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Abstract

Since protein-protein interactions (PPIs) are001
crucial to understanding living systems, har-002
vesting these data is essential to probe the003
development of diseases and to understand004
gene/protein functions and biological processes.005
Some curated datasets exist containing PPI data006
derived from the literature and other sources007
(e.g., IntAct, BioGrid, DIP and HPRD), but008
these are far from exhaustive and their main-009
tenance is a labor intensive process. On the010
other hand, machine learning (ML) methods to011
automate PPI knowledge extraction from the012
scientific literature have been limited by a short-013
age of appropriate annotated data. In this work,014
we create a unified multi-source PPI corpora015
with vetted interaction definitions, and aug-016
mented by binary interaction type labels. We017
also present a Transformer-based deep learning018
method, exploiting entity type and positional019
information for relation representation to im-020
prove relation classification performance. We021
evaluated our model’s performance on three022
widely studied relation extraction datasets from023
biology and computer science domains as well024
as our work’s target PPI datasets to observe the025
effectiveness of the representation to relation026
extraction tasks in various domains, and found027
it to outperform prior state-of-the-art (SOTA)028
models.029

1 Introduction030

Much effort in modern molecular biology either031

involves or is entirely focused on learning and un-032

derstanding the functions and interactions of the033

millions of proteins which are the basic building034

blocks of life. The functions of most of these are035

currently unknown, and are only definitively es-036

tablished for a small fraction on which extensive037

and labor-intensive labwork has been performed.038

These gold-standard protein function assignments039

have been extended computationally via DNA &040

amino acid sequence homology throughout the041

ever-expanding collection of protein sequences de- 042

termined from genome sequencing. However, in- 043

ference from homology is often inaccurate. Help- 044

fully, clues about function can come from other 045

sources, including interactions with proteins for 046

which the function is known. While experiments 047

that definitively determine interactions can be labor- 048

intensive, several relatively high-throughput meth- 049

ods are in use, such as Two-hybrid screening 050

(Brückner et al., 2009) and affinity purification fol- 051

lowed by mass spectrometry (Dunham et al., 2012). 052

Several databases such as IntAct1, STRING2, DIP3, 053

BioGrid4, HPRD5, and MINT6 are now dedicated 054

to collecting and curating PPI results obtained with 055

these techniques and others, and from the scientific 056

literature. However, mining the literature requires 057

manual effort and is slow. We aim to develop a ML 058

model that effectively identifies statements of PPIs 059

in scientific text. 060

Efforts to fully automate text knowledge extrac- 061

tion are widespread and ongoing, with supervised 062

learning approaches currently being the most fa- 063

vored. A key challenge in applying these meth- 064

ods to PPI extraction is a shortage of training data 065

specifically annotated for this purpose. Several 066

publicly available PPI training datasets suffer from 067

biases of restricted biological focus (i.e., human, 068

medical, or microbial only) and also from differ- 069

ences in the concept of what defines an interaction. 070

For this work we combine all these training sets, 071

vet them for uniformity in interaction definition, 072

and also add interaction type labels. We propose 073

Transformer architecture-based models (Vaswani 074

et al., 2017), which leverage entity type and posi- 075

tional information to build a relation representation 076

to improve relation classification performances. 077

1https://www.ebi.ac.uk/intact
2https://string-db.org
3https://dip.doe-mbi.ucla.edu/dip
4https://thebiogrid.org
5https://www.hprd.org
6https://mint.bio.uniroma2.it
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In this paper, our contribution is two-fold:078

