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Abstract

Since protein-protein interactions (PPIs) are
crucial to understanding living systems, har-
vesting these data is essential to probe the
development of diseases and to understand
gene/protein functions and biological processes.
Some curated datasets exist containing PPI data
derived from the literature and other sources
(e.g., IntAct, BioGrid, DIP and HPRD), but
these are far from exhaustive and their main-
tenance is a labor intensive process. On the
other hand, machine learning (ML) methods to
automate PPI knowledge extraction from the
scientific literature have been limited by a short-
age of appropriate annotated data. In this work,
we create a unified multi-source PPI corpora
with vetted interaction definitions, and aug-
mented by binary interaction type labels. We
also present a Transformer-based deep learning
method, exploiting entity type and positional
information for relation representation to im-
prove relation classification performance. We
evaluated our model’s performance on three
widely studied relation extraction datasets from
biology and computer science domains as well
as our work’s target PPI datasets to observe the
effectiveness of the representation to relation
extraction tasks in various domains, and found
it to outperform prior state-of-the-art (SOTA)
models.

1 Introduction

Much effort in modern molecular biology either
involves or is entirely focused on learning and un-
derstanding the functions and interactions of the
millions of proteins which are the basic building
blocks of life. The functions of most of these are
currently unknown, and are only definitively es-
tablished for a small fraction on which extensive
and labor-intensive labwork has been performed.
These gold-standard protein function assignments
have been extended computationally via DNA &
amino acid sequence homology throughout the

ever-expanding collection of protein sequences de-
termined from genome sequencing. However, in-
ference from homology is often inaccurate. Help-
fully, clues about function can come from other
sources, including interactions with proteins for
which the function is known. While experiments
that definitively determine interactions can be labor-
intensive, several relatively high-throughput meth-
ods are in use, such as Two-hybrid screening
(Briickner et al., 2009) and affinity purification fol-
lowed by mass spectrometry (Dunham et al., 2012).
Several databases such as IntAct!, STRING?, DIP3,
BioGrid*, HPRD?, and MINT® are now dedicated
to collecting and curating PPI results obtained with
these techniques and others, and from the scientific
literature. However, mining the literature requires
manual effort and is slow. We aim to develop a ML
model that effectively identifies statements of PPIs
in scientific text.

Efforts to fully automate text knowledge extrac-
tion are widespread and ongoing, with supervised
learning approaches currently being the most fa-
vored. A key challenge in applying these meth-
ods to PPI extraction is a shortage of training data
specifically annotated for this purpose. Several
publicly available PPI training datasets suffer from
biases of restricted biological focus (i.e., human,
medical, or microbial only) and also from differ-
ences in the concept of what defines an interaction.
For this work we combine all these training sets,
vet them for uniformity in interaction definition,
and also add interaction type labels. We propose
Transformer architecture-based models (Vaswani
et al., 2017), which leverage entity type and posi-
tional information to build a relation representation
to improve relation classification performances.

"https://www.ebi.ac.uk/intact
https://string-db.org
Shttps://dip.doe-mbi.ucla.edu/dip
‘https://thebiogrid.org
5https://www.hprd.org
®https://mint.bio.uniroma2.it


https://www.ebi.ac.uk/intact
https://string-db.org
https://dip.doe-mbi.ucla.edu/dip
https://thebiogrid.org
https://www.hprd.org
https://mint.bio.uniroma2.it

In this paper, our contribution is two-fold:

1. We augment public PPI corpora with labels for
protein types (enzyme and structural), which
further delineate the functional role of pro-
teins and consequently provides a helpful pro-
tein classification for the biology community.
We provide the interaction-typed PPI corpora
for the community.

2. We present a Transformer-based relation pre-
diction method that exploits types of enti-
ties and positional information to build an
improved relation representation. Our study
showed the effectiveness of the proposed ap-
proach on not only the PPI datasets, but also
three relation extraction datasets from biology
and computer science domains.

2 Related Work

There have been ongoing efforts to consolidate bio-
logical knowledge pertinent to PPIs from literature
by creating machine-processible data and design-
ing protein relation extraction methods.

