
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

T1: TOOL-INTEGRATED VERIFICATION FOR
TEST-TIME COMPUTE SCALING IN SMALL LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have demonstrated that test-time compute scaling effectively im-
proves the performance of small language models (sLMs). However, prior research
has mainly examined test-time compute scaling with an additional larger model as
a verifier, leaving verification by sLMs underexplored. In this work, we investigate
whether sLMs can reliably verify the output candidates under test-time scaling.
We find that even with knowledge distillation from larger verifiers, sLMs struggle
with verification tasks requiring memorization, such as numerical calculations and
fact-checking. To address this limitation, we propose Tool-integrated verification
(T1), a two-stage framework that first filters candidates with external tools and
then uses an sLM for final verification, offloading memorization-heavy steps to
tools such as a code interpreter. Within T1, we prove that offloading to external
tools reduces the memorization burden on sLMs and improves test-time scaling
performance. Experiments on the MATH benchmark demonstrate that, with T1, a
Llama-3.2 1B model under test-time scaling outperforms the significantly larger
Llama-3.1 8B model. Moreover, T1 improves the verification accuracy of both pro-
cess reward models (PRMs) and critic models. Our findings highlight the potential
of tool integration to substantially improve the verification abilities of sLMs.

1 INTRODUCTION

Recent advances in large language models (LLMs) have demonstrated strong emergent abilities
through large-scale pretraining (Brown et al., 2020; Hurst et al., 2024; Reid et al., 2024), enabling
them to tackle complex reasoning tasks such as mathematical problem-solving and competitive
coding (Wei et al., 2022b; Lightman et al., 2024). While small language models (sLMs) offer
advantages in deployment efficiency and cost (Liu et al., 2024; Lu et al., 2024), they struggle
significantly with high-complexity tasks (Wei et al., 2022a).

Test-time compute scaling has emerged as a promising approach to enhance sLMs by dynamically
allocating additional computation during inference (Wu et al., 2024). Prior works suggest that
test-time scaling can surpass pretraining-based scaling (Snell et al., 2024), allowing a 3B LM to
outperform a 405B LLM on mathematical benchmarks such as MATH and AIME (Liu et al., 2025).
This success depends on reliable verification of generated solutions.

To enable reliable verification, existing approaches have leveraged process reward models (PRMs)
and critic models (Wang et al., 2024a; Zhang et al., 2024), but these typically require LLMs (7B+
parameters). Relying on large verifiers counteracts the efficiency benefits of sLMs. Therefore, it
remains unclear whether verification, where sLMs verify the generated solutions, can enable strong
reasoning capabilities without relying on larger models. This raises a key research question:

Can small language models reliably perform verification for test-time scaling?

While verification is often easier than generation, prior work has shown that sLMs still struggle to
verify the solutions (Song et al., 2024). Our concept-proof experiment in Figure 1 (b) confirms this
finding that larger models can reliably verify with chain-of-thought reasoning alone. In contrast,
sLMs fail to verify even simple calculations, particularly as the complexity of calculations N increases.
We hypothesize that this gap is due to the limited capacity of sLMs to memorize all calculation facts
required for verification (Kandpal et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Q
V

V

Not
Reliable

Q Reliable

(a) Concept Figure

VV

V

V

V
G

237+321= 556

237+321= 558

G

Q: There were 237 apples. Someone brought 321 more apples. How many apples are there now?

237+321= 556

237+321= 558

(b) Concept-Proof Results

Correct

Correct

Correct

Wrong

Adding 237 and 321
equals 556. So, the
answer is correct.

Adding 237 and 321
equals 558. So, the
answer is correct.

Q
V

V
G

237+321= 556

237+321= 558 Correct

Wrong
Adding 237 and 321
equals 558. So, the

answer is wrong.

Adding 237 and 321
equals 558. So, the
answer is correct.

Reliable
V

V
Large Verifier

Small Verifier

Small Verifier

Figure 1: (a) Concept. Small language models (sLMs) often fail due to their limited capacity. How-
ever, when sLMs utilize external tools, their reliability improves. (b) Concept-Proof Experimental
Results. We evaluate Llama 1B and 3B models on verifying calculations of N three-digit numbers.
The 1B model’s performance drops significantly as N increases, while the 3B model remains stable.
Enabling code generation and execution largely mitigates this drop for the 1B model.

However, as shown in Figure 1 (b), code generation and execution substantially improves sLM’s
verification accuracy, narrowing the gap with larger models even as N increases. This result suggests
that integrating external tools with sLMs reduce the need to memorize arithmetic facts. Therefore,
tool integration is not merely beneficial but necessary to enable successful verification in sLMs.

Motivated by these findings, we introduce Tool-integrated Verification (T1), a two-stage framework
in which external tools first verify candidate solutions and sLMs then verify the filtered solutions. By
offloading memorization-heavy steps, such as numerical calculations and fack-checking, to external
tools, T1 enables sLMs to achieve verification accuracy comparable to much larger models without
increasing parameters. Crucially, this two-stage design applies seamlessly to both generative verifiers
and process reward models (PRMs), offering a single framework for test-time scaling. Moreover,
the two-stage design theoretically guarantees that tool-based verification reduces the memorization
burden and improves test-time scaling performance.

Our experiments demonstrate that T1 enables both generative verifiers (Zhang et al., 2024) and PRMs
for more accurate verification. This leads to significant performance improvements on widely-used
mathematical and multi-domain reasoning benchmarks, with notable gains on GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021). These results underscore the effectiveness of T1 in
improving the performance of sLMs under test-time compute scaling.

Our contributions are as follows:

• We conduct a systematic study of sLMs’ verification under test-time scaling, identify memorization-
heavy steps in verification as a key bottleneck, and motivate addressing them with external tools.

• We propose Tool-integrated Verification (T1), a two-stage framework that leverages external tools
to offload memorization-heavy steps before sLM verification.

• We provide a theoretical analysis showing that external tools reduces the memorization burden and
that two-stage design in T1 improves test-time scaling performance.

• We show that T1 integrates seamlessly with both generative verifiers and PRMs, achieving strong
results on math reasoning benchmarks GSM8K and MATH.

2 RELATED WORKS

2.1 TEST-TIME COMPUTE SCALING

Test-time compute scaling has emerged as a promising approach for improving the reasoning ca-
pabilities of large language models (LLMs) (Wu et al., 2024). It can be broadly categorized into

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

sequential and parallel methods (Snell et al., 2024). Sequential scaling iteratively refines solutions by
leveraging post-training, enabling the model to perform self-reflection and verification (Muennighoff
et al., 2025; DeepSeek-AI et al., 2025). Parallel scaling, in contrast, generates multiple candidate
solutions simultaneously and selects the best one using a verifier model (Cobbe et al., 2021; Lightman
et al., 2024; Brown et al., 2024). A common strategy is the best-of-N method, which produces N
parallel outputs and ranks them based on verification scores (Cobbe et al., 2021; Lightman et al.,
2024). Increasing N has been shown to enhance LLM on challenging benchmarks (Brown et al.,
2024; Snell et al., 2024).

In this work, we focus on the parallel scaling paradigm due to its simplicity and popularity. Prior
research shows that even small models can achieve strong results when paired with a large verifier in
parallel scaling (Liu et al., 2025). We further investigate whether small language models (sLMs) can
verify, enabling test-time scaling without large models.

2.2 VERIFIER IN TEST-TIME COMPUTE SCALING

The verifier plays a crucial role in parallel scaling. One approach, the Process Reward Model
(PRM), scoring each reasoning step individually using a regression head, enables fine-grained
feedback (Lightman et al., 2024; Wang et al., 2024a; Zeng et al., 2025). An alternative approach
leverages an LLM itself as a Critic model, prompting it to evaluate reasoning steps (Zheng et al.,
2023). Zheng et al. (2024) have shown that powerful LLM-based critic models can outperform PRM,
particularly in mathematical reasoning tasks. Recent works (Zhang et al., 2024; Mahan et al., 2024)
proposed the Generative Reward Model (GenRM), formulating verification as a next-token prediction
problem with chain-of-thought (Wei et al., 2022b) improving interpretability in step-wise verification.

Despite these advances, ensuring consistent and high-quality step-wise verification remains an open
problem for both PRM and GenRM. Additionally, prior works have not thoroughly explored the
change in verification performance depending on the size of LMs.

2.3 TOOL-INTEGRATED LANGUAGE MODEL

The integration of external tools has significantly enhanced LLM capabilities. Program-aided
language models (Gao et al., 2023) introduced delegating computations to interpreters via synthesized
code. Subsequent works expanded this by using tools like search engines and calculators for fact
retrieval and arithmetic (Schick et al., 2023; Qin et al., 2024). Recent methods further integrate tools
into multi-step reasoning (Gou et al., 2024b; Zhu et al., 2024), reward modeling (Li et al., 2024), and
self-correction (Gou et al., 2024a).

Our work extends this line of research by studying how to design tool integration that benefits sLM
verification across both process reward models (PRMs) and critic models. We formulate tool use
as an additional dimension of test-time scaling, emphasizing its effectiveness in memorization-heavy
verification tasks.

3 PRELIMINARIES

Test-time scaling Following Snell et al. (2024), we view test-time scaling as modifying the model’s
proposal distribution. Given a problem x ∈ X , we sample a solution y from the policy π(y | x, Ip; θ)
in the set Y , where Ip is the generator-specific instruction prompt, and the policy is parameterized by
θ which refers to the pre-trained language models.

Several algorithms can be used to scale test-time computation, including those that adjust the input
level (e.g., self-reflection (Kumar et al., 2024)) and those that modify the output level (e.g., best-of-
N (Cobbe et al., 2021), beam search (Yao et al., 2023)). Among them, the best-of-N algorithm is a
simple yet powerful approach. It samples multiple candidate solutions from the policy and selects
the one with the highest score, as determined by the verifier, as the final prediction. Formally, the
Best-of-N policy πN (y | x, Ip; θ) is defined as:

argmax
y∈{y1,...,yN}

r(x,y), s.t. yi ∼ π(y | x, Ip; θ), (1)

where r(x,y) : X × Y → R is a verifier that assigns a scalar score r.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Problem
Toulouse has twice as many sheep as

Charleston. Charleston has 4 times as

many sheep as Seattle. How many sheep

do Toulouse, Charleston, and Seattle

have together if Seattle has 20 sheep?