1. We augment public PPI corpora with labels for079

protein types (enzyme and structural), which080

further delineate the functional role of pro-081

teins and consequently provides a helpful pro-082

tein classification for the biology community.083

We provide the interaction-typed PPI corpora084

for the community.085

2. We present a Transformer-based relation pre-086

diction method that exploits types of enti-087

ties and positional information to build an088

improved relation representation. Our study089

showed the effectiveness of the proposed ap-090

proach on not only the PPI datasets, but also091

three relation extraction datasets from biology092

and computer science domains.093

2 Related Work094

There have been ongoing efforts to consolidate bio-095

logical knowledge pertinent to PPIs from literature096

by creating machine-processible data and design-097

ing protein relation extraction methods.098

2.1 PPI corpora099

BioCreative VI (Islamaj Doğan et al., 2019) pro-100

posed a PPI relation extraction challenge task re-101

lated to genetic mutations to foster the development102

of mining PPI information from biomedical liter-103

ature. Bunescu et al. (2005) annotated 1000 titles104

and abstracts from the MEDLINE repository that105

discuss human genes/proteins, so-called AIMed106

corpus, which includes roughly 5000 protein names107

and 1000 protein interactions. Pyysalo et al. (2007)108

created BioInfer (Bio Information Extraction Re-109

source), containing 1100 sentences with named en-110

tities and their relationships tagged from abstracts111

of biomedical research articles. Fundel et al. (2007)112

tagged the sentences of 50 abstracts referenced by113

the Human Protein Reference Database (HPRD)114

with direct physical interactions, regulatory rela-115

tions, and modifications between genes/proteins.116

The IEPA (Information Extraction Processing As-117

sessment) corpus (Ding et al., 2001) was created to118

conduct a comparative study on the merits of differ-119

ent text processing units for interactions between120

biochemical entities. And the Learning Language121

in Logic Workshop (LLL05) designed the genic122

interaction extraction challenge task, the purpose123

of which is to promote protein/gene interactions124

information extraction from biology abstracts from125

the MEDLINE bibliography database (Nédellec, 126

2005). The challenge focused on gene interactions 127

in Bacillus subtilis which is a model bacterium and 128

many papers have been published on direct gene 129

interactions involved in sporulation. 130

Although the number of corpora and methods for 131

PPI information extraction from biomedical text 132

has increased as the interest to automatic mining 133

system is growing, the lack of consensus with re- 134

spect to PPI annotation has hindered consolidation 135

of heterogeneous datasets, and thereby making it 136

difficult for researchers to properly evaluate their 137

methods on a standardized dataset for PPI extrac- 138

tion. Pyysalo et al. (2008) conducted a comparative 139

analysis of the five PPI datasets AIMed, BioInfer, 140

HPRD50, IEPA and LLL and unified the PPI anno- 141

tations to be shared with the community for clear 142

and comparative method evaluation. To merge the 143

diverse datasets, Pyysalo et al. (2008) found com- 144

mon categories across the five corpora and gener- 145

ated a unified PPI corpora composed of sentences 146

tagged with undirected and untyped binary inter- 147

actions (i.e., positive and negative). These unified 148

versions of PPI datasets – hereafter called the five 149

benchmark PPI corpora – has been widely used to 150

evaluate various approaches on PPI extraction tasks 151

(Tikk et al., 2010; Bui et al., 2011; Warikoo et al., 152

2021). In the biological literature, single sentences 153

often discuss more than two proteins, and not all 154

such statements are declarations of interactions be- 155

tween the proteins mentioned. These datasets in- 156

clude all identified protein/gene entity names found 157

within each training sentence, and also a pairwise 158

evaluation of positive/negative interaction between 159

each possible pairing. 160

However, some issues remain regarding the 161

content and annotations in these benchmark PPI 162

datasets, as we detail in section 3.1. In this paper, 163

we present an augmented, refined version of the 164

five benchmark PPI corpora plus the BioCreative 165

VI corpus that further specify positive interactions 166

into two types of interactions: enzyme, structural. 167

These interaction types are desirable to construct 168

networks of protein interactions. 169

2.2 PPI extraction methods 170

In the early stages of adopting ML approaches for 171

the PPI extraction task, feature-based and kernel- 172

based approaches were commonly used (Baumgart- 173

ner et al., 2008; Bui et al., 2011). Murugesan et al. 174

(2017) developed a Distributed Smoothed Tree ker- 175
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nel (DSTK) composed of distributed lexical parse176

