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ABSTRACT

Multimodal large language models (MLLMs) have shown impressive capabili-
ties in document understanding, a rapidly growing research area with significant
industrial demand in recent years. As a multimodal task, document understand-
ing requires models to possess both perceptual and cognitive abilities. However,
current MLLMs often face conflicts between perception and cognition. Taking
a document VQA task (cognition) as an example, an MLLM might generate an-
swers that do not match the corresponding visual content identified by its OCR
(perception). This conflict suggests that the MLLM might struggle to establish an
intrinsic connection between the information it “sees” and what it “understands.”
Such conflicts challenge the intuitive notion that cognition is consistent with per-
ception, hindering the performance and explainability of MLLMs. In this paper,
we define the conflicts between cognition and perception as Cognition and Per-
ception (C&P) knowledge conflicts, a form of multimodal knowledge conflicts,
and systematically assess them with a focus on document understanding. Our
analysis reveals that even GPT-4o, a leading MLLM, achieves only 68.6% C&P
consistency. To mitigate the C&P knowledge conflicts, we propose a novel method
called Multimodal Knowledge Consistency Fine-tuning. This method first ensures
task-specific consistency and then connects the cognitive and perceptual knowl-
edge. Our method significantly reduces C&P knowledge conflicts across all tested
MLLMs and enhances their performance in both cognitive and perceptual tasks in
most scenarios.

GPT-4o Qwen-VL-Max

C&P Knowledge Conflicts
C&P consistency

Perception (P)

Cognition (C)

What is the text within the 
box ?

Doral

What is the “BRM Permit 
Holder’s Name”?

Doraf

Doral? Doraf?
My eye and my 
mind have some 
disagreements :(

(a) A Case of C&P Knowledge Conflicts Produced by GPT-4o (b) Statistical Analysis

69.60%
79.98%

30.40%
20.02%

Figure 1: a: GPT-4o generates a VQA (cognition) answer that conflicts with the corresponding
visual content identified by its OCR (perception). We refer to these multimodal knowledge conflicts
in MLLMs as Cognition and Perception (C&P) knowledge conflicts. b: Statistical analysis of C&P
knowledge conflicts in leading MLLMs (Section 3).

1 INTRODUCTION

In recent years, multimodal large language models (MLLMs) (gpt, 2023; Team et al., 2023; gpt,
2024; Chen et al., 2024; Bai et al., 2023; Ye et al., 2024; Li et al., 2024a) have witnessed rapid
development and have demonstrated remarkable capabilities across a wide range of multimodal
tasks (Antol et al., 2015; Mathew et al., 2021; Hossain et al., 2019). Particularly in the field of
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document understanding (Cui et al., 2021; Xu et al., 2020; 2021; Huang et al., 2022; Gu et al., 2022;
Luo et al., 2023), which has high academic and industrial value, significant research efforts with
MLLMs have been made (Zhang et al., 2023a; Ye et al., 2023a;b; Luo et al., 2024; Wang et al.,
2023; Hu et al., 2024), yielding promising results.

As a multimodal task, document understanding requires models to accurately perceive visual content
(perception) and then generate coherent responses (cognition) based on that perception. However,
current MLLMs often face conflicts between perception and cognition. For example in Figure 1
(a), GPT-4o (gpt, 2024) recognizes the text in a certain region of an image as “Doral” through its
OCR capability (perception) but responds to a related information extraction question with the text
“Doraf” (cognition). This conflict suggests that the GPT-4o might struggle to establish an intrinsic
connection between what it “sees” and what it “understands.” Statistical analysis further underscores
this issue, as Figure 1 (b) shows, with leading MLLMs like GPT-4o and Qwen-VL-Max (Bai et al.,
2023) achieving 69.60% and 79.98% consistency between perception and cognition (Section 3).

In this paper, we define intrinsic conflicts between cognitive knowledge and perceptual knowledge
within MLLMs, which result in inconsistencies in responses related to cognition and perception,
as Cognition and Perception (C&P) knowledge conflicts (Section 2.1). C&P knowledge conflicts
serve as a critical factor undermining the explainability of MLLM responses, as these conflicts
challenge the intuitive notion that cognition is consistent with perception. Unlike previous research
on multimodal knowledge conflicts (e.g., hallucination) (Zhai et al., 2024; Li et al., 2023; Guan et al.,
2024; Liu et al., 2023a), which focuses solely on conflicts within either cognition or perception, we
highlight, for the first time, the conflicts that arise between the two.

