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Abstract

What kinds of and how much data is necessary001
for language models to acquire grammatical002
knowledge to judge sentence acceptability? Re-003
cent language models still have much room004
for improvement in their data efficiency com-005
pared to humans. In this paper, we investigate006
whether language models efficiently use indi-007
rect data (indirect evidence), from which they008
infer sentence acceptability. In contrast, hu-009
mans use indirect evidence efficiently, which010
is considered one of the inductive biases con-011
tributing to efficient language acquisition. To012
explore this question, we inject synthetic in-013
stances with newly coined wug words into pre-014
training data and explore the model’s behavior015
on evaluation data that assess grammatical ac-016
ceptability regarding those words. We prepare017
the injected instances by varying their levels018
of indirectness and quantity. Our experiments019
surprisingly show that language models do not020
acquire grammatical knowledge even after re-021
peated exposure to instances with the same022
structure but differing only in lexical items023
from evaluation instances in certain language024
phenomena. Our findings suggest a potential025
direction for future research: developing mod-026
els that use latent indirect evidence to acquire027
grammatical knowledge.028

1 Introduction029

Current language models, which have made sig-030

nificant progress in various tasks in recent years,031

are trained on large-scale data. For instance, recent032

large language models are trained on data thou-033

sands of times larger than the amount of data that034

children are exposed to acquire the same level of035

grammatical knowledge as adults (Warstadt et al.,036

2023). This implies that there is much room for037

improvement in their learning efficiency.038

According to Pearl and Mis (2016), humans ac-039

quire language using indirect evidence, in addition040

to direct evidence, which is considered one of the041
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<wug> loves himself.
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<wug> helped his friend.

E1: Direct evidence
E2: Lexically

indirect evidence
E3: Syntactically & lexically

indirect evidence 

🤖

<wug> loves himself. 
or

* <wug> loves herself.

Direct Indirect
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<wug> is helping himself.

Figure 1: The indirectness of evidence. Direct evidence
refers to instances identical to previously observed ones.
Lexically indirect evidence targets the same linguistic
knowledge but differs in lexical items. Syntactically
& lexically indirect evidence is different in both their
syntactical and lexical items.

inductive biases contributing to efficient language 042

acquisition. As shown on the left side of Figure 1, 043

when humans are exposed to the sentence “<wug> 044

loves himself.”, they can correctly judge the gram- 045

matical acceptability between “<wug> loves him- 046

self.” and “* <wug> loves herself.” Such observed 047

sentences are referred to as direct evidence. Con- 048

versely, in the middle and right sides of the figure, 049

we assume that humans are not exposed to such di- 050

rect evidence. However, if they observe sentences 051

from which they can make some inference for a 052

correct judgment, such sentences are called indirect 053

evidence. For example, humans can hypothesize 054

that “him(self)” in “<wug> is helping himself.” in- 055

dicates <wug> or that the possessive pronoun “his” 056

in “<wug> helped his friend.” indicates <wug> has 057

a male property. 058

However, whether language models acquire 059

grammatical knowledge using indirect evidence 060

remains unknown. Previous work has investigated 061

the word frequency effect through few-shot learn- 062

ing or ablating sentences including target words 063

from pretraining data (Wei et al., 2021; Yu et al., 064

2020), but they have not explored the learnability 065
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of indirect data in pretraining language models.066

In this work, we investigate the degree of indi-067

rectness and the amount of data required for lan-068

guage models to induce linguistic generalization.069

To address this question, we train language models070

from scratch using pretraining data including indi-071

rect training instances. We then evaluate their lin-072

guistic generalization across seven different linguis-073

tic phenomena, such as anaphor agreement, transi-074

tivity, and subject-verb agreement. These phenom-075

ena require language models to understand the di-076

verse properties and multiple parts of speech of spe-077

cific words to judge their acceptability. To control078

the number of observed indirect training instances,079

we inject synthetic instances with newly coined080

words into pretraining data. Following Berko081

(1958), we refer to those words that do not appear082

in the original vocabulary and data as wug words.1083

We use varied synthetic data as additional indirect084

training instances, each differing in the degree of085

lexical and syntactic indirectness and in the number086

of observations.087

We found that the language models generalize088

linguistic knowledge from training instances that089

are the same as correct evaluation instances, but090

their data efficiency varies across different linguis-091

tic phenomena. This variation is likely due to the092

number of words between the wug and the words093

that serve as cues for the model to learn its prop-094

erties. We surprisingly observe that the language095

models do not acquire grammatical knowledge in096

certain phenomena even from instances that only097

differ in their lexical items. Syntactically indirect098

instances rarely induce the model’s generalization.099

In a certain phenomenon, we observe that language100

models had drastically accelerated linear general-101

izations (Mueller et al., 2022; McCoy et al., 2020).102

Given that distances might cause the inefficiency103

in language models, we conduct a detailed analy-104

sis of indirect instances with complicated interfer-105

ence, using anaphor gender agreement as a case106

study. We examine whether those instances affect107

the generalization, considering three factors related108

to attractors and distance. We find that when the109

language models are trained on the instances con-110

taining complicated interference, they stagnate in111

learning after sufficient observations.112

Those findings from controlled and comprehen-113

sive experiments suggest that, at least in our small-114

1The original wug used in Berko (1958)’s work is not
exactly same as our settings to create controlled instances.
The details are discussed in Section 7.