trees and semantic feature vectors in an attempt to177

capture syntactic and semantic information of sen-178

tences and demonstrated that the shallow linguistic179

information aided to enhance the PPI extraction180

capability with the model evaluation on the five181

benchmark PPI corpora.182

With the recent success of deep learning in a183

number of applications, deep neural network mod-184

els have emerged to tackle the PPI extraction task.185

Peng and Lu (2017) demonstrated that their mul-186

tichannel dependency-based convolutional neural187

network model (McDepCNN) effectively captured188

syntactic features of sentences by adding a sepa-189

rate channel for the dependency information of the190

sentence syntactic structure on the PPI task using191

AIMed and Bioinfer corpora. Recently, attention192

mechanisms in natural language processing (NLP)193

have shed some light on solving long dependency194

issues between tokens in sequential data. The self-195

attention based Transformer architecture (Vaswani196

et al., 2017) has proven to well preserve long term197

dependencies and establish effective contextual rep-198

resentations. NLP models built upon Transformer199

architecture such as BERT (Devlin et al., 2018)200

have achieved SOTA results in various NLP tasks,201

including in biology domains (Vig et al., 2020).202

Warikoo et al. (2021) proposed a Lexically aware203

Transformer-based Bidirectional Encoder Repre-204

sentation model (LBERT) that generated syntactic205

contexts emphasized representations for sentence-206

level bio-entity relation extraction tasks. LBERT is207

a modified version of BERT that takes n-gram parts-208

of-speech frames as an additional input embedding209

in order to deliver latent lexical properties, and the210

model outperformed the prior SOTA models on a211

PPI task with the five benchmark PPI corpora.212

3 Additional PPI curation213

This section details our further curation and en-214

hancement of the aforementioned data sets.215

3.1 Problems Discovered during Curation216

In vetting the five benchmark PPI training corpora,217

we identified the following problems:218

3.1.1 Bias due to restricted biological focus for219

each set220

In particular, the AIMed and IEPA corpora are fo-221

cused on human medical biochemistry and phenom-222

ena, including viral pathogens, whereas the set LLL223

is limited to a single bacterial species, B. subtilis.224

These differences manifest in skew and distribution 225

of protein/gene name frequency counts between 226

the five sets, as well as other domain-specific ter- 227

minology. In fact, the most frequently occurring 228

protein in IEPA, insulin, accounts for 14% of the 229

protein mentions in all the IEPA positives, whereas 230

it doesn’t occur in the AIMed positives set, for 231

which the most common protein, p53, accounts for 232

only 1.75% of the protein names. These sets all 233

sampled very different populations in the literature. 234

Combining all sets together helps towards counter- 235

ing this bias, but in the future, we plan to collect 236

more training data to better address this issue. 237

3.1.2 Differences in notion of the definition of 238

an interaction 239

The five sets largely restrict PPI positive cases to 240

clear statements of direct interaction between the 241

two subjects. LLL further restricted positive PPI 242

declarations to cases wherein a protein binds to 243

DNA and causes or inhibits the transcription of the 244

gene of another protein, thus a statement of gene 245

regulation – a very particular type of interaction. 246

We intentionally broaden our acceptance of a 247

positive PPI indication. Our goal is to provide bi- 248

ologists with a tool which will identify possible 249

interactive connections between proteins directly 250

from the scientific literature text. Because of the 251

likelihood that claims of direct PPI will end up in 252

databases in the future, if not there already, a less 253

restrictive interpretation will allow a text mining 254

system to report results of value that won’t neces- 255

sarily be found in a PPI database. 256

Along these lines, we did not distinguish be- 257

tween gene or protein for this work. In addition 258

to direct binding between two proteins or a pro- 259

tein and itself (i.e. dimers and multimers), we also 260

considered as interacting cases where two proteins 261

bound to a larger complex of other proteins without 262

necessarily contacting each other directly. 263

The following is an example (from BioCreative 264

corpus) where a direct connection between proteins 265

PVA12 and ORP3a is made, but is not declared an 266

actual interaction. 267

The targeting of the oxysterol-binding pro-
tein ORP3a to the endoplasmic reticulum
relies on the plant VAP33 homolog PVA12.