We systematically assess C&P knowledge conflicts in the current five MLLMs (Section 3), focusing
on document understanding. Here, the cognitive task is document-related VQA, while the perceptual
task is OCR. The experimental results show significant C&P knowledge conflicts in current MLLMs,
underscoring the need to mitigate these conflicts. To address this, a novel method called Multimodal
Knowledge Consistency Fine-tuning is introduced, which includes three fine-tuning tasks (Section
4). Specifically, motivated by the Generator-Validator (GV) framework (Li et al., 2024b), we con-
duct two task-specific fine-tuning tasks: the Cognition Consistency task and the Perception Consis-
tency task. The purpose of these two tasks is based on our belief that ensuring C&P consistency starts
with maintaining task-specific consistency. Furthermore, to establish an inner connection between
cognitive and perceptual knowledge, the third fine-tuning task is designed: the C&P Connector task.

Comprehensive experiments are conducted on three open-source MLLMs across two series and two
parameter sizes. The results indicate that multimodal knowledge consistency fine-tuning signifi-
cantly improves C&P consistency, with all three MLLMs achieving at least a 34% improvement
(Section 5.2). Moreover, in most scenarios, our method also enhances MLLM performance in both
cognitive and perceptual tasks (Section 5.4).

Our main contributions are as follows:

• To the best of our knowledge, we are the first to identify and introduce the concept of
Cognition and Perception knowledge conflicts, a form of multimodal knowledge conflicts,
in MLLMs.

• A systematic evaluation is conducted on current MLLMs to assess the Cognition and Per-
ception knowledge conflicts in document understanding, showing that such conflicts are
commonly present in current MLLMs.

• A novel method called Multimodal Knowledge Consistency Fine-tuning is introduced to
mitigate the C&P knowledge conflicts in current MLLMs. Extensive experiments on six
public document understanding benchmarks in three MLLMs demonstrate the effectiveness
of the proposed method.

2 PROBLEM STATEMENT

2.1 THE DEFINITION OF COGNITION AND PERCEPTION KNOWLEDGE CONFLICTS

For a given MLLM f(·), an image xI , and a pair of queries consisting of a cognitive task query xC

and a perceptual query xP , we denote the ground truth for this pair as y. The MLLM’s responses for
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Table 1: Data statistics for C&P knowledge conflicts evaluation. The number of evaluation samples,
i.e., cognitive (VQA) query and perceptual (OCR) query (xC , xP ) pairs, along with the correspond-
ing images for each dataset.

DocVQA DeepForm KLC FUNSD ChartQA WTQ

# Evaluation Samples 4440 687 1212 422 1532 2391
# Images 1244 266 563 46 1198 379

cognitive and perceptual tasks are represented as yC = f(xC , xI) and yP = f(xP , xI), respectively.
Let K represent the complete knowledge embedded in the MLLM f(·). The subset of K used by f(·)
to generate the cognitive response yC is referred to as cognitive knowledge and is denoted by KC ,
while the subset used for the perceptual response is termed perceptual knowledge and is denoted by
KP .

Conflicts arise between KC and KP , referred to as Cognition and Perception (C&P) knowledge
conflicts, resulting in yC and yP being inconsistent (i.e., δ(yC , yP ) = 0). It is important to note that
C&P knowledge conflicts do not consider whether yC = y or yP = y. To quantify the severity of
these conflicts, we introduce C&P consistency. Let N denote the number of (yC , yP ) pairs, with the
C&P consistency calculated as follows:

C&P Consistency =

∑N
i=1 δ(yCi

, yPi
)

N
. (1)

In this paper, we focus on document understanding, where given a text GT within xI bounded by
Box, xC is a VQA query using GT as the answer, and xP is an OCR query operating solely within
Box. In practice, Box may contain additional text besides GT . Consequently, C&P knowledge
conflicts occur when yP does not fully contain yC . The δ(yC , yP ) can be specifically defined as
follows:

δ(yC , yP ) =

{
1, if yC ⊆ yP
0, if yC ⊈ yP

(2)

2.2 TASKS

As shown in Table 1, we consider six document understanding datasets to assess C&P knowledge
conflicts, categorized into the following four tasks:

Document QA. DocVQA (Mathew et al., 2021) contains 50k question-answer pairs based on 12k
document images from the UCSF Industry Documents Library.

Document IE. DeepForm (Svetlichnaya, 2020), Kleister Charity (KLC) (Stanisławek et al., 2021),
and FUNSD (Jaume et al., 2019) are three Information Extraction datasets. DeepForm consists of
1.1k documents related to election spending, while KLC includes 2.7k documents from published
charity organization reports. FUNSD contains 0.2k document images from the RVL-CDIP dataset
(Harley et al., 2015). The annotations for DeepForm, KLC, and FUNSD are transformed into a
question-answer format, with DeepForm and KLC following Hu et al. (2024), and FUNSD following
Luo et al. (2024).

