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Abstract

Medical image segmentation based on neural networks is pivotal in promoting
digital health equity. The attention mechanism increasingly serves as a key compo-
nent in modern neural networks, as it enables the network to focus on regions of
interest, thus improving the segmentation accuracy in medical images. However,
current attention mechanisms confront an accuracy-complexity trade-off paradox:
accuracy gains demand higher computational costs, while reducing complexity
sacrifices model accuracy. Such a contradiction inherently restricts the real-world
deployment of attention mechanisms in resource-limited settings, thus exacerbating
healthcare disparities. To overcome this dilemma, we propose a parameter-free
Neighborhood Self-Dissimilarity Attention (NSDA), inspired by radiologists’ di-
agnostic patterns of prioritizing regions exhibiting substantial differences during
clinical image interpretation. Unlike pairwise-similarity-based self-attention mech-
anisms, NSDA constructs a size-adaptive local dissimilarity measure that quantifies
element-neighborhood differences. By assigning higher attention weights to re-
gions with larger feature differences, NSDA directs the neural network to focus on
high-discrepancy regions, thus improving segmentation accuracy without adding
trainable parameters directly related to computational complexity. The experimen-
tal results demonstrate the effectiveness and generalization of our method. This
study presents a parameter-free attention paradigm, designed with clinical prior
knowledge, to improve neural network performance for medical image analysis and
contribute to digital health equity in low-resource settings. The code is available at
https://github.com/ChenJunren-Lab/Neighborhood-Self-Dissimilarity-Attention.

1 Introduction

Medical image segmentation is pivotal in modern healthcare by enabling precise delineation of
anatomical structures and radiological abnormalities within medical images [47]. This segmentation
provides clinicians with valuable imaging information for personalized decision-making, thereby
enhancing patient care and outcomes [11]. However, in resource-limited regions where expert-level
radiological expertise is scarce, suboptimal medical image segmentation constitutes a significant
barrier to equitable care [16], often leading to delayed or inaccurate diagnoses for complex conditions
like multi-organ segmentation and tumor delineation [1, 45]. Such disparities create a diagnostic
expertise gap between resource-rich and resource-poor healthcare systems, impeding equitable access
to precision diagnostics [35]. To bridge this healthcare divide, neural networks have emerged as
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transformative solutions [12]. They are capable of automatically learning complex feature patterns
from medical images [31], thereby overcoming the limitations of traditional manual methods, which
are time-consuming and rely on clinical expertise. Therefore, neural networks can potentially promote
digital health equity and become the dominant approach in medical image segmentation [4, 21].

Attention mechanisms [23], inspired by the human visual system [15, 34], are now essential for
improving medical image segmentation in modern neural networks [67]. These attention mechanisms
recalibrate the channel-wise or spatial importance within the feature map, enabling the network to
selectively focus on the Regions of Interest (ROIs), thus improving the segmentation accuracy in med-
ical images [49]. Modern attention mechanisms widely adopt advanced feature extraction strategies
such as multi-branch architectures [41], multi-scale processing [52], large-kernel convolutions [42],
and self-attention operators [25] to enhance accuracy in neural networks. However, such sophisticated
designs inevitably increase model complexity, hindering practical deployment in low-resource set-
tings [20], thereby compelling practitioners to forgo integrating these advanced attention mechanisms
into their neural networks [61]. Although lightweight architectures reduce computational demands
through compact convolution operators (e.g., depthwise separable convolutions) [7], group channel
processing [52, 62], and sparse sampling strategies [39], such architectural simplifications often result
in coarse-grained feature representations. This representational degradation can impair segmentation
accuracy in medical images, as the accurate delineation of subtle radiological abnormalities and
anatomical structures relies on fine-grained features [3, 43]. Consequently, the design of attention
mechanisms confronts a fundamental architectural conundrum: the endeavor to improve segmentation
accuracy runs counter to the maintenance of computational efficiency. This accuracy-complexity
trade-off paradox exacerbates healthcare disparities by limiting equitable access to high-accuracy
attention mechanisms for neural networks in resource-constrained environments.

To overcome the accuracy-complexity trade-off paradox, we propose a parameter-free Neighborhood
Self-Dissimilarity Attention (NSDA) mechanism for neural networks. This approach focuses on
element-neighborhood differences to boost segmentation accuracy without adding trainable param-
eters directly related to computational complexity. The proposed NSDA is inspired by two key
principles in radiologists’ image-reading practices [60]: (i) Neighborhood Inspection [59]. It rep-
resents a focal-to-contextual observational paradigm, wherein radiologists begin by focusing on a
specific element (e.g., a pixel) or ROI in an image and then expand their attention to the neighborhood
to synthesize contextual clues. (ii) Difference Prioritization [2]. Radiologists prioritize differences
in medical images, as these features constitute essential biomarkers for clinical decision-making.
Accordingly, we devise a dissimilarity measure based on complement of a Gaussian kernel to quantify
the feature differences between each element and its neighborhood in the feature map. By assigning
higher attention weights to regions with salient feature differences, this approach enhances segmenta-
tion accuracy. Notably, most existing difference-based approaches for medical image analysis operate
in the multi-image paradigm [8, 18, 26, 40], relying on multiple feature images to characterize
inter-image differences. Unlike these methods requiring inter-image analysis, NSDA processes
local neighborhoods within single images, thereby avoiding multi-image comparisons yet retaining
sensitivity to fine-grained differences. Furthermore, given the clinical prior knowledge that diagnosti-
cally critical patterns are often localized [19, 68], we introduce a Dynamic Neighborhood Scaling
(DyNS) strategy for NSDA. DyNS adaptively regulates the neighborhood window size in NSDA
across network hierarchies to prevent feature homogenization induced by aggregating long-range
contextual information. Unlike pairwise-similarity-based self-attention mechanisms [25, 39, 57], the
proposed NSDA focuses on element-neighborhood dissimilarity without adding parameters. Our
radiologist-vision-inspired attention mechanism not only preserves original network complexity, but
also demonstrates the potential to advance digital health equity in low-resource settings.

