Learnability of Indirect Evidence in Language Models

Anonymous ACL submission

Abstract

What kinds of and how much data is necessary
for language models to acquire grammatical
knowledge to judge sentence acceptability? Re-
cent language models still have much room
for improvement in their data efficiency com-
pared to humans. In this paper, we investigate
whether language models efficiently use indi-
rect data (indirect evidence), from which they
infer sentence acceptability. In contrast, hu-
mans use indirect evidence efficiently, which
is considered one of the inductive biases con-
tributing to efficient language acquisition. To
explore this question, we inject synthetic in-
stances with newly coined wug words into pre-
training data and explore the model’s behavior
on evaluation data that assess grammatical ac-
ceptability regarding those words. We prepare
the injected instances by varying their levels
of indirectness and quantity. Our experiments
surprisingly show that language models do not
acquire grammatical knowledge even after re-
peated exposure to instances with the same
structure but differing only in lexical items
from evaluation instances in certain language
phenomena. Our findings suggest a potential
direction for future research: developing mod-
els that use latent indirect evidence to acquire
grammatical knowledge.

1 Introduction

Current language models, which have made sig-
nificant progress in various tasks in recent years,
are trained on large-scale data. For instance, recent
large language models are trained on data thou-
sands of times larger than the amount of data that
children are exposed to acquire the same level of
grammatical knowledge as adults (Warstadt et al.,
2023). This implies that there is much room for
improvement in their learning efficiency.
According to Pearl and Mis (2016), humans ac-
quire language using indirect evidence, in addition
to direct evidence, which is considered one of the
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Figure 1: The indirectness of evidence. Direct evidence
refers to instances identical to previously observed ones.
Lexically indirect evidence targets the same linguistic
knowledge but differs in lexical items. Syntactically
& lexically indirect evidence is different in both their
syntactical and lexical items.

inductive biases contributing to efficient language
acquisition. As shown on the left side of Figure 1,
when humans are exposed to the sentence “<wug>
loves himself.”, they can correctly judge the gram-
matical acceptability between “<wug> loves him-
self.” and “* <wug> loves herself.” Such observed
sentences are referred to as direct evidence. Con-
versely, in the middle and right sides of the figure,
we assume that humans are not exposed to such di-
rect evidence. However, if they observe sentences
from which they can make some inference for a
correct judgment, such sentences are called indirect
evidence. For example, humans can hypothesize
that “him(self)” in “<wug> is helping himself.” in-
dicates <wug> or that the possessive pronoun “his”
in “<wug> helped his friend.” indicates <wug> has
a male property.

However, whether language models acquire
grammatical knowledge using indirect evidence
remains unknown. Previous work has investigated
the word frequency effect through few-shot learn-
ing or ablating sentences including target words
from pretraining data (Wei et al., 2021; Yu et al.,
2020), but they have not explored the learnability



of indirect data in pretraining language models.

In this work, we investigate the degree of indi-
rectness and the amount of data required for lan-
guage models to induce linguistic generalization.
To address this question, we train language models
from scratch using pretraining data including indi-
rect training instances. We then evaluate their lin-
guistic generalization across seven different linguis-
tic phenomena, such as anaphor agreement, transi-
tivity, and subject-verb agreement. These phenom-
ena require language models to understand the di-
verse properties and multiple parts of speech of spe-
cific words to judge their acceptability. To control
the number of observed indirect training instances,
we inject synthetic instances with newly coined
words into pretraining data. Following Berko
(1958), we refer to those words that do not appear
in the original vocabulary and data as wug words.!
We use varied synthetic data as additional indirect
training instances, each differing in the degree of
lexical and syntactic indirectness and in the number
of observations.

We found that the language models generalize
linguistic knowledge from training instances that
are the same as correct evaluation instances, but
their data efficiency varies across different linguis-
tic phenomena. This variation is likely due to the
number of words between the wug and the words
that serve as cues for the model to learn its prop-
erties. We surprisingly observe that the language
models do not acquire grammatical knowledge in
certain phenomena even from instances that only
differ in their lexical items. Syntactically indirect
instances rarely induce the model’s generalization.
In a certain phenomenon, we observe that language
models had drastically accelerated linear general-
izations (Mueller et al., 2022; McCoy et al., 2020).