Chart QA. ChartQA (Masry et al., 2022) compiles a diverse range of topics and chart types from
four primary sources: Statista (statista.com), The Pew Research Center (pewresearch.org), Our
World in Data (ourworldindata.org), and the OECD (oecd.org). In total, the dataset includes 21k
chart images and 32k question-answer pairs.

Table QA. WikiTableQuestions (WTQ) (Pasupat & Liang, 2015) dataset consists of 2.1k table im-
ages from Wikipedia, annotated with 23k question-answer pairs.

Notably, OCR annotations are required in Section 2.3. For the DocVQA dataset, the official OCR
annotations are used, while the other datasets use OCR annotations produced by Duguang OCR1.

1https://duguang.aliyun.com/
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2.3 THE CONSTRUCTION OF EVALUATION SAMPLES

To calculate C&P consistency, we construct several pairs of cognitive (VQA) query and perceptual
(OCR) query, i.e., (xC , xP ), with each pair using the same ground truth GT from the image xI . The
process, as shown in Figure 2, is as follows:

What is the extension number?𝑸

5177𝑨

<box>700,285,752,299</box>𝑩𝒐𝒙
Identified by searching OCR annotations for 𝑨

Evaluation Sample For C&P Knowledge Conflicts

Image and Annotations

What is the extension number ?
𝒙𝑪 = 𝑸

5177
𝑮𝑻 = 	𝑨

𝒙𝑷 = 𝑻𝒆𝒎𝒑𝑷 𝑩𝒐𝒙
What is the text within <box>700,285,752,299</box>?

Figure 2: A specific example illustrates the
process of evaluation sample construction.
All mathematical symbols in the figure are
consistent with those in Section 2.3. Corre-
sponding relationships are represented using
the same colors for clarity.

Since each image is accompanied by original
question-answering annotations (Section 2.2),
given an image xI with its QA annotation (Q,A),
we assign GT = A and xC = Q. xP is con-
structed in QA format with the template TempP =
“What is the text within {Box}?”,
where Box is the bounding box containing GT
in xI , i.e., xP = TempP (Box). Since the Box
annotations are not provided, the Box is identified
by searching the OCR annotations of xI for A.

However, not all (Q,A) pairs can be used to con-
struct (xC , xP ) pairs due to some A not appearing
in the OCR annotations, which can be categorized
into two scenarios: (1) According to the definition
in Section 2.1, the questions must pertain to the text
in the image. However, certain questions, such as
those related to comparisons or yes/no answers, do
not directly reference the text. To address this, we
apply keyword-based filtering to exclude such QA
pairs. (2) Since the OCR annotations are generated
by third-party OCR engines, some answers may not
be present in the OCR annotations due to issues like
OCR errors. These QA pairs are also filtered out.

The evaluation samples are constructed on the test
sets of all datasets in Section 2.2, as shown in Table
1, which lists the number of (xC , xP ) pairs along with their corresponding images. Additionally,
there are minor differences in xP between closed-source and open-source MLLMs. Since detailed
information about the bounding box input format for closed-source models is not publicly available,
we draw a prominent red bounding box in xI at the location of Box, inspired by Set-of-Mark
prompting (Yang et al., 2023). For open-source models, we follow the bounding box input format
outlined in their papers (Bai et al., 2023; Chen et al., 2024) to construct xP .

3 THE COGNITION AND PERCEPTION KNOWLEDGE CONFLICTS IN CURRENT
MLLMS

Two closed-source and three open-source MLLMs are evaluated. The closed-source models, GPT-
4o2 (gpt, 2024) and Qwen-VL-Max3 (Bai et al., 2023), are both well-regarded in the community.
These models are evaluated using their publicly available APIs, with all tests conducted in Septem-
ber 2024. The open-source models include Qwen-VL-Chat-7b4 (Bai et al., 2023), InternVL2-2b5

(Chen et al., 2024), and InternVL2-8b6 (Chen et al., 2024), which differ in size and architecture.
We use weights available on Huggingface (Wolf et al., 2020), and the evaluation is performed on an
Nvidia A100 GPU.

Table 2 shows the evaluation results. Overall, closed-source models have higher C&P consistency
compared to open-source models. Qwen-VL-Max achieves the highest C&P consistency at 79.98%,
followed by GPT-4o at 68.60%. Among the open-source models, Qwen-VL-Chat demonstrates the

2https://platform.openai.com
3https://www.alibabacloud.com
4https://huggingface.co/Qwen/Qwen-VL-Chat
5https://huggingface.co/OpenGVLab/InternVL2-2B
6https://huggingface.co/OpenGVLab/InternVL2-8B
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Table 2: C&P Knowledge Conflicts in Current MLLMs. All values represent C&P consistency as
a percentage (%). Bold indicates the best results among closed-source MLLMs, while underlined
indicates the best results among open-source MLLMs. The average results are the micro-averages
of all datasets.