scale settings, language models cannot generalize 115

in a human-like manner even from the data with a 116

degree of indirectness that seems intuitively man- 117

ageable for humans, depending on language phe- 118

nomena. This limitation indicates a direction for 119

future studies: implementing a model that can use 120

indirect evidence, which will lead to data-efficient 121

language acquisition comparable to that of hu- 122

mans.2 123

2 Background 124

2.1 Evidence in Language Acquisition 125

In the field of language acquisition, the information 126

used to learn grammatical knowledge is referred 127

to as evidence. Positive (negative) evidence refers 128

to information in data indicating what is accept- 129

able (unacceptable) in a language, and it has been 130

argued that humans use only positive evidence to 131

acquire their language (Chomsky, 1993). Pearl and 132

Mis (2016) further distinguishes indirect positive 133

evidence from direct positive evidence. Direct posi- 134

tive evidence indicates the information that appears 135

in the data observed by the learner and is used for 136

learning, under the assumption that speakers’ us- 137

age of it guarantees grammaticality (the left side 138

of Figure 1). Indirect positive evidence, on the 139

other hand, refers to a type of information that re- 140

quires a learner to infer from the observed data 141

what is grammatical in the language (the middle 142

and right side of Figure 1). They argue that, in 143

addition to direct positive evidence, indirect posi- 144

tive evidence potentially plays a significant role in 145

efficient language acquisition. While the previous 146

literature explores humans’ capacity, it is still un- 147

known whether language models induce linguistic 148

generalization from such evidence. 149

2.2 Analysis of Language Models in Learning 150

Grammatical Knowledge 151

NLP research has focused on how language models 152

learn grammatical knowledge regarding the appear- 153

ance of target lexical items in training data. 154

Yu et al. (2020) report that only a few exam- 155

ples suffice for learning grammatical knowledge of 156

subject-verb agreement and reflexive agreement in 157

few-shot learning. Wei et al. (2021) also analyze 158

the frequency effect in BERT (Devlin et al., 2019) 159

when learning subject–verb agreement. They find 160

2We will make our training and evaluation data publicly
available.
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that BERT can judge the agreement even for un-161