Step-by-step Solutions
Step 1: Seattle has 20 sheep. ## Step

2: Charleston has 4 * 20 = 80 sheep. (…)

The final answer is $\boxed{250}$. True / False

Verification
Step 1: Charleston has 4 * 20 = 80

sheep. This step is correct.

(…) After reviewing each step, all

calculations and logical deductions in

the solution are accurate.Generator

Tool-based Verifier

Interpreter

RM-based Verifier

Final verification

Solution is Wrong!

Figure 2: Tool-integrated self-verification for mathematical reasoning. (a) Generator: A small
language model (sLM) may produce incorrect solutions due to calculation errors. (b) Tool-based
Verifier (ToolV): The sLM generates executable code based on its reasoning; the output of the code
is used to verify the solution’s correctness. (c) Reward Model (RM)-based Verifier: The reward
model (GenRM / PRM) still evaluates the solution as before, but its verdict only contributes to the
final decision if the solution passes the tool-assisted filter. Concrete examples are in Appendix F.

Verifier The verifier can be modeled using the following models: (1) process reward model
(PRM), which assigns the score of each step of reasoning (Wang et al., 2024a), (2) critique model,
which generates a rationale for the verifiation (Zheng et al., 2023). For both cases, the sequence of
verification scores or tokens z are sampled from π(z | x,y, Iv; θ) where Iv is the verifier-specific
instruction prompt. In general, we use the last score or token of the sequence as the final score for
the solution (Snell et al., 2024; Zhang et al., 2024). For instance, in generative verifier (Zhang et al.,
2024), the verification score can be obtained as follows:

r(x,y) = π(zT = ‘Yes’ | x,y, Iv, z1:T−1; θ), s.t. z1:T−1 ∼ π(z | x,y, Iv; θ), (2)

where z1:T−1 is chain-of-thought (Wei et al., 2022b) and last token zT ∈ {‘Yes’, ‘No’}.

4 METHOD

4.1 TOOL-INTEGRATED VERIFICATION

Test-time scaling can improve a base policy model that generates valid solutions from its proposal
distribution, but the effectiveness of scaling at test-time heavily relies on the performance of the veri-
fier. However, sLMs often struggle to reliably verify the correctness of their generated outputs (Song
et al., 2024). Specifically, sLMs exhibit limitations in precisely validating numerical computation
or detecting incorrect or outdated knowledge information, due to their limited parameter size and
insufficient memorization capacity.

To address these limitations, we propose a Tool-integrated verification (T1) approach for parallel
test-time scaling in sLMs. As shown in Figure 2, our verification approach involves two stages: 1)
filtering stage with Tool-based Verifier (ToolV) and 2) scoring stage with reward model (RM)-based
verifier, and formally can be expressed as:

y∗ = argmax
y∈{y1,...,yN}

f(x,y; T , θ)× r(x,y; θ), s.t. yi ∼ π(y | x, Ip; θ), ∀i ∈ {1, . . . , N}, (3)

where f(x,y; T , θ) ∈ {0, 1} indicate a binary tool-based verification function (with 0 indicating a
filtered-out response), T denotes the utilized tool (e.g., code interpreter, retriever), and r(x,y; θ)
denotes the verifier score defined in Equation 1.

Tool-based verifier stage In this stage, sLM utilizes the external tool T , such as a code interpreter
or knowledge retriever, to verify generated outputs. Here, we assume the scenario in which the
utilized tool T is explicitly known. Specifically, sLM uses these tools to verify numerical accuracy
and validate the knowledge in generated solutions. One specific example is that multiple generated
responses are filtered based on tool-based verifiers, discarding those with incorrect calculations or
inaccurate knowledge information. Specifically, the tool-based verification function, f(x,y; T , θ),
consists of three parts: 1) generating the tool-calling query (i.e., c1), 2) the execution of the tool (i.e.,
T (·)), and 3) extraction of the verification (i.e., c2). Therefore, f(x,y; T , θ) can be represented as:

f(x,y; T , θ) = c2 ∼ π (c | T (c1) ,x,y, If ; θ) , where c1 ∼ π(c | x,y, Ic; θ), (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and If and Ic are task-specific instruction prompts. Detailed formulation for mathematical reasoning
and knowledge-intensive tasks are represented in Appendix B.

RM-based verifier stage Following ToolV stage, the remaining generated responses are scored
using a reward model, the same model used for generation and filtering. This reward model assesses
the overall logical consistency, coherence, and correctness of each response. The final output is
chosen as the response with the highest reward score.

4.2 VERIFIER DISTILLATION

To further enhance the performance of both verification stages, we employ knowledge distillation (Hin-
ton et al., 2015; Kim & Rush, 2016) from LLMs. Specifically, we fine-tune sLM using tool-based
and RM-based verifications generated by a larger teacher model θT . To efficiently manage multiple
distinct tasks during the distillation process, we adopt a multi-LoRA (Hu et al., 2022) approach,
assigning separate LoRA adapters, ∆θtool, and ∆θreward, for each verifier.

The distillation for ToolV is formulated as:

Ltool(∆θtool) = −Ex∼Xtrain, y∼π(·|x,Ip;θ), c∼π(·|t,x,y,I;θT) log π(c | t,x,y, I; θ +∆θtool), (5)

where Xtrain is training dataset, c ∈ {c1, c2}, I ∈ {Ic, If}, and t is empty ϕ or the output of T (c1).
Note that we generate tool-based verifications using the teacher model by applying corresponding
instruction I in a zero-shot manner (Ouyang et al., 2022; Chung et al., 2024).

Similarly, distillation for the RM-based verifier is expressed as:

Lreward(∆θreward) = −Ex∼Xtrain, y∼π(·|x,Ip;θ), z∼π(·|x,y,Ir;θT) log π(z | x,y, Ir; θ+∆θreward), (6)

where Ir is RM-based verifier-specific instruction. In Equation 6, responses are first sampled from
the student model’s proposal distribution. Each sampled response is then verified by the teacher
model, and finally, the student model is fine-tuned based on these verifications.

5 THEORETICAL ANALYSIS

In this section, we present theoretical analyses of two aspects with conceptual illustrations: (1) how
external tools reduce memorization requirements and improve verification performance (subsec-
tion 5.1), and (2) how our two-stage approach guarantees improved performance under test-time
scaling (subsection 5.2).

5.1 MEMORIZATION BOUND WITH & WITHOUT TOOL

Let us consider a simple verification task in which a verifier assesses whether the given
equation a + b = c is true or not. Let this task’s data distribution is q and P =
((a, b, c), r) ∼ q. Assume we have |X | number of training samples such that X =
{((a, b, c), r) | a, b ∈ {0, . . . ,M − 1}, c ∈ {0, . . . , 2M − 2}, r = 1a+b=c}, where ((a, b, c), r) is
independently sampled according to q. Then, let X ∼ q⊗|X| be the random variable representing
the distribution of the training set X . A learning algorithm A receives X to produce θ such that
θ = A (X). Then, we call that A is ε-close-to-optimal if errq,|X |(A) ≤ errq,|X |

(
AOPT

)
+ ε,

where errq,|X |(A) = PrX∼q⊗|X|,((a,b,c),r)∼q,r̂∼π(c|a+b,c,I;θ=A(X))(r̂ ̸= r) and AOPT is the optimal
learning algorithm. Then, Lemma 5.1 shows how much information of X should be memorized
within θ to satisfy almost zero error.
Lemma 5.1 (Memorization without Tool (Brown et al., 2021)). Any learning algorithm A that is
ε-close-to-optimal with sufficiently small ε > 0 also satisfies I (X; θ| P) = Ω

(
M3
)
, where I is the

mutual information.

Proof sketch. Theorem 1.1 in Brown et al. (2021) said that I(X; θ | P) is proportional to at least
dataset size. Since |X | = 2 · (M − 1)3, we can get Ω

(
M3
)
. Refer to subsection C.2 for the detailed

proof.

On the other hand, using an external tool that verifies whether a+ b = c allows the model to avoid
memorizing the full table of sums. Specifically, define a tool T . Suppose θ is generated by learning

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

algorithm A that has access to T , and that f(a, b, c; θ, T) = 1 a+b=c holds. Then we obtain the
following result:
Theorem 5.2 (Memorization with Tool). Suppose θ is generated by learning algorithm A that has
access to T , and that f(a, b, c; θ, T) = 1 a+b=c holds. Then, any learning algorithm A that is
ε-close-to-optimal with sufficiently small ε > 0 also satisfies I (X; θ| P) = 0, where I is the
mutual information.

Proof sketch. As the learning algorithm can access an external tool T , then θ = A(X) such that
f(a, b, c; θ, T) = 1 a+b = c . f makes errq,|X |(A) = 0. Also, θ is independently determined
regardless of X , resulting in I(X; θ | P) = 0. See subsection C.3 for the detailed proof.

I (X; θ | P) quantifies the amount of information about X , drawn from P , that must be memorized
in θ learned by A to achieve near-zero error. By comparing I (X; θ | P) from Lemma 5.1 and
Theorem 5.2, we demonstrate that a tool drastically reduces the required memorization of X within θ,
lowering I (X; θ | P) from Ω

(
M3
)

to 0. Consequently, this result implies that with the tool, small
models become reliable for the verification task.

5.2 EFFECT OF TOOL-BASED VERIFIER ON TEST-TIME SCALING

We employ the toy setting introduced in Beirami et al. (2024). Specifically, for given input x, the
ground-truth label produced by this generator is set as 1, and the generator π produces binary outputs,
i.e., Y = {0, 1}. Furthermore, we consider an imperfect verifier inducing noise. Then, we can
show Theorem 5.3 that increasing q1 directly increases the probability of obtaining a correct output
from the best-of-N .
Theorem 5.3 (Monotonicity of Imperfect Verifier). Let the generator output 0 or 1 with equal
probability, i.e., π (0|x) = π (1|x) = 1

2 , and the verifier r with noise level p, q be defined as follows:

r (x, 0) =

{
0, w.p. p,

1, w.p. 1− p,
r (x, 1) =

{
1, w.p. q,

0, w.p. 1− q,

with the condition that p > 1− p and q > 1− q. Assume p̄ and
¯
p be the noise level of two verifiers

with p̄ >
¯
p. Then, for any N ≥ 2,

πN (1 | x)
∣∣∣
p=p̄

> πN (1 | x)
∣∣∣
p=

¯
p
. (7)

Proof sketch. By the law of total probability, we get πN (1 | x). Then, we can get the monotonicity
of πN (1 | x). Refer to subsection C.4 for the detailed proof.