Given that distances might cause the inefficiency
in language models, we conduct a detailed analy-
sis of indirect instances with complicated interfer-
ence, using anaphor gender agreement as a case
study. We examine whether those instances affect
the generalization, considering three factors related
to attractors and distance. We find that when the
language models are trained on the instances con-
taining complicated interference, they stagnate in
learning after sufficient observations.

Those findings from controlled and comprehen-
sive experiments suggest that, at least in our small-

'The original wug used in Berko (1958)’s work is not
exactly same as our settings to create controlled instances.
The details are discussed in Section 7.

scale settings, language models cannot generalize
in a human-like manner even from the data with a
degree of indirectness that seems intuitively man-
ageable for humans, depending on language phe-
nomena. This limitation indicates a direction for
future studies: implementing a model that can use
indirect evidence, which will lead to data-efficient
language acquisition comparable to that of hu-
mans.?

2 Background

2.1 Evidence in Language Acquisition

In the field of language acquisition, the information
used to learn grammatical knowledge is referred
to as evidence. Positive (negative) evidence refers
to information in data indicating what is accept-
able (unacceptable) in a language, and it has been
argued that humans use only positive evidence to
acquire their language (Chomsky, 1993). Pearl and
Mis (2016) further distinguishes indirect positive
evidence from direct positive evidence. Direct posi-
tive evidence indicates the information that appears
in the data observed by the learner and is used for
learning, under the assumption that speakers’ us-
age of it guarantees grammaticality (the left side
of Figure 1). Indirect positive evidence, on the
other hand, refers to a type of information that re-
quires a learner to infer from the observed data
what is grammatical in the language (the middle
and right side of Figure 1). They argue that, in
addition to direct positive evidence, indirect posi-
tive evidence potentially plays a significant role in
efficient language acquisition. While the previous
literature explores humans’ capacity, it is still un-
known whether language models induce linguistic
generalization from such evidence.

2.2 Analysis of Language Models in Learning
Grammatical Knowledge

NLP research has focused on how language models
learn grammatical knowledge regarding the appear-
ance of target lexical items in training data.

Yu et al. (2020) report that only a few exam-
ples suffice for learning grammatical knowledge of
subject-verb agreement and reflexive agreement in
few-shot learning. Wei et al. (2021) also analyze
the frequency effect in BERT (Devlin et al., 2019)
when learning subject—verb agreement. They find

*We will make our training and evaluation data publicly
available.



that BERT can judge the agreement even for un-
seen subject—verb pairs, which is influenced by the
frequency of target verb forms in the training data.
The authors focus on the frequency effect of verb
forms by removing sentences that contain verbs of
interest from the pretraining corpora.

While the fingings from these studies imply
strong generalizability in language models, they
present several future research directions: (i) ex-
ploring a wider range of linguistic phenomena
across various parts of speech, (ii) examining the
model’s learnability of lexically and syntactically
indirect sentences, and (iii) investigating alternative
learning paradigms beyond few-shot learning with
pretrained models and pretraining models on ab-
lated targeted sentences, to align more closely with
human language acquisition processes and conduct
more controlled experiments. In this study, we an-
alyze the effect of evidence strength in learning
grammatical knowledge by dissecting direct and
indirect evidence into several levels of evidence
strength, along with their frequency effect, with a
wider variety of linguistic phenomena across vari-
ous parts of speech.

While using artificial languages in analyzing lan-
guage models is tackled by previous work (White
and Cotterell, 2021; Ri and Tsuruoka, 2022), our
approach is different in that we use a small number
of artificial instances only at the token level by in-
troducing a word wug to precisely investigate their
effect in learning grammatical knowledge.

3 Our Motivations

We aim to clarify how many exposures to a word
and what types of sentences containing the word
are required for language models to accurately un-
derstand its properties to judge the acceptability
of a sentence correctly. In this work, we employ
newly coined words (wugs) to control injections in
the pretraining corpus. The advantages include:

* Handling the occurrences of target lexical items
may not fully remove the influence of those
words from the pretraining corpus. To com-
pletely cancel out the effect of a lexical item,
we need to remove all variants with the same
stem form or subword, which can be intricate
and have a risk of significantly distorting the
natural distribution of the corpus.

* When automatically generating wug words, we
can adequately control their frequency and ev-
idence strength, including their tokenization.

Since our aim here is to control the minimal
information observable by the model, synthetic
data enables the elimination of noises.

* Our approach is a type of data augmentation,
which means that no modification of lexical
items or sentences in corpora is required. Hence,
this approach can be extended easily to other
corpora and models.