seen subject–verb pairs, which is influenced by the162

frequency of target verb forms in the training data.163

The authors focus on the frequency effect of verb164

forms by removing sentences that contain verbs of165

interest from the pretraining corpora.166

While the fingings from these studies imply167

strong generalizability in language models, they168

present several future research directions: (i) ex-169

ploring a wider range of linguistic phenomena170

across various parts of speech, (ii) examining the171

model’s learnability of lexically and syntactically172

indirect sentences, and (iii) investigating alternative173

learning paradigms beyond few-shot learning with174

pretrained models and pretraining models on ab-175

lated targeted sentences, to align more closely with176

human language acquisition processes and conduct177

more controlled experiments. In this study, we an-178

alyze the effect of evidence strength in learning179

grammatical knowledge by dissecting direct and180

indirect evidence into several levels of evidence181

strength, along with their frequency effect, with a182

wider variety of linguistic phenomena across vari-183

ous parts of speech.184

While using artificial languages in analyzing lan-185

guage models is tackled by previous work (White186

and Cotterell, 2021; Ri and Tsuruoka, 2022), our187

approach is different in that we use a small number188

of artificial instances only at the token level by in-189

troducing a word wug to precisely investigate their190

effect in learning grammatical knowledge.191

3 Our Motivations192

We aim to clarify how many exposures to a word193

and what types of sentences containing the word194

are required for language models to accurately un-195

derstand its properties to judge the acceptability196

of a sentence correctly. In this work, we employ197

newly coined words (wugs) to control injections in198

the pretraining corpus. The advantages include:199

• Handling the occurrences of target lexical items200

may not fully remove the influence of those201

words from the pretraining corpus. To com-202

pletely cancel out the effect of a lexical item,203

we need to remove all variants with the same204

stem form or subword, which can be intricate205

and have a risk of significantly distorting the206

natural distribution of the corpus.207

• When automatically generating wug words, we208

can adequately control their frequency and ev-209

idence strength, including their tokenization.210

Since our aim here is to control the minimal 211

information observable by the model, synthetic 212

data enables the elimination of noises. 213

• Our approach is a type of data augmentation, 214

which means that no modification of lexical 215

items or sentences in corpora is required. Hence, 216

this approach can be extended easily to other 217

corpora and models. 218

4 Data 219

This section describes how we construct our evalu- 220

ation and additional training instances. 221

Following targeted syntactic evaluation (Linzen 222

et al., 2016; Marvin and Linzen, 2018; Warstadt 223

et al., 2020), we use pairs of sentences that mini- 224

mally differ in target words. 225

4.1 Evaluation Data 226

Linguistic Phenomena We employ the seven 227

kinds of linguistic phenomena listed in Ta- 228

ble 1. We selected them from the benchmark 229

BLiMP (Warstadt et al., 2020)3, based on whether 230

understanding the properties of a single word is suf- 231

ficient to correctly judge the linguistic phenomena. 232

Because we introduce newly coined words wug 233

in this work to investigate the number of obser- 234

vations necessary for generalization, we can only 235

cover limited linguistic phenomena. We expect 236

such phenomena as those related to island effects. 237

As shown in Table 2, the phenomena targeted in this 238

work vary in their properties crucial for accurately 239

judging the evaluation data so that we can analyze 240

model’s behaviors from diverse perspectives. 241

Newly Coined Words Wug We employ the tag 242

<wug#n> as a newly coined word to conduct con- 243

trolled experiments using words that never ap- 244

peared in the pretraining corpus. This approach 245

does not entirely align with the policy in Berko 246

(1958), which employed words like wug and wuz 247

that are newly coined but phonologically natural 248

in the target language by using actual subwords. 249

One concerning issue with Berko (1958)’s policy 250

is that the actual subwords can give model hints 251

for correct grammatical judgement, for example by 252

their occurrence in particular position. To eliminate 253

such possible effect of actual subwords, we instead 254

use the tag <wug#n>. We analyze the differences 255

between conditions using tags and the original wug 256

3Appendix C shows which phenomena we specifically
referenced from the BLiMP in this work.
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Phenomena Evd Training instances Evaluation instances

Anaphor gender agreement
(ANA.GEN.AGR)

DE <wug#n> has devoted herself <wug#n> has devoted herselfLexIE <wug#n> is painting herself *<wug#n> has devoted himselfSynIE <wug#n> judges his work

Anaphor number agreement
(ANA.NUM.AGR)

DE the <wug#n> didn’t see themselves the <wug#n> didn’t see themselvesLexIE the <wug#n> can reward themselves *the <wug#n> didn’t see itselfSynIE the <wug#n> loved its toy

Transitive
(TRANS.)

DE some trees <wug#n>ed the car some trees <wug#n>ed the carLexIE no street can <wug#n> the city *some trees <wug#n>edSynIE every lion hunts what no prey can <wug#n>

Intransitive
(INTRANS.)

DE many rivers should <wug#n> many rivers should <wug#n>LexIE each ethic might <wug#n> *many rivers should <wug#n> dogsSynIE a man corrects that the answer will not <wug#n>

Determiner-Noun agreement
(D-N AGR)

DE the senators use this <wug#n> the senators use this <wug#n>LexIE a window will open this <wug#n> *the senators use these <wug#n>SynIE the <wug#n> sells the house

Subject-Verb agreement (V)
(S-V AGR (V))

DE the <wug#n> are leaving any traces the <wug#n> are leaving any tracesLexIE the <wug#n> climb few ladders *the <wug#n> is leaving any tracesSynIE each key can open those <wug#n>

Subject-Verb agreement (S)
(S-V AGR (S))

DE the book <wug#n> a shelf the book <wug#n> a shelfLexIE every chocolate <wug#n> several bars *the books <wug#n> a shelfSynIE cats that follows the leader <wug#n> the groups

Table 1: Linguistic phenomena and instances. The sentences starting with * are ungrammatical.