If tool-based verification function f in subsection 4.1 effectively acts as a filter for incorrect solutions,
we can say that using f increases p, thus improving the verifier’s capability to choose the correct
label as shown in Theorem 5.3.

6 EXPERIMENTS

6.1 SETUP

Datasets We mainly focus on mathematical reasoning task due to its widespread adoption and
strong effectiveness in assessing the reasoning capabilities of language models (Snell et al., 2024;
Liu et al., 2025). We use (1) MATH500 (Hendrycks et al., 2021; Lightman et al., 2024), a dataset
containing college-level math problems. (2) GSM8K (Cobbe et al., 2021), which consists of grade-
school math problems. We use the training set of each dataset for distillation. We also include
additional experimental results on the subset of MMLU-Pro (Wang et al., 2024b) in Appendix E,
which contain a multi-domain knowledge-intensive problems.

Evaluation setting Following previous works (Cobbe et al., 2021; Lightman et al., 2024; Snell
et al., 2024; Liu et al., 2025), we evaluate weighted Best-of-N performance, where we aggregate the
score of the solutions ending with the same final answer, to assess test-time compute scaling. We
generate 64 solutions using a fixed generator and measure the percentage of correctly solved problems
after verifications. As a verifier, we use both PRM (Wang et al., 2024a) and GenRM-CoT (Zhang
et al., 2024) (we refer to it as GenRM).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25 26

Number of Solutions per Problem

5

10
Ac

cu
ra

cy
 (%

)
SmolLM2-360M-Instruct

20 21 22 23 24 25 26

Number of Solutions per Problem

25
30
35
40
45
50 Qwen2.5-1.5B-Ins.

Qwen2.5-0.5B-Instruct

20 21 22 23 24 25 26

Number of Solutions per Problem

25
30
35
40
45
50
55 Llama3.1-8B-Ins.

Llama-3.2-1B-Instruct
Majority Distilled PRM ToolV + Distilled PRM (Ours)

Figure 3: MATH500 with PRM. Weighted Best-of-N performance of three small language models,
emphasizing the benefits of ToolV on college-level math problems. ToolV significantly enhances
PRM, enabling small models to outperform or match much larger models. Qwen2.5-1.5B and
Llama3.1-8B performances are reported as N = 1 greedy decoding.

20 21 22 23 24 25 26

Number of Solutions per Problem

5

10

Ac
cu

ra
cy

 (%
)

SmolLM2-360M-Instruct

20 21 22 23 24 25 26

Number of Solutions per Problem

25
30
35
40
45

Qwen2.5-0.5B-Instruct

20 21 22 23 24 25 26

Number of Solutions per Problem

25
30
35
40
45
50

Llama-3.2-1B-Instruct
Majority Zero-shot GenRM Distilled GenRM ToolV + Distilled GenRM (Ours)

Figure 4: MATH500 with GenRM. Weighted Best-of-N performance of three small language
models, showcasing the effectiveness of ToolV with GenRM, where even generative verification
cannot supplement the calculation error which can be easily filtered out by using a tool.

Baselines We compare ours, Tool-integrated verification, that utilizes both fine-tuned reward
model and tool-based verifiers (ToolV), against the following baselines: (1) Majority Voting (Wang
et al., 2023) (without using verifier), (2) Zero-shot GenRM (Zheng et al., 2023; Song et al., 2024)
(without any fine-tuning), (3) Distilled PRM/GenRM (with fine-tuning), (4) Themis (Li et al., 2024).

Models & training We experiment with the smallest instruction-tuned models from widely used
families: Qwen-2.5-0.5B-Instruct (Yang et al., 2024) and Llama-3.2-1B-Instruct (Dubey et al., 2024).
In addition, we test SmolLM2-360M-Instruct (Allal et al., 2025) for evaluation in extremely small
model. As the teacher model, we employ gpt-4o-mini-2024-07-18 (Hurst et al., 2024). The teacher
model is prompted to generate outputs used to fine-tune student models (Hu et al., 2022). For PRM’s
teacher, we use Qwen2.5-Math-PRM-7B (Zhang et al., 2025).

We include more implementation details in Appendix D.

6.2 EXPERIMENTAL RESULTS

ToolV improves PRM in small LMs As shown in Figure 3, ToolV improves performance when
combined with the distilled Process Reward Model (PRM) on the MATH500 benchmark. Our results
show that adding ToolV provides substantial gains in test-time scaling, suggesting that distilled
PRM alone is still prone to numerical errors. Notably, with ToolV, only using Llama 1B models
outperforms the performance of the 8B model—demonstrating that extra test-time computation
can meaningfully boost smaller models, where distilled PRM alone cannot enable the 1B model
to reach that performance until generating 64 solutions. Similarly, ToolV enables Qwen2.5 0.5B
to match the performance of the 1.5B model by generating just 16 solutions, showing impressive
effectiveness.

ToolV improves GenRM in sLMs As shown in Figure 4, ToolV boosts test-time scaling for three
small language models on MATH500 when combined with the distilled GenRM (Zhang et al., 2024).
While GenRM struggles alone, ToolV compensates—at the cost of code generation. Similar gains
appear on GSM8K in Figure 5, especially for SmolLM2-360M-Instruct, the weakest model. This

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25 26

Number of Solutions per Problem

10
15
20
25
30
35
40

Ac
cu

ra
cy

 (%
)

SmolLM2-360M-Instruct

20 21 22 23 24 25 26

Number of Solutions per Problem

45
50
55
60
65
70

Qwen2.5-0.5B-Instruct

20 21 22 23 24 25 26

Number of Solutions per Problem

50
55
60
65
70
75

Llama-3.2-1B-Instruct
Majority Zero-shot GenRM Distilled GenRM ToolV + Distilled GenRM (Ours)

Figure 5: GSM8K with GenRM. Weighted Best-of-N performance comparison across three small
language models. The results show that ToolV also improves model performance on graduate-level
arithmetic problems. However, the gains are smaller on this simpler task, where existing verifiers
already perform reliably compared to more challenging tasks.

Precalculus Intermediat
e Algebra

Algebra Number
Theory

Prealgebra Geometry Counting &
Probability

Category

0

25

50

75

Ac
cu

ra
cy

 (%
)

Performance by Problem Category

1 2 3 4 5
Level

0

25

50

75

Performance by Problem Level
Majority Distilled PRM ToolV + Distilled PRM (Ours)

Figure 6: Analysis with problem types and levels. We perform analysis on the effect of tool-based
verifier with problem types and levels in MATH500 dataset. The results are from Llama-3.2-1B-
Instruct with PRM using weighted Best-of-N (N = 64). This analysis shows ToolV is most effective
on mid-level problems and calculational domains.

supports our analysis in subsection 5.1 that ToolV enables even small models to memorize key
information. Zero-shot GenRM ablations confirm that without distillation, small models struggle to
verify solutions (Song et al., 2024).

20 21 22 23 24 25 26

Number of Solutions per Problem

30
35
40
45
50

Ac
cu

ra
cy

 (%
)

Majority
Themis

GenRM
ToolV + GenRM

PRM
ToolV + PRM

Figure 9: MATH with Themis as base-
line. Weighted Best-of-N performance
of Llama-3.2-1B-Instruct model. ToolV
outperforms Themis (Li et al., 2024).

Our two-stage method outperforms prior tool-
integrated verification. Themis (Li et al., 2024) demon-
strates that integrating external tools can enhance verifi-
cation performance of 7B models across tasks requiring
tools such as calculator, weather, or calendar. In contrast,
our focus is on mathematical reasoning benchmarks (e.g.,
GSM8K, MATH500) and much smaller models that were
not addressed in Li et al. (2024). However, it is notable that
our two-stage tool-integrated verification approach proves
effective for small models on math reasoning, whereas
Li et al. (2024) explored a unified tool-augmented reward
modeling framework.

Similar to our method, we first generate tool-integrated ver-
ification trajectories using gpt-4o and distill them into the
Llama-3.2-1B-Instruct model. These trajectories are sim-
ilar to GenRM but explicitly include intermediate Python
code generation (Gou et al., 2024b). As shown in Figure 9, Themis (Li et al., 2024) surpasses other
distilled GenRM and PRM baselines without tool usage. However, both ToolV + GenRM and ToolV
+ PRM outperform Themis, indicating that our two-stage approach is better suited for test-time
scaling on math reasoning with small models, as it can be combined with distilled PRM and ensures
performance improvements as analyzed in subsection 5.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1B 3B 8B
Model Size

75

80
Ac

cu
ra

cy
 @

 n
=6

4

+2.7

+2.0

+1.5

GSM8K

1B 3B 8B
Model Size

45

50
+5.2

+4.2
+4.0

MATH
GenRM ToolV + GenRM (Ours)

Figure 7: Effects of ToolV on sizes of GenRM. Weighted Best-
of-N (N = 64) performance of GenRM based on different sizes
of Llama 3 (Dubey et al., 2024) on MATH500. For ToolV, we
use 1B and only scale up the GenRM.

0.00 0.25 0.50 0.75 1.00
Correct / All Solutions

0

20

40

60

80

Fr
eq

ue
nc

y

Distribution of Successful Ratio
GenRM
ToolV + GenRM (Ours)

Figure 8: Correct solutions ra-
tio among N = 64 generations
to show how the tool-based ver-
ifier works.

20 21 22 23 24 25 26

5

10

Ac
cu

ra
cy

 (%
)

SmolLM2-360M-Instruct

20 21 22 23 24 25 26

Number of Solutions per Problem (scaled with compute budget)

25
30
35
40
45

Qwen2.5-0.5B-Instruct

20 21 22 23 24 25 26
25
30
35
40
45
50

Llama-3.2-1B-Instruct
Zero-shot GenRM Distilled GenRM ToolV + Distilled GenRM (Ours)

Figure 10: MATH500 with GenRM under a scaled x-axis reflecting compute budget. Our method
remains the best even when compute budget is taken into account.

6.3 ANALYSIS

Effects of ToolV on category and difficulty In Figure 6, we analyze the N = 64 weighted
Best-of-N performance on MATH500 using Llama-3.2-1B-Instruct. On the left, category-wise
results show ToolV brings clear gains, especially in Algebra, Number Theory, and Counting &
Probability. Geometry sees a drop, likely due to ToolV being less effective in that domain. On the
right, performance by problem level shows consistent improvements with ToolV for Levels 2–4.
However, results dip at Level 5, suggesting ToolV struggles with the most challenging problems.
Overall, ToolV works best on mid-level problems and math areas requiring accurate calculation, but
improvements are needed for higher-difficulty cases.