268

On the other hand, we were mindful of the pos- 269

sibility of being too broad, which would result in 270

too many PPI calls to be meaningful. 271
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3.1.3 Confusion over PPI-negative272

annotations273

This expanded threshold for PPI-positive impacted274

the public negative annotations. Here are two exam-275

ple cases (from AIMed corpus) where we disagreed276

with the given negative labels.277

In addition to this unique pathway, FGFR3
also links to GRB2.

278

A negative interaction between proteins FGFR3279

and GRB2 was declared in the public set.280

After a brief historical incursion regarding
RAS of renal origin, we present the main
extrarenal angiotensin-forming enzymes,
starting with isorenin, tonin, D and G
cathepsin and ending with the conversion
enzyme and chymase.

281

In this case negative interactions were annotated282

between angiotensin and each of isorenin, tonin, G283

cathepsin and chymase respectively, even though284

they are declared as forming angiotensin.285

Here is an example of a negative PPI sentence286

where we agree and which we included in our cu-287

rated set (from AIMed corpus).288

The molar ratio of serum retinol-binding
protein (RBP) to transthyretin (TTR) is
not useful to assess vitamin A status during
infection in hospitalised children.

289

To reduce confusion in our initial models re-290

garding updated positive and negative re-labels, we291

considered only those negatively labeled sentences292

where no positive pairs were declared in a sentence,293

and we then manually examined each case to make294

sure we agree, disregarding for now those where295

we differ. For the same reason, for this work, we296

also disregarded negative pair cases in sentences297

with both positive and negative annotations.298

3.2 Interaction Type Annotation299

PPIs aid with biological engineering: i) structure300

and protein subunit complex knowledge is critical301

to protein engineering ii) transient interactions (e.g.,302

chaperone to client protein) knowledge needed for303

engineering at a broader scale. To make the pub-304

lic PPI corpora more useful for this purpose, we305

added interaction type labels for the positively de- 306

fined pairs in the unified datasets as well as for 307

the BioCreative set. In determining the interac- 308

tion type labels, we first considered top-level pro- 309

tein function categories from IntAct’s molecular 310

interaction ontology but discovered that we did not 311

have enough training examples to provide sufficient 312

statistics in each of the 28 categories to properly 313

train a model (not all interaction types occur with 314

equal frequency). We then attempted to reduce the 315

number of categories by making them coarser, first 316

lowering to roughly ten and then three types, but 317

we found that making assignments in this manner 318

proved too complicated and provided questionable 319

scientific value. 320

We finally decided on a simple binary classifi- 321

cation, with interactions being declared either en- 322

zyme or structural for our first pass in that enzyme 323

or structural accurately delineates the functional 324

role of almost all proteins and consequently pro- 325

vides a concise but meaningful protein classifica- 326

tion. The structural label was applied to protein 327

assemblages of large, permanent cellular compo- 328

nents such as cell walls, histones, golgi apparatus, 329

microtubules, membranes, inter-cellular structures 330

and the like. All other interactions were classified 331

as enzyme. Type was determined by examining the 332

given function for each protein/gene, where it could 333

be obtained from any of several online protein 334

databases such as Uniprot, NCBI, and GeneCards, 335

and from the sentence context itself. For the five 336

sentence-based data sets, interaction type labels 337

were applied for positively identified protein pairs. 338

An example of a structural interaction label for 339

the proteins alpha-syntrophin and utrophin (from 340

BioInfer corpus) follows: 341

Absence of alpha-syntrophin leads to struc-
turally aberrant neuromuscular synapses de-
ficient in utrophin.