2.1 PPI corpora

BioCreative VI (Islamaj Dogan et al., 2019) pro-
posed a PPI relation extraction challenge task re-
lated to genetic mutations to foster the development
of mining PPI information from biomedical liter-
ature. Bunescu et al. (2005) annotated 1000 titles
and abstracts from the MEDLINE repository that
discuss human genes/proteins, so-called AIMed
corpus, which includes roughly 5000 protein names
and 1000 protein interactions. Pyysalo et al. (2007)
created Biolnfer (Bio Information Extraction Re-
source), containing 1100 sentences with named en-
tities and their relationships tagged from abstracts
of biomedical research articles. Fundel et al. (2007)
tagged the sentences of 50 abstracts referenced by
the Human Protein Reference Database (HPRD)
with direct physical interactions, regulatory rela-
tions, and modifications between genes/proteins.
The IEPA (Information Extraction Processing As-
sessment) corpus (Ding et al., 2001) was created to
conduct a comparative study on the merits of differ-
ent text processing units for interactions between
biochemical entities. And the Learning Language
in Logic Workshop (LLLOS) designed the genic
interaction extraction challenge task, the purpose
of which is to promote protein/gene interactions
information extraction from biology abstracts from

the MEDLINE bibliography database (Nédellec,
2005). The challenge focused on gene interactions
in Bacillus subtilis which is a model bacterium and
many papers have been published on direct gene
interactions involved in sporulation.

Although the number of corpora and methods for
PPI information extraction from biomedical text
has increased as the interest to automatic mining
system is growing, the lack of consensus with re-
spect to PPI annotation has hindered consolidation
of heterogeneous datasets, and thereby making it
difficult for researchers to properly evaluate their
methods on a standardized dataset for PPI extrac-
tion. Pyysalo et al. (2008) conducted a comparative
analysis of the five PPI datasets AIMed, Biolnfer,
HPRDS50, IEPA and LLL and unified the PPI anno-
tations to be shared with the community for clear
and comparative method evaluation. To merge the
diverse datasets, Pyysalo et al. (2008) found com-
mon categories across the five corpora and gener-
ated a unified PPI corpora composed of sentences
tagged with undirected and untyped binary inter-
actions (i.e., positive and negative). These unified
versions of PPI datasets — hereafter called the five
benchmark PPI corpora — has been widely used to
evaluate various approaches on PPI extraction tasks
(Tikk et al., 2010; Bui et al., 2011; Warikoo et al.,
2021). In the biological literature, single sentences
often discuss more than two proteins, and not all
such statements are declarations of interactions be-
tween the proteins mentioned. These datasets in-
clude all identified protein/gene entity names found
within each training sentence, and also a pairwise
evaluation of positive/negative interaction between
each possible pairing.

However, some issues remain regarding the
content and annotations in these benchmark PPI
datasets, as we detail in section 3.1. In this paper,
we present an augmented, refined version of the
five benchmark PPI corpora plus the BioCreative
VI corpus that further specify positive interactions
into two types of interactions: enzyme, structural.
These interaction types are desirable to construct
networks of protein interactions.

2.2 PPI extraction methods

In the early stages of adopting ML approaches for
the PPI extraction task, feature-based and kernel-
based approaches were commonly used (Baumgart-
ner et al., 2008; Bui et al., 2011). Murugesan et al.
(2017) developed a Distributed Smoothed Tree ker-



nel (DSTK) composed of distributed lexical parse
trees and semantic feature vectors in an attempt to
capture syntactic and semantic information of sen-
tences and demonstrated that the shallow linguistic
information aided to enhance the PPI extraction
capability with the model evaluation on the five
benchmark PPI corpora.

With the recent success of deep learning in a
number of applications, deep neural network mod-
els have emerged to tackle the PPI extraction task.
Peng and Lu (2017) demonstrated that their mul-
tichannel dependency-based convolutional neural
network model (McDepCNN) effectively captured
syntactic features of sentences by adding a sepa-
rate channel for the dependency information of the
sentence syntactic structure on the PPI task using
AlMed and Bioinfer corpora. Recently, attention
mechanisms in natural language processing (NLP)
have shed some light on solving long dependency
issues between tokens in sequential data. The self-
attention based Transformer architecture (Vaswani
et al., 2017) has proven to well preserve long term
dependencies and establish effective contextual rep-
resentations. NLP models built upon Transformer
architecture such as BERT (Devlin et al., 2018)
have achieved SOTA results in various NLP tasks,
including in biology domains (Vig et al., 2020).
Warikoo et al. (2021) proposed a Lexically aware
Transformer-based Bidirectional Encoder Repre-
sentation model (LBERT) that generated syntactic
contexts emphasized representations for sentence-
level bio-entity relation extraction tasks. LBERT is
a modified version of BERT that takes n-gram parts-
of-speech frames as an additional input embedding
in order to deliver latent lexical properties, and the
model outperformed the prior SOTA models on a
PPI task with the five benchmark PPI corpora.

