surprise, 385

anger, fear, and physical pain across multiple inten- 386

sity levels. 387

ReCANVo. The ReCANVo dataset contains 388

7,077 NVVs collected from eight non- and 389

minimally-speaking individuals, ranging in age 390

from 6-23 years old and diagnosed with vari- 391

ous neurodevelopmental disorders, including ASD, 392

cerebral palsy, and genetic neurodevelopmental dis- 393

orders. Classes with sample counts across all partic- 394

ipants reaching n≥100 were taken from this dataset, 395

yielding a derived dataset of 6,551 utterances dis- 396

tributed among seven functions: delighted, dysreg- 397

ulated, frustrated, laughter, request, self-talk, and 398

social. This derived dataset is highly imbalanced 399

with an imbalance factor of 18.66. 400

ReCANVo-Balanced. We use a multi-stage sam- 401

pling procedure to create a balanced subset from 402

ReCANVo by extracting 100 samples for each emo- 403

tion class. Within each emotion category, partici- 404

pant diversity was maximized by systematically dis- 405

tributing the sample selection, with the constraint 406

that no single participant would contribute a major- 407

ity of samples for any given emotion class. 408

4.2 Baselines 409

We conduct a comprehensive benchmark of es- 410

tablished audio ML methods on NVVs. Specifi- 411

cally, we evaluate HuBERT (Hsu et al., 2021b), 412

Wav2Vec2 (Baevski et al., 2020), Voc2Vec 413

(Koudounas et al., 2025), HuBERT-ER and 414

HuBERT-SID (Yang et al., 2021), HuBERT-GRL 415
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and Wav2Vec2-GRL (Ganin and Lempitsky, 2015),416