Phenomena POS Gen. Num. (In)Transitive Long agr

ANA.GEN.AGR. noun ✓ – – ✓
ANA.NUM.AGR noun – ✓ – ✓
TRANS. verb – – ✓ –
INTRANS. verb – – ✓ –
D-N AGR noun – ✓ – –
S-V AGR (V) noun – ✓ – –
S-V AGR (S) verb – ✓ – –

Table 2: The properties required to judge evaluation data.
POS indicates part-of-speech. Gen./Num. indicates
gender/number. Long agr. is whether a long agreement
is required.

in Section 7. For number agreement, we added257

<wug#n> without any suffixes to these sentences,258

expecting the models to infer that <wug#n> is an259

inflected form based on the sentence structure in260

which they are embedded. We explore their effects261

in the model’s generalization in Section 7 For the262

noun subject of S-V AGR (V) and ANA.NUM.AGR,263

we do not employ any quantifiers and determin-264

ers other than “the”. This procedure is because265

quantifiers and determiners affect linguistic gen-266

eralization, making it unclear which information267

the language models use as clues for judgment, the268

number of properties in verbs and reflexive pro-269

nouns or those in quantifiers and determiners. Due270

to the same reason, for the verb in S-V AGR (S),271

we only employ the present tense and do not em-272

ploy any auxiliary verbs and tense suffixes. We273

ensured that <wug#n> remained the same word274

(i.e., the tag with the same id) in a pair, both gram- 275

matical and ungrammatical sentences, because we 276

want the same occurrence of the wug in the training 277

data. Otherwise, we compare the probability of 278

ungrammatical sentences with zero wug with that 279

of grammatical sentences with wug. 280

Data Generation with LLM To create varied de- 281

grees of and balanced corpus, we use GPT-4 Turbo 282

in OpenAI API to generate the training and evalu- 283

ation templates. To generate balanced training in- 284

stances with different properties, we generate them 285

separately based on concerning properties, (e.g., 286

Female and male pronouns have the same percent- 287

age in ANA.GEN.AGR.). We prompts the GPT-4 288

to generate balanced, diverse and duplication sen- 289

tences. We generate evaluation instances and train- 290

ing instances for indirect evidence (LexIE, SynIE) 291

with three different prompts. Subsequently, we get 292

DE by extracting the correct sentence in generated 293

evaluation instances. We generate the setences with 294

placeholders [WUG] and we replace [WUG] with 295

the tag <wug#n>, where the index number i distin- 296

guishes the coined words (e.g., <wug#124>). The 297

example of prompts and detailed procedures are 298

shown in Appendix B. 299

4.2 Additional training instances 300

We define the following three dergrees of indirect- 301

ness (DE, LexIE, and SynIE). The difficulty in- 302

creases in the order of DE, LexIE, and SynIE: 303
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Direct Evidence (DE) An instance that is the304

exact same as correct evaluation instances. We305

assume that the properties of wug in an evaluation306

instance are learned by referring to the training307

instance with the same syntactical and lexical items308

as the evaluation instance.309

Lexically Indirect Evidence (LexIE) An in-310

stance that conveys the same syntactic structure311

as the evaluation instances but uses different lexi-312

cal items. We assume that the properties of wug in313

an evaluation instance are learned by referring to314

training instances with the same usage but different315

lexical items from the evaluation instance.316

Syntactically Indirect Evidence (SynIE) An in-317

stance that reveals the target linguistic feature with318

different syntactic and lexical items from evalua-319

tion instances. The properties of wug in an evalua-320

tion instance are learned by referring to the training321

instance with different syntactic and lexical items322

from the evaluation instance.323

5 Experiments and Results324

5.1 Settings325

Pretraining Data We randomly sampled 675k326

sentences (16M words) from English Wikipedia327

articles and used them as pretraining data.4 We328

inject additional training instances. The detailed329

preprocess and inject additional training instances330

are in Appendix D. We shuffled and deduplicated331

sentences and removed ones containing fewer than332

two words. The data was then lowercased, and333

periods were removed from the sentences.334

Frequency of Injected Instances We compare335

the language models trained on the pretraining data336

injected indirect instances that appear n times (n =337

0, 1, 5, 25, 50, 75, 100) for each instance.338

Models We use BabyBERTa (Huebner et al.,339

2021), which is a minimal variant of RoBERTa (Liu340

et al., 2019). We modify some hyperparameters due341

to the pretraining data size. More detailed infor-342

mation is shown in Table 5. We train the tokenizer343

from scratch using the pretraining data, adding the344

tags to the vocabulary so that the tokenizer treats345

each tag as one token.346

Evaluation Metrics We prepare 200 template347

pairs for each linguistic phenomenon. Each tem-348

plate has three different sets of tags, resulting in349

4Retrieved from https://github.com/phueb/
BabyBERTa.