342

The remaining non-structural interactions were 343

considered enzymatic, a label we applied to nomi- 344

nal enzyme activity (proteins which catalyze chem- 345

ical reactions of metabolites in reaction pathways) 346

as well as proteins which activate other proteins 347

(kinases), but which we also applied to all proteins 348

which activated, inhibited, signaled, and formed 349

temporary complexes with other proteins, and also 350

those which bind to DNA to regulate gene expres- 351

sion, chaperones which help proteins fold, and 352
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those which destroy proteins (proteases), An ex-353

ample of an enzyme-labeled PPI between JAK2354

and Ref-1 (from AIMed corpus):355

The cytokine-activated tyrosine kinase
JAK2 activates Raf-1 in a p21ras-
dependent manner.

356

This process of adding type labels was the most357

difficult and labor-intensive aspect of the training358

data curation. There were thousands of gene names359

and symbols which required external look-ups in360

addition to an equally large host of specialized bi-361

ological jargon and acronyms (chemical names,362

cell lines, experimental conditions, etc.) which363

also needed to be researched in order to differ-364

entiate from proteins and to established context365

necessary for understanding each sentence. Impor-366

tantly, because this annotation effort is informed367

by resources and knowledge external to the text368

in question, it encodes specialized domain knowl-369

edge that makes the PPI type classification task370

more challenging, and which puts further pressure371

on ML models to adequately capture sufficiently372

informative context to make a class determination.373

Two domain experts performed the PPI anno-374

tation. With respect to inter-annotator agreement,375

one of them annotated, the second was able to veto,376

with disagreements resolved by mutual agreement.377

The definition of an interaction and the annotation378

rules were carefully determined ahead of time, ac-379

cording to domain expertise. The rules will be also380

released along with the dataset.381

4 Methodology382

We adopted a Transformer-based approach for the383

PPI classification task. In particular, we improved384

a relation representation exploiting entity type and385

positional information.386

4.1 Entity Type- and Position-aware Relation387

Representation388

To generate embeddings for relation representa-389

tions, we applied a marker-free representation ap-390

proach used in earlier models (Zhang et al., 2021;391

Eberts and Ulges, 2020). Basically, the representa-392

tion consists of a pair of two max-pooled entity em-393

beddings and a local context that is a max-pooled394

embedding from a series of tokens between the two395

entities. We have further enhanced the representa-396

tion embodying entities’ types and positional infor-397

mation. This rationale has been adapted from the 398

earlier findings that adding entity type indicators to 399

representations improved a relation extraction task 400

(Qin et al., 2021; Zhou and Chen, 2021) and that 401

entity positional information was important for a 402

model to focus on the relation pairs of interest (Qin 403

et al., 2021; Zhang et al., 2017). 404

Unlike the previous relation representations, our 405

approach takes advantage of entity types and posi- 406

tional information without using additional mark- 407

ers. Considering the resource efficiency, a marker- 408

free method can be preferable to a marker-used 409

method where an input is pre-tagged with extra 410

marker tokens (e.g., [TAG1]entity 1[/TAG1] 411

is involved ...[TAG2]entity 2[/TAG2]...). It is 412

commonly found in relation extraction datasets that 413

a sentence can have more than two entities and 414

multiple relations. In such cases, models using a 415

marker-free representation can handle multiple re- 416

lations in a sentence at once whereas marker-used 417

approaches might need to generate a separate input 418

for each pair. This leads to lower resource use by 419

shorter input length and less training cost. Also, a 420

marker-free method is more flexible in case entities 421

are not defined in the first place (e.g., hierarchical 422

joint-learning (Eberts and Ulges, 2020; Takanobu 423

et al., 2019)). 424

To incorporate entity type and position infor- 425

mation without explicit markers, we used a dedi- 426