3 Additional PPI curation

This section details our further curation and en-
hancement of the aforementioned data sets.

3.1 Problems Discovered during Curation

In vetting the five benchmark PPI training corpora,
we identified the following problems:

3.1.1 Bias due to restricted biological focus for
each set

In particular, the AIMed and IEPA corpora are fo-
cused on human medical biochemistry and phenom-
ena, including viral pathogens, whereas the set LLL
is limited to a single bacterial species, B. subtilis.

These differences manifest in skew and distribution
of protein/gene name frequency counts between
the five sets, as well as other domain-specific ter-
minology. In fact, the most frequently occurring
protein in IEPA, insulin, accounts for 14% of the
protein mentions in all the IEPA positives, whereas
it doesn’t occur in the AIMed positives set, for
which the most common protein, p53, accounts for
only 1.75% of the protein names. These sets all
sampled very different populations in the literature.
Combining all sets together helps towards counter-
ing this bias, but in the future, we plan to collect
more training data to better address this issue.

3.1.2 Differences in notion of the definition of
an interaction

The five sets largely restrict PPI positive cases to
clear statements of direct interaction between the
two subjects. LLL further restricted positive PPI
declarations to cases wherein a protein binds to
DNA and causes or inhibits the transcription of the
gene of another protein, thus a statement of gene
regulation — a very particular type of interaction.

We intentionally broaden our acceptance of a
positive PPI indication. Our goal is to provide bi-
ologists with a tool which will identify possible
interactive connections between proteins directly
from the scientific literature text. Because of the
likelihood that claims of direct PPI will end up in
databases in the future, if not there already, a less
restrictive interpretation will allow a text mining
system to report results of value that won’t neces-
sarily be found in a PPI database.

Along these lines, we did not distinguish be-
tween gene or protein for this work. In addition
to direct binding between two proteins or a pro-
tein and itself (i.e. dimers and multimers), we also
considered as interacting cases where two proteins
bound to a larger complex of other proteins without
necessarily contacting each other directly.

The following is an example (from BioCreative
corpus) where a direct connection between proteins
PVAI2 and ORP3a is made, but is not declared an
actual interaction.

The targeting of the oxysterol-binding pro-
tein ORP3a to the endoplasmic reticulum
relies on the plant VAP33 homolog PVA12.

On the other hand, we were mindful of the pos-
sibility of being too broad, which would result in
too many PPI calls to be meaningful.



3.1.3 Confusion over PPI-negative
annotations

This expanded threshold for PPI-positive impacted
the public negative annotations. Here are two exam-
ple cases (from AIMed corpus) where we disagreed
with the given negative labels.

In addition to this unique pathway, FGFR3
also links to GRB2.

A negative interaction between proteins FGFR3
and GRB2 was declared in the public set.

After a brief historical incursion regarding
RAS of renal origin, we present the main
extrarenal angiotensin-forming enzymes,
starting with isorenin, tonin, D and G
cathepsin and ending with the conversion
enzyme and chymase.

In this case negative interactions were annotated
between angiotensin and each of isorenin, tonin, G
cathepsin and chymase respectively, even though
they are declared as forming angiotensin.

Here is an example of a negative PPI sentence
where we agree and which we included in our cu-
rated set (from AIMed corpus).

The molar ratio of serum retinol-binding
protein (RBP) to transthyretin (TTR) is
not useful to assess vitamin A status during
infection in hospitalised children.

To reduce confusion in our initial models re-
garding updated positive and negative re-labels, we
considered only those negatively labeled sentences
where no positive pairs were declared in a sentence,
and we then manually examined each case to make
sure we agree, disregarding for now those where
we differ. For the same reason, for this work, we
also disregarded negative pair cases in sentences
with both positive and negative annotations.