SACE (Dutta and Ganapathy, 2024), ContentVec417

(Qian et al., 2022), and our proposed method, N-418

CORE. Detailed implementation details are given419

in Appendix A.1.420

5 Experimental Results421

5.1 Emotion Classification with Speaker422

Disentanglement423

Table 1 presents the results for emotion recognition.424

Foundation Models. In line with previous re-425

search on emotion and speaker classification (Wang426

et al., 2021b), HuBERT consistently achieves427

the highest performance across all metrics in all428

datasets compared to the Wav2Vec2 family of mod-429

els. The Voc2Vec model was trained exclusively on430

NVVs, allowing it to outperform Wav2Vec2 with431

the same architecture, demonstrating the advan-432

tage of domain-specific pre-training. Further, its433

self-supervised training objective may enable it to434

avoid overfitting and classification unfairness (Liu435

et al., 2021), as demonstrated by the differential in436

F1-Score and UAR compared to Wav2Vec2. How-437

ever, despite being specifically designed for NVVs,438

Voc2Vec underperforms HuBERT on ReCANVo439

and ReCANVo-Balanced while matching its perfor-440

mance on VIVAE, suggesting that domain-specific441

pre-training may not solely surpass the representa-442

tion learning power of a more suitable model.443

Domain-Specific Models. Notably, neither444

HuBERT-ER nor HuBERT-SID outperforms445

the baseline HuBERT model, which may be446

attributed to the domain shift between the spoken447

word datasets used during finetuning and the448

NVV datasets used for this evaluation. Further,449

fine-tuning on a smaller corpus limits these models’450

generalizability to out-of-distribution data.451

Gradient Reversal-based Models. The addition452

of GRL improves performance for both HuBERT453

and Wav2Vec2 models across all datasets. These454

results support our hypothesis that using adversar-455

ial training to explicitly disentangle speaker infor-456

mation leads to more robust representations less457

influenced by speaker-specific characteristics and458

biases.459

DRL Frameworks. ContentVec outperforms460

SACE across all datasets, which can be attributed461

to its superior HuBERT backbone compared to462

SACE’s Wav2Vec2 backbone. N-CORE outper-463

forms all methods on VIVAE and ReCANVo-464

Balanced but falls short for ReCANVo in terms465

of F1 and UAR, which may be due to the dataset’s 466

interweaved speaker and emotion distributions, 467

where models could be relying on speaker char- 468

acteristics to classify for emotions due to a biased 469

sample distribution (see 6), and N-CORE’s supe- 470

rior DRL capabilities ended up penalizing its per- 471

formance. ReCANVo-Balanced mitigates this im- 472

balance, and N-CORE outperforms all methods 473

here. 474

5.2 Speaker Classification with Affect 475

Disentanglement 476

Table 2 presents the results for speaker recognition. 477

Foundation Models. For the ReCANVo and 478

ReCANVo-Balanced datasets, Voc2Vec performs 479

notably worse than HuBERT and Wav2Vec2, de- 480

spite ReCANVo being a part of its pre-training 481

corpus. Voc2Vec also uses the VIVAE dataset for 482

pre-training, on which it performs the best, fol- 483

lowed by HuBERT and Wav2Vec2, respectively. 484

Domain-Specific Models. HuBERT-ER shows 485

competitive performance in speaker identification 486

capabilities compared to the baseline model and 487

even the specialized HuBERT-SID model on Re- 488

CANVo, but exhibits a substantial drop on VIVAE, 489

highlighting the importance of task-specific pre- 490

training. However, the model performs poorly on 491

ReCANVo-Balanced, suggesting that it could suc- 492

cessfully be using affective information to classify 493

speakers on ReCANVo. 494

Gradient Reversal-based Methods. On the VI- 495

VAE dataset, both models demonstrate substantial 496

performance gains after disentanglement. On Re- 497

CANVo and ReCANVo-Balanced, the HuBERT 498

model shows a slight improvement in performance 499

after emotion disentanglement, whereas Wav2Vec2 500

experiences a minor decline relative to its baseline. 501

DRL Frameworks. ReCANVo’s data imbalance 502

proves to be challenging for N-CORE across both 503

datasets. However, the model outperforms all 504

other methods on the uniformly distributed VI- 505

VAE and ReCANVo-Balanced datasets. Notably, 506

ContentVec outperforms all methods on ReCANVo 507

despite being trained to be invariant to speakers, 508

indicating that speaker perturbation may not trans- 509

form all speaker features, and that models can still 510

benefit from it. 511

5.3 Data Analysis 512

ReCANVo’s data imbalance reflects real-life data 513

distributions, where multi-label data often exhibit 514

inherent biases (Schultheis et al., 2022). In this 515
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Model VIVAE ReCANVo ReCANVo-Balanced
Acc F1 UAR Acc F1 UAR Acc F1 UAR

HuBERT 58.06 56.51 56.81 66.97 55.07 54.53 32.86 28.89 32.86
Wav2Vec2 51.15 50.69 50.49 61.94 50.45 49.61 24.29 15.89 24.29
Voc2Vec 57.60 57.07 57.03 61.17 53.21 52.24 29.29 27.79 29.29

HuBERT-ER 53.00 47.60 51.19 65.60 52.87 51.84 32.86 29.42 32.86
HuBERT-SID 57.14 56.26 56.51 63.54 54.39 54.54 32.14 30.59 32.14

HuBERT + GRL 59.91 59.16 59.20 67.73 57.66 57.28 35.71 33.59 35.71
Wav2Vec2 + GRL 53.00 51.69 51.85 63.46 52.99 53.31 32.14 30.19 32.14

SACE 53.00 51.47 52.14 64.00 52.83 53.61 27.86 23.97 27.86
ContentVec 59.91 59.41 59.27 65.06 56.97 55.94 31.43 27.74 31.43

N-CORE 64.06 63.01 63.52 67.96 55.74 54.90 42.86 39.53 42.86

Table 1: Comparison of model performance on the emotion classification task for VIVAE, ReCANVo, and
ReCANVo-Balanced. The best results are highlighted in bold and the second-best results are underlined.

Model VIVAE ReCANVo ReCANVo-Balanced
Acc F1 UAR Acc F1 UAR Acc F1 UAR

HuBERT 60.83 56.90 58.72 93.97 92.38 92.91 77.86 77.93 77.59
Wav2Vec2 56.68 54.58 55.27 94.20 92.40 92.31 75.00 73.86 75.31
Voc2Vec 65.90 65.07 65.13 90.92 89.84 89.32 72.14 71.12 72.19

HuBERT-ER 51.61 46.05 48.69 93.82 92.30 92.51 59.29 55.37 56.62
HuBERT-SID 59.91 58.09 58.26 93.36 91.62 92.21 76.43 76.05 75.55

HuBERT + GRL 71.43 67.65 69.12 94.51 93.27 93.63 77.14 77.78 77.84
Wav2Vec2 + GRL 64.06 59.90 61.08 93.44 91.72 91.59 72.86 72.77 72.64

SACE 50.69 46.79 48.16 92.75 90.78 91.05 60.71 58.68 58.49
ContentVec 65.90 64.59 64.85 95.96 94.95 95.13 76.43 76.16 76.32

N-CORE 75.12 74.25 74.54 94.97 93.61 93.49 80.71 80.01 80.43

Table 2: Comparison of model performance on the speaker classification task for VIVAE, ReCANVo, and ReCANVo-
Balanced. The best results are highlighted in bold and the second-best results are underlined.