In summary, the main contributions of our study are as follows:

• Inspired by radiologists’ neighborhood inspection and difference prioritization, we propose a
parameter-free Neighborhood Self-Dissimilarity Attention (NSDA) that enables neural networks to
focus on element-neighborhood differences, thereby boosting segmentation accuracy.

• We introduce a Dynamic Neighborhood Scaling (DyNS) strategy in NSDA, which adaptively adjusts
NSDA’s neighborhood window size across network hierarchies to prevent feature homogenization
caused by aggregating excessive long-range information.

• Experimental results demonstrate that NSDA outperforms traditional attention mechanisms, high-
lighting their effectiveness and potential to promote digital health equity in low-resource settings.
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Figure 1: The Overview of our Neighborhood Self-Dissimilarity Attention (NSDA). (a) The proposed
architecture of the NSDA illustrates how a Gaussian-kernel-based measure quantifies element-
neighborhood dissimilarity, thereby assigning higher weights to elements with more salient dif-
ferences. (b) The dissimilarity-driven weighting curve generated by NSDA. (c) The conventional
sigmoid-based weighting curve employed in traditional attention mechanisms. Compared with
traditional sigmoid-based methods, NSDA eliminates sign-induced bias, thereby ensuring equitably
weighted contributions from features with opposing polarity.

2 Related Work

Medical Image Segmentation based on data-driven U-shaped Networks (U-Nets) [4, 53] has trig-
gered a revolutionary trend in computer-aided diagnosis, demonstrating great potential to democratize
access to precision medicine in resource-constrained clinical environments [12]. However, due to
the inherent inductive bias of Convolutional Neural Networks (CNNs), U-Nets struggle to model
long-range contextual relationships [64], limiting their ability to comprehensively characterize ROIs.
To mitigate this limitation, subsequent U-Net variants expand receptive fields via parallel or cascaded
modules [12, 52]. More recently, advanced approaches [10, 24, 32, 46] integrate Vision Transformers
(ViTs) or Mamba architectures to model global information for enhanced contextual awareness.
However, most existing methods still process all regions of an image equally during feature learning,
failing to pay attention to diagnostically vital ROIs, and thus achieving limited segmentation accuracy.
To bridge this gap, attention mechanisms have emerged as a pivotal solution [23], allowing improved
segmentation accuracy by guiding networks to focus on salient regions in complex scenes [14, 54, 67].

Visual Attention Mechanisms in neural networks are broadly categorized into channel and spatial at-
tention [23], recalibrating feature map weights to prioritize ROIs [49]. Channel attention mechanisms
aggregate channel information via global pooling to generate compressed descriptor vectors [13, 50].
These vectors undergo nonlinear transformations through convolutions or Multi-Layer Perceptrons
(MLPs) before yielding channel weights by a sigmoid function, enabling networks to prioritize
semantically relevant targets [30]. However, these mechanisms inherently lack spatial perception
capabilities [63]. Spatial attention mechanisms address this limitation by capturing positional depen-
dencies between pixels or tokens [9, 29]. For instance, established self-attention architectures [25, 39]
partition feature maps into tokens and compute pairwise similarity matrices to model global contex-
tual relationships. While subsequent mechanisms primarily enhance feature representation based on
channel or spatial dimensions [7, 52, 62], these methods rely on computationally intensive operations
such as convolutions and MLPs, thus rendering them impractical for resource-limited settings and
expanding the healthcare access divide [61]. Recent lightweight alternatives [55, 66] use simplified
operations such as compact operators, partial computation, or sparse sampling to reduce complexity,
yet often degrade fine-grained feature representation critical for medical image segmentation [12],
leading to suboptimal accuracy gain for neural networks. Thus, overcoming the accuracy-complexity
trade-off paradox is an urgent challenge in the research of attention mechanisms.

3 Methodology

Overview. We propose a radiologist-vision-inspired NSDA, which guides neural networks to focus on
element-neighborhood differences to enhance segmentation accuracy while overcoming the accuracy-
complexity trade-off paradox. Figure 1 illustrates a schematic of the proposed NSDA operating
on individual elements of a feature map. First, we design a Dynamic Neighborhood Scaling to
adaptively regulate NSDA’s neighborhood boundaries across network layers, preventing feature
homogenization caused by aggregating excessive long-range information. Second, we simulate
a radiologist’s neighborhood inspection by extending the analysis scope from each element to its
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neighborhood, thereby aggregating contextual information. Third, we construct a dissimilarity
measure that quantifies the dissimilarity between each element and its aggregated neighborhood
representation, which in turn modulates attention weights based on the degree of dissimilarity,
thus modeling the radiologist’s difference prioritization. Finally, we perform Attention Fusion on
the original element and attention weight to obtain the final output. Each element undergoes the
aforementioned operations to generate attention-augmented feature maps, enabling element-wise
discriminability critical for fine-grained medical image segmentation.

Dynamic Neighborhood Scaling. Traditional attention mechanisms capture the global context
through global pooling or self-attention operations. However, in medical imaging, ROIs such as
lesions or anatomical structures often occupy small spatial footprints, but this constraint is ignored by
most existing approaches, leading to a suboptimal segmentation accuracy improvement for neural
networks. Although straightforwardly constraining attention to a fixed-size window may initially
seem beneficial, such a static window gradually exceeds the feature map size as the network depth
increases, homogenizing critical local feature representations. To address this issue, we design a
simple Dynamic Neighborhood Scaling (DyNS) strategy that adjusts the neighborhood window
size in proportion to the resolution of the feature map (i.e., its spatial dimensions) at each network
hierarchy. This process is formulated as follows:

bL =

⌊
BL

S

⌋
+ c, {bL, BL, S} ∈ N+, c =

{
1, if ⌊BL/S⌋ is even
2, otherwise

, (1)

where bL and BL denote the neighborhood window size (width/height) and the corresponding feature
map size in the L-th network layer, respectively. The scale factor S is empirically set to 8. The constant
c ensures bilateral symmetry by ensuring that bL is an odd integer, which establishes equidistant
left-right boundaries around target elements to facilitate centered neighborhood aggregation. As a
result, DyNS preserves fine-grained features while mitigating the feature homogenization arising
from the aggregation of extraneous global contexts, which is crucial for segmenting small ROIs.