3.2 Interaction Type Annotation

PPIs aid with biological engineering: i) structure
and protein subunit complex knowledge is critical
to protein engineering ii) transient interactions (e.g.,
chaperone to client protein) knowledge needed for
engineering at a broader scale. To make the pub-
lic PPI corpora more useful for this purpose, we

added interaction type labels for the positively de-
fined pairs in the unified datasets as well as for
the BioCreative set. In determining the interac-
tion type labels, we first considered top-level pro-
tein function categories from IntAct’s molecular
interaction ontology but discovered that we did not
have enough training examples to provide sufficient
statistics in each of the 28 categories to properly
train a model (not all interaction types occur with
equal frequency). We then attempted to reduce the
number of categories by making them coarser, first
lowering to roughly ten and then three types, but
we found that making assignments in this manner
proved too complicated and provided questionable
scientific value.

We finally decided on a simple binary classifi-
cation, with interactions being declared either en-
zyme or structural for our first pass in that enzyme
or structural accurately delineates the functional
role of almost all proteins and consequently pro-
vides a concise but meaningful protein classifica-
tion. The structural label was applied to protein
assemblages of large, permanent cellular compo-
nents such as cell walls, histones, golgi apparatus,
microtubules, membranes, inter-cellular structures
and the like. All other interactions were classified
as enzyme. Type was determined by examining the
given function for each protein/gene, where it could
be obtained from any of several online protein
databases such as Uniprot, NCBI, and GeneCards,
and from the sentence context itself. For the five
sentence-based data sets, interaction type labels
were applied for positively identified protein pairs.
An example of a structural interaction label for
the proteins alpha-syntrophin and utrophin (from
Biolnfer corpus) follows:

Absence of alpha-syntrophin leads to struc-
turally aberrant neuromuscular synapses de-
ficient in utrophin.

The remaining non-structural interactions were
considered enzymatic, a label we applied to nomi-
nal enzyme activity (proteins which catalyze chem-
ical reactions of metabolites in reaction pathways)
as well as proteins which activate other proteins
(kinases), but which we also applied to all proteins
which activated, inhibited, signaled, and formed
temporary complexes with other proteins, and also
those which bind to DNA to regulate gene expres-
sion, chaperones which help proteins fold, and



those which destroy proteins (proteases), An ex-
ample of an enzyme-labeled PPI between JAK2
and Ref-1 (from AIMed corpus):

The cytokine-activated tyrosine kinase
JAK2 activates Raf-1 in a p2lras-
dependent manner.

This process of adding type labels was the most
difficult and labor-intensive aspect of the training
data curation. There were thousands of gene names
and symbols which required external look-ups in
addition to an equally large host of specialized bi-
ological jargon and acronyms (chemical names,
cell lines, experimental conditions, etc.) which
also needed to be researched in order to differ-
entiate from proteins and to established context
necessary for understanding each sentence. Impor-
tantly, because this annotation effort is informed
by resources and knowledge external to the text
in question, it encodes specialized domain knowl-
edge that makes the PPI type classification task
more challenging, and which puts further pressure
on ML models to adequately capture sufficiently
informative context to make a class determination.

Two domain experts performed the PPI anno-
tation. With respect to inter-annotator agreement,
one of them annotated, the second was able to veto,
with disagreements resolved by mutual agreement.
The definition of an interaction and the annotation
rules were carefully determined ahead of time, ac-
cording to domain expertise. The rules will be also
released along with the dataset.

4 Methodology

We adopted a Transformer-based approach for the
PPI classification task. In particular, we improved
a relation representation exploiting entity type and
positional information.

4.1 Entity Type- and Position-aware Relation
Representation

To generate embeddings for relation representa-
tions, we applied a marker-free representation ap-
proach used in earlier models (Zhang et al., 2021;
Eberts and Ulges, 2020). Basically, the representa-
tion consists of a pair of two max-pooled entity em-
beddings and a local context that is a max-pooled
embedding from a series of tokens between the two
entities. We have further enhanced the representa-
tion embodying entities’ types and positional infor-

mation. This rationale has been adapted from the
earlier findings that adding entity type indicators to
representations improved a relation extraction task
(Qin et al., 2021; Zhou and Chen, 2021) and that
entity positional information was important for a
model to focus on the relation pairs of interest (Qin
et al., 2021; Zhang et al., 2017).