ToolV benefits larger verifiers Figure 7 shows how performance varies with distilled GenRM size,
keeping ToolV fixed at 1B. As GenRM scales, the gap with and without ToolV narrows but remains.
Notably, on MATH500, 1B GenRM + ToolV outperforms 8B GenRM, suggesting ToolV can be
more effective than scaling the verifier—especially on harder tasks.

Effects of ToolV as filter Figure 8 shows how ToolV acts as an effective filter for mathematical
solutions. Using Llama-3.2-1B-Instruct with GenRM on MATH500 (N = 64 candidates per sample),
we recalculated accuracy after applying ToolV to remove wrong outputs. The results support our
analysis in subsection 5.2, showing ToolV reliably filters out incorrect solutions and significantly
improves accuracy.

6.4 DISCUSSION: COMPUTATIONAL OVERHEAD OF TOOLV

Stage Tokens
Solution (Generator) 574.39
Verification (GenRM) 4431.11
Code (ToolV) 610.84

Table 1: Token usage per stage.

ToolV requires generating executable code in addition to pro-
ducing solutions from the generator and verifier outputs such
as GenRM. Understanding the compute budget is therefore
important to assess the effectiveness of each method and to
determine which approach is preferable under constrained com-
pute resources (Singhi et al., 2025). We begin by analyzing
the number of generated tokens required by the generator, the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

verifier (GenRM), and ToolV on the MATH benchmark using Llama-3.2-1B-Instruct. Table 1 reports
the average token count per solution.

As shown, ToolV introduces extra code generation tokens. This raises two natural questions: (1) How
can we ensure that the performance improvement comes from ToolV itself, rather than from increased
compute? If additional budget is available, why not simply use a larger verifier? (2) Under an equal
compute budget, does ToolV still provide benefits compared to using GenRM or PRM alone? We
address these questions below.

Using ToolV is more beneficial than increasing verifier size. ToolV enables the effective use
of small models, which offers a practical advantage over larger verifiers in terms of GPU memory
requirements. Our framework allows small models to function as strong verifiers, which is particularly
valuable in memory-constrained environments such as on-device or limited GPU setups.

Even when accounting for the extra compute, the cost of ToolV corresponds to using only a 1.14
times larger verifier. Using Table 1, let k denote the relative scale factor. Then, k = (5616.34 −
574.39)/4431.11 = 1.14. Since ToolV 1B + GenRM 1B surpasses GenRM 8B on MATH (Figure 7),
the performance gain from ToolV more than justifies this small additional cost, especially when
compared with simply scaling up the verifier.

ToolV still improves performance under the same compute budget. To account for the overhead
of ToolV, we shift the x axis in performance plots such as Figure 4. Applying the scaling factor
of 1.14, we shift the x-axis of our method with GenRM accordingly. The resulting comparison in
Figure 10 shows that even after budget normalization, ToolV continues to provide meaningful gains,
particularly for the smallest model, SmolLM2-360M-Instruct, and in settings with the large number
of generated solutions.

Additional discussion and extended experimental results are provided in Appendix E.

7 CONCLUSION

In this work, we introduced Tool-integrated Verification (T1), which delegates memorization-
intensive tasks in verification to external tools for sLMs. Our method involves a tool-based verification
stage and a reward-model-based scoring stage, both enhanced by knowledge distillation from large
verifiers. Theoretical analysis confirmed that tool use substantially reduces the memorization burden
on sLMs and improves test-time scaling accuracy. Empirical experiments demonstrated that T1
significantly improves the test-time scaling performance of sLM on mathematical reasoning and
knowledge-intensive tasks. A key conclusion of our work is that tool integration is essential for
enhancing sLM performance, even under test-time scaling, by reducing the memorization burden.

Limitations & Future Works While T1 shows strong improvements, some limitations remain.
(1) ToolV acts only as a rejection filter and cannot recover from false negatives—correct solutions
mistakenly rejected by the verifier. As one possible implementation of T1, this limitation could
be mitigated by integrating tool-based reasoning into the verification step, allowing the verifier to
leverage correctness guarantees from tool outputs (Gou et al., 2024b; Li et al., 2024), which we do
not explore in this work. (2) Our work focuses on best-of-N (parallel) test-time scaling, which lacks
information sharing between generations. However, tools can also benefit other test-time scaling
strategies, such as step-level search (Yao et al., 2023) in sLMs or long reasoning chains in sequential
test-time scaling as demonstrated by Li et al. (2025). Exploring these directions presents a promising
avenue for future work.

ETHICS STATEMENT

This work uses only public datasets for math and knowledge tasks and does not involve human
subjects or personal data. Tool based verification runs a code interpreter for numeric checks and
a retriever over Wikipedia abstracts for factual checks, and these tools do not store user data. The
main risks are retrieval errors and code execution failures; we bound both with conservative rules,
simple evaluation code, and we discard unverifiable claims. We follow all dataset and model licenses,
disclose model families, teacher models, and training compute, and report the resources used.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We specify datasets, baselines, metrics, and the evaluation protocol for weighted Best of N with both
a process reward model and a generative verifier. The appendix provides implementation details,
training setup, key hyperparameters, and the exact prompts for code based math checks and document
based fact checks. We state the retriever, source, and document count per query, and we define the
rules for code execution and success signals. We will release an anonymous package with scripts,
prompts, configuration. Plus, we will provide instructions and seeds to recreate all tables and figures.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alex D’Amour, Jacob Eisenstein, Chirag Nagpal,
and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy. arXiv,
2401.01879, 2024. URL https://doi.org/10.48550/arXiv.2401.01879.

Bradley C. A. Brown, Jordan Juravsky, Ryan Saul Ehrlich, Ronald Clark, Quoc V. Le, Christopher
Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv, 2407.21787, 2024. URL https://doi.org/10.48550/arXiv.2407.
21787.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam M. Smith, and Kunal Talwar. When is memorization
of irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, New York, NY, USA. Association for
Computing Machinery, 2021. URL https://doi.org/10.1145/3406325.3451131.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat,
Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models. J. Mach. Learn. Res., 25:70:1–70:53, 2024. URL https://jmlr.org/papers/
v25/23-0870.html.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv, 2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao

11

https://arxiv.org/abs/2502.02737
https://doi.org/10.48550/arXiv.2401.01879
https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.1145/3406325.3451131
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail,
Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. arXiv, 2407.21783,
2024. URL https://doi.org/10.48550/arXiv.2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: program-aided language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 10764–10799. PMLR, 2023. URL
https://proceedings.mlr.press/v202/gao23f.html.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: large language models can self-correct with tool-interactive critiquing. In The Twelfth In-
ternational Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024a. URL https://openreview.net/forum?id=Sx038qxjek.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. In

12

https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/arXiv.2407.21783
https://proceedings.mlr.press/v202/gao23f.html
https://openreview.net/forum?id=Sx038qxjek

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024b. URL https://openreview.net/forum?id=
Ep0TtjVoap.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
arXiv, 1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali
Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codis-
poti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek,
Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano,
Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright,
Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Con-
ger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey,
Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei,
Constantin Koumouzelis, and Dane Sherburn. Gpt-4o system card. arXiv, 2410.21276, 2024. URL
https://doi.org/10.48550/arXiv.2410.21276.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 15696–15707. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/kandpal23a.html.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji Kawaguchi, and Sung Ju Hwang. Knowledge-
augmented reasoning distillation for small language models in knowledge-intensive tasks. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
97faedc90260eae5c400f92d5831c3d7-Abstract-Conference.html.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Jian Su, Xavier
Carreras, and Kevin Duh (eds.), Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp.
1317–1327. The Association for Computational Linguistics, 2016. URL https://doi.org/
10.18653/v1/d16-1139.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D. Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M. Zhang, Kay McKinney, Disha Shrivastava,

13

https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2410.21276
https://proceedings.mlr.press/v202/kandpal23a.html
https://proceedings.mlr.press/v202/kandpal23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/97faedc90260eae5c400f92d5831c3d7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/97faedc90260eae5c400f92d5831c3d7-Abstract-Conference.html
https://doi.org/10.18653/v1/d16-1139
https://doi.org/10.18653/v1/d16-1139

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Cosmin Paduraru, George Tucker, Doina Precup, Feryal M. P. Behbahani, and Aleksandra Faust.
Training language models to self-correct via reinforcement learning. CoRR, abs/2409.12917, 2024.
URL https://doi.org/10.48550/arXiv.2409.12917.

Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi Yang, Beichen Zhang, Xiang Wang, Bowen Yu,
Binyuan Hui, Junyang Lin, and Dayiheng Liu. Start: Self-taught reasoner with tools, 2025. URL
https://arxiv.org/abs/2503.04625.

Lei Li, Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Ningyu Zhang, and Hua Wu. Tool-augmented
reward modeling. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=d94x0gWTUX.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
v8L0pN6EOi.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo
Nogueira. Pyserini: A Python toolkit for reproducible information retrieval research with sparse
and dense representations. In Proceedings of the 44th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR 2021), pp. 2356–2362, 2021.

Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling, 2025. URL
https://arxiv.org/abs/2502.06703.

Zechun Liu, Changsheng Zhao, Forrest N. Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use
cases. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
EIGbXbxcUQ.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D. Lane, and
Mengwei Xu. Small language models: Survey, measurements, and insights. arXiv, 2409.15790,
2024. URL https://doi.org/10.48550/arXiv.2409.15790.

Dakota Mahan, Duy Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato, Jan-
Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv, 2410.12832,
2024. URL https://doi.org/10.48550/arXiv.2410.12832.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou,
Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language
models to master 16000+ real-world apis. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=dHng2O0Jjr.