Neighborhood Inspection. In medical image analysis, the semantic interpretation of individual
elements (e.g., pixels) is primarily determined by localized contextual patterns rather than long-range
dependencies. Although natural images benefit from global region interactions for holistic scene
understanding, medical imaging exhibits a distinct behavior in which excessive reliance on long-range
dependencies introduces feature homogenization. Inspired by radiologists’ neighborhood inspection
(i.e., the focal-to-contextual observational paradigm), we model per-element neighborhood contextual
dependencies in feature maps. This design simulates clinical reasoning by prioritizing fine-grained
patterns within constrained anatomical regions, effectively avoiding feature homogenization while
retaining discriminative details essential for segmentation. Specifically, for a given target element
xi,j , we aggregate features from its centered bL × bL window. As shown in Figure 1, this process
generates two statistical metrics: an average yi,j encoding the contextual representation of the
neighborhood window [69] and a variance σ2

i,j quantifying the feature variability within the localized
neighborhood [33]. This process is expressed as follows:

yi,j =
1

bL × bL

i+l∑
n=i−l

j+l∑
m=j−l

(xm,n), σ
2
i,j =

1

bL × bL

i+l∑
n=i−l

j+l∑
m=j−l

(xm,n − yi,j)
2, l =

bL − 1

2
, (2)

where i, j ∈ N+ denote the 2D spatial coordinates in the feature map and l ∈ N+ defines the
minimum distance from the element xi,j to the boundaries of its local neighborhood window.

Difference Prioritization. The dissimilarity between an element and its neighborhood depicts the
presence of complex high-frequency patterns, such as textural variations, within localized regions.
This observation implies that quantifying discrepancies, as opposed to similarities, offers heightened
sensitivity in detecting subtle anatomical boundaries and radiological anomalies. Motivated by radiol-
ogists’ image-reading practice of prioritizing discrepancies, we propose a novel dissimilarity measure
that adaptively assigns higher attention weights to elements exhibiting more salient deviations from
their neighborhood context. Although the Euclidean distance is widely used as a dissimilarity mea-
sure, it violates two fundamental requirements for attention mechanisms [23, 49, 67]: (i) a nonlinear
response to feature variations and (ii) a bounded output within [0, 1]. In contrast, the Gaussian
kernel [6, 36] satisfies both requirements, yet intrinsically captures similarity, not dissimilarity. To
address this issue, we derive our dissimilarity measure by the complement of the Gaussian kernel.
Specifically, we first compute the Gaussian-kernel-based similarity score between the element xi,j
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and its contextually aggregated neighborhood representation yi,j . Here, yi,j is obtained by the local
average pooling [13, 69]. We then derive a dissimilarity score, exploiting the complementarity
constraint between similarity and dissimilarity scores, which sum to 1. The above process generates
the corresponding attention weight ai,j ∈ [0, 1] for element xi,j as follows:

ai,j = DiSim(xi,j , yi,j , σ
2
i,j) = 1− Sim(xi,j , yi,j , σ

2
i,j) = 1− e

(
−∥xi,j−yi,j∥2

2σ2
i,j

)
, (3)

where yi,j and σ2
i,j are derived directly from Equation 2. The function Sim(·) ∈ [0, 1] represents the

Gaussian kernel, which quantifies the similarity between xi,j and yi,j [6]. The proposed Gaussian-
kernel-based dissimilarity measure ensures adherence to the boundary conditions of the attention
score while strictly enforcing the complementarity constraint of similarity.

Attention Fusion. The attention mechanism is typically integrated into neural networks by element-
wise multiplication between weight matrices A ∈ RH×W and feature maps X ∈ RH×W . However,
in this conventional fusion method, the weight ai,j ∈ A falls in the range [0, 1], resulting in xi,j ·ai,j ≤
xi,j , which diminishes the feature representation. To address this limitation, inspired by [23, 27, 49],
we incorporate a residual connection for the attention fusion. For a target element xi,j with its
associated attention weight ai,j , the attention-augmented feature is yielded via:

zi,j = xi,j · ai,j + xi,j . (4)

The proposed method performs element-wise attention fusion per feature map. Given an input
feature map X ∈ RH×W and its corresponding attention weight matrix A ∈ RH×W , according to
Equation 4, the final output feature map Z ∈ RH×W is computed through:

Z = (X ⊙A)⊕X, X =

 x1,1 · · · x1,W

...
. . .

...
xH,1 · · · xH,W

 , A =

 a1,1 · · · a1,W
...

. . .
...

aH,1 · · · aH,W

 , (5)

where ⊙ and ⊕ denote element-wise multiplication and element-wise addition, respectively. Our
method eliminates learnable parameters (e.g., convolutional layers or MLPs) directly related to
computational complexity, thus preserving its compatibility in resource-limited deployment scenarios.

4 Experiments

Objective. We perform experiments to study the ability of NSDA, designed to address the following
research questions (RQs):

• RQ1: How does our Neighborhood Self-Dissimilarity Attention (NSDA) behave in the neural
networks for medical image segmentation, compared with the traditional attention mechanisms?