200 × 3 = 600 pairs. We simply use the accu- 350

racy of choosing the grammatical sentence as our 351

evaluation metric. As evaluation metrics, we use 352

pseudo-likelihood5 normalized by token length be- 353

cause we use evaluation sentences containing the 354

sentence pair each of which has different token 355

lengths. Note that normalization by token length 356

may still result in token-biases (Ueda et al., 2024). 357

5.2 Main Results 358

We review the main results by answering our re- 359

search questions: (i) What degree of and how much 360

data do language models need to acquire grammat- 361

ical knowledge to judge the acceptability of a sen- 362

tence? (ii) Are observations showing similar trends 363

in broader categories of linguistic phenomena? The 364

results are shown in Figure 2. 365

Direct Evidence As for DE, increasing the num- 366

ber of observations generally contributed to lin- 367

guistic generalization in language models. How- 368

ever, the extent of improvement varied across differ- 369

ent linguistic phenomena. In ANA.GEN.AGR and 370

ANA.NUM.AGR, the score increased more gradu- 371

ally, particularly between 25 and 75 occurrences, 372

compared to the other agreement phenomena. This 373

difference might be due to anaphor agreement, 374

which often involves a longer distance between the 375

target words and the words with properties neces- 376

sary for correct judgment. We thoroughly examine 377

the effects of distance and attractors in Section 6. 378

Lexically Indirect Evidence In about a half 379

of the phenomena, D-N AGR, S-V AGR (V), 380

ANA.NUM.AGR, and INTRANSITIVE, LexIE in- 381

duces generalization more slowly but steadily than 382

DE. However, in the remaining half of the phe- 383

nomena, the language models do not acquire gram- 384

matical knowledge necessary to correctly judge ac- 385

ceptability. This result is surprising because LexIE 386

differs only in lexical items from a correct sentence 387

in the evaluation and shares the same syntactical 388

structure. This trend cannot be explained by the 389

properties of Table 2. 390

Syntactically and Lexically Indirect Evidence 391

In most of the phenomena, SynIE does not induce 392

generalization; the increase in the number of obser- 393

vations did not aid models’ generalization but only 394

resulted in a prolonged learning time. In TRANSI- 395

TIVE, the accuracy of SynIE drastically decreases 396

5We use the source code in https://github.com/
babylm/evaluation-pipeline-2023.
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Figure 2: The results (accuracy; %) of experiments for language phenomena and evidence. The gray dot lines
indicate the model’s scores trained on pretraining data without any additional instances (n=0).

inversely with the number of observations. This397

interesting phenomenon is likely due to the heuris-398

tics of the language model. The final word in the399

training instances (see Table 1) is the coined word400

<wug#n>, whereas, whereas it is a actual direct on-401

ject noun in the correct evaluation sentences. This402

suggests that the language model might exhibit lin-403

ear generalization (Mueller et al., 2022; McCoy404

et al., 2020), which differs from the human-like hi-405

erarchical generalization. It is most likely that they406

just judged the correctness using whether some407

words follow the coined words, even though the408

wug should be recognized as a transitive verb be-409

cause the relative pronoun “what” is its object. This410

implies that instances requiring complicated hierar-411

chical inference may impair generalization.412

Overall Our findings mainly suggest that indi-413

rect positive evidence does not sufficiently induce414

linguistics generalization in language models, es-415

pecially SynIE, while direct evidence induces it.416

Wei et al. (2021) find that their results support the417

Reduce Error Hypothesis (Ambridge et al., 2015),418

where high-frequency words are learned better. The419

results in our work also support the hypothesis in420

DE, but in LexIE and SynIE, not all linguistic phe-421

nomena support it.422

6 Analysis with More Indirect Instances423

In Section 5, DE induced the model’s linguistic424

generalization but its data efficiency varies by lin-425

guistic phenomena. For anaphor agreement, the426

models’ learning are more apt to stagnate in 25 –427

75 observations compared to other phenomena (See428

the figure for anaphor agreement in Table 2). This429

stagnation might be caused by the longer distance 430

between the wug and the reflexives, whereas the 431

relevant items are adjacent to each other in other 432

phenomena such as TRANSITIVE. To corroborate 433

this negative effect of long-distance on learning, we 434

employ more indirect agreement instances to inves- 435

tigate whether the long-distance hinders linguistic 436

generalization on ANA.GEN.AGR in language mod- 437

els. 438

The difficulty of long-distance agreement is 439

caused by attractors and distance (Linzen et al., 440

2016). Agreement attractors indicate the interven- 441

ing words that distract the learner from judging the 442

correct agreement (Giulianelli et al., 2018). When 443

language models judge the gender agreement, they 444

would check if the word “<wug#n>” corresponds 445

to the gender to the reflexive. Distance refers to 446

the number of the words intervening between the 447

antecedent “<wug#n>” and “herself”. Attractor 448

indicates the competing words (e.g., “man” in the 449

case of AT1 in Table 2) that distract learners from 450

judging the agreement. 451

The language models’ grammatical knowledge 452

concerning long-distance dependencies has been 453

investigated in previous studies (Giulianelli et al., 454

2018; Li et al., 2023), and these studies argue that 455

the models can indeed acquire the knowledge of 456

long-distance agreement. However, the overall re- 457

sults on anaphor agreement in this study suggest 458

that further investigation is required to reveal the 459

relationship between models’ performance and the 460

distance of items relevant for correct judgment. For 461

this purpose, we conduct a fine-grained analysis 462

using synthetic sentences varying the distance be- 463

tween wugs and reflexive pronouns. 464

6



Interf. Evd. Training instances

Attractor
type
(AT)