Unlike the previous relation representations, our
approach takes advantage of entity types and posi-
tional information without using additional mark-
ers. Considering the resource efficiency, a marker-
free method can be preferable to a marker-used
method where an input is pre-tagged with extra
marker tokens (e.g., [TAG1]entity 1[/TAGL1]
is involved ... [TAG2]entity 2 [ /TAG2]...). Itis
commonly found in relation extraction datasets that
a sentence can have more than two entities and
multiple relations. In such cases, models using a
marker-free representation can handle multiple re-
lations in a sentence at once whereas marker-used
approaches might need to generate a separate input
for each pair. This leads to lower resource use by
shorter input length and less training cost. Also, a
marker-free method is more flexible in case entities
are not defined in the first place (e.g., hierarchical
joint-learning (Eberts and Ulges, 2020; Takanobu
et al., 2019)).

To incorporate entity type and position infor-
mation without explicit markers, we used a dedi-
cated embedding table for entity types (e.g., protein,
gene, chemical, drug) which the model looks up
to find the type embedding of an entity. The entity
type table is filled by a pre-defined entity type list,
and the table contains a pair of start and end em-
bedding for each entity type (e.g., [protein],
[/protein]). For the entity’s positional infor-
mation, we leveraged Transformer’s inherent po-
sitional embeddings of a preceding/succeeding to-
ken of an entity span as the entity’s start/end po-
sitional information. This can be seen as utiliz-
ing entity start/end markers’ positional information.
The model performs an element-wise addition of
the entity type embeddings and position embed-
dings before appending them to the final repre-
sentation. Figure 1 illustrates the construction of
relation representation in a PPI sample. We evalu-
ated the proposed method on three relation extrac-
tion datasets from biology and computer science as
well as our work’s target PPI datasets to validate
the effectiveness of the representation to relation
extraction tasks in various domains.
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Figure 1: The representation consists of the max-pooled of two entity outputs, the max-pooled of local context (a
series of tokens between the two entities), two pairs of entity span’s start/end positional embeddings, and two pairs
of entity type embeddings. & denotes element-wise addition. The example sentence is "Absence of alpha-syntrophin
leads to structurally aberrant neuromuscular synapses deficient in utrophin.” (source from: Biolnfer corpus)

4.2 Model Architecture

Our Transformer-based relation extraction model
performs a token-level classification task using a
logistic regression with softmax to determine the
probability of token class (e.g., ¢ € {enzyme,
structural, negative}) as follows.

P(c|X) = softmax(W hy), (1)

where hy is the output of the model. The model
parameters are optimized using a categorical cross
entropy as follows.

— Y 6(X, ) log P(c|X), )

where 0(X, ¢) indicates whether the class of X is
correctly predicted (§(X, ¢) = 1) or not (= 0).

5 Experimental Setup

We demonstrate the effectiveness of the proposed
approach on the three widely studied relation ex-
traction datasets in biomedical and computer sci-
ence domains, the five PPI benchmark corpora, and
our PPI corpus with interaction types by comparing
the performance with SOTA models.

5.1 Datasets

The relation extraction datasets from biomedi-
cal and computer science domains are ChemProt
(Krallinger et al., 2017), DDI (Herrero-Zazo et al.,
2013), and SciERC (Luan et al., 2018). The de-
scriptions of the datasets can be found in Ap-
pendix A. Table 1 displays the number of relations
of the datasets.

The five PPI benchmark corpora include AlMed
(Bunescu et al., 2005), Biolnfer (Pyysalo et al.,

Train Dev  Test
ChemProt 4,154 2,416 3,458
DDI 25,296 2,496 5,716
SciERC 1,861 275 551

Table 1: Statistics of relation extraction datasets from
biology and computer science domains.

Positive Negative
AlMed 1,000 4,834
Biolnfer 2,534 7,132
HPRDS50 163 270
IEPA 335 482
LLL 164 166
TOTAL 4,196 12,884

Table 2: The number of samples in the five PPI bench-
mark corpora for positive and negative classes.

2007), HPRD50 (Fundel et al., 2007), IEPA (Ding
et al., 2001), LLL (Nédellec, 2005). We adopted
the unified version of PPI benchmark datasets pro-
vided by Pyysalo et al. (2008) that has been used
in the SOTA models. In the datasets, the PPI re-
lations are tagged with either positive or negative.
The statistics of the corpus is described in Table 2.
Our PPI annotations with interaction types (enzyme,
structural, or negative) are the expanded version
of the five benchmark corpora plus the BioCreative
VI protein interaction dataset (Islamaj Dogan et al.,
2019), and Table 3 displays the statistics of the cor-
pora. The annotation work in all corpora has been
carried out in a sentence boundary as in the five
PPI benchmark corpora.