context, affective vocalizations reflect the idiosyn-516

cratic behaviors of individual autistic speakers, and517

since the vocalizations are not acted, some samples518

may naturally lie between two emotional categories.519

These facets limit model performance for emotion520

classification despite the dataset’s relatively large521

number of samples, with performance deteriorating522

significantly on ReCANVo-Balanced.523

Universally, speaker identification proves more524

challenging on the VIVAE dataset across all mod-525

els, with significantly lower performance compared526

to ReCANVo. This dataset contains acted vocal-527

izations from adults, where emotional expressive-528

ness tends to converge on shared cultural templates529

for what each affective vocalization is expected to530

sound like. This reduces inter-speaker variability531

by masking natural speaker-specific cues, making532

it more difficult for models to distinguish between533

speakers, especially compared to spontaneous, real-534

world vocalization datasets like ReCANVo. Disen-535

tanglement was particularly effective for speaker 536

classification on VIVAE, suggesting that DRL ex- 537

cels for datasets containing relatively homogeneous 538

speakers. 539

All the models demonstrated remarkably high 540

performance on speaker identification for Re- 541

CANVo, which may be due to the diverse age 542

range of the dataset and the idiosyncratic forms of 543

NVVs across individuals with autism (Pegado et al., 544

2020), making the accurate speaker classification a 545

relatively easier ML task. The competitive perfor- 546

mance of all models on the small-scale ReCANVo- 547

Balanced dataset shows that even a relatively small 548

corpus of NVVs can help create effective speaker 549

recognition systems for unique populations. 550

5.4 Cross-Verification of Perturbation 551

We conducted a cross-verification experiment to 552

validate the efficacy of our affect and speaker per- 553

turbation functions by applying each to both clas- 554
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sification tasks in VIVAE, and our results are pre-555

sented in Table 3. Applying speaker perturbation556

ps to speaker classification or emotion perturbation557

pe to emotion classification significantly degrades558

performance, indicating the successful disruption559

of cues that the respective perturbation function560

targets. Conversely, applying the inverse pairing561

for the tasks leads to improved performance, indi-562

cating that the model learns to become invariant563

to the perturbed features, and that the respective564

transformations do not disrupt features informative565

to the classification task. This experiment validates566

our proposed pe, and the applicability of both these567

transformations to NVVs.568

Task Perturbation Performance
Acc. F1 UAR

Speaker pe 75.12 74.25 74.54
ps 70.97 66.16 68.21

Emotion pe 61.29 61.18 60.64
ps 64.06 63.01 63.52

Table 3: Cross-Verification of signal perturbation effi-
cacy using N-CORE on VIVAE. The best results are
highlighted in bold.

5.5 Optimal number of perturbations569

To identify the optimal number of perturbations570

(N ) for N-CORE, we evaluated the model’s classi-571

fication accuracy on VIVAE while varying N from572

1 to 7, with results presented in 3. We find that573

N = 5 leads to the best result for this dataset;574

however, this may vary with dataset size and the575

distribution of multi-labeled samples.576

Figure 3: Accuracy vs. number of perturbed views with
N-CORE for emotion classification on VIVAE. The y-
axis is limited from 61.0 to 64.5 for clarity.

5.6 Ablation Study577

We conduct a systematic ablation study on N-578

CORE to evaluate the individual contribution of579

its components, and the results are presented in 580

Table 4. Our findings show a clear progression in 581

performance across all metrics as we sequentially 582

add GRL, regularization loss, and especially N 583

perturbed views to the base HuBERT model. 584

Component Performance
HB GRL RL NV Acc. F1 UAR

✓ 58.06 56.51 56.81
✓ ✓ 59.91 59.16 59.20
✓ ✓ ✓ 61.75 61.03 60.98

✓ ✓ ✓ ✓ 64.06 63.01 63.52

Table 4: Ablation studies were conducted on the N-
CORE for emotion recognition in VIVAE. The abbrevi-
ations HB, GRL, RL, and NV refer to HuBERT, Gradi-
ent Reversal Layers, Regularization Loss, and N-Views,
respectively. The final row corresponds to the entire
framework. The best results are highlighted in bold.