DE <w> loves herself

AT0 <w> helping the child loves herself

AT1 <w> helping the man loves herself

AT2 <w> helping him loves herself

Attractor
number
(AN)

DE <w> loves herself

AT1 <w> helping the man loves herself

AN0 <w> helping the man to see the dad
loves herself

AN1 <w> helping the man for the king to
see the dad loves herself

AN2 <w> helping the man for the son of
the king to see the dad loves herself

Distance
(DT)

DE <w> loves herself

AT0 <w> helping the child loves herself

DT0 <w> who helps the child loves herself

DT1 <w> whose cat helps the child loves
herself

DT2 <w> whose cat helps the child who
finds the teachers loves herself

Table 3: Interference types and training instances used
in the analysis. <w> corresponds to <wug#n>.

6.1 Target Phenomena465

We compare the models trained on the corpus with466

additional instances, from the perspective of the467

attractor type, attractor number, and distance as468

below. Table 3 lists all kinds of training instances469

compared in this analysis.470

To create the instances, we use GPT-4 to gen-471

erate nouns differing in gender and number, and472

sample the designated number of items from these473

generated items. For female and male nouns, we474

collect 100 nouns each. From the generated items,475

we first select 25 nouns for each gender. Then, we476

create both the singular and plural forms of the477

selected words and double them to create minimal478

pairs. The prompt is shown in Appendix B. Ad-479

ditionally we also collect 100 neutral nouns. The480

verb that we newly employ is collected from LexIE481

in ANA.GEN.AGR to avoid duplication.482

Attractor Type (AT) We investigate whether at-483

tractors downgrade the linguistic generalization in484

ANA.GEN.AGR and how their distract strength af-485

fects the models’ acquisition of anaphor agreement.486

DE indicates the indirect instances examined in487

Section 5, which does not have any attractors and488

works as a baseline here. AT0 includes neutral com-489

mon nouns, while AT1 employs common opposite490

gender nouns, and AT2 uses opposite gender proper491
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Figure 3: Models’ scores for more indirect instances.

nouns. We assume that the magnitude of attractors’ 492

interference follows the order AT0 < AT1 < AT2, 493

given that the more similar their properties are to 494

reflexives, the more distracting they will be. 495

Attractor Number (AN) We examine whether 496

the number of attractors affects the model’s acqui- 497

sition. We use the gender common nouns as at- 498

tractors. DE works as a baseline because it has no 499

attractors. We expect that the more attractors there 500

are, the more difficult it is to generalize correctly. 501

Distance (DT) We analyze the effect of distance 502

on model’s acquisition. We assume that the more 503

distance intervening between wug and reflexive, the 504

more difficult it is to judge sentence acceptability. 505

We use neutral nouns there to explore the effect of 506

the number of words genuinely. 507

6.2 Results 508

As shown in Figure 3, After 100 observations in all 509

viewpoints, SynIE, with the shortest distance and 510

no attractors, got the highest scores, while in mid- 511

way observations this tendency does not happen. 512

The most difficult instances in each interference 513

lead to the language model’s lowest score, after 514

their 100 observations. AT2, including an opposed 515

pronoun as an attractor, particularly shows unstable 516

generalization. We expected that the instances with 517

longer distances and more attractors, more strongly 518

interfere with the models’ generalization, but this 519

tendency is not clearly shown in this experiment. 520

To the question of whether the instances with long- 521

distance agreement induce linguistic generalization, 522

these results answer that with the larger number of 523

observations, the model’s generalization relatively 524

stagnates. 525

7 Discussion: Considering Wug Creation 526

In this work, we use to newly coined words that 527

do not appear in the original vocabulary, following 528

Berko (1958). Still, our used wug has some gap 529
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N wug methods Phenomena
ANA. NUM. AGR D-N AGR S-V AGR (V)

0

tag 57.5 47.0 62.2
tag w/ morph. 59.0 80.5 83.3
wug_v1 81.3 89.5 86.7
wug_v2 81.2 91.2 86.0
wug_v3 81.5 88.7 85.0

25

tag 72.5 76.2 78.0
tag w/ morph. 94.0 99.5 91.3
wug_v1 92.3 87.7 90.2
wug_v2 81.2 87.7 88.5
wug_v3 90.5 87.5 86.5