4 Data

This section describes how we construct our evalu-
ation and additional training instances.

Following targeted syntactic evaluation (Linzen
et al., 2016; Marvin and Linzen, 2018; Warstadt
et al., 2020), we use pairs of sentences that mini-
mally differ in target words.

4.1 Evaluation Data

Linguistic Phenomena We employ the seven
kinds of linguistic phenomena listed in Ta-
ble 1. We selected them from the benchmark
BLiMP (Warstadt et al., 2020)°, based on whether
understanding the properties of a single word is suf-
ficient to correctly judge the linguistic phenomena.
Because we introduce newly coined words wug
in this work to investigate the number of obser-
vations necessary for generalization, we can only
cover limited linguistic phenomena. We expect
such phenomena as those related to island effects.
As shown in Table 2, the phenomena targeted in this
work vary in their properties crucial for accurately
judging the evaluation data so that we can analyze
model’s behaviors from diverse perspectives.

Newly Coined Words Wug We employ the tag
<wug#n> as a newly coined word to conduct con-
trolled experiments using words that never ap-
peared in the pretraining corpus. This approach
does not entirely align with the policy in Berko
(1958), which employed words like wug and wuz
that are newly coined but phonologically natural
in the target language by using actual subwords.
One concerning issue with Berko (1958)’s policy
is that the actual subwords can give model hints
for correct grammatical judgement, for example by
their occurrence in particular position. To eliminate
such possible effect of actual subwords, we instead
use the tag <wug#n>. We analyze the differences
between conditions using tags and the original wug

3Appendix C shows which phenomena we specifically
referenced from the BLiMP in this work.



Phenomena Evd  Training instances Evaluation instances
Anaphor gender agreement L]e))EE Zzﬂgzgz Elsas ;ii\t/iontedhzfsr:ffl f <wug#n> has devoted herself
(ANA.GEN.AGR) SynlE <wu§ #n> ju (I;ges hi sgwork *<wug#n> has devoted himself
Anaphor number agreement DE the <wugin> didn’t see themselves the <wug#n> didn’t see themselves
LexIE the <wug#n> can reward themselves [ .
(ANA.NUM.AGR) SynlE  the <wug#n> loved its toy *the <wug#n> didn’t see itself
Transitive DE some trees <wug#n>ed the car some trees <wug#n>ed the car
(TRANS.) LexIE no street can <wug#n> the city *some trees <wuetnsed
’ SynlE  every lion hunts what no prey can <wug#n> ) g
Intransitive DE many rivers §h0uld <wug#n> many rivers should <wug#n>
(INTRANS.) LexIE  each ethic might <wugin> . *many rivers should <wug#n> dogs
SynlE  a man corrects that the answer will not <wug#n>
Determiner-Noun agreement DE the Senators use this <Wug#n> the senators use this <wug#n>
LexIE a window will open this <wug#n>
(D-N AGR) SynlE  the <wug#n> sells the house *the senators use these <wug#n>
Subject-Verb agreement (V) DE the <wugifn> are leaving any traces the <wug#n> are leaving any traces
(S-V AGR (V) LexIE  the <wugiin> climb few ladders *the <wug#n> is leaving any traces
SynlE  each key can open those <wug#n> & ’ g any )

Subject-Verb agreement (S)

(S-V AGR (S)) LexIE

SynIE

DE the book <wug#n> a shelf
every chocolate <wug#n> several bars
cats that follows the leader <wug#n> the groups

the book <wug#n> a shelf
*the books <wug#n> a shelf

Table 1: Linguistic phenomena and instances. The sentences starting with * are ungrammatical.

Phenomena POS Gen. Num. (In)Transitive Long agr
ANA.GEN.AGR. noun Vv - - v
ANA.NUM.AGR noun - v - v
TRANS. verb - - v -
INTRANS. verb - - v -
D-N AGR noun - v - -
S-V AGR (V) noun - v - -
S-V AGR (S) verb - v - -

Table 2: The properties required to judge evaluation data.
POS indicates part-of-speech. Gen./Num. indicates
gender/number. Long agr. is whether a long agreement
is required.