DocVQA DeepForm KLC FUNSD ChartQA WTQ Average

GPT-4o 77.91 23.07 81.68 77.73 68.47 57.07 68.60
Qwen-VL-Max 87.20 43.39 88.06 81.91 82.69 70.54 79.98
Qwen-VL-Chat 20.82 5.240 37.87 7.264 21.64 8.672 19.41
InternVL2-2b 13.92 1.456 18.48 7.506 9.107 10.30 12.09
InternVL2-8b 20.47 3.202 30.53 11.14 9.558 9.214 16.87

What is the name of the person in the 
CC field?

𝑸

<box>115,295,214,310</box>𝑩𝒐𝒙′
Identified by searching OCR annotations for 𝑨′

Jo Spach𝑨′
Betty Royal𝑨

<box>(166,567x),(305,583)</box>𝑩𝒐𝒙
Identified by searching OCR annotations for 𝑨

Annotations

Cognition Consistency
𝒙𝑪: 𝒙𝑷:

Perception Consistency

𝒚𝑪𝑽: b

What is the name of the person in the CC field? 
a: Jo Spach
b: Betty Royal 

𝒙𝑪𝑽 = 𝑻𝒆𝒎𝒑𝑪𝑽(𝑸, 𝑨, 𝑨′):

What is the text within <box>166,567,305,583</box>?

𝒚𝑪𝑽: b

Which box contains the text "Betty Royal"? 
     a: <box>166,567,305,583</box> 
     b: <box>115,295,214,310</box> 

𝒙𝑷𝑽 = 𝑻𝒆𝒎𝒑𝑷𝑽(𝑨, 𝑩𝒐𝒙, 𝑩𝒐𝒙′)

𝒚𝑷: Betty Royal𝒚𝑪: Betty Royal
What is the name of the person in the CC field?

C&P Connector
𝒙𝑪𝒐𝒏𝒏 = 𝑻𝒆𝒎𝒑𝑸𝒄𝒐𝒏𝒏(𝑸, 𝑩𝒐𝒙, 𝑩𝒐𝒙′):

𝒚𝑪𝒐𝒏𝒏 = 𝑻𝒆𝒎𝒑𝑹𝒄𝒐𝒏𝒏(𝑨, 𝑩𝒐𝒙):

Which box contains the answer to 
"What is the name of the person in the CC field?" 
     a: <box>166,567,305,583</box> 
     b: <box>115,295,214,310</box> 

The answer to the question is “Betty Royal”. 
It is found in <box>166,567,305,583</box>. 
Hence, the result is "a".

(a) Source Data

(b) Multimodal Knowledge Consistency Fine-tuning Tasks

Random Negative Samples

Figure 3: An example illustrates the source data (a) and its corresponding Multimodal Knowledge
Consistency Fine-tuning sample (b). Multimodal knowledge consistency fine-tuning consists of
Cognition Consistency task and Perception Consistency task for task-specific consistency, while the
C&P connector task connects cognitive and perceptual knowledge. All mathematical symbols in
the figure are consistent with those in Section 4. Corresponding relationships are represented using
the same colors for clarity.

best C&P consistency, though it remains below 20%. Additionally, we observe that the size of
MLLM parameters affects C&P consistency, as InternVL2-8b performs better than InternVL2-2b.
Furthermore, C&P consistency varies across datasets. For instance, all MLLMs perform best on
DocVQA but perform worst on DeepForm. This may be related to the layout of document images
in DeepForm, which typically contain a large amount of small text.

4 MULTIMODAL KNOWLEDGE CONSISTENCY FINE-TUNING

Table 2 demonstrates that even leading MLLMs face C&P knowledge conflicts, which negatively
affect explainability. To resolve these conflicts, we introduce a novel method called Multimodal
Knowledge Consistency Fine-tuning, as shown in Figure 3.

We suggest that ensuring C&P consistency starts with maintaining task-specific consistency, mean-
ing consistency within cognitive and perceptual tasks. Li et al. (2024b) introduces the Generator-
Validator (GV) fine-tuning framework, which ensures task consistency by generating mutually val-
idating queries. Building on this framework, we construct validation queries xCV and xPV for the
cognitive query xC and the perceptual query xP , respectively, referring to ((xC , yC), (xCV , yCV ))
as the Cognition Consistency task and ((xP , yP ), (xPV , yPV )) as the Perception Consistency task.