6 Conclusion 585

In this paper, we investigated DRL specifically on 586

NVVs. We proposed N-CORE, a novel disentan- 587

glement method using N -views of perturbed audio 588

signals to disentangle relevant features from un- 589

informative ones. Our experiments demonstrate 590

that multi-view perturbation enhances performance 591

compared to traditional single-view approaches, 592

with N-CORE achieving competitive performance 593

on both emotion and speaker classification tasks 594

for VIVAE and ReCANVo-Balanced datasets. We 595

further propose a signal transformation pipeline 596

that perturbs emotions in speech signals while pre- 597

serving speaker information. Further, we validate 598

previous perturbation techniques, finding that these 599

transformations are generalizable to NVVs. 600

Our work further establishes that DRL is indeed 601

achievable for NVVs and applies to both typical 602

and atypical paralinguistic speech. This opens sev- 603

eral promising directions for future research and 604

applications, including privacy-preserving encod- 605

ing of NVVs, disentangled voice conversion for 606

NVVs, and the clinical analysis of vocalizations 607

from non- and minimally-speaking individuals. N- 608

CORE further empowers longitudinal studies of 609

communicative development through NVVs that 610

remain invariant to changes in speaker character- 611

istics over time. The modular design of N-CORE 612

allows it to scale with advances in DL, potentially 613

benefiting from larger foundation models as they 614

become available. Our work is an important step 615

toward more inclusive and accurate computational 616

models of human paralinguistic communication. 617
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Ethical Considerations618

Potential Risks. We acknowledge the privacy619

implications of technologies that can separate620

speaker characteristics from communicative con-621

tent. While N-CORE demonstrates benefits for622

privacy-preserving representations by removing623

identifying speaker information from emotion-624

focused embeddings, this same capability could625

potentially be misused for unauthorized voice626

anonymization or modification. We emphasize that627

any deployment of these technologies should ad-628

here to strict privacy protocols and informed con-629

sent requirements, particularly when processing630

data from vulnerable populations such as non- and631

minimally-speaking individuals.632

Biases. Our experimental results highlight how633

dataset imbalances can significantly affect model634

performance. Demographic limitations of training635

data may introduce biases that could impact the636

equitable performance of these systems across dif-637

ferent populations. We urge caution in applying638

these models to populations not well-represented639

in the training data.640

Reproducibility Statement. We include imple-641

mentation details and hyperparameter settings for642

all models in Appendix A.1. The source code for643

N-CORE has been submitted for review with this644

paper and will be released publicly upon accep-645

tance.646

Limitations647

Our study primarily focuses on disentangling emo-648

tion and speaker features. NVVs, however, convey649

a rich spectrum of paralinguistic information, in-650

cluding varying levels of intensity, different com-651

municative intents beyond broad affective cate-652

gories, and other subtle cues, which N-CORE does653

not explicitly disentangle. The generalizability of654

our findings is also constrained by the two datasets655

and one derived dataset; while diverse, they do656

not encompass the full variability of NVVs across657

different cultures, broader age ranges, numerous658

real-world acoustic environments, or a wider array659

of clinical populations. The general challenge of660

limited annotated NVV data also impacts the scale661

at which models can be trained and validated.662

N-CORE’s performance, particularly for emo-663

tion classification, was comparatively lower on the664

highly imbalanced ReCANVo dataset for F1 and665

UAR, and it was outperformed by other methods666

for speaker classification on the same dataset. This667

suggests that in scenarios with extreme data imbal- 668

ance or where speaker and affective cues are deeply 669

convoluted, our model’s strong disentanglement ca- 670

pabilities might not directly translate to optimal 671

performance for classification. 672
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A Appendix991