Enzyme Structural Negative ChemProt and SciERC outperformed the earlier
BioCT 378 83 0 works that used the same pre-trained model with
AlMed 548 182 1,371 different representations for relation classification
Biolnfer 604 1,465 2,148 such as the output embedding of the token [CLS],
HPRDS50 103 34 87 the combinations of two entity outputs.
IEPA 271 2 224
LLL 163 0 0 Corpus Method F1
TOTAL 2,067 1,766 3,830 Peng et al. (2020)t 73.5
Table 3: The number of samples in the interaction typed ChemProt Phan et al. (2021) 89.0
PPI corpora for enzyme, structural, and negative classes. Our Methodt 93.2
7 Annotations using the PPI data from BioCreative VI Zhu et al. (2020)F 80.9
Track 4: Mining protein interactions and mutations for DDI Su et al. (2021)F 80.6
precision medicine (PM) Our Method*+ 81.1
Beltagy et al. (2019)% 80.0
5.2 Implementation details SiERC Zhou et al. (2021) 82.3
We deployed the pre-trained BERT models in Our Method} 89.2

the experiments including BioBERT (Lee et al.,
2020). BioBERT is a pre-trained BERT model
on biomedical literature, which has demonstrated
excellent performance in biomedical NLP appli-
cations. We compared the BioBERT models with
the default BERT models to observe the effective-
ness of biomedical knowledge transfer. We built
the model using PyTorch (version 1.9.0) and using
the HuggingFace’s Transformers package (version
4.12.0) (Wolf et al., 2019). The model architecture
and weight initialization follow the used pre-trained
model, and the hyper-parameters were set as fol-
lows: training epochs = 10, learning rate = 5e-05
with Adam, batch size = 16. We used a dense layer
with linear activation as post transformer layer. We
chose a micro F-score as the performance measure
that was adopted in the SOTA works.

6 Results

6.1 Evaluation on Bio/CS datasets

Table 4 shows the performance comparison of our
approach with some SOTA methods on the Bio/CS
datasets. We compared our model with not only
SOTA scored works, but also the methods using the
identical pre-trained model to observe the effective-
ness of our proposed relation presentation. We used
the BioBERT base-cased model for the ChemProt
and DDI datasets and the SciBERT cased model
(Beltagy et al., 2019) for the SciERC dataset. Our
model achieved SOTA performances, and although
some discrepancy might exist between model train-
ing environments such as specific hyper-parameter
settings and used machines, our representation pro-
duced the higher results for all datasets and for

Table 4: The F-scores of model evaluation on test data.
ftrained on BioBERT. ftrained on SciBERT.

6.2 Evaluation on PPI datasets

To compare the performance of the proposed ap-
proach with SOTA works, we evaluated the models
via 10 fold cross-validation (CV), as adopted in the
SOTA models. Table 5 displays the F-scores of 10
fold CV on the PPI classification task along with
the SOTA results. Our models produced the best
performances and outperformed SOTA models on
the overall classification as described in the average
F-scores. The BioBERT models achieved greater
improvements than the BERT models, which is in
line with expectations and empirical studies (Peng
et al., 2019) claiming that domain-specific pre-
training benefits solving domain problems.

We further examined the model’s ability on our
PPI corpora with interaction types. In this exper-
iment, we combined the six corpora where some
datasets contain only single class samples or highly
skewed samples so that the model can be trained on
more balanced data. The model evaluation was also
carried out in a 10 fold CV manner, and Table 7
shows the evaluation results. The results demon-
strate that the models yield consistent predictions
with over 80 F-scores as compared to the previous
experiments, and the BioBERT model constantly
outperformed the BERT model.

6.3 Ablation study

We conducted a detailed ablation study to exam-
ine the effect of entity types and entity positional



Method AlMed Biolnfer HPRDS0 IEPA LLL Avg.
DeepResCNN (Zhao et al., 2016)  77.6 86.9 77.7 75.5 832 802
DSTK (Murugesan et al., 2017) 71.0 76.2 80.0 80.2 892 793
LBERT (Warikoo et al., 2021) 74.0 72.8 85.5 83.7 86.0 804
Our Method (w/ BERT) 892 8.9 8.0 817 853 858
Our Method (w/ BioBERT) 91.4 88.2 86.7 851 90.6 884

Table 5: The F-scores of 10 fold CV on the PPI classification with the five benchmark PPI corpora.