The xC and xP are constructed following Section 2.3. Let an image xI , its QA annotation (Q,A),
and the bounding box Box of A on xI be given. The validation queries xCV and xPV are framed as
two-option questions, using templates TempCV and TempPV , respectively. Specifically, xCV =
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TempCV (Q,A,A′), where A′ is a negative sample, randomly selected from the text in xI excluding
A. Similarly, xPV = TempPV (A,Box,Box′), where Box′ is a bounding box randomly sampled
from xI , excluding Box. It is important to note that the construction of (xP , xPV ) is independent of
A, which means they can be generated using all the text and their bounding boxes across the entire
image. Additionally, the order of the options is randomly shuffled to ensure balanced data.

Additionally, to establish a connection between cognitive and perceptual tasks, we designed the
C&P Connector. Let xConn and yConn represent the query and response of the C&P Connector, re-
spectively. Formally, xConn = TempQConn(Q,Box,Box′) and yConn = TempRConn(A,Box),
where TempQConn is the query template (a two-option question), and TempRConn is the response
template. The goal is to utilize the query and response from the C&P Connector to link Q, A, and
Box, thus creating a bridge between the cognitive and perceptual tasks, and reducing knowledge
conflicts.

For the specific training strategy, we implement a three-stage approach. Given N pairs of (Q,A),
the details are as follows:

• Stage 1: Perception Consistency, denoted as Xs1 = {((xPi
, yPi

), (xPVi
, yPVi

)) | i =
0, 1, . . . ,M}. To enhance data efficiency, we use all text and their corresponding bounding
boxes from the entire image, resulting in M ≫ N .

• Stage 2: Cognition Consistency, denoted as Xs2 = {((xCi
, yCi

), (xCVi
, yCVi

)) | i =
0, 1, . . . , N}.

• Stage 3: Establishing Connections, denoted as Xs3 = {(xConni
, yConni

) | i =
0, 1, . . . ,W} ∪ X sub

s1 ∪ X sub
s2 . As explained in Section 2.3, some (Q,A) pairs cannot be

used to construct the C&P Connector, resulting in W < N . Additionally, we incorporate a
small amount of data from previous stages to maintain model performance.

5 EXPERIMENT

5.1 IMPLEMENTATION

We construct the training data using the training sets from the six datasets mentioned in Section 2.2.
To simplify DeepForm and KLC, their Cognition Consistency training data are constructed solely
from the QA pairs that pass the filtering process in Section 2.3. Following Section 4, the training
data for Stage 1, Stage 2, and Stage 3 contain 2189k, 176k, and 146k training samples, respectively.

For the multimodal knowledge consistency fine-tuning experiment, we focus on three open-source
MLLMs (Section 3): Qwen-VL-Chat-7b, InternVL2-2b, and InternVL2-8b. All models are trained
with a learning rate of 1e-5 and a batch size of 128, while other hyperparameters remain at their
default settings. We freeze the visual encoder and optimize only the language model. Each model
trains for 1 epoch using 8 Nvidia A100 GPUs.

5.2 MAIN RESULTS

The evaluation is performed on the dataset constructed in Section 2.3. In addition to C&P Con-
sistency, we also report Cognitive Task Consistency and Perceptual Task Consistency. Following
Li et al. (2024b), cognitive task consistency quantifies the percentage of cases where yCV (cal-
culated as yCV = f(xCV ) = f(TempCV (Q, yC , A

′))) selects the option for yC in xCV . Sim-
ilarly, perceptual task consistency quantifies the percentage of cases where yPV (calculated as
yPV = f(xPV ) = f(TempPV (Q, yP , Box′))) selects the option for yP in xPV .

The experimental results, as illustrated in Table 3 and Table 4, demonstrate that our multimodal
knowledge consistency fine-tuning method substantially improves C&P consistency across all six
datasets. Specifically, Qwen-VL-Chat exhibits a 34.83% increase in C&P consistency, while
InternVL2-2b and InternVL2-8b show improvements of 37.85% and 43.19%, respectively. These
results indicate that our method effectively reduces C&P knowledge conflicts. The comparison
between Qwen-VL-Chat and the InternVL2 models highlights the general applicability of our ap-
proach across different MLLM architectures. The results reveal that models with a larger number of
parameters, such as InternVL2-8b, achieve better C&P consistency after fine-tuning.
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Table 3: Performance comparison between the original MLLM and the MLLM after multimodal
knowledge consistency fine-tuning (Ours). Only micro-average results are presented, with detailed
results for each dataset in Table 4. “C” stands for Cognitive Task Consistency, “P” stands for Per-
ceptual Task Consistency, and “C&P” stands for C&P Consistency. All values are reported as per-
centages (%), with bolded numbers indicating superior performance.

Average
C P C&P

Qwen-VL-Chat 56.23 52.35 19.41
Qwen-VL-Chat (Ours) 98.59 97.51 54.24
InternVL2-2b 54.07 54.30 12.09
InternVL2-2b (Ours) 99.19 95.95 49.94
InternVL2-8b 67.43 75.40 16.87
InternVL2-8b (Ours) 99.76 96.75 60.03

Table 4: Performance comparison between the original MLLM and the MLLM after multimodal
knowledge consistency fine-tuning (ours) across all datasets. Average results are presented in Table
3. All values are reported as percentages (%), with bolded numbers indicating superior performance.