cated embedding table for entity types (e.g., protein, 427

gene, chemical, drug) which the model looks up 428

to find the type embedding of an entity. The entity 429

type table is filled by a pre-defined entity type list, 430

and the table contains a pair of start and end em- 431

bedding for each entity type (e.g., [protein], 432

[/protein]). For the entity’s positional infor- 433

mation, we leveraged Transformer’s inherent po- 434

sitional embeddings of a preceding/succeeding to- 435

ken of an entity span as the entity’s start/end po- 436

sitional information. This can be seen as utiliz- 437

ing entity start/end markers’ positional information. 438

The model performs an element-wise addition of 439

the entity type embeddings and position embed- 440

dings before appending them to the final repre- 441

sentation. Figure 1 illustrates the construction of 442

relation representation in a PPI sample. We evalu- 443

ated the proposed method on three relation extrac- 444

tion datasets from biology and computer science as 445

well as our work’s target PPI datasets to validate 446

the effectiveness of the representation to relation 447

extraction tasks in various domains. 448
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Figure 1: The representation consists of the max-pooled of two entity outputs, the max-pooled of local context (a
series of tokens between the two entities), two pairs of entity span’s start/end positional embeddings, and two pairs
of entity type embeddings. ⊕ denotes element-wise addition. The example sentence is "Absence of alpha-syntrophin
leads to structurally aberrant neuromuscular synapses deficient in utrophin." (source from: BioInfer corpus)

4.2 Model Architecture449

Our Transformer-based relation extraction model450

performs a token-level classification task using a451

logistic regression with softmax to determine the452

probability of token class (e.g., c ∈ {enzyme,453

structural, negative}) as follows.454

P (c|X) = softmax(Wh0), (1)455

where h0 is the output of the model. The model456

parameters are optimized using a categorical cross457

entropy as follows.458

−
∑
c

δ(X, c) logP (c|X), (2)459

where δ(X, c) indicates whether the class of X is460

correctly predicted (δ(X, c) = 1) or not (= 0).461

5 Experimental Setup462

We demonstrate the effectiveness of the proposed463

approach on the three widely studied relation ex-464

traction datasets in biomedical and computer sci-465

ence domains, the five PPI benchmark corpora, and466

our PPI corpus with interaction types by comparing467

the performance with SOTA models.468

5.1 Datasets469

The relation extraction datasets from biomedi-470

cal and computer science domains are ChemProt471

(Krallinger et al., 2017), DDI (Herrero-Zazo et al.,472

2013), and SciERC (Luan et al., 2018). The de-473

scriptions of the datasets can be found in Ap-474

pendix A. Table 1 displays the number of relations475

of the datasets.476

The five PPI benchmark corpora include AIMed477

(Bunescu et al., 2005), BioInfer (Pyysalo et al.,478

Train Dev Test
ChemProt 4,154 2,416 3,458
DDI 25,296 2,496 5,716
SciERC 1,861 275 551

Table 1: Statistics of relation extraction datasets from
biology and computer science domains.

Positive Negative
AIMed 1,000 4,834
BioInfer 2,534 7,132
HPRD50 163 270
IEPA 335 482
LLL 164 166
TOTAL 4,196 12,884

Table 2: The number of samples in the five PPI bench-
mark corpora for positive and negative classes.

2007), HPRD50 (Fundel et al., 2007), IEPA (Ding 479

et al., 2001), LLL (Nédellec, 2005). We adopted 480

the unified version of PPI benchmark datasets pro- 481

vided by Pyysalo et al. (2008) that has been used 482

in the SOTA models. In the datasets, the PPI re- 483

lations are tagged with either positive or negative. 484

The statistics of the corpus is described in Table 2. 485

Our PPI annotations with interaction types (enzyme, 486

structural, or negative) are the expanded version 487

of the five benchmark corpora plus the BioCreative 488

VI protein interaction dataset (Islamaj Doğan et al., 489

2019), and Table 3 displays the statistics of the cor- 490

pora. The annotation work in all corpora has been 491

carried out in a sentence boundary as in the five 492

PPI benchmark corpora. 493
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Enzyme Structural Negative
BioC† 378 83 0
AIMed 548 182 1,371
BioInfer 604 1,465 2,148
HPRD50 103 34 87
IEPA 271 2 224
LLL 163 0 0
TOTAL 2,067 1,766 3,830