in Section 7. For number agreement, we added
<wug#n> without any suffixes to these sentences,
expecting the models to infer that <wug#n> is an
inflected form based on the sentence structure in
which they are embedded. We explore their effects
in the model’s generalization in Section 7 For the
noun subject of S-V AGR (V) and ANA.NUM.AGR,
we do not employ any quantifiers and determin-
ers other than “the”. This procedure is because
quantifiers and determiners affect linguistic gen-
eralization, making it unclear which information
the language models use as clues for judgment, the
number of properties in verbs and reflexive pro-
nouns or those in quantifiers and determiners. Due
to the same reason, for the verb in S-V AGR (S),
we only employ the present tense and do not em-
ploy any auxiliary verbs and tense suffixes. We
ensured that <wug#n> remained the same word

(i.e., the tag with the same id) in a pair, both gram-
matical and ungrammatical sentences, because we
want the same occurrence of the wug in the training
data. Otherwise, we compare the probability of
ungrammatical sentences with zero wug with that
of grammatical sentences with wug.

Data Generation with LLM  To create varied de-
grees of and balanced corpus, we use GPT-4 Turbo
in OpenAl API to generate the training and evalu-
ation templates. To generate balanced training in-
stances with different properties, we generate them
separately based on concerning properties, (e.g.,
Female and male pronouns have the same percent-
age in ANA.GEN.AGR.). We prompts the GPT-4
to generate balanced, diverse and duplication sen-
tences. We generate evaluation instances and train-
ing instances for indirect evidence (LexIE, SynlE)
with three different prompts. Subsequently, we get
DE by extracting the correct sentence in generated
evaluation instances. We generate the setences with
placeholders [WUG] and we replace [WUG] with
the tag <wug#n>, where the index number ¢ distin-
guishes the coined words (e.g., <wug#124>). The
example of prompts and detailed procedures are
shown in Appendix B.

4.2 Additional training instances

We define the following three dergrees of indirect-
ness (DE, LexIE, and SynlE). The difficulty in-
creases in the order of DE, LexIE, and SynIE:



Direct Evidence (DE) An instance that is the
exact same as correct evaluation instances. We
assume that the properties of wug in an evaluation
instance are learned by referring to the training
instance with the same syntactical and lexical items
as the evaluation instance.

Lexically Indirect Evidence (LexIE) An in-
stance that conveys the same syntactic structure
as the evaluation instances but uses different lexi-
cal items. We assume that the properties of wug in
an evaluation instance are learned by referring to
training instances with the same usage but different
lexical items from the evaluation instance.

Syntactically Indirect Evidence (SynIE) An in-
stance that reveals the target linguistic feature with
different syntactic and lexical items from evalua-
tion instances. The properties of wug in an evalua-
tion instance are learned by referring to the training
instance with different syntactic and lexical items
from the evaluation instance.

S Experiments and Results

5.1 Settings

Pretraining Data We randomly sampled 675k
sentences (16M words) from English Wikipedia
articles and used them as pretraining data.* We
inject additional training instances. The detailed
preprocess and inject additional training instances
are in Appendix D. We shuffled and deduplicated
sentences and removed ones containing fewer than
two words. The data was then lowercased, and
periods were removed from the sentences.

Frequency of Injected Instances We compare
the language models trained on the pretraining data
injected indirect instances that appear n times (n =
0,1,5,25,50,75,100) for each instance.

Models We use BabyBERTa (Huebner et al.,
2021), which is a minimal variant of RoOBERTa (Liu
etal., 2019). We modify some hyperparameters due
to the pretraining data size. More detailed infor-
mation is shown in Table 5. We train the tokenizer
from scratch using the pretraining data, adding the
tags to the vocabulary so that the tokenizer treats
each tag as one token.

Evaluation Metrics We prepare 200 template
pairs for each linguistic phenomenon. Each tem-
plate has three different sets of tags, resulting in

“Retrieved from

BabyBERTa.

https://github.com/phueb/

200 x 3 = 600 pairs. We simply use the accu-
racy of choosing the grammatical sentence as our
evaluation metric. As evaluation metrics, we use
pseudo-likelihood’ normalized by token length be-
cause we use evaluation sentences containing the
sentence pair each of which has different token
lengths. Note that normalization by token length
may still result in token-biases (Ueda et al., 2024).

5.2 Main Results

We review the main results by answering our re-
search questions: (i) What degree of and how much
data do language models need to acquire grammat-
ical knowledge to judge the acceptability of a sen-
tence? (ii) Are observations showing similar trends
in broader categories of linguistic phenomena? The
results are shown in Figure 2.