DocVQA DeepForm KLC
C P C&P C P C&P C P C&P

Qwen-VL-Chat 56.53 51.66 20.82 52.11 57.79 5.240 50.99 49.01 37.87
Qwen-VL-Chat (Ours) 98.90 97.36 56.05 99.27 95.20 37.12 99.51 98.76 70.55
InternVL2-2b 53.69 47.65 13.92 45.71 45.71 1.456 59.98 62.13 18.48
InternVL2-2b (Ours) 99.52 95.07 41.07 100.0 96.22 44.54 99.92 97.11 76.40
InternVL2-8b 47.50 79.48 20.47 52.84 79.04 3.202 85.48 81.35 30.53
InternVL2-8b (Ours) 99.90 95.39 52.21 100.0 96.94 44.69 100.0 98.52 81.68

FUNSD ChartQA WTQ
C P C&P C P C&P C P C&P

Qwen-VL-Chat 55.46 53.27 7.264 58.37 51.67 21.64 56.83 54.68 8.672
Qwen-VL-Chat (Ours) 95.93 97.58 45.04 98.88 98.92 72.68 97.97 96.88 32.59
InternVL2-2b 46.47 59.32 7.506 48.84 46.89 9.107 58.00 66.46 10.30
InternVL2-2b (Ours) 98.93 95.40 26.63 99.04 98.38 78.81 98.57 95.60 39.97
InternVL2-8b 91.44 81.60 11.14 50.28 47.25 9.558 95.76 77.03 9.214
InternVL2-8b (Ours) 99.79 94.43 37.29 99.56 99.46 83.86 99.59 97.56 59.35

5.3 ABLATION STUDY

To further evaluate the effectiveness of multimodal knowledge consistency fine-tuning, we con-
ducted a series of ablation experiments using Qwen-VL-Chat, as shown in Table 5. Each experi-
ment, with different fine-tuning tasks, is trained according to the settings outlined in Section 5.1.
The results validate our hypothesis that both task-specific consistency and the integration of cogni-
tive and perceptual knowledge are crucial for enhancing C&P consistency. For instance, in terms of
average results, the perception consistency task improves by 14.79%, the cognition consistency task
improves by 0.44%, and the C&P connector improves by 1.06%. It is observed that the perception
consistency task demonstrates the largest gain, likely due to the limited perception capabilities of
open-source MLLMs, as discussed in Section 5.4.

5.4 THE PERFORMANCE OF CONGITIVE AND PERCEPTUAL TASKS

Improving C&P consistency does not necessarily correlate with enhanced performance in cognitive
and perceptual tasks, as an MLLM can exhibit consistency even if both cognitive and perceptual out-
puts are incorrect. Therefore, Table 6 presents the MLLM’s performance on cognitive and perceptual
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Table 5: Ablation study based on Qwen-VL-Chat. C&P consistency is reported as percentages (%).
The best results are in bold. “Cog.”, “Per.”, and “Conn.” stand for Cognition Consistency task,
Perception Consistency task, and C&P Connector task, respectively, as detailed in Section 4.

Doc Deep KLC FUNSD Chart WTQ Average# Per. Cog. Conn. VQA Form QA

1 ✓ ✓ 36.39 16.59 62.05 26.15 63.57 25.54 39.45
2 ✓ ✓ 54.55 39.74 72.36 45.04 71.96 31.84 53.80
3 ✓ ✓ 54.52 35.37 68.98 43.58 72.32 33.13 53.18

4 ✓ ✓ ✓ 56.05 37.12 70.55 45.04 72.68 32.59 54.24

Table 6: The performance of cognitive and perceptual tasks. “C.T.” and “P.T.” stand for cognitive
task (VQA) and perceptual task (OCR), respectively. The metrics are detailed in Section 5.4, and all
values are reported as percentages (%), with bolded numbers indicating superior performance.

Doc Deep KLC FUNSD Chart WTQVQA Form QA
C.T. P.T. C.T. P.T. C.T. P.T. C.T. P.T. C.T. P.T. C.T. P.T.