Table 3: The number of samples in the interaction typed
PPI corpora for enzyme, structural, and negative classes.
† Annotations using the PPI data from BioCreative VI
Track 4: Mining protein interactions and mutations for
precision medicine (PM)

5.2 Implementation details494

We deployed the pre-trained BERT models in495

the experiments including BioBERT (Lee et al.,496

2020). BioBERT is a pre-trained BERT model497

on biomedical literature, which has demonstrated498

excellent performance in biomedical NLP appli-499

cations. We compared the BioBERT models with500

the default BERT models to observe the effective-501

ness of biomedical knowledge transfer. We built502

the model using PyTorch (version 1.9.0) and using503

the HuggingFace’s Transformers package (version504

4.12.0) (Wolf et al., 2019). The model architecture505

and weight initialization follow the used pre-trained506

model, and the hyper-parameters were set as fol-507

lows: training epochs = 10, learning rate = 5e-05508

with Adam, batch size = 16. We used a dense layer509

with linear activation as post transformer layer. We510

chose a micro F-score as the performance measure511

that was adopted in the SOTA works.512

6 Results513

6.1 Evaluation on Bio/CS datasets514

Table 4 shows the performance comparison of our515

approach with some SOTA methods on the Bio/CS516

datasets. We compared our model with not only517

SOTA scored works, but also the methods using the518

identical pre-trained model to observe the effective-519

ness of our proposed relation presentation. We used520

the BioBERT base-cased model for the ChemProt521

and DDI datasets and the SciBERT cased model522

(Beltagy et al., 2019) for the SciERC dataset. Our523

model achieved SOTA performances, and although524

some discrepancy might exist between model train-525

ing environments such as specific hyper-parameter526

settings and used machines, our representation pro-527

duced the higher results for all datasets and for528

ChemProt and SciERC outperformed the earlier 529

works that used the same pre-trained model with 530

different representations for relation classification 531

such as the output embedding of the token [CLS], 532

the combinations of two entity outputs. 533

Corpus Method F1

ChemProt
Peng et al. (2020)† 73.5
Phan et al. (2021) 89.0
Our Method† 93.2

DDI
Zhu et al. (2020)† 80.9
Su et al. (2021)† 80.6
Our Method† 81.1

SciERC

Beltagy et al. (2019)‡ 80.0
Zhou et al. (2021) 82.3
Our Method‡ 89.2

Table 4: The F-scores of model evaluation on test data.
†trained on BioBERT. ‡trained on SciBERT.

6.2 Evaluation on PPI datasets 534

To compare the performance of the proposed ap- 535

proach with SOTA works, we evaluated the models 536

via 10 fold cross-validation (CV), as adopted in the 537

SOTA models. Table 5 displays the F-scores of 10 538

fold CV on the PPI classification task along with 539

the SOTA results. Our models produced the best 540

performances and outperformed SOTA models on 541

the overall classification as described in the average 542

F-scores. The BioBERT models achieved greater 543

improvements than the BERT models, which is in 544

line with expectations and empirical studies (Peng 545

et al., 2019) claiming that domain-specific pre- 546

training benefits solving domain problems. 547

We further examined the model’s ability on our 548

PPI corpora with interaction types. In this exper- 549

iment, we combined the six corpora where some 550

datasets contain only single class samples or highly 551

skewed samples so that the model can be trained on 552

more balanced data. The model evaluation was also 553

carried out in a 10 fold CV manner, and Table 7 554

shows the evaluation results. The results demon- 555

strate that the models yield consistent predictions 556

with over 80 F-scores as compared to the previous 557

experiments, and the BioBERT model constantly 558

outperformed the BERT model. 559

6.3 Ablation study 560

We conducted a detailed ablation study to exam- 561

ine the effect of entity types and entity positional 562
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Method AIMed BioInfer HPRD50 IEPA LLL Avg.