Rep. AIMed Biolnfer HPRDS0 IEPA LLL Typed PPI ChemProt DDI SciERC
baseline  90.4 86.6 86.6 829 87.1 84.1 93.1 79.0 87.6
+ET 907 876 8.7 842 902 8.1 931 831 881
+EP 90.9 86.8 87.1 84.7 89.9 84.2 93.4 80.8 88.7
+ET+EP 914 88.2 86.7 85.1 90.6 85.1 93.2 81.1  89.2

Table 6: Ablation test results on relation representations. The baseline representation is a concatenated vector of
two max-pooled vectors of two entity tokens and a max-pooled vector of a local context. ET and EP stand for entity
type embedding and entity position embedding, respectively.

Method Typed PPI
Our Method (w/ BERT) 82.4
Our Method (w/ BioBERT) 85.1

Table 7: The F-scores of 10 fold CV on the PPI corpora
with interaction types.

information as representation features for relation
classification performance. We set a concatenated
embedding of two max-pooled embeddings of en-
tity tokens and a max-pooled embedding of context
vectors as a baseline representation which was used
in the earlier relation extraction studies. We tested
the model’s performance by adding the entity type
feature, the entity position feature, or both features
to the baseline representation. As in the previous
experiments, the test was performed using SciB-
ERT cased for SciERC and BioBERT base-cased
for the other datasets. The summary of the results
are shown in Table 6. Both entity type embeddings
and entity span’s start/end positional embeddings
increased the models’ performance from the base-
lines on all of the datasets. In some cases, their
contributions to the results were marginal, but the
two features did not degrade the models’ perfor-
mance in any case. Although individual features
had more positive effects on some datasets (the en-
tity type for HPRDS50 and DDI, the entity position
for ChemProt), the combination of the two features

produced the best prediction in a majority of cases.

7 Conclusion

In this paper, we augmented existing PPI corpora
annotated with interaction types, which is expected
to be beneficial to extracting further PPI informa-
tion from scientific publications. We also presented
a Transformer architecture-based model for rela-
tion extraction. In particular, we improved a rela-
tion representation leveraging entity type and posi-
tional information without using additional mark-
ers. Our models outperformed prior SOTA models
and also proved the effectiveness of entity type
and positional information for the classification on
three relation extraction datasets from biomedical
and computer science and the PPI datasets.

We will continue to improve our PPI annota-
tions by resolving identified problems, including
de-biasing the training data: more examples are
needed from across biological subject areas (plants,
environmental, microbiomes etc). Our goal is a
tool which works across all subfields of biology.
Granularity in type classifications also needs to be
increased, which will require more training data
and manual annotation. Finally, statements of in-
teraction that span two (or more) sentences also
require further attention in the future.
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A Datasets from Bio/CS

ChemProt contains chemical-protein interactions
extracted from 1,820 PubMed abstracts, and the
task is evaluated using three entity types (CHEMI-
CAL, GENE-Y, GENE-N) and five relation classes
(CPR:3, CPR:4, CPR:5, CPR:6, and CPR:9). We
used the ChemProt dataset in Biomedical Lan-
guage Understanding Evaluation (BLUE) bench-
mark (Peng et al., 2019). DDI consists of drug-drug
relations with four entity types (DRUG, BRAND,
GROUP, DRUG-N) and four relation classes (Ad-
vice, Effect, Mechanism, Int) based on 792 texts
from DrugBank and 233 Medline abstracts. Sci-
ERC is a collection of relations from 500 Al papers
that was initially designed for knowledge graph
construction. The sentences in SciERC includes
six entity types (Task, Method, Material, OtherSci-
entificTerm, Metric, Generic) and seven relation
types (Compare, Conjunction, Evaluate-For, Used-
For, FeatureOf, Part-Of, Hyponym-Of). We lever-
aged the preprocessed ChemProt and DDI datasets
by Phan et al. (2021) and the preprocessed SCIERC
dataset by Eberts and Ulges (2020)