A.1 Implementation Details992

We conducted all our experiments on Python 3.9.21993

and PyTorch 2.6.0 on an NVIDIA V100 GPU with994

32 GB of dedicated memory. We set the batch995

size to 16 and trained each model for 100 epochs996

with an early stopping patience of 20 while moni- 997

toring validation accuracy to save the best model 998

for each run. We used the default settings set by 999

each tested method’s authors. When unspecified, 1000

we used a learning rate of 10−5 with the AdamW 1001

optimizer, including for N-CORE. We use N = 5 1002

for all experiments on N-CORE. We used a lin- 1003

ear scheduler with 0.1 × the number of training 1004

steps as warmup steps. We report the maximum 1005

performance achieved for each model. 1006

We implemented HuBERT1, Wav2Vec22, and 1007

Voc2Vec23, HuBERT-ER4, HuBERT-SID5, and 1008

ContentVec6 through the HuggingFace library. We 1009

implemented GRL from GitHub7. We imple- 1010

mented SACE8 and from the code released by the 1011

respective. 1012

A.2 Dataset Distribution 1013

Detailed dataset statistics for VIVAE, ReCANVo, 1014

and ReCANVo-Balanced are presented in Tables 5, 1015

6, and 7. 1016

A.3 Disentanglement Training 1017

N-CORE’s DRL dynamics for emotion classifica- 1018

tion on VIVAE is illustrated through the loss and 1019

accuracy curves presented in Figure 4 and Figure 5, 1020

respectively. Figure 4 shows the emotion classifi- 1021

cation loss decreasing and stabilizing over epochs, 1022

while the adversarial speaker classification loss in- 1023

creases, as intended with the use of a GRL. Concur- 1024

rently, Figure 5 shows that the emotion classifica- 1025

tion accuracy consistently improves until stabiliza- 1026

tion, whereas the speaker classification accuracy 1027

rapidly drops to random chance. These trends in- 1028

fer the model’s success in learning representations 1029

that are discriminative for emotion while simultane- 1030

ously becoming invariant to speaker characteristics 1031

over the training period. 1032

A.4 TSNE Plots 1033

We use TSNE plots to compare HuBERT and N- 1034

CORE on the testing sets of VIVAE in Figures 6 1035

and 7, and ReCANVo in Figures 8 and 9. Represen- 1036

tations from N-CORE were generated solely using 1037

the HuBERT backbone. 1038

1https://huggingface.co/facebook/hubert-base-ls960
2https://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/alkiskoudounas/voc2vec
4https://huggingface.co/superb/hubert-base-superb-er
5https://huggingface.co/superb/hubert-base-superb-sid
6https://huggingface.co/lengyue233/content-vec-best
7https://github.com/tadeephuy/GradientReversal
8https://github.com/iiscleap/ZEST/
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Label S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 Total

achievement 16 11 12 18 20 12 17 16 18 14 7 161
anger 12 18 15 18 18 20 14 19 17 16 7 174
fear 16 17 14 18 19 19 17 18 17 13 8 176
pain 17 20 21 17 19 20 18 14 19 12 8 185
pleasure 19 19 20 17 15 19 20 20 18 18 17 202
surprise 13 16 19 20 20 21 17 21 19 14 7 187

Total 93 101 101 108 111 111 103 108 108 87 54 1085

Table 5: Data distribution of the VIVAE dataset.

Label P01 P02 P03 P05 P06 P08 P11 P16 Total

delighted 357 43 25 235 227 39 207 139 1272
dysregulated 212 0 302 116 5 13 22 34 704
frustrated 150 56 47 283 30 781 27 162 1536
request 130 13 61 6 124 44 22 19 419
self-talk 564 34 55 286 56 503 33 354 1885
social 182 247 0 0 1 93 52 59 634
laughter 0 38 8 13 0 42 0 0 101

Total 1595 431 498 939 443 1515 363 767 6551

Table 6: Data distribution of the ReCANVo dataset.

Figure 4: Loss vs. Number of Epochs for emotion
classification on VIVAE.

Figure 5: Accuracy vs. Number of Epochs for emotion
classification on VIVAE.
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Label P01 P02 P03 P05 P06 P08 P11 P16 Total

delighted 13 13 13 13 12 12 12 12 100

dysregulated 17 0 17 16 5 13 16 16 100

frustrated 12 12 13 13 12 13 13 12 100

request 14 13 13 6 14 13 13 14 100

self-talk 13 12 13 12 12 13 13 12 100

social 20 20 0 0 1 20 20 19 100

laughter 0 38 8 13 0 41 0 0 100

Total 89 108 77 73 56 125 87 85 700

Table 7: Data distribution of the ReCANVo-Balanced dataset.

(a) N-CORE: Emotion labels highlighted. (b) HuBERT: Emotion labels highlighted.

(c) N-CORE: Speaker labels highlighted. (d) HuBERT: Speaker labels highlighted.

Figure 6: TSNE plots for emotion classification on VIVAE.
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(a) N-CORE: Speaker labels highlighted. (b) HuBERT: Speaker labels highlighted.

(c) N-CORE: Emotion labels highlighted. (d) HuBERT: Emotion labels highlighted.

Figure 7: TSNE plots for speaker classification on VIVAE.
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(a) N-CORE: Emotion labels highlighted. (b) HuBERT: Emotion labels highlighted.

(c) N-CORE: Speaker labels highlighted. (d) HuBERT: Speaker labels highlighted.

Figure 8: TSNE plots for emotion classification on ReCANVo.
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(a) N-CORE: Speaker labels highlighted. (b) HuBERT: Speaker labels highlighted.

(c) N-CORE: Emotion labels highlighted. (d) HuBERT: Emotion labels highlighted.

Figure 9: TSNE plots for speaker classification on ReCANVo.
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