14

https://doi.org/10.48550/arXiv.2409.12917
https://arxiv.org/abs/2503.04625
https://openreview.net/forum?id=d94x0gWTUX
https://openreview.net/forum?id=d94x0gWTUX
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2502.06703
https://openreview.net/forum?id=EIGbXbxcUQ
https://openreview.net/forum?id=EIGbXbxcUQ
https://doi.org/10.48550/arXiv.2409.15790
https://doi.org/10.48550/arXiv.2410.12832
https://arxiv.org/abs/2501.19393
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openreview.net/forum?id=dHng2O0Jjr

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer, Mia
Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James
Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson,
Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel,
Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan
Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener,
and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv, 2403.05530, 2024. URL https://doi.org/10.48550/arXiv.2403.05530.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for llm reasoning, 2025. URL https://arxiv.org/abs/2504.01005.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. arXiv, 2408.03314, 2024. URL https:
//doi.org/10.48550/arXiv.2408.03314.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M. Kakade, Dean P. Foster, and Udaya Ghai.
Mind the gap: Examining the self-improvement capabilities of large language models. arXiv,
2412.02674, 2024. URL https://doi.org/10.48550/arXiv.2412.02674.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 9426–9439. Association for Computational Linguistics, 2024a.
URL https://doi.org/10.18653/v1/2024.acl-long.510.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024b. URL https://arxiv.org/abs/2406.01574.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Trans. Mach. Learn. Res., 2022, 2022a. URL https://openreview.net/forum?id=
yzkSU5zdwD.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, 2022b.

15

https://doi.org/10.48550/arXiv.2403.05530
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://arxiv.org/abs/2504.01005
https://doi.org/10.48550/arXiv.2408.03314
https://doi.org/10.48550/arXiv.2408.03314
https://doi.org/10.48550/arXiv.2412.02674
https://doi.org/10.18653/v1/2024.acl-long.510
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran,
Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. Long-form factual-
ity in large language models. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
937ae0e83eb08d2cb8627fe1def8c751-Abstract-Conference.html.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Scaling inference
computation: Compute-optimal inference for problem-solving with language models. In
The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24, 2024. URL https:
//openreview.net/forum?id=j7DZWSc8qu.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv, 2412.15115, 2024. doi: 10.
48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412.15115.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
271db9922b8d1f4dd7aaef84ed5ac703\-Abstract-Conference.html.

Thomas Zeng, Shuibai Zhang, Shutong Wu, Christian Classen, Daewon Chae, Ethan Ewer, Minjae
Lee, Heeju Kim, Wonjun Kang, Jackson Kunde, Ying Fan, Jungtaek Kim, Hyung Il Koo, Kannan
Ramchandran, Dimitris Papailiopoulos, and Kangwook Lee. Versaprm: Multi-domain process
reward model via synthetic reasoning data, 2025. URL https://arxiv.org/abs/2502.
06737.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv, 2408.15240, 2024. URL
https://doi.org/10.48550/arXiv.2408.15240.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025. URL https://arxiv.org/abs/2501.07301.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP: experiences
on scaling fully sharded data parallel. Proc. VLDB Endow., 16(12):3848–3860, 2023. URL
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning.
arXiv, 2412.06559, 2024. URL https://doi.org/10.48550/arXiv.2412.06559.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/

16

http://papers.nips.cc/paper_files/paper/2024/hash/937ae0e83eb08d2cb8627fe1def8c751-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/937ae0e83eb08d2cb8627fe1def8c751-Abstract-Conference.html
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://doi.org/10.48550/arXiv.2412.15115
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703 \ -Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703 \ -Abstract-Conference.html
https://arxiv.org/abs/2502.06737
https://arxiv.org/abs/2502.06737
https://doi.org/10.48550/arXiv.2408.15240
https://arxiv.org/abs/2501.07301
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://doi.org/10.48550/arXiv.2412.06559
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_
Benchmarks.html.

Xuekai Zhu, Biqing Qi, Kaiyan Zhang, Xinwei Long, Zhouhan Lin, and Bowen Zhou. Pad: Program-
aided distillation can teach small models reasoning better than chain-of-thought fine-tuning. In
Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp.
2571–2597. Association for Computational Linguistics, 2024.

17

http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A CONCEPT-PROOF EXPERIMENT DETAILS

We provide additional details about the proof-of-concept experiment shown in Figure 1 (b) of the
main paper. The verification task focuses on arithmetic calculations involving randomly selected N
three-digit numbers, using both addition and subtraction, with N ranging from 3 to 10.

For each value of N , we generate 500 equations with correct answers, along with another 500
equations where the output is slightly incorrect—within a 5% margin of error.

We then prompt Llama-3.2-1B-Instruct (Dubey et al., 2024) to verify these calculations. Specifically,
we use Prompt A.1 to make the language model to generate a step-by-step explanation in natural
language.

Prompt A.1: Check Calculation

Evaluate the below calculation. Is this calculation correct? If correct, return True. Return
False otherwise.

Calculation: {exp} = {ans}

If the calculation is correct, return True. If not, return False.

Think step-by-step, and MUST output True or False at the end of your verification.

To use the tool, we prompt LM to generate a code instead of verification in natural language using
Prompt A.2.

Prompt A.2: Check Calculation with Code

Generate a simple Python script that evaluates the correctness of a given mathematical
calculation.

Calculation: {exp} = {ans}
The script should print ‘The calculation is correct‘ if the calculation is correct, otherwise
print ‘The calculation is incorrect‘.

Constraints:
- The output must be a single Python code block without any function definition.
- The script should evaluate the expression as a boolean comparison.

If the evaluated result of ‘exp‘ matches ‘ans‘, print ‘The calculation is correct‘, otherwise
print ‘The calculation is incorrect‘.

B DETAILS OF OUR METHOD

The choice of the component of the tool-based verification function depends on the task:

1. Mathematical reasoning task: sLM generates executable programming code c1, then the code
interpreter executes the code and validates the correctness of computations (Schick et al., 2023;
Gou et al., 2024b). Since the code interpreter executes the code as well as outputs the verification
score, we can regard the extraction of the verification score part as the identity function, i.e.,
c2 = T (c). Therefore, f(x,y; T , θ) for numerical reasoning tasks can be represented as:

f(x,y; T , θ) = c2 = T (c1), where c1 ∼ π(c | x,y, Ic; θ). (8)
2. Knowledge-intensive task: The tool T acts as a retriever that returns a set of relevant knowledge

passages k based on the input x and candidate response y. Subsequently, sLM verifies the
consistency between the retrieved knowledge k and the claims within y. Since the retriever utilizes
x and y directly as a query, we can regard the tool-calling query part as the identity function, i.e.,
c1 = (x,y). Therefore, f(x,y; T , θ) for knowledge-intensive tasks can be represented as:

f(x,y; T , θ) = c2 ∼ π (c | T (c1) ,x,y, If ; θ) , where c1 = (x,y), (9)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C PROOF FOR THEORETICAL ANALYSIS

C.1 FROM THEORETICAL ANALYSIS TO PRACTICE.

Our theoretical analysis illustrates two key ideas: (1) tool integration reduces the memorization
burden of small language models, and (2) the two stage design improves test time scaling by enabling
a more reliable filtering function. These results are based on simplified and idealized settings and
are not intended to capture full practical behavior. Instead, they provide conceptual illustrations
grounded in existing theoretical frameworks (Brown et al., 2021; Beirami et al., 2024). The empirical
trends observed in our experiments are consistent with these theoretical intuitions, suggesting that the
underlying principles extend to more complex real-world scenarios.

C.2 PROOF OF LEMMA 5.1

Proof. X has cardinality |X | = 2 · (M − 1)3 = Θ(M3). Also, Theorem 1.1 in Brown et al. (2021)
says that any learning algorithms A that is ε-close-to-optimal with sufficiently small ε > 0 also
satisfies that the mutual information between data samples and the model learned by A given the
data distribution is proportional to at least the number of data samples multiplying dimension of data
dimension. Since the number of data samples’ cardinality in subsection 5.1 is Θ(M3) and the data
dimension is 1, we can state that I (X; θ| P) = Ω

(
M3
)
. This proof says that if a model directly

memorizes which (a, b, c) pairs map to each c = a+ b with near-zero error, θ must encode on the
order ofM3 bits of information about X .

C.3 PROOF OF THEOREM 5.2

Proof. In this case, A has access to the tool function as follows:

f (a, b, c; T) = 1 a+b = c .

Then, θ = A(X) such that f(a, b, c; θ, T) = 1 a+b = c . Regardless of X , f can perfectly get label r,
resulting in errq,|X |(A) = 0.

In addition, since θ is determined regardless of X through A, we get

I(X; θ | P) = H(θ | P)−H(θ | X,P)

= H(θ | P)−H(θ | P)

= 0,

where H is the entropy. Therefore, we can state that I (X; θ| P) = 0.

C.4 PROOF OF THEOREM 5.3

We first show Best-of-N accuracy first in Lemma C.1 . Then we show the monotonicity with respect
to the p.

Lemma C.1 (Best-of-N Accuracy with Imperfect Verifier). Let the generator output 0 or 1 with
equal probability, i.e.,

π (0|x) = π (1|x) = 1

2
,

and let the verifier r with noise level p, q be defined as follows:

rp,q (x, 0) =

{
0, w.p. p,

1, w.p. 1− p,
rp,q (x, 1) =

{
1, w.p. q,

0, w.p. 1− q,

with the condition that q > 1− q and p > 1− p. Then, for N ≥ 1, the probability that the best-of-N
output is ground truth label, i.e. 1, is given by

πN (1 | x) =
q

q + 1− p

[
1−

(
1− q + p

2

)N
]

+
1− q

1− q + p

(
1− q + p

2

)N

. (10)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. A single sample from the generator π is labeled 1 with probability 1
2 and 0 with probability 1

2 .
Given the verifier r with noise level p and q, the joint probability are:

P (y = 1, r = 1 | x) = 1

2
q,

P (y = 0, r = 1 | x) = 1

2
(1− p),

P (y = 1, r = 0 | x) = 1

2
(1− q),

P (y = 0, r = 0 | x) = 1

2
p.

(11)

Then, the probability that a single sample yields a verifier score of 1 and 0 are

p (r = 1 | x) =
∑

i∈{0,1}

p (y = i, r = 1 | x) = 1

2
(1− p) +

1

2
(q) ,

p (r = 0 | x) = 1− p (r = 1 | x) = 1 + p− q

2
,

respectively.

Define the event

A =
{

at least one Best-of-N sample is r(x, y) = 1
}
.