Table 4: Models’ scores calculated by the language
models that are trained on the pretraining data with
indirect instances of different wug creation methods. N
denotes the number of observations.

from the original one. In the original wug test, they530

use the words that do not exist in the language but531

conform to the phonological rule in the language,532

In contrast, we use the tag <wug#n> as wug in533

those experiments. Since the original wug is more534

phonologically natural, and the subwords are in the535

existing vocabulary, the original setting is closer536

to the environment of human language acquisition.537

On the other hand, to conduct controlled experi-538

ments on the number of instances that the model539

observed, the setting might not be suitable because540

this is far from the settings where a certain word is541

never encountered. We used the tag <wug#n>. In542

this section, we compare our method (tag method)543

and the original method (wug method) to explore544

the difference in their impact on the model’s lin-545

guistic generalization.546

Wug Generation We create wug using pseu-547

doword generator Wuggy.6 We choose 1,200548

nouns from sample data taken from the one billion-549

word Corpus of Contemporary American English550

(COCA).7 To create wug-like words, we use the551

nouns to output four pseudo words for one noun552

and randomly select one pseudo noun. We prepare553

200× 3 = 600 pseudo words, each 200 of which554

are used separately (wug_v1–wug_v3) because we555

expect that different wugs have different subwords556

and they can show different results. 8 We use those557

pseudo nouns instead of the tag in the same way as558

in the previous experiments.559

6https://github.com/WuggyCode/wuggy
7Downloaded from https://www.wordfrequency.

info/samples/words_219k.txt
8On the other hand, for tag and tag w/ morph., we show the

results of only one model, because the different tags <wug#n>
have the same parameters and they actually show the same
results.

Settings We target three phenomena, 560

ANA.NUM.AGR, D-N AGR, and S-V AGR 561

(V), the wug of which is considered as common 562

nouns. No inflectional morphemes are added to 563

plural common nouns in the tag method while the 564

morphemes are added to plural common nouns 565

in the wug method. For ablation, we prepare the 566

tag with inflectional morphemes (tag w/ morph. 567

method), which employs the tag <wug#n> same as 568

the tag method but uses inflectional morphemes 569

same as the wug method. We compare the models 570

trained on the pretraining data with the tag method, 571

the wug methods, and tag w/ morph. method. 572

Other settings are the same as Section 5. 573

Results Figure 4 shows the scores of the tag, 574

tag w/ morph., and three sets of wug. In the wug 575

and tag w/ morph. methods, the language mod- 576

els correctly judge the acceptability of sentences, 577

mostly more than 80–90%, surprisingly with the 578

data that includes zero additional instances. This 579

result is probably because language models deter- 580

mine whether a word is singular or plural, based 581

on whether an inflection morpheme “s” follows it, 582

even if the word is novel. This occurs with both 583

novel words and novel subword combinations, but 584

the impact is greater with the latter, comparing the 585

two methods. In addition, despite our expectation 586

that different subword combinations show differ- 587

ent results, we observed no large score variances 588

among the three vocabulary sets except for 25 times 589

in ANA.NUM.AGR. From those results, we found 590

a trade-off between the settings plausible for hu- 591

man language acquisition and strictly controlled 592

settings. We prioritized the latter in this work, but 593

the direction to the former is also a good setting 594

depending on the research questions. 595

8 Conclusion 596

We investigate the degree of indirectness and the 597

amount of data required to induce human-like lin- 598

guistic generalization in language models. We 599

found that language models do not induce human- 600

like linguistic generalization even with a degree of 601

indirectness that seems intuitively manageable for 602

humans, depending on language phenomena. This 603

limitation indicates a direction for future studies: 604

implementing a model that can use indirect evi- 605

dence, which will lead to data-efficient language 606

acquisition comparable to that of humans. 607

8

https://github.com/WuggyCode/wuggy
https://www.wordfrequency.info/samples/words_219k.txt
https://www.wordfrequency.info/samples/words_219k.txt