• RQ2: Does the inference mechanism of NSDA possess explainability?
• RQ3: How is the generalizability of NSDA across heterogeneous architectures and tasks?
• RQ4: How does the neighborhood window size in NSDA affect segmentation accuracy, and is

Dynamic Neighborhood Scaling (DyNS) effective?
• RQ5: How sensitive is the scale factor in DyNS to segmentation accuracy?
• RQ6: How does the variance coefficient in NSDA’s Gaussian kernel affect segmentation accuracy?
• RQ7: Can dissimilarity in NSDA be quantified using other measures, like the Euclidean distance?
• RQ8: Which is more critical for medical image segmentation in NSDA, similarity or dissimilarity?

Datasets. We evaluate the effectiveness of NSDA on three prominent medical image segmenta-
tion benchmarks with diverse modalities and scales: Synapse (multi-organ abdominal CT) [45],
ACDC (cardiac MRI) [5], and BUSI (breast ultrasound) [1]. To thoroughly assess generalization
capabilities for the proposed NSDA, we extend validation to COVID-19 pneumonia lesion detec-
tion (CPLDet) [51], endoscopic bladder tissue classification (EBTCls) [38], and natural image
segmentation (VOCSeg, combining PASCAL VOC07 [17] and VOC12 [65]).

Baselines. To conduct a comprehensive comparison, we not only compare the well-known attention
mechanisms in medical image tasks like SE [30], CBAM [63], and MSCAM [52], but also compare
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Table 1: A quantitative comparison of the proposed NSDA and other baselines integrated into
segmentation networks (U-Net TransUNet, UNeXt, and TinyU-Net) across datasets (Synapse, ACDC,
and BUSI), using mean DSC (%) for main evaluation metric. The highest score is marked in bold.

Network Params FLOPs Tput Dataset Network Params FLOPs Tput Dataset

(M) (G) (FPS) Synapse ACDC BUSI (M) (G) (FPS) Synapse ACDC BUSI

U-Net [53] 19.5820 101.7706 298.34 78.18 91.77 71.60 TransUNet [10] 93.2317 64.6085 68.26 79.89 92.49 72.70
+ SE [30] 19.7018 101.8026 246.19 75.44 90.53 71.90 + SE [30] 93.4145 64.6182 64.55 79.46 92.42 73.71
+ CBAM [63] 19.7052 101.8370 117.49 78.06 90.85 66.29 + CBAM [63] 93.4176 64.6367 53.32 79.23 92.41 72.48
+ ECA [61] 19.5820 101.8023 251.74 76.48 90.60 69.89 + ECA [61] 93.2317 64.6179 64.70 79.45 92.48 68.15
+ BAM [50] 19.8954 102.6914 150.34 77.48 92.03 71.23 + BAM [50] 93.7061 65.0218 52.75 79.04 92.46 72.94
+ SimAM [66] 19.5820 101.7706 242.82 77.29 91.68 70.97 + SimAM [66] 93.2317 64.6085 64.40 79.76 92.35 67.63
+ CA [29] 19.6823 101.8463 166.37 76.00 90.04 70.34 + CA [29] 93.3766 64.6368 59.14 79.62 91.64 31.52
+ GC [9] 20.0679 101.8043 210.49 77.50 91.38 71.47 + GC [9] 93.9692 64.6199 60.97 82.90 92.42 73.89
+ MHSA [25] 23.4255 119.4873 183.32 78.69 91.56 71.59 + MHSA [25] 99.0908 72.7292 59.22 81.55 92.48 71.12
+ MWSA [39] 19.8966 105.8307 91.26 43.28 72.73 55.25 + MWSA [39] 98.7160 64.6284 58.46 74.76 92.13 68.56
+ MLKA [62] 23.2917 121.6817 132.89 79.22 92.35 71.54 + MLKA [62] 98.6799 73.0168 54.59 78.65 92.46 73.38
+ CGA [13] 20.0660 104.9455 159.53 78.01 90.45 70.53 + CGA [13] 93.8239 65.5551 56.72 80.68 92.46 71.96
+ CAA [7] 21.5718 111.6123 183.90 77.72 90.79 71.03 + CAA [7] 96.2244 68.9593 60.50 80.46 92.42 71.27
+ CMO [28] 22.4890 115.3436 183.36 77.17 92.15 56.41 + CMO [28] 97.6486 70.7833 60.17 79.57 92.29 72.28
+ MSCAM [52] 23.7311 122.9160 85.54 76.22 91.40 70.34 + MSCAM [52] 99.4458 73.7508 47.79 19.03 86.03 71.07
+ NSDA (Ours) 19.5820 101.7706 130.81 81.62 92.56 74.46 + NSDA (Ours) 93.2317 64.6085 63.51 83.81 92.77 75.29
UNeXt [58] 1.4721 1.1628 238.36 72.40 89.18 63.71 TinyU-Net [12] 0.4816 3.3855 172.42 78.33 91.68 72.24
+ SE [30] 1.4743 1.1668 203.38 71.87 88.74 60.38 + SE [30] 0.5687 3.4171 141.93 77.48 91.56 71.24
+ CBAM [63] 1.4747 1.1878 130.76 71.64 87.97 40.24 + CBAM [63] 0.5715 3.4514 100.90 79.23 90.14 70.82
+ ECA [61] 1.4721 1.1668 205.20 71.57 88.67 62.02 + ECA [61] 0.4816 3.4169 143.44 79.53 91.94 69.92
+ BAM [50] 1.4782 1.1894 149.58 73.17 89.11 65.47 + BAM [50] 0.7097 4.2795 102.13 79.00 91.66 71.65
+ SimAM [66] 1.4721 1.1628 209.87 70.78 88.15 64.79 + SimAM [66] 0.4816 3.3855 145.11 78.03 91.47 70.29
+ CA [29] 1.4767 1.1719 157.17 26.96 69.59 20.15 + CA [29] 0.5564 3.4595 113.92 80.05 91.67 71.91
+ GC [9] 5.7934 1.1763 180.54 72.32 89.17 65.18 + GC [9] 0.8351 3.4187 130.87 78.31 92.00 71.57
+ MHSA [25] 1.5434 1.5655 168.57 72.29 89.04 63.45 + MHSA [25] 3.2746 20.5653 122.07 80.02 92.07 71.23
+ MWSA [39] 1.4950 1.6661 99.51 58.38 60.75 19.80 + MWSA [39] 0.7301 7.4120 74.89 73.24 90.53 66.35
+ MLKA [62] 1.5596 2.0617 143.39 72.35 88.23 61.43 + MLKA [62] 3.1991 22.7904 98.55 80.29 92.11 71.89
+ CGA [13] 1.4944 1.5732 153.03 73.03 89.44 60.28 + CGA [13] 0.8487 6.5342 109.02 79.21 92.22 72.20
+ CAA [7] 1.5127 1.4860 184.00 51.63 79.25 51.25 + CAA [7] 1.9319 12.9506 125.17 80.37 92.37 71.34
+ CMO [28] 1.5273 1.5002 173.81 50.81 86.62 28.80 + CMO [28] 2.5955 16.5535 122.98 79.58 92.34 71.46
+ MSCAM [52] 1.5593 2.0073 106.12 11.29 10.01 20.68 + MSCAM [52] 3.5083 23.9657 75.90 37.84 79.83 71.89
+ NSDA (Ours) 1.4721 1.1628 183.98 77.39 90.18 67.60 + NSDA (Ours) 0.4816 3.3855 126.29 81.57 92.73 75.09