Then, from Equation 11, the probability that all N candidates yield r = 0 is

P (Ac) = P (r = 0)N =

(
1 + p− q

2

)N

, (12)

and consequently,

P (A) = 1− P (Ac) = 1−
(
1 + p− q

2

)N

. (13)

Consider two cases:

Case 1. At least one candidate yields r = 1 (event A occurs). In this case, the final output is chosen
uniformly among the candidates with r = 1. For any candidate with r = 1, the probability that it
originated from y = 1 is given by

P
(
y = 1 | r = 1,x

)
=

P (y = 1, r = 1 | x)
P (r = 1 | x)

=
1
2q

1
2 (q + 1− p)

=
q

q + 1− p
.

Case 2. All candidates yield r = 0 (event Ac occurs). In this case, the output is chosen uniformly
among all N candidates. For a candidate with r = 0, the probability that it is 1 is

P
(
y = 1 | r = 0,x

)
=

P (y = 1, r = 0 | x)
P (r = 0 | x)

=
1
2 (1− q)

1
2 (p+ 1− q)

=
1− q

p+ 1− q
.

By the law of total probability, the overall probability that the Best-of-N output is 1 is

πN (1 | x) = P (A) · P
(
y = 1 | r = 1,x

)
+ P (Ac) · P

(
y = 1 | r = 0,x

)
= P (A) · q

q + 1− p
+ P (Ac) · 1− q

p+ 1− q
.

From Equation 12 and Equation 13, we have

πN (1 | x) =

(
1−

(
1 + p− q

2

)N
)

q

q + 1− p
+

(
1 + p− q

2

)N
1− q

p+ 1− q
. (14)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using Lemma C.1 , Theorem 5.3 is proven as follows:

Proof. Define the difference ∆ = p− q, so that
1 + p− q

2
=

1 +∆

2
,

and note that
q + 1− p = 1−∆ and p+ 1− q = 1 +∆ .

Then, from Lemma C.1 , Equation 14 is rewritten as

f(∆) =

(
1−

(
1 + ∆

2

)N
)

q

1−∆
+

(
1 + ∆

2

)N
1− q

1 + ∆
. (15)

Since q is held fixed, an increase in p corresponds to an increase in ∆.

Define

A(∆) =

(
1 + ∆

2

)N

,

so that

f(∆) =
[
1−A(∆)

] q

1−∆
+A(∆)

1− q

1 + ∆
.

Differentiating equation 15 with respect to ∆ yields

f ′(∆) = −A′(∆)
q

1−∆
+ [1−A(∆)]

q

(1−∆)2
+A′(∆)

1− q

1 + ∆
−A(∆)

1− q

(1 + ∆)2
, (16)

with

A′(∆) =
N

2

(
1 + ∆

2

)N−1

.

Reformulating Equation 16 results in

f ′(∆) =
q

(1−∆)2

[
1−A(∆) −

(
1−∆

)
A′(∆)︸ ︷︷ ︸

(a)

]
+

1− q

(1 + ∆)2

[(
1 + ∆

)
A′(∆) − A(∆)︸ ︷︷ ︸

(b)

]
.

(a) Define x = 1+∆
2 . Then,

1−A(∆) −
(
1−∆

)
A′(∆) = 1− xN − N (1− x)xN−1.

Set g(x) = 1− xN − N (1− x)xN−1. Then, g(0) = 1, g(1) = 0, and g′(x) ≤ 0 induces
g(x) >= 0 for x ∈ [0, 1]. Since q1 − q2 ∈ [−1, 1], x ∈ [0, 1] is satisfied. Therefore, we
have

1−A(∆)−
(
1−∆

)
A′(∆) > 0.

(b) Since A′(∆) = N
2

(
1+∆
2

)N−1

and A(∆) =

(
1+∆
2

)N

, we have

(1 + ∆)A′(∆) = (1 + ∆)
N

2

(
1 + ∆

2

)N−1

= N

(
1 + ∆

2

)N

= N A(∆).

Hence, we have
(1 + ∆)A′(∆) − A(∆) = N A(∆) − A(∆)

= (N − 1)A(∆).

For N ≥ 2 and ∆ > −1, both N − 1 > 0 and A(∆) > 0. Therefore,(
1 + ∆

)
A′(∆) − A(∆) > 0.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Since (a) and (b) are non-negative, we conclude that f ′(∆) > 0 for all ∆ and N ≥ 2.

Thus, for N ≥ 2, if p̄ >
¯
p (i.e. ∆1 > ∆2), it follows that

f(∆1) > f(∆2) ,

or equivalently,

πN (1 | x)
∣∣∣
p=p̄

> πN (1 | x)
∣∣∣
p=

¯
p
.

D IMPLEMENTATION DETAILS

D.1 MODEL

We use LLaMA-3.2-1B-Instruct (Dubey et al., 2024), Qwen-2.5-0.5B-Instruct (Yang et al., 2024),
SmolLM2-360M-Instruct (Allal et al., 2025) as base models for our experiments.

D.2 TRAINING

Hyperparameters & Setting As mentioned in subsection 4.2, we fine-tune small language models
(sLMs) for each module using LoRA (Hu et al., 2022). However, for PRM, we fine-tune the full
model including the classifier head following Wang et al. (2024a). Only for SmolLM2-360M-Instruct,
we fine-tune the model on generation as it achieves under 10% accuracy on both GSM8K and MATH.
We organize the hyperparameter details in Table 2. We use 4 A100 40GB GPUs with FSDP (Zhao
et al., 2023) for training.

Table 2: Hyperparameters used in fine-tuning sLM for each component.

Hyperparameter Verifier PRM ToolV

Learning rate 1× 10−4 1× 10−5 1× 10−4

Batch size 16 16 16
Max length 2048 2048 2048
LoRA rank 64 - 64
LoRA α 128 - 128
Optimizer AdamW AdamW AdamW
Training epochs 1 3 3
Scheduler Linear Linear Linear

Dataset for Distillation We perform distillation using the training split of each dataset. For MMLU-
Pro, we adopt the train-test split provided by Zeng et al. (2025). Training dataset sizes are 7473 for
GSM8K, 7500 for MATH, 1284 for MMLU-Pro.

During distillation, we prompt the teacher model—gpt-4o-mini-2024-07-18 in our experiments—to
generate sequences used as supervision for training. For the generative verifier, we follow the prompt
design from Zhang et al. (2024). Specifically, we generate 8 completions per problem using a
temperature of 0.6, and treat these outputs as the training data.

For code generation tasks, we apply the Prompt D.1. Using this prompt, we generate 4 completions
per problem at a temperature of 0.6, which are then used as training samples. For fact-checking in
MMLU-Pro, we similarly generate 8 completions per problem with a temperature of 0.6, using the
teacher model to construct the training dataset. We use the Prompt D.2. In addition, we retrieve 3
documents for fact-checking from wikipedia abstracts using BM25 implemtented in Pyserini (Lin
et al., 2021).

22

https://huggingface.co/meta-llama/Meta-Llama-3-1B-Instruct
https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
https://huggingface.co/declare-lab/SmolLM2-360M-Instruct

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt D.1: Code Generation

SYSTEM_PROMPT:
Write a Python code block that verifies whether a given solution is correct based on the
provided question, following these guidelines:

- The code should be a single Python block, formatted as:
“‘python
CODE
“‘

- The code should only print True if the solution is verified as correct. Otherwise, it
should only print False if the solution is incorrect.
- Use only the following built-in modules where necessary:

- ‘math‘ (for floating-point comparisons using math.isclose())
- ‘sympy‘ (for symbolic calculations, including π and fractions)
- ‘cmath‘ (for complex number operations)

- For floating-point comparisons, use math.isclose() instead of ==.
- Use ‘sympy.pi‘ for π and ‘sympy.Rational‘ for fractions.
- Simplify all fractions and square roots without converting them to decimal values.

USER_PROMPT:
Input
- Question: {question}
- Solution: {solution}

Output:
Return python code only.

Prompt D.2: Fact-checking generation

SYSTEM_PROMPT:
You are a domain expert.

USER_PROMPT:
Check the factual correctness of each statement in the provided solution to the question,
using only the information available in the given document.
- Evaluate only the explicit factual claims made in the solution. Do not verify or evaluate
the final conclusion or answer itself (e.g., The answer is ...).
- If a statement is factually incorrect based on the document, mark it as incorrect.
- If a statement cannot be verified using the document (i.e., the document does not
confirm or deny it), treat it as not verifiable, and assume it is correct for the purpose of
final verification.

⟨question⟩{question}⟨/question⟩

⟨document⟩{document}⟨/document⟩

⟨solution⟩{solution}⟨/solution⟩
At the end of the fact check, provide a final summary in the following format: Verification:
Are all statements correct? (Yes/No)? X (where X is either Yes or No).
If any verifiably false statement is found, output: Verification: Are all statements correct?
(Yes/No)? No
If no false statements are found (i.e., all are either correct or unverifiable), output:
Verification: Are all statements correct? (Yes/No)? Yes

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison between GenRM and ToolV + GenRM. Results are from experi-
ments with Llama-3.2-1B-Instruct on MATH500 benchmark.

Method Accuracy Precision Recall F1 Score
GenRM 80.91% 0.6153 0.7759 0.6863
GenRM + ToolV 86.99% 0.7666 0.7427 0.7545

Table 4: Performance of LLama-3.2-1B-Instruct on the MATH500 benchmark for Python code
generation, using teacher model outputs as reference (gold). We set rejection as positive label for
computing precision, recall, and f1 score.

Model Size Accuracy Precision Recall F1 Score
1B 0.7687 0.8720 0.6946 0.7733
3B 0.7973 0.8949 0.7286 0.8033
8B 0.7906 0.9207 0.6908 0.7893

D.3 EVALUATION

Hyperparameters & Setting We generate N = 64 solutions using a temperature of 0.8. In the
case of GenRM, we follow the chain-of-thought variant proposed by Zhang et al. (2024). As in
their setup, we generate n = 8 rationales and average the correctness scores across them, following
the self-consistency method (Wang et al., 2023), using a temperature of 0.6. For PRM, we apply
the final score aggregation approach, consistent with previous studies (Wang et al., 2024a; Snell
et al., 2024). When using ToolV for mathematical reasoning, we generate 4 code completions with a
temperature of 0.6 and consider the result correct if at least one of the generated codes passes. In
knowledge-intensive reasoning with ToolV, we generate 4 rationales at the same temperature and
consider the result correct only if all of them pass. In the case of MMLU-Pro, we retrieve three
documents following the training setup. Gold documents are generated from each question using
GPT-4o.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 TOOLV ON MULTI-DOMAIN KNOWLEDGE-INTENSIVE TASKS

We demonstrate that ToolV is effective in verifying solutions across a range of knowledge-intensive
reasoning tasks from the subset of MMLU-Pro benchmark (Health, Economics, History do-
mains) (Wang et al., 2024b). We adapt ToolV to function as a fact-checker, verifying claims
in solutions without other components such as query transformation and reranker (Wei et al., 2024;
Kang et al., 2023). We provide experimental results on the MMLU-Pro benchmark with minimal
framework in this work (Wang et al., 2024b).