Qwen-VL-Chat 62.5 22.7 4.22 9.07 47.1 48.6 47.5 11.0 63.5 27.2 22.4 11.5
Qwen-VL-Chat (Ours) 63.5 74.2 34.4 66.7 63.0 89.2 50.3 62.0 63.7 96.6 23.7 76.5
InternVL2-2b 87.0 13.9 35.1 3.30 68.8 25.1 74.0 9.81 76.3 10.4 35.1 11.4
InternVL2-2b (Ours) 84.6 46.4 88.8 56.7 83.9 88.4 73.8 27.8 75.3 92.6 36.7 70.7
InternVL2-8b 91.7 20.6 38.4 5.14 72.9 37.7 75.8 12.1 83.2 9.89 49.2 11.3
InternVL2-8b (Ours) 89.3 57.0 90.5 58.6 86.5 92.6 76.3 39.7 81.1 95.6 51.2 84.0

tasks. For the cognitive task, following previous works (Borchmann et al., 2021; Lee et al., 2023;
Luo et al., 2024), we evaluate DocVQA and FUNSD using ANLS (Biten et al., 2019), DeepForm
and KLC using the F1 score, and ChartQA using relaxed accuracy (Methani et al., 2020). WTQ is
evaluated based on accuracy. For the perceptual task, all datasets are evaluated using ANLS.

The results in Table 6 demonstrate that multimodal knowledge consistency fine-tuning does not
degrade the performance of the MLLM in most scenarios. Specifically, for Qwen-VL-Chat, im-
provements are observed in both cognitive and perceptual tasks across all datasets after fine-tuning.
Similarly, InternVL2-2B and InternVL2-8B show enhanced performance on most datasets, with
only minor declines in cognitive tasks on a few datasets. We attribute this improvement to our
fine-tuning approach, which integrates perceptual and cognitive knowledge within the MLLM. Ad-
ditionally, it is observed that before fine-tuning, performance on perceptual tasks is significantly
weaker than on cognitive tasks, further confirming that cognition is not consistent with perception
in current open-source MLLMs.

5.5 CASE STUDY

Figure 4 presents two examples generated by Qwen-VL-Chat. In both cases, the original C&P con-
flicts are resolved after fine-tuning, highlighting the effectiveness of multimodal knowledge consis-
tency fine-tuning. Notably, in Figure 4 (a), both cognitive and perceptual responses remain incorrect
after fine-tuning, which explains the observed performance decline in some datasets (Table 6). How-
ever, cases like Figure 4 (a) are not general, and considering the substantial improvement in C&P
consistency after fine-tuning, such “trade-offs” are considered acceptable.

6 RELATED WORK

6.1 MULTIMODAL LARGE LANGUAGE MODELS

With the advancement of large language models (LLMs; (Brown et al., 2020; Touvron et al., 2023)),
researchers are investigating the integration of vision and other modalities into LLMs (gpt, 2023;
Team et al., 2023; Liu et al., 2023b; Ye et al., 2024; Bai et al., 2023; Chen et al., 2024). These mul-
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𝒙𝑰

Qwen-VL-Chat
What is the title of the sheet?
What is the text within 
<box>379,41,599,69</box>?

𝒙𝑪:

𝒙𝑷:

𝒚𝑪:

𝒚𝒑: Y4 Premiums and Materials

YA Premiums and Materials
Conflicts

Consistent
What is the title of the sheet?
What is the text within 
<box>379,41,599,69</box>?

𝒙𝑪:

𝒙𝑷:

𝒚𝑪:

𝒚𝒑: Y4 Premiums and Materials

Y4 Premiums and Materials

Qwen-VL-Chat (Ours)

(a)

Qwen-VL-Chat
What is the value for the address__postcode?
What is the text within 
<box>691,328,776,344</box>?

𝒙𝑪:

𝒙𝑷:

𝒚𝑪:

𝒚𝒑: SW2 2QP

5W2 2QP
Conflicts

Qwen-VL-Chat (Ours)
What is the value for the address__postcode?
What is the text within 
<box>691,328,776,344</box>?

𝒙𝑪:

𝒙𝑷:

𝒚𝑪:

𝒚𝒑: SW2 2QP

SW2 2QP
Consistent

𝒙𝑰

(b)

Figure 4: Two cases illustrate the effectiveness of our method.

timodal large language models (MLLMs) possess the capability to perceive visual content, perform
visual reasoning, and engage in multimodal dialogues with humans. Following this, models such
as the LLaVA series (Liu et al., 2023b), and MiniGPT-4 (Zhu et al., 2024) have introduced visual
instruction tuning to enhance the instruction-following abilities of vision-language models. Concur-
rently, models like InternVL, Qwen-VL (Bai et al., 2023; Chen et al., 2024) have augmented MLLMs
with advanced visual capabilities, thereby improving performance on vision-language tasks. These
developments highlight significant advancements in MLLMs.