Limitations608

We recognize the following limitations in this609

study:610

Linguistic Knowledge by Function Words We611

generate synthetic instances only for linguistic phe-612

nomena concerning content words such as nouns613

and verbs. We avoid generating new function614

words (e.g., new wh-word as a relative pronoun).615

Nonce Sentence We have not dug into the dif-616

ference between natural sentences and nonce sen-617

tences (Gulordava et al., 2018; Wei et al., 2021)618

that are grammatical but completely meaningless619

because we create additional training and evalua-620

tion instances with LLM, which tends to generate621

naturally plausible sentences. Nonce sentences are622

less plausible in human language acquisition but623

exclude semantic selectional-preferences cues (Gu-624

lordava et al., 2018; Goldberg, 2019). According625

to Section 7, there can be a trade-off between train-626

ing language models in experimental settings that627

closely resemble natural human language acquisi-628

tion and those that are strictly controlled. Future629

work can determine whether nonce sentences with630

indirect evidence differently affect linguistic gener-631

alization in language models.632

Zero Observations While adding the tags633

<wug#n> into the vocabulary, their parameters in634

language models are randomly initialized. When635

the language models never observe the sentences636

including the tag while training, their parameters637

still remain initialized, which may lead to different638

results in language models. To confirm this effect,639

we compare the language model with the default640

standard deviation of the initializer for all weight641

matrices (std=0.02) to that with one-tenth standard642

deviation (std=0.002), using three kinds of seeds.643

Table 6 in Appendix E shows that the deviation of644

scores in the model used one-tenth std are smaller.645

This finding implies that a smaller std would con-646

tribute to the stability of the results. However, too647

small std may pose a risk of negatively impacting648

the training process. We thus use default std in the649

current work.650

Limited Model Size and Pretraining Data We651

use a small-scale language model and pretraining652

data in this work because we aim to find the dif-653

ferences from human inductive biases as much as654

possible. It is uncertain that the same trends as our655

work will appear in models of any size. Whether656

scaling laws apply to indirect data in accelerating 657

model generalization would be an interesting future 658

work. 659

Ethics Statement 660

There might be a possibility that the texts we used 661

(Wikipedia) and the sentences generated by large 662

language models are socially biased, despite their 663

popular use in the NLP community. 664
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Figure 4: Prompts used to create evaluation examples.

Model

architecture roberta-base
vocab size 9,600
hidden size 512
heads 8
layers 8
dropout 0.1?
layer norm eps 1e-12?
initializer range 0.02

Optimizer

algorithm AdamW
learning rates 2e-4
betas (0.9, 0.999)
weight decay 0.0

Scheduler
type linear
warmup updates 24,000

Training
gradient accumulation 4
epoch 18
batch size 16
line by line true
NGPU 1

Table 5: Hyperparameters of the language models.

D Data generation 811

D.1 Pretraining Data 812

We aim to pretrain the language models for 18 813

epochs while controlling the number of occur- 814

rences of target instances. To achieve this, we con- 815

catenate the pretraining data 18 times consecutively 816

and randomly select where to inject each additional 817

training instance. 818

D.2 Creating data with LLM 819

The GPT-4 sometimes inconsistently generates sen- 820

tences with hallucination; it generates the same 821

sentence repeatedly and sometimes stops generat- 822

ing midway. To generate lexically diverse instances 823

as many instances as possible, we prompt GPT-4 to 824

avoid using the same lemma as in the previous in- 825

stance. To get appropriate instances, we prompt the 826

GPT-4 to generate double the number of instances9, 827

and then select the designated number of instances, 828

avoiding duplicates. We adjust the percentage of 829

sentences with negation words to 10–50%. The 830

balanced instances resulted in containing 100 fe- 831

male and 100 male instances in ANA.GEN.AGR, 34 832

female singular and 33 male singular, 34 singular 833

and 100 plural instances in ANA.NUM.AGR, 200 in- 834

stances each in TRANSITIVE and INTRANSITIVE, 835

50 this, 50 that, 50 these and 50 those in D-N AGR. 836

100 singular and 100 plural each in S-V AGR. 837

E Different Seeds 838

The scores of language models with different seeds 839

and the standard deviation of the initializers are 840

listed in Table 6. 841

9The number of instances generated based on the prompt
can vary. Sometimes the output meets the specified quantity,
while other times it may be fewer, potentially even less than
half of the requested amount. If not enough instances are
generated, we input instances from three steps earlier and
generate additional instances to meet the requirements.
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std

phenomena seed 0.02 0.002

ANA.GEN.AGR

1 52.3 56.5
2 51.0 53.5
3 50.5 56.5

ANA.NUM.AGR

1 57.5 62.8
2 62.3 67.7
3 59.3 62.7

TRANSITIVE

1 92.0 90.7
2 89.0 90.7
3 89.7 88.7

INTRANSITIVE

1 11.3 11.5
2 12.3 11.8
3 14.3 12.7

D-N AGR

1 47.0 47.3
2 49.0 50.7
3 46.3 48.7

S-V AGR (V)
1 62.2 53.2
2 52.0 54.3
3 55.0 56.7

S-V AGR (S)
1 46.5 49.2
2 48.3 50.7
3 52.3 48.3

Table 6: Scores of langauge models with different seeds
and standard deviation of the initializers.
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