As shown in Figure 12, ToolV outperforms the distilled PRM baseline derived from the Ver-
saPRM (Zeng et al., 2025). For the tool, we retrieve three documents from Wikipedia using BM25.
Due to variability in document quality, performance is somewhat unstable in some cases. To explore
ToolV’s upper bound, we also evaluate it using gold documents generated by GPT-4o. Results show
that ToolV performance improves significantly with higher-quality documents, demonstrating its
potential for multi-domain knowledge-intensive reasoning.

In Figure 13, we plot the best-of-N results for all N values used in the experiments from Figure 12.
Compared to math reasoning tasks, the plot is less clearly separated. However, ToolV + PRM generally
outperforms the other baselines and clearly surpasses them even when using gold documents.

E.2 ACCURACY OF GENERATIVE REWARD MODEL IN VERIFICATION GENERATION

In Table 3, we report the accuracy of GenRM with and without ToolV. The results show that ToolV
significantly improves accuracy, precision, and F1 score, indicating that it effectively removes false
positive cases among the solutions. The confusion matrix in Figure 14 further illustrates this trend.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25 26 27

5

10
Ac

cu
ra

cy
 (%

)
SmolLM2-360M-Instruct

20 21 22 23 24 25 26 27

Number of Solutions per Problem (scaled with compute budget)

25
30
35
40
45
50

Qwen2.5-1.5B-Ins.

Qwen2.5-0.5B-Instruct

20 21 22 23 24 25 26 27
25
30
35
40
45
50
55 Llama3.1-8B-Ins.

Llama-3.2-1B-Instruct
Distilled PRM ToolV + Distilled PRM (Ours)

Figure 11: MATH500 with PRM under a scaled x-axis reflecting compute budget. PRM only
performs better at small budgets, but our method surpasses it as test-time scaling increases.

However, it also reveals that ToolV occasionally removes true positives, primarily due to incorrectly
generated Python code.

E.3 ACCURACY OF TOOL-BASED VERIFIER IN CODE GENERATION

In Table 4, we present the accuracy of Python code generation, treating the teacher-generated code as
the ground truth. The results show that precision is quite high—even for the 1B model, the distilled
1B ToolV is able to filter out more than 85% of incorrect solutions among the incorrect solutions that
teacher model predicted. However, the recall is low, indicating that the generated code sometimes
mistakenly filters out correct solutions.

E.4 DATA EFFICIENCY OF RM AND TOOL-BASED VERIFIER IN DISTILLATION

In Figure 15, we conduct experiments to evaluate how much data is needed for each RM-based and
tool-based verifier to achieve satisfactory performance. In each plot, we reduce the distillation data
to 10% and 1% for one verifier, while keeping the other verifier fully distilled using 100% of the
dataset. The results show that ToolV maintains competitive performance even with only 10% of the
data, demonstrating its data efficiency during distillation.

E.5 NECESSITY OF TWO-STAGE DESIGN

A natural question is whether ToolV alone is sufficient for verification with small models. To
answer this, we conduct ablation studies that isolate the contribution of each stage. We report results
in Table 6 and Table 7.

ToolV alone is a strong verifier. It already surpasses PRM on MATH500 and GenRM on GSM8K.
This shows that executable consistency checks provide an effective signal for filtering incorrect
solutions. However, ToolV focuses primarily on execution-based correctness such as calculation.
It does not capture higher-level reasoning errors that are not executable, such as misinterpreting
problem structure or producing logically inconsistent intermediate steps.

Our ablation results show that this complementary relationship leads to consistent performance gains.
ToolV alone improves over PRM and GenRM, but the two stage design (ToolV plus PRM or GenRM)
achieves the highest accuracy across both MATH500 and GSM8K. These findings confirm that the
two stages provide different verification signals and that both are necessary for strong verification
under test time scaling with small models.

E.6 COMPUTE BUDGET DISCUSSION WITH PRM

We extend the discussion in Section 6.4. Since PRMs require no generation, adding ToolV can be
interpreted as allocating roughly twice the compute budget compared to using PRM alone. Figure 11
presents the compute scaled comparison. PRM without ToolV performs better when the number
of generated solutions is small, where the additional verification cost is not yet leveraged. As the
compute budget increases, ToolV combined with PRM consistently achieves higher accuracy than
PRM alone. This shows that ToolV remains effective under test-time scaling, especially for small
model settings.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of GenRM variants across different numbers of generated solutions
N .

Method N = 1 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

One-stage GenRM 27.0 31.6 36.0 40.0 42.0 44.8 45.4
Two-stage GenRM 27.0 29.6 35.0 39.8 42.0 44.4 46.0
GenRM + ToolV 27.0 33.8 38.8 43.8 47.2 49.4 50.6

30

35

40

Ac
cu

ra
cy

 at
 N

=6
4 (

%
)

31.1% 31.1%
34.1%

43.0%
Health

40

42

44

42.0%

40.0%

44.7% 44.7%
Economics

30

35

40

28.0% 27.3%

32.7%

38.7%
History

Majority Distilled PRM ToolV + PRM (Retrieved Docs.) ToolV + PRM (Gold Docs.)

Figure 12: MMLU-Pro with PRM. Weighted Best-of-N (N = 64) performance of Llama-3.2-1B-
Instruct on three knowledge-intensive domains, illustrating the effect of different document sources
in ToolV + Distilled PRM (retrieved and gold documents). ToolV extends beyond math, improving
PRM on multi-domain knowledge-intensive reasoning tasks.

20 21 22 23 24 25 26

Number of Solutions per Problem

25

30

35

40

Ac
cu

ra
cy

 (%
)

Health

20 21 22 23 24 25 26

Number of Solutions per Problem

35

40

45

Economics

20 21 22 23 24 25 26

Number of Solutions per Problem

20

25

30

35

40
History

Majority Distilled PRM ToolV + PRM (Retrieved Docs.) ToolV + PRM (Gold Docs.)

Figure 13: MMLU-Pro with PRM (Line Plot). Weighted Best-of-N performance of Llama-3.2-1B-
Instruct on three knowledge-intensive domains from MMLU-Pro.

E.7 TWO-STAGE GENRM WITHOUT TOOL INTEGRATION

Table 5 reports the performance of two stage verification using GenRM without any tool integration.
The results show that simply adding an additional verification stage does not provide the gains
observed with ToolV. This confirms that the improvements come from tool integration itself rather
than from increased compute through multi-stage verification.

E.8 EXACT PERFORMANCE OF THE PLOT

To provide clear measurements corresponding to Figure 3, Figure 4, and Figure 5, we include tables
that report the exact performance values for each model.

For Figure 3, the exact scores are shown in Table 8, Table 9, and Table 10 for SmolLM2-360M-
Instruct, Qwen2.5-0.5B-Instruct, and Llama-3.2-1B-Instruct, respectively.

For Figure 4, the corresponding tables are provided in Table 11, Table 12, and Table 13.

For Figure 5, detailed results appear in Table 14, Table 15, and Table 16.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

True False
Predicted Label

True

False

Go
ld

 L
ab

el
6684 1930

4179 19207

GenRM

True False
Predicted Label

True

False

Go
ld

 L
ab

el

6398 2216

1948 21438

GenRM + ToolV

Figure 14: Confusion matrix of verification results from GenRM and GenRM + ToolV, where True
denotes the correct solution. This result indicates ToolV improves the performance on removing false
positive cases. Results are from experiments with Llama-3.2-1B-Instruct on MATH500 benchmark.

1 10 100
Data Scale (%)

0.44

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

ToolV Scaling
GenRM Scaling

Figure 15: Data-scale experiment. Performance comparison with varying distillation data sizes. In
each plot, one verifier is distilled with 10% or 1% of data, while the other uses the full dataset. ToolV
remains competitive even with only 10% of data, highlighting its data efficiency. Results are from
experiments with Llama-3.2-1B-Instruct on MATH500.

F CASE ANALYSIS

In this section, we present cases where ToolV either enables or fails the self-verification process. All
examples are taken from level 4 problems in MATH500.

In Example G.1, the solution is incorrect—it computes 37× 2 as 374, which is wrong. However, the
verifier (GenRM-CoT) fails to detect this error and incorrectly marks the step as correct, ultimately
concluding that the entire solution is valid. In this case, ToolV implements a program that checks the
correctness of the solution by solving the equation using the SymPy library. As expected, the result
of the check is False, successfully identifying and removing the incorrect solution.

Occasionally, ToolV may produce incorrect Python code, as discussed in subsection E.3. To il-
lustrate such a case, we present a failure example in Example G.2. Here, the solution is actually
correct, and GenRM correctly verifies it. However, ToolV generates code that leads to an incorrect
conclusion. Although the code appears reasonable, the comparison sp.simplify(result)
== sp.simplify(expected_result) might return False, since symbolic expressions can
differ in form even when they are mathematically equivalent. To properly compare equations, the
code should instead use sp.Eq(...) which is more reliable for symbolic equality checks.

G LLM USAGE

We used large language models (LLMs) solely as a writing assistant, for improving grammar and
clarity of the paper. No part of the research ideation, experimental design, or analysis relied on LLMs.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

MATH500 Accuracy
PRM 47.4
ToolV 52.4
ToolV + PRM 53.2

Table 6: Ablation on ToolV with PRM verifier
with Llama-3.2-1B-Instruct.

GSM8K Accuracy
GenRM 71.87
ToolV 73.62
ToolV + GenRM 74.60

Table 7: Ablation on ToolV with GenRM verifier
with Llama-3.2-1B-Instruct.

Table 8: Weighted Best-of-N accuracy on MATH500 for the SmolLM2-360M-Instruct with PRM
verification. ToolV provides clear improvements over PRM and majority voting.