Direct Evidence As for DE, increasing the num-
ber of observations generally contributed to lin-
guistic generalization in language models. How-
ever, the extent of improvement varied across differ-
ent linguistic phenomena. In ANA.GEN.AGR and
ANA.NUM.AGR, the score increased more gradu-
ally, particularly between 25 and 75 occurrences,
compared to the other agreement phenomena. This
difference might be due to anaphor agreement,
which often involves a longer distance between the
target words and the words with properties neces-
sary for correct judgment. We thoroughly examine
the effects of distance and attractors in Section 6.

Lexically Indirect Evidence In about a half
of the phenomena, D-N AGR, S-V AGR (V),
ANA.NUM.AGR, and INTRANSITIVE, LexIE in-
duces generalization more slowly but steadily than
DE. However, in the remaining half of the phe-
nomena, the language models do not acquire gram-
matical knowledge necessary to correctly judge ac-
ceptability. This result is surprising because LexIE
differs only in lexical items from a correct sentence
in the evaluation and shares the same syntactical
structure. This trend cannot be explained by the
properties of Table 2.

Syntactically and Lexically Indirect Evidence
In most of the phenomena, SynlE does not induce
generalization; the increase in the number of obser-
vations did not aid models’ generalization but only
resulted in a prolonged learning time. In TRANSI-
TIVE, the accuracy of SynlE drastically decreases

SWe use the source code in https://github.com/
babylm/evaluation-pipeline-2023.
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Figure 2: The results (accuracy; %) of experiments for language phenomena and evidence. The gray dot lines
indicate the model’s scores trained on pretraining data without any additional instances (n=0).

inversely with the number of observations. This
interesting phenomenon is likely due to the heuris-
tics of the language model. The final word in the
training instances (see Table 1) is the coined word
<wug#n>, whereas, whereas it is a actual direct on-
ject noun in the correct evaluation sentences. This
suggests that the language model might exhibit lin-
ear generalization (Mueller et al., 2022; McCoy
et al., 2020), which differs from the human-like hi-
erarchical generalization. It is most likely that they
just judged the correctness using whether some
words follow the coined words, even though the
wug should be recognized as a transitive verb be-
cause the relative pronoun “what” is its object. This
implies that instances requiring complicated hierar-
chical inference may impair generalization.

Overall Our findings mainly suggest that indi-
rect positive evidence does not sufficiently induce
linguistics generalization in language models, es-
pecially SynlE, while direct evidence induces it.
Wei et al. (2021) find that their results support the
Reduce Error Hypothesis (Ambridge et al., 2015),
where high-frequency words are learned better. The
results in our work also support the hypothesis in
DE, but in LexIE and SynlE, not all linguistic phe-
nomena support it.

6 Analysis with More Indirect Instances

In Section 5, DE induced the model’s linguistic
generalization but its data efficiency varies by lin-
guistic phenomena. For anaphor agreement, the
models’ learning are more apt to stagnate in 25 —
75 observations compared to other phenomena (See
the figure for anaphor agreement in Table 2). This

stagnation might be caused by the longer distance
between the wug and the reflexives, whereas the
relevant items are adjacent to each other in other
phenomena such as TRANSITIVE. To corroborate
this negative effect of long-distance on learning, we
employ more indirect agreement instances to inves-
tigate whether the long-distance hinders linguistic
generalization on ANA.GEN.AGR in language mod-
els.

The difficulty of long-distance agreement is
caused by attractors and distance (Linzen et al.,
2016). Agreement attractors indicate the interven-
ing words that distract the learner from judging the
correct agreement (Giulianelli et al., 2018). When
language models judge the gender agreement, they
would check if the word “<wug#n>" corresponds
to the gender to the reflexive. Distance refers to
the number of the words intervening between the
antecedent “<wug#n>" and “herself”. Attractor
indicates the competing words (e.g., “man” in the
case of AT1 in Table 2) that distract learners from
judging the agreement.

The language models’ grammatical knowledge
concerning long-distance dependencies has been
investigated in previous studies (Giulianelli et al.,
2018; Li et al., 2023), and these studies argue that
the models can indeed acquire the knowledge of
long-distance agreement. However, the overall re-
sults on anaphor agreement in this study suggest
that further investigation is required to reveal the
relationship between models’ performance and the
distance of items relevant for correct judgment. For
this purpose, we conduct a fine-grained analysis
using synthetic sentences varying the distance be-
tween wugs and reflexive pronouns.