DeepResCNN (Zhao et al., 2016) 77.6 86.9 77.7 75.5 83.2 80.2

DSTK (Murugesan et al., 2017) 71.0 76.2 80.0 80.2 89.2 79.3

LBERT (Warikoo et al., 2021) 74.0 72.8 85.5 83.7 86.0 80.4

Our Method (w/ BERT) 89.2 86.9 86.0 81.7 85.3 85.8

Our Method (w/ BioBERT) 91.4 88.2 86.7 85.1 90.6 88.4

Table 5: The F-scores of 10 fold CV on the PPI classification with the five benchmark PPI corpora.

Rep. AIMed BioInfer HPRD50 IEPA LLL Typed PPI ChemProt DDI SciERC

baseline 90.4 86.6 86.6 82.9 87.1 84.1 93.1 79.0 87.6

+ET 90.7 87.6 87.7 84.2 90.2 85.1 93.1 83.1 88.1

+EP 90.9 86.8 87.1 84.7 89.9 84.2 93.4 80.8 88.7

+ET+EP 91.4 88.2 86.7 85.1 90.6 85.1 93.2 81.1 89.2

Table 6: Ablation test results on relation representations. The baseline representation is a concatenated vector of
two max-pooled vectors of two entity tokens and a max-pooled vector of a local context. ET and EP stand for entity
type embedding and entity position embedding, respectively.

Method Typed PPI

Our Method (w/ BERT) 82.4

Our Method (w/ BioBERT) 85.1

Table 7: The F-scores of 10 fold CV on the PPI corpora
with interaction types.

information as representation features for relation563

classification performance. We set a concatenated564

embedding of two max-pooled embeddings of en-565

tity tokens and a max-pooled embedding of context566

vectors as a baseline representation which was used567

in the earlier relation extraction studies. We tested568

the model’s performance by adding the entity type569

feature, the entity position feature, or both features570

to the baseline representation. As in the previous571

experiments, the test was performed using SciB-572

ERT cased for SciERC and BioBERT base-cased573

for the other datasets. The summary of the results574

are shown in Table 6. Both entity type embeddings575

and entity span’s start/end positional embeddings576

increased the models’ performance from the base-577

lines on all of the datasets. In some cases, their578

contributions to the results were marginal, but the579

two features did not degrade the models’ perfor-580

mance in any case. Although individual features581

had more positive effects on some datasets (the en-582

tity type for HPRD50 and DDI, the entity position583

for ChemProt), the combination of the two features584

produced the best prediction in a majority of cases. 585

7 Conclusion 586

In this paper, we augmented existing PPI corpora 587

annotated with interaction types, which is expected 588

to be beneficial to extracting further PPI informa- 589

tion from scientific publications. We also presented 590

a Transformer architecture-based model for rela- 591

tion extraction. In particular, we improved a rela- 592

tion representation leveraging entity type and posi- 593

tional information without using additional mark- 594

ers. Our models outperformed prior SOTA models 595

and also proved the effectiveness of entity type 596

and positional information for the classification on 597

three relation extraction datasets from biomedical 598

and computer science and the PPI datasets. 599

We will continue to improve our PPI annota- 600

tions by resolving identified problems, including 601

de-biasing the training data: more examples are 602

needed from across biological subject areas (plants, 603

environmental, microbiomes etc). Our goal is a 604

tool which works across all subfields of biology. 605

Granularity in type classifications also needs to be 606

increased, which will require more training data 607

and manual annotation. Finally, statements of in- 608

teraction that span two (or more) sentences also 609

require further attention in the future. 610
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