the outstanding attention mechanisms in natural image/remote sensing image tasks such as CA [29],
MLKA [62], CAA [7], and pairwise-similarity-based self-attention mechanisms like MHSA [25],
MWSA [39]. To compare attention mechanisms that can be deployed in resource-limited settings, we
incorporate lightweight variants (e.g., ECA [61], SimAM [66]) for baseline comparison.

Implementation Details. Attention mechanisms are typically integrated into the final layer of
feature extraction modules in established medical image segmentation architectures (U-Net [53],
TransUNet [10], UNeXt [58], and TinyU-Net [12]) following conventional integration paradigms [49].
This conventional integration scheme preserves the architectural integrity of the backbone networks.
We conduct experiments on an NVIDIA GeForce RTX 4090 GPU using the PyTorch framework. The
models are trained for 300 epochs using the Adam optimizer [37], with a composite loss function that
combines cross-entropy and Dice loss [12]. The initial learning rate is set to 1× 10−4 and decayed
using a cosine annealing scheduler, with a minimum value of 1× 10−6. Synapse and ACDC replicate
TransUNet’s setup [44, 45], while EBTCls adopts the method from [38] for processing images. We
adopt different splits for each benchmark: a 6:2:2 ratio (train/validation/test) for BUSI, an 8:1:1
ratio for NCPDet, and a 9:1 train-test split for VOCSeg. All input images are resized to 256× 256
resolution. Following the training strategy proposed in [22], data augmentation (flip, rotation) is
performed for the first 270 epochs and turned off for the last 10% of training.

Evaluation Metrics. To evaluate model performance, we use the following evaluation metrics: the
Dice Similarity Coefficient (DSC) for segmentation tasks [12], the mean Average Precision (mAP)
for detection tasks [22], and the Top-1 Accuracy (Top-1 Acc), the mean Recall (mRec), the mean
Precision (mPrec) for classification tasks. The computational efficiency of the model is assessed using
the number of Parameters (Params), Floating-Point Operations (FLOPs), and Throughput (Tput)
to quantify model size, computational complexity, and inference speed, respectively. The reported
FLOPs correspond to twice the Multiply-Accumulate Operations (MACs) measured by THOP [22].

5 Results and Discussion

Quantitative Analysis (RQ1). Table 1 presents a comprehensive comparison of established neural
network architectures integrated with distinct attention mechanisms in three benchmark datasets for
medical image segmentation. From these results, we have the following observations:
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• NSDA achieves the most significant performance gains for neural network architectures across
medical image segmentation benchmarks. The experimental results demonstrate that our method
achieves consistent state-of-the-art performance improvements integrated into various segmentation
networks (U-Net, TransUNet, UNeXt, and TinyU-Net) across multiple benchmarks (Synapse,
ACDC, and BUSI). Specifically, when integrated into these network architectures, NSDA consis-
tently achieves higher mean DSC (mDSC). For instance, the NSDA-augmented UNeXt achieves
substantial gains of +4.99%, 1.00%, and +3.89% in mean DSC over the original UNeXt on the
Synapse, ACDC, and BUSI datasets, respectively, significantly outperforming other attention base-
lines. The observed performance gains stem from NSDA’s element-wise neighborhood modeling. It
prevents feature homogenization through size-adaptive context aggregation and fine-grained feature
representations. Our NSDA guides the network’s attention toward regions with salient differences,
thus enhancing its ability to detect complex anatomical structures and subtle radiological anomalies.

• Traditional attention mechanisms demonstrate limited efficacy in optimizing neural networks
for medical image segmentation. As evidenced by Table 1, 168 baseline resutls of attention-
integrated architectures reveal that 79% (132 out of 168) underperformed their original networks in
medical image segmentation tasks. Notably, TransUNet achieves superior segmentation accuracy
despite containing 91M more parameters than the lightweight UNeXt (Table 1). However, most
attention modules with parameter counts below this threshold degrade segmentation performance,
exposing fundamental flaws in conventional attention architectures rather than overfitting. These
methods depend on global computation operators (e.g., pooling, self-attention), which induce
excessive feature homogenization during contextual aggregation, progressively eroding anatomi-
cally critical patterns crucial for precise delineation. Unlike traditional attention mechanisms, our
approach addresses the limitation of coarse-grained feature representation by explicitly modeling
element-neighborhood dissimilarity to capture fine-grained differences. This strategy effectively
guides the network’s focus toward regions of interest (ROIs), enhancing segmentation accuracy.