Interf. Evd.  Training instances

DE <w> loves herself
ATO

Attractor

type <w> helping the child loves herself
(AT) AT1  <w> helping the man loves herself
AT2  <w> helping him loves herself
DE <w> loves herself
AT1  <w> helping the man loves herself
Attractor ANO  <w> helping the man to see the dad
loves herself
number
(AN) AN1  <w> helping the man for the King to
see the dad loves herself
AN2  <w> helping the man for the son of
the king to see the dad loves herself
DE <w> loves herself
ATO  <w> helping the child loves herself
Distance DTO <w> who helps the child loves herself
(DT)

DT1 <w> whose cat helps the child loves
herself

DT2 <w> whose cat helps the child who

finds the teachers loves herself

Table 3: Interference types and training instances used
in the analysis. <w> corresponds to <wug#n>.

6.1 Target Phenomena

We compare the models trained on the corpus with
additional instances, from the perspective of the
attractor type, attractor number, and distance as
below. Table 3 lists all kinds of training instances
compared in this analysis.

To create the instances, we use GPT-4 to gen-
erate nouns differing in gender and number, and
sample the designated number of items from these
generated items. For female and male nouns, we
collect 100 nouns each. From the generated items,
we first select 25 nouns for each gender. Then, we
create both the singular and plural forms of the
selected words and double them to create minimal
pairs. The prompt is shown in Appendix B. Ad-
ditionally we also collect 100 neutral nouns. The
verb that we newly employ is collected from LexIE
in ANA.GEN.AGR to avoid duplication.

Attractor Type (AT) We investigate whether at-
tractors downgrade the linguistic generalization in
ANA.GEN.AGR and how their distract strength af-
fects the models’ acquisition of anaphor agreement.
DE indicates the indirect instances examined in
Section 5, which does not have any attractors and
works as a baseline here. ATO includes neutral com-
mon nouns, while AT1 employs common opposite
gender nouns, and AT?2 uses opposite gender proper

Attractor type Attractor number Distance
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Figure 3: Models’ scores for more indirect instances.

nouns. We assume that the magnitude of attractors’
interference follows the order ATO < AT1 < AT?2,
given that the more similar their properties are to
reflexives, the more distracting they will be.

Attractor Number (AN) We examine whether
the number of attractors affects the model’s acqui-
sition. We use the gender common nouns as at-
tractors. DE works as a baseline because it has no
attractors. We expect that the more attractors there
are, the more difficult it is to generalize correctly.

Distance (DT) We analyze the effect of distance
on model’s acquisition. We assume that the more
distance intervening between wug and reflexive, the
more difficult it is to judge sentence acceptability.
We use neutral nouns there to explore the effect of
the number of words genuinely.

6.2 Results

As shown in Figure 3, After 100 observations in all
viewpoints, SynlE, with the shortest distance and
no attractors, got the highest scores, while in mid-
way observations this tendency does not happen.
The most difficult instances in each interference
lead to the language model’s lowest score, after
their 100 observations. AT2, including an opposed
pronoun as an attractor, particularly shows unstable
generalization. We expected that the instances with
longer distances and more attractors, more strongly
interfere with the models’ generalization, but this
tendency is not clearly shown in this experiment.
To the question of whether the instances with long-
distance agreement induce linguistic generalization,
these results answer that with the larger number of
observations, the model’s generalization relatively
stagnates.

7 Discussion: Considering Wug Creation

In this work, we use to newly coined words that
do not appear in the original vocabulary, following
Berko (1958). Still, our used wug has some gap



N  wug methods Phenomena

ANA. NUM. AGR  D-N AGR  S-V AGR (V)
tag 57.5 47.0 62.2
tag w/ morph. 59.0 80.5 83.3
0 wug_vl 81.3 89.5 86.7
wug_v2 81.2 91.2 86.0
wug_v3 81.5 88.7 85.0
tag 72.5 76.2 78.0
tag w/ morph. 94.0 99.5 91.3
25 wug_vl 92.3 87.7 90.2
wug_v2 81.2 87.7 88.5
wug_v3 90.5 87.5 86.5

Table 4: Models’ scores calculated by the language
models that are trained on the pretraining data with
indirect instances of different wug creation methods. N
denotes the number of observations.

from the original one. In the original wug test, they
use the words that do not exist in the language but
conform to the phonological rule in the language,
In contrast, we use the tag <wug#n> as wug in
those experiments. Since the original wug is more
phonologically natural, and the subwords are in the
existing vocabulary, the original setting is closer
to the environment of human language acquisition.
On the other hand, to conduct controlled experi-
ments on the number of instances that the model
observed, the setting might not be suitable because
this is far from the settings where a certain word is
never encountered. We used the tag <wug#n>. In
this section, we compare our method (fag method)
and the original method (wug method) to explore
the difference in their impact on the model’s lin-
guistic generalization.