6.2 MLLMS FOR DOCUMENT UNDERSTANDING

Document understanding (Cui et al., 2021; Xu et al., 2020; 2021; Huang et al., 2022; Gu et al., 2022;
Luo et al., 2023; 2024; Wang et al., 2023) is a rapidly growing research area driven by increasing
industrial demand. Its main objective is to comprehend complex typeset images that contain rich
textual information, such as scanned document pages (Mathew et al., 2021; Svetlichnaya, 2020;
Stanisławek et al., 2021), charts (Masry et al., 2022; Kafle et al., 2018; Methani et al., 2020), ta-
bles (Pasupat & Liang, 2015; Chen et al., 2019), and other formats (Tanaka et al., 2021; Mathew
et al., 2022). As a multimodal task, document understanding involves automated processes for un-
derstanding, classifying, and extracting information, requiring models to possess both perceptual
and cognitive capabilities (Cui et al., 2021). Recent studies (Chen et al., 2024; Hong et al., 2024;
Dong et al., 2024) for general MLLMs improve the encoding resolution of document images, sig-
nificantly boosting performance in document understanding tasks. Several MLLMs are developed
to focus on addressing document understanding problems. mPLUG-DocOwl (Ye et al., 2023a; Hu
et al., 2024) and UReader (Ye et al., 2023b) unify tasks across five types of document images using
a sequence-to-sequence format, and achieve good performance in document understanding.

6.3 KNOWLEDGE CONFLICTS IN LLMS

LLMs are distinguished for encapsulating an extensive repository of world knowledge, known as
the memory. Simultaneously, LLMs continue to engage with external contextual knowledge post-
deployment (Pan et al., 2023). The discrepancies between the contexts and the model’s memory
knowledge, i.e. context-memory conflicts, are being intensively studied recently (Xie et al., 2023;
Jin et al., 2024). Another notable challenge arises with intra-memory conflict—a condition where
LLMs exhibit unpredictable behaviors to inputs that are semantically equivalent but syntactically
distinct (Chang & Bergen, 2023; Chen et al., 2023; Raj et al., 2023; Rabinovich et al., 2023; Bartsch
et al., 2023). This variance can be attributed to the conflicting knowledge embedded within the
LLM’s memory, which stem from the inconsistencies present in the complex and diverse pre-training
data sets. However, current research on knowledge conflicts focuses only on text, leaving the issue
of multimodal knowledge conflicts in MLLMs unaddressed.

6.4 HALLUCINATION ISSUES IN MLLMS

MLLMs provide powerful tools for content generation across a wide range of tasks. However, they
are susceptible to hallucinations (Bang et al., 2023; Zhang et al., 2023c; Guan et al., 2024; Li et al.,
2023), where the generated outputs contain information not present in the visual input. These hallu-
cinations typically arise when the models overly rely on the strong priors of their language modules,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

neglecting visual sensibility (Guan et al., 2024). Such conflicts between MLLMs’ language and
visual perception raise concerns about their reliability and limit their applications (Ji et al., 2023;
Kaddour et al., 2023). Current research primarily focuses on detecting and evaluating hallucinations
(Li et al., 2023; Zhang et al., 2023b;c), as well as methods to reduce them (Liu et al., 2024; Wang
et al., 2024). To mitigate hallucinations, efforts have been directed toward enhancing data collection
and training procedures. For instance, LRV-Instruction (Liu et al., 2024) creates balanced positive
and negative instructions to finetune MLLMs, while VIGC (Wang et al., 2024) employs an iterative
process to generate concise answers and combine them. These approaches equip the model with
more accurate perception capability. Nevertheless, research on how MLLMs integrate perception
and cognition knowledge, which is also vital for interpreting and debugging these models, has not
progressed at the same pace.

7 CONCLUSION

In this paper, we identify that current MLLMs often face conflicts between perception and cog-
nition, referred to as Cognition and Perception (C&P) knowledge conflicts. The severity of these
conflicts is systematically assessed across six document understanding datasets, revealing that even
leading MLLMs still struggle with these multimodal knowledge conflicts. To address this problem,
a novel method called Multimodal Knowledge Consistency Fine-tuning is introduced. Comprehen-
sive experiments demonstrate the effectiveness of our method in reducing C&P knowledge conflicts.
Additionally, in most scenarios, our method improves the performance of MLLMs in both cognitive
and perceptual tasks. One limitation of our work is its focus solely on document understanding. In
the future, we will expand our research beyond document understanding to examine C&P knowledge
conflicts in more general multimodal areas, such as scene understanding and visual reasoning.

REPRODUCIBILITY STATEMENT

We fully recognize the importance of reproducibility and make significant efforts to ensure it. All
the datasets we use are publicly available (Section 2.2), with the data construction process described
in detail in Sections 2.3 and 3. For the models, Section 3 provides links to the APIs and weights
we use. In terms of fine-tuning, Section 5.1 outlines the implementation details, and the fine-tuning
code directly follows official repositories. We hope these efforts contribute to the reproducibility of
this work.
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