Method 1 2 4 8 16 32 64

Majority 3.4 3.4 3.4 3.8 5.0 5.8 6.2
PRM Verifier 3.4 3.8 3.4 3.8 4.8 5.8 5.6
ToolV + PRM Verifier (Ours) 3.4 4.6 4.2 4.6 6.0 8.0 9.6

Table 9: Weighted Best-of-N accuracy on MATH500 for the Qwen2.5-0.5B-Instruct model with PRM
verification. ToolV consistently improves over PRM verification and majority voting.

Method 1 2 4 8 16 32 64

Majority 26.0 26.0 32.2 37.0 39.2 41.6 42.8
PRM Verifier 26.0 31.2 36.8 37.8 42.8 44.4 46.0
ToolV + PRM Verifier (Ours) 26.0 32.0 37.6 41.6 44.8 46.6 50.0

Table 10: Weighted Best-of-N accuracy on MATH500 for the Llama-3.2-1B-Instruct model with
PRM verification. ToolV provides clear gains over PRM based verification and majority voting
methods.

Method 1 2 4 8 16 32 64

Majority 27.0 27.0 33.2 38.8 41.6 43.8 45.8
PRM Verifier 27.0 30.8 36.0 40.2 42.6 43.6 47.4
ToolV + PRM Verifier (Ours) 27.0 33.6 38.8 43.6 47.4 50.0 53.2

Table 11: Weighted Best-of-N accuracy on MATH500 for the SmolLM2-360M-Instruct model
with GenRM verification. ToolV provides consistent gains over verifier based and majority voting
methods.

Method 1 2 4 8 16 32 64

Majority 3.2 3.2 3.2 3.6 4.8 5.6 5.8
Zero shot GenRM 3.2 3.2 3.2 3.6 4.8 5.6 5.8
Distilled GenRM 3.2 3.4 3.8 3.8 5.4 7.2 7.0
ToolV + Distilled GenRM (Ours) 3.2 4.0 4.0 5.2 6.8 8.4 10.8

Table 12: Weighted Best-of-N accuracy on MATH500 for the Qwen2.5-0.5B-Instruct model with
GenRM verification. The results show that ToolV provides clear gains over verifier based and majority
voting methods by filtering calculation errors that generative verification cannot resolve.

Method 1 2 4 8 16 32 64

Majority 26.0 26.0 32.2 37.0 39.2 41.6 42.8
Zero shot GenRM 26.0 27.6 31.0 37.4 39.8 42.6 43.0
Distilled GenRM 26.0 31.6 34.4 38.4 40.8 43.8 44.6
ToolV + Distilled GenRM (Ours) 26.0 32.0 36.8 40.8 44.0 45.0 47.2

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 13: Weighted Best-of-N accuracy on MATH500 for the Llama-3.2-1B-Instruct model with
GenRM verification. The results show that ToolV provides clear gains over verifier based and majority
voting methods by filtering calculation errors that generative verification cannot resolve.

Method 1 2 4 8 16 32 64

Majority 27.0 27.0 33.2 38.8 41.6 43.8 45.8
Zero-shot GenRM 27.0 28.0 33.8 38.8 40.6 44.4 46.0
Distilled GenRM 27.0 31.6 36.0 40.0 42.0 44.8 45.4
ToolV + Distilled GenRM (Ours) 27.0 33.8 38.8 43.8 47.2 49.4 50.6

Table 14: Weighted Best-of-N accuracy on GSM8K for the SmolLM2-360M-Instruct model with
GenRM verification. ToolV provides clear gains over verifier based and majority voting methods.

Method 1 2 4 8 16 32 64

Majority 10.92 10.92 13.57 18.35 23.43 26.69 28.51
Zero shot GenRM 10.92 10.92 13.57 18.35 23.43 26.69 28.51
Distilled GenRM 10.92 14.94 18.80 23.05 26.69 29.72 31.39
ToolV + Distilled GenRM (Ours) 10.92 15.31 20.92 26.54 32.75 36.85 39.88

Table 15: Weighted Best-of-N accuracy on GSM8K for the Qwen2.5-0.5B-Instruct model with
GenRM verification. ToolV consistently outperforms verifier based and majority voting methods.

Method 1 2 4 8 16 32 64

Majority 44.28 44.28 50.49 56.10 59.14 60.80 61.71
Zero shot GenRM 44.28 43.44 50.11 56.63 59.82 61.18 62.62
Distilled GenRM 44.28 49.89 55.65 59.59 62.70 64.52 66.03
ToolV + Distilled GenRM (Ours) 44.28 50.87 56.56 62.62 64.90 66.57 68.31

Table 16: Weighted Best-of-N accuracy on GSM8K for the Llama-3.2-1B-Instruct model with
GenRM verification. ToolV shows consistent improvements over verifier based and majority voting
methods.

Method 1 2 4 8 16 32 64

Majority 49.96 49.96 58.15 64.44 67.17 68.46 69.45
Zero shot GenRM 49.96 51.18 58.76 64.75 67.48 68.99 70.58
Distilled GenRM 49.96 57.09 61.94 66.94 69.67 71.11 71.87
ToolV + Distilled GenRM (Ours) 49.96 58.15 64.29 68.23 71.04 73.62 74.60

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Example G.1: Success case 1 of ToolV

Problem: Half the value of 3x− 9 is x+ 37. What is the value of x?

Solution: ## Step 1: Translate the given information into an equation
We are given that half the value of 3x − 9 is x + 37. This can be translated into the equation
3x−9

2 = x+ 37.
Step 2: Multiply both sides of the equation by 2 to clear the fraction
Multiplying both sides of the equation by 2 to clear the fraction gives us 3x− 9 = 2x+ 374.
Step 3: Subtract 2x from both sides of the equation to isolate the variable term on one side
Subtracting 2x from both sides of the equation gives us x− 9 = 374.
Step 4: Add 9 to both sides of the equation to further isolate the variable term
Adding 9 to both sides of the equation gives us x = 383.
The final answer is: 383

GenRM-CoT: Let’s verify the provided solution step by step.
Step 1: Translate the given information into an equation
The solution states that half the value of 3x − 9 is x + 37. The translation into the equation
3x−9

2 = x+ 37 is correct.
Verification: This step is correct.
Step 2: Multiply both sides of the equation by 2 to clear the fraction
The solution claims that multiplying both sides by 2 gives 3x− 9 = 2x+ 374. This is accurate
since multiplying both sides by 2 eliminates the fraction.
Verification: This step is correct.
Step 3: Subtract 2x from both sides of the equation to isolate the variable term on one side
The solution states that subtracting 2x from both sides results in x− 9 = 374. This is also correct.
Verification: This step is correct.
Step 4: Add 9 to both sides of the equation to further isolate the variable term
The solution states that adding 9 to both sides gives x = 383. This is accurate as well, as adding
9 to x− 9 gives x+ 9 = 374 and thus x = 374− 9.
Verification: This step is correct.
The final answer is given as 383 .
Final Verification
All steps have been verified to be correct, and the final answer is consistent with the calculations.
Verification: Is the answer correct (Yes/No)? Yes

ToolV: import sympy as sp

Define the variable
x = sp.symbols(‘x’)

Given equation
equation = sp.Eq((3*x - 9) / 2, x + 37)

Solve the equation
solution = sp.solve(equation, x)[0]

Verify the solution
is_correct = sp.simplify(solution) == 383
print(is_correct)
Interpreter output: False

Example G.2: Failure case 1 of ToolV

Problem: The operation & is defined for positive integers a and b as a&b =

√
ab+ a√
ab− b

. What is

the value of 9&2? Express your answer as a common fraction in simplest radical form.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Solution: ## Step 1: Substitute the given values of a and b into the definition of &. We have
a = 9 and b = 2, so we can substitute these values into the definition of & as follows:

9&2 =

√
(9)(2) + 9√
(9)(2)− 2

Step 2: Simplify the expressions inside the square roots. We can simplify the expressions
inside the square roots as follows:

9&2 =

√
18 + 9√
18− 2

=

√
27√
16

Step 3: Further simplify the expressions by finding square roots of perfect squares inside the
fraction. We can simplify the expressions by finding square roots of perfect squares inside the
fraction as follows:

9&2 =
3
√
3

4

The final answer is:
3
√
3

4

GenRM-CoT: Let’s verify the solution step by step.
Step 1: Substituting values The solution correctly substitutes a = 9 and b = 2 into the
expression for 9&2:

9&2 =

√
(9)(2) + 9√
(9)(2)− 2

.

This step is correct.
Step 2: Simplifying inside the square roots The next part of the solution simplifies the
expressions inside the square roots:

9&2 =

√
18 + 9√
18− 2

=

√
27√
16

.

This simplification is also correct.
Step 3: Finding square roots The solution proceeds to find the square roots:

3
√
3

4
.

This simplification is correct as
√
27 = 3

√
3 and

√
16 = 4.

Final Answer The final answer given is:

3
√
3

4
.

This matches the expected answer provided in the verification section.
In summary, each step in the solution was executed correctly and led to the correct final answer.
Verification: Is the answer correct (Yes/No)? Yes

Example G.3: Failure case 1 of ToolV (cont.)

ToolV: import sympy as sp

Define the operation
def operation(a, b):

return sp.sqrt((a * b + a) / (a * b - b))
Given values
a = 9

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

b = 2

Calculate the result
result = operation(a, b)

Expected result
expected_result = sp.Rational(3, 4) * sp.sqrt(3)

Verify if the result matches the expected result
is_correct = sp.simplify(result) == sp.simplify(expected_result)
print(is_correct)
Interpreter output: False

32

	Introduction
	Related Works
	Test-time compute scaling
	Verifier in test-time compute scaling
	Tool-integrated language model

	Preliminaries
	Method
	Tool-integrated verification
	Verifier distillation

	Theoretical analysis
	Memorization bound with & without tool
	Effect of tool-based verifier on test-time scaling

	Experiments
	Setup
	Experimental results
	Analysis
	Discussion: Computational overhead of ToolV

	Conclusion
	Concept-Proof Experiment Details
	Details of Our Method
	Proof for Theoretical Analysis
	From theoretical analysis to practice.
	Proof of Lemma 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3

	Implementation Details
	Model
	Training
	Evaluation

	Additional experimental results
	ToolV on multi-domain knowledge-intensive tasks
	Accuracy of generative reward model in verification generation
	Accuracy of tool-based verifier in code generation
	Data efficiency of RM and tool-based verifier in distillation
	Necessity of two-stage design
	Compute budget discussion with PRM
	Two-stage GenRM without tool integration
	Exact performance of the plot

	Case analysis
	LLM Usage