• NSDA has the potential to promote digital health equity in resource-limited settings. Compared
with traditional attention mechanisms and lightweight variants, our NSDA overcomes the long-
standing accuracy-complexity trade-off paradox, achieving optimal performance in segmentation ac-
curacy, parameter count, computational complexity (Table 1). For example, the NSDA-augmented
TinyU-Net preserves the architectural compactness of the original model (0.48M parameters, 3.39G
FLOPs) yet elevates segmentation accuracy by +3.24% mean DSC with a slight inference speed
reduction on the Synapse dataset. Remarkably, NSDA-equipped TinyU-Net exhibits 99.49% fewer
parameters and 94.75% lower computational complexity than TransUNet (0.48M vs. 93.23M
Params; 3.39G vs. 64.61G FLOPs), while delivering 1.85× faster inference speed (126.29 vs. 68.26
FPS) and superior mean DSC scores on Synapse (+1.68%), ACDC (+0.24%), and BUSI (+2.39%).
This efficiency stems from NSDA’s parameter-free design, which eschews resource-intensive opera-
tions such as convolutions or multi-layer perceptrons. Instead, it employs neighborhood aggregation
based on PyTorch framework alongside a Gaussian-kernel-based dissimilarity measure to focus on
fine-grained differences vital for medical image analysis. Such parameter-free architecture enables
seamless integration into diverse backbones of neural networks and empowers lightweight models
(e.g., UNeXt, TinyU-Net) to approximately rival the accuracy of resource-intensive models (e.g.,
TransUNet) — a critical advancement toward digital health equity in resource-limited settings.

Qualitative Analysis (RQ2). To examine the explainability of attention mechanisms, we utilize
Grad-CAM [56] to visualize the inference mechanism of these attention-integrated neural networks.
Figure 2 presents comparative qualitative results of various attention-integrated U-Net variants on
three medical imaging benchmarks. Grad-CAM visualizations reveal that our NSDA improves U-
Net’s ability to segment complex ROIs (e.g., the pancreas, right ventricle, and benign breast tumors),
which the baseline U-Net fails to segment adequately. Qualitative segmentation results demonstrate
that NSDA-augmented U-Net achieves significantly improved agreement with ground truth labels.
These results highlight NSDA’s outstanding explainability in medical image segmentation. This high
explainability of NSDA can be attributed to the explicit embedding of radiologists’ prior knowledge
(Neighborhood Inspection and Difference Prioritization) into NSDA’s architectural design.

Generalization Evaluation (RQ3). We substitute the original attention module in the attention-
augmented architecture (AttU-Net [48]) with NSDA to further assess its architectural generalization
as a drop-in replacement. We find that NSDA reduces AttU-Net’s computational complexity while
enhancing segmentation accuracy compared with its original attention module (Table 2). Moreover,
NSDA achieves consistent accuracy gains across various network architectures, demonstrating its

7



Image (top) &
Label (bottom) U-Net + NSDA + MSCAM+ CBAM+ SimAM+ MHSA+ ECA+ SE

BUSI

Malignant
Tumour

Benign
Tumour

Myocardium

Right
Ventricle

ACDC

Synapse

Left
Ventricle

Spleen

Right Kidney

Left Kidney

Gallbladder

Liver

Stomach

Aorta

Pancreas

Figure 2: Qualitative results across various benchmarks. Odd rows: Grad-CAM [56] visualizations of
attention-integrated U-Nets for segmenting the pancreas (Synapse [45]), right ventricle (ACDC [5]),
and benign tumors (BUSI [1]). Warmer colors (e.g., red) indicate higher attention weights. Even
rows: segmentation outcomes of attention-integrated U-Nets.

Table 2: Generalization performance of attention mechanisms across medical image tasks and a
natural image segmentation task. OrigAttn denotes the original attention block in AttU-Net. Attention
roles: ’+’ (complement), ’←’ (substitute). The highest score is marked in bold.

Synapse (Medical Image Segmention) CPLDet (Medical Image Detection) EBTCls (Medical Image Classification) VOCSeg (Natural Image Segmention)

Network Params FLOPs mDSC Network mAP50 mAP75 mAP Network Top-1 Acc mRec mPrec Network mIoU mPA

AttU-Net [48] 34.87 133.01 78.96 YOLOX [22] 81.65 53.02 49.68 ResNet34 [27] 60.93 53.52 46.91 U-Net [53] 45.46 57.69
OrigAttn←SE [30] 34.56 130.81 77.61 + SE [30] 81.47 52.68 49.26 + SE [30] 56.64 53.46 49.22 + SE [30] 41.09 52.14
OrigAttn←ECA [61] 34.51 130.81 77.38 + ECA [61] 79.31 50.66 47.42 + ECA [61] 56.61 48.58 42.24 + ECA [61] 40.92 51.58
OrigAttn←MHSA [25] 35.91 139.38 78.44 + MHSA [25] 80.67 53.03 47.41 + MHSA [25] 56.08 50.02 44.89 + MHSA [25] 28.00 37.12
OrigAttn←SimAM [66] 34.51 130.79 78.48 + SimAM [66] 79.01 52.88 48.93 + SimAM [66] 62.29 53.85 46.78 + SimAM [66] 48.06 59.45
OrigAttn←CBAM [63] 34.56 130.83 78.24 + CBAM [63] 80.56 55.17 50.45 + CBAM [63] 54.48 51.67 47.79 + CBAM [63] 34.53 44.56
OrigAttn←MSCAM [52] 36.03 141.08 73.56 + MSCAM [52] 53.84 10.62 20.94 + MSCAM [52] 52.37 48.41 45.92 + MSCAM [52] 38.47 51.33
OrigAttn←NSDA (Ours) 34.51 130.79 79.88 + NSDA (Ours) 82.04 55.83 50.92 + NSDA (Ours) 62.43 54.12 70.80 + NSDA (Ours) 48.55 61.04