Wug Generation We create wug using pseu-
doword generator Wuggy.® We choose 1,200
nouns from sample data taken from the one billion-
word Corpus of Contemporary American English
(COCA).” To create wug-like words, we use the
nouns to output four pseudo words for one noun
and randomly select one pseudo noun. We prepare
200 x 3 = 600 pseudo words, each 200 of which
are used separately (wug_vI-wug_v3) because we
expect that different wugs have different subwords
and they can show different results. 8 We use those
pseudo nouns instead of the tag in the same way as
in the previous experiments.

®https://github.com/WuggyCode/wuggy

"Downloaded  from https://www.wordfrequency.
info/samples/words_219k. txt

80n the other hand, for rag and tag w/ morph., we show the
results of only one model, because the different tags <wug#n>
have the same parameters and they actually show the same
results.

Settings We  target three  phenomena,
ANA.NUM.AGR, D-N AGR, and S-V AGR
(Vv), the wug of which is considered as common
nouns. No inflectional morphemes are added to
plural common nouns in the fag method while the
morphemes are added to plural common nouns
in the wug method. For ablation, we prepare the
tag with inflectional morphemes (tag w/ morph.
method), which employs the tag <wug#n> same as
the tag method but uses inflectional morphemes
same as the wug method. We compare the models
trained on the pretraining data with the tag method,
the wug methods, and fag w/ morph. method.
Other settings are the same as Section 5.

Results Figure 4 shows the scores of the fag,
tag w/ morph., and three sets of wug. In the wug
and fag w/ morph. methods, the language mod-
els correctly judge the acceptability of sentences,
mostly more than 80-90%, surprisingly with the
data that includes zero additional instances. This
result is probably because language models deter-
mine whether a word is singular or plural, based
on whether an inflection morpheme “s” follows it,
even if the word is novel. This occurs with both
novel words and novel subword combinations, but
the impact is greater with the latter, comparing the
two methods. In addition, despite our expectation
that different subword combinations show differ-
ent results, we observed no large score variances
among the three vocabulary sets except for 25 times
in ANA.NUM.AGR. From those results, we found
a trade-off between the settings plausible for hu-
man language acquisition and strictly controlled
settings. We prioritized the latter in this work, but
the direction to the former is also a good setting
depending on the research questions.

8 Conclusion

We investigate the degree of indirectness and the
amount of data required to induce human-like lin-
guistic generalization in language models. We
found that language models do not induce human-
like linguistic generalization even with a degree of
indirectness that seems intuitively manageable for
humans, depending on language phenomena. This
limitation indicates a direction for future studies:
implementing a model that can use indirect evi-
dence, which will lead to data-efficient language
acquisition comparable to that of humans.


https://github.com/WuggyCode/wuggy
https://www.wordfrequency.info/samples/words_219k.txt
https://www.wordfrequency.info/samples/words_219k.txt

Limitations

We recognize the following limitations in this
study:

Linguistic Knowledge by Function Words We
generate synthetic instances only for linguistic phe-
nomena concerning content words such as nouns
and verbs. We avoid generating new function
words (e.g., new wh-word as a relative pronoun).

Nonce Sentence We have not dug into the dif-
ference between natural sentences and nonce sen-
tences (Gulordava et al., 2018; Wei et al., 2021)
that are grammatical but completely meaningless
because we create additional training and evalua-
tion instances with LLM, which tends to generate
naturally plausible sentences. Nonce sentences are
less plausible in human language acquisition but
exclude semantic selectional-preferences cues (Gu-
lordava et al., 2018; Goldberg, 2019). According
to Section 7, there can be a trade-off between train-
ing language models in experimental settings that
closely resemble natural human language acquisi-
tion and those that are strictly controlled. Future
work can determine whether nonce sentences with
indirect evidence differently affect linguistic gener-
alization in language models.

Zero Observations While adding the tags
<wug#n> into the vocabulary, their parameters in
language models are randomly initialized. When
the language models never observe the sentences
including the tag while training, their parameters
still remain initialized, which may lead to different
results in language models. To confirm this effect,
we compare the language model with the default
standard deviation of the initializer for all weight
matrices (std=0.02) to that with one-tenth standard
deviation (std=0.002), using three kinds of seeds.
Table 6 in Appendix E shows that the deviation of
scores in the model used one-tenth std are smaller.
This finding implies that a smaller std would con-
tribute to the stability of the results. However, too
small std may pose a risk of negatively impacting
the training process. We thus use default std in the
current work.

Limited Model Size and Pretraining Data We
use a small-scale language model and pretraining
data in this work because we aim to find the dif-
ferences from human inductive biases as much as
possible. It is uncertain that the same trends as our
work will appear in models of any size. Whether

scaling laws apply to indirect data in accelerating
model generalization would be an interesting future
work.

Ethics Statement

There might be a possibility that the texts we used
(Wikipedia) and the sentences generated by large
language models are socially biased, despite their
popular use in the NLP community.
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lar_plural_subject_verb_agreement_2".
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Create 488 minimal sentence pairs, containing a grammatical and an ungrammatical sentence, follewing the template pair and rules.
Template pair:
[WUG] <singular transitive verb= herself.
[WUG] <singular transitive verb> himself.

Rules:
- You must include the lemma of <singular transitive verb> with a different initial letter and different final letter from the previous ones.
- Always use the female proper noun [WUG] with bracket[] and uppercase.

- You must include various auxiliary verbs and tenses in <singular transitive verb> with a different initial letter and different final letter from the previous anes.
- You often include negations in <singular transitive verb> if previous pairs did not contain ones.

— Do not include adverbs.
- Generate 408 pairs including numbering that starts from 1 and ends at 408.

Example:

[WUG] will hurt herself.
*[WUG] will hurt himself.

Figure 4: Prompts used to create evaluation examples.

D Data generation

D.1 Pretraining Data

We aim to pretrain the language models for 18
epochs while controlling the number of occur-
rences of target instances. To achieve this, we con-
catenate the pretraining data 18 times consecutively
and randomly select where to inject each additional
training instance.

D.2 Creating data with LLM

architecture roberta-base  The GPT-4 sometimes inconsistently generates sen-
vocab size 9,600 tences with hallucination; it generates the same
hidden size S12 sentence repeatedly and sometimes stops generat-
Model heads 8 ing midway. To generate lexically diverse instances
layers 8 as many instances as possible, we prompt GPT-4 to
dropout 0.1? avoid using the same lemma as in the previous in-
layer norm eps le-127 stance. To get appropriate instances, we prompt the
initializer range 0.02 GPT-4 to generate double the number of instances’,
algorithm AdamW and then select the designated number of instances,
learning rates De-4 avoiding duplicates. We adjust the percentage of
Optimizer betas (0.9,0.999)  sentences with negation words to 10-50%. The
weight decay 0.0 balanced instances resulted in containing 100 fe-
1i male and 100 male instances in ANA.GEN.AGR, 34
Scheduler type thear female singular and 33 male singular, 34 singular
warmup updates 24,000 . . .
and 100 plural instances in ANA.NUM.AGR, 200 in-
gradient accumulation 4 stances each in TRANSITIVE and INTRANSITIVE,
Training  epoch 18 50 this, 50 that, 50 these and 50 those in D-N AGR.
batch size 16 100 singular and 100 plural each in S-V AGR.
line by line true
NGPU 1 E Different Seeds

Table 5: Hyperparameters of the language models.

11

The scores of language models with different seeds
and the standard deviation of the initializers are
listed in Table 6.

The number of instances generated based on the prompt
can vary. Sometimes the output meets the specified quantity,
while other times it may be fewer, potentially even less than
half of the requested amount. If not enough instances are
generated, we input instances from three steps earlier and
generate additional instances to meet the requirements.



std

phenomena seed 0.02 0.002
1 523 56.5
ANA.GEN.AGR 2 51.0 535
3 50.5 56.5
1 575 628
ANA.NUM.AGR 2 623 67.7
3 593 62.7
1 92.0 90.7
TRANSITIVE 2 89.0 90.7
3 89.7 88.7
1 11.3 11.5
INTRANSITIVE 2 12.3  11.8
3 143 12.7
1 470 473
D-N AGR 2 49.0 50.7
3 46.3 48.7
1 622 532
S-V AGR (V) 2 52.0 54.3
3 550 56.7
1 46.5 49.2
S-V AGR (S) 2 48.3  50.7
3 523 483

Table 6: Scores of langauge models with different seeds
and standard deviation of the initializers.
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