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Abstract001

Sparse Autoencoders (SAEs) have emerged as002
a promising solution for decomposing large lan-003
guage model representations into interpretable004
features. However, Paulo and Belrose (2025)005
have highlighted instability across different006
initialization seeds, and Heap et al. (2025)007
have pointed out that SAEs may not capture008
model-internal features. These problems likely009
stem from training SAEs on external datasets—010
either collected from the Web or generated011
by another model—which may contain out-of-012
distribution (OOD) data beyond the model’s013
generalisation capabilities. This can result014
in hallucinated SAE features, which we term015
"Fake Features", that misrepresent the model’s016
internal activations. To address these issues,017
we propose FaithfulSAE, a method that trains018
SAEs on the model’s own synthetic dataset. Us-019
ing FaithfulSAEs, we demonstrate that training020
SAEs on less-OOD instruction datasets results021
in SAEs being more stable across seeds. No-022
tably, FaithfulSAEs outperform SAEs trained023
on web-based datasets in the SAE probing task024
and exhibit a lower Fake Feature Ratio in 5 out025
of 7 models. Overall, our approach eliminates026
the dependency on external datasets, advanc-027
ing interpretability by better capturing model-028
internal features while highlighting the often029
neglected importance of SAE training datasets.030

1 Introduction031

Sparse Autoencoders (SAEs), an architecture intro-032

duced by Faruqui et al., 2015, have demonstrated033

the ability to transform Large Language Model034

(LLM) representations into interpretable features035

without supervision (Huben et al., 2023). SAE la-036

tent dimensions can be trained to reconstruct activa-037

tions while incurring a sparsity penalty, ideally re-038

sulting in a sparse mapping of human-interpretable039

features. This approach enables decomposition of040

latent representations into interpretable features by041

reconstructing transformer hidden states (Gao et al.,042

2024) or MLP activations (Bricken et al., 2023b).043

Figure 1: Fake Feature Ratio for SAEs trained on Faith-
ful dataset and Web-based datasets (lower is better).
Detailed values can be found in Table 7.

Despite the demonstrated utility of SAE fea- 044

tures, several concerns persist: SAEs can yield 045

very different feature sets depending on the initial- 046

ization seed (Paulo and Belrose, 2025), SAEs can 047

exhibit highly activated latents which reduce inter- 048

pretability (Stolfo et al., 2025; Smith et al., 2025), 049

and when trained on random or out-of-distribution 050

data, SAEs often capture dataset artifacts rather 051

than genuine model-internal patterns (Heap et al., 052

2025; Bricken et al., 2023b). Such spurious dimen- 053

sions can be viewed as hallucinated SAE features 054

(henceforth, "Fake Features") that misrepresent the 055

model’s true activations. 056

This work investigates SAE reliability issues, 057

hypothesizing that this unreliability stems from 058

out-of-distribution (OOD) datasets in LLMs (Yang 059

et al., 2023; Liu et al., 2024), which are defined 060

as datasets not generalized in LLMs, either absent 061

from pretraining or too complex for the model’s ca- 062

pabilities. To compare the effects of OOD datasets, 063

a Faithful dataset is generated, self-generated syn- 064

thetic dataset by the LLM, to more accurately re- 065

flect LLM-intrinsic features and capabilities. Faith- 066

ful SAEs are trained on this dataset and their "faith- 067

fulness" is evaluated by measuring