cross-architecture generalization (Table 1). To further evaluate NSDA’s cross-task generalization
capacity, we integrate the attention mechanism into three network architectures: U-Net [53] for natural
image segmentation, YOLOX [22] for medical image detection, and ResNet34 [27] for medical
image classification. As shown in Table 2, NSDA consistently outperforms established attention
baselines (e.g., CBAM [63], MHSA [25]) across tasks. These results validate the generalization
of NSDA across architectures and tasks. The superior generalization of NSDA can be attributed
to its dynamic neighborhood feature representation, which adaptively identifies input-dependent
discrepancies between elements and their local context, rather than relying on static weights.

Ablation Analysis (RQ4). To investigate the role of DyNS in NSDA, we replace DyNS with static
neighborhood window sizes (K ∈ N+) in all network hierarchies. Since its complete removal leaves
NSDA’s neighborhood window size bL (Equation 1) undefined, K ∈ N+ must be manually set as
a static neighborhood window size. As shown in Figure 3, the segmentation accuracy difference
(∆mDSC) between NSDA-augmented networks with and without DyNS exhibits a bell-shaped trend
on the multi-scale medical segmentation benchmark (Synapse). The ∆mDSC initially increases
with the static neighborhood window size K, peaks at K = (31, 31), and subsequently declines
with further increases in K. In addition, we find that aggregating features from a global region
(K = (H,W )) degrades the segmentation accuracy. These results reveal two fundamental limitations
in contextual modeling for medical image segmentation: (i) overly small-scale localized context
aggregation fails to capture holistic structural patterns in ROIs, and (ii) excessively large-scale context
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Figure 3: The results (∆mDSC (%)) of ablation analysis for DyNS on Synapse dataset. H ∈ N+

and W ∈ N+ in K denote the height and width of the feature map, respectively. Each data point
represents the segmentation accuracy difference (∆mDSC) between DyNS-free NSDA-augmented
network architecture and its DyNS-equipped counterpart.

Table 3: The results (mDSC (%)) of sensitivity analysis for the scale factor S (Equation 1) and the
variance coefficient of Gaussian kernel (Equation 3) in NSDA on Synapse dataset. We report the
mean and standard deviation (meanstd) from three independent runs with different random seeds. ♠
and ♡ denote U-Net and TinyU-Net with NSDA, respectively. The highest score is marked in bold.

Network Scale Factor in DyNS Variance Coefficient of NSDA’s Gaussian Kernel

S = 2 S = 4 S = 8 (Ours) S = 16 S = 32 σ2
i,j 2σ2

i,j (Ours) 4σ2
i,j 6σ2

i,j

♠ 80.680.80 79.960.55 81.350.52 79.740.64 78.940.83 80.490.56 81.350.52 78.980.66 78.740.59
♡ 80.540.69 79.370.82 81.090.46 79.510.74 80.290.55 80.230.37 81.090.46 79.880.48 80.010.41

aggregation causes feature homogenization, which diminishes anatomically discriminative patterns.
Therefore, both excessively large window sizes and overly small window sizes lead to suboptimal
accuracy due to their static nature, demonstrating the necessity of balanced context aggregation.
Notably, as shown in Figure 3, all NSDA-augmented networks using the static neighborhood window
size instead of the proposed DyNS exhibit a consistent accuracy degradation (negative ∆mDSC)
compared with DyNS-equipped NSDA-augmented networks, empirically confirming the effective-
ness of DyNS in our NSDA. These results stem from DyNS dynamically adjusting the neighborhood
window size based on the resolution of the feature map at each network hierarchy, which mitigates
feature homogenization caused by aggregating overextended contextual ranges.

Sensitivity Analysis (RQ5 & RQ6). We evaluate the individual effects of the DyNS scale factor
S (Equation 1) and the variance coefficient (Equation 3) for NSDA on segmentation accuracy by
systematically varying their values (Table 3). We observe that NSDA-augmented networks achieve
optimal segmentation accuracy with a scale factor of S = 8. The results in Table 3 further confirm
the importance of the scale factor trade-off, which directly controls the size of the neighborhood
window (Equation 1). We attribute this to a trade-off in neighborhood window size: an undersized
neighborhood (large S) fails to capture essential context, while an oversized neighborhood (small
S) leads to the dilution of discriminative local features. In addition, we find that NSDA-augmented
networks achieve optimal segmentation accuracy with a Gaussian kernel variance coefficient of 2
(Table 3), empirically supporting the effectiveness of this moderately low variance coefficient. Our
NSDA’s variance coefficient of the Gaussian kernel aligns with the default setting in classical machine
learning methods, such as SVM and PCA [6, 36]. The underlying mechanism is illustrated by the
Gaussian kernel’s weight profile in Figure 1(b). A larger variance coefficient produces a broader,
flatter curve that dampens sensitivity to fine-grained differences, whereas a smaller coefficient yields
a sharper, more localized curve that amplifies tiny feature differences.

Comparative Analysis for Similarity vs. Dissimilarity (RQ7 & RQ8). To investigate the relative
efficacy of similarity versus dissimilarity in NSDA for medical image segmentation, we explore two
alternative measures by rewriting Equation 3: a similarity measure (ai,j = Sim) and a dissimilarity
measure (ai,j = EDiSim(·)) different from the proposed Gaussian-kernel-based dissimilarity mea-
sure (ai,j = DiSim(·)). Specifically, the Gaussian kernel is directly used for the similarity measure,
as it is the complementarity constraint for the proposed dissimilarity measure (Equation 3). While the
Euclidean distance serves as a widely adopted dissimilarity metric, it inherently fails to satisfy two
critical requirements of nonlinear transformation and [0, 1] range constraints in attention mechanism
design conventions. To address this limitation, we introduce a novel dissimilarity measure EDiSim(·)
by applying a sigmoid function to the Euclidean distance, which is a standard method for producing
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Table 4: The results (DSC (%)) of comparative analysis for similarity vs. dissimilarity in NSDA on
the Synapse dataset. ♠, ♣, ♢, and ♡ denote U-Net, TransUNet, UNeXt, and TinyU-Net with NSDA,
respectively. The highest score is marked in bold.

Network Rewriting Equation 3 Mean Spleen Right Kidney Left Kidney Gallbladder Liver Stomach Aorta Pancreas

♠
ai,j = Sim(·) 79.01 85.58 82.08 86.44 63.48 93.71 72.38 88.94 59.49
ai,j = EDiSim(·) 79.51 87.02 84.25 87.05 63.06 93.49 73.15 88.24 59.82
Our original equation 81.62 90.33 85.94 87.46 71.90 94.33 72.84 88.71 61.48

♣
ai,j = Sim(·) 81.14 86.26 83.77 89.36 70.94 95.20 72.39 89.57 61.64
ai,j = EDiSim(·) 82.41 87.30 86.07 90.65 74.95 94.95 73.06 89.41 62.87
Our original equation 83.81 93.04 87.83 91.52 73.36 95.52 76.31 89.23 63.66

♢
ai,j = Sim(·) 75.68 86.18 83.63 86.02 58.02 93.34 68.19 81.49 48.57
ai,j = EDiSim(·) 75.72 88.62 82.53 86.40 52.22 92.88 67.14 83.08 52.91
Our original equation 77.39 88.27 84.70 88.58 64.52 93.45 64.89 82.98 51.73

♡
ai,j = Sim(·) 80.15 90.68 85.56 89.96 64.48 93.96 70.76 87.43 58.35
ai,j = EDiSim(·) 80.74 92.81 86.33 89.47 66.64 93.54 71.33 87.99 57.79
Our original equation 81.57 92.16 86.21 91.29 71.16 93.82 72.13 88.81 56.95

attention weights [23]. In summary, the rewritten attention weight ai,j is expressed as follows:

Sim(xi,j , yi,j , σ
2
i,j) = e

(
−∥xi,j−yi,j∥2

2σ2
i,j

)
, EDiSim(xi,j , yi,j) = Sigmoid(∥xi,j − yi,j∥), (6)

where Sim(·) ∈ [0, 1] denotes a Gaussian kernel for the similarity measure, and EDiSim(·) ∈ [0, 1]
denotes the proposed dissimilarity measure based on the sigmoid-activated Euclidean distance. As
evidenced in Table 4, the dissimilarity-based operators (EDiSim(·) and DiSim(·)) effectively en-
hance the segmentation accuracy compared to the similarity-based methods (Sim(·)) in the mean
DSC (Table 1). Crucially, our Gaussian-kernel-based dissimilarity measure (Equation 3) achieves the
most significant accuracy gains in neural networks for medical image segmentation. Although both
EDiSim(·) and DiSim(·) are based on dissimilarity, they represent fundamentally different formula-
tions: EDiSim(·) relies on a simple geometric distance with fixed nonlinearity, while DiSim(·) is
derived from the complement of a Gaussian kernel, which inherently encodes a probabilistic notion of
dissimilarity and aligns better with the statistical properties of feature distributions in medical images.
Furthermore, we find that the proposed NSDA outperforms pairwise-similarity-based self-attention
mechanisms (e.g., MHSA [25] and window-based MWSA [39]) in medical image segmentation
(Table 1). These findings suggest a new insight that medical image segmentation tasks benefit
more from dissimilarity than similarity, which aligns with clinical prior knowledge.

Limitation. Our method overcomes the accuracy-complexity trade-off paradox in attention mecha-
nisms, enabling neural networks to achieve better performance gains. However, deploying attention-
augmented neural networks in low-resource settings hinges not only on the computational complexity
of attention modules, but also on the size of the network architecture. Consequently, lightweight
neural networks are critical to advancing digital health equity, particularly in resource-limited settings.
Future research will focus on their efficiency and scalability to bridge healthcare access divides.

6 Conclusion

Inspired by radiologists’ neighborhood inspection and difference prioritization during image interpre-
tation, we propose a parameter-free Neighborhood Self-Dissimilarity Attention in neural networks
for medical image segmentation. Unlike traditional attention mechanisms, our method quantifies the
element-neighborhood dissimilarity in feature maps to generate attention maps that prioritize salient
regions with high disparity, thus enhancing segmentation accuracy without adding parameters directly
related to computational complexity. This endeavor inspires clinical prior knowledge for the attention
mechanism, offering a practical method to promote digital health equity in resource-limited settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in our abstract and introduction accurately reflect
the contribution and scope of our paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper discusses the limitations of the work in the Results and Discussion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For each theoretical result, we have presented the assumptions and provided
comprehensive experiments.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data in our paper is publicly available, and we will also make the code
public in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper provides fairly comprehensive training and test details in the
Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation from three independent runs with
different random seeds in our rebuttal.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal im-
pacts of the work. We propose a parameter-free Neighborhood Self-Dissimilarity Attention
with performance-complexity trade-off for medical image segmentation. It has the potential
to promote health equity in low-resource settings. There are no negative societal impacts
involved in this study.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments do not involve this aspect.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] ,

Justification: The assets used in the paper (e.g., code, data, models) are all properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our experiments do not involve this aspect.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our experiments do not involve this aspect.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our experiments do not involve this aspect.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for spell checkers and grammar suggestions in this paper.
We ensure that all content is correct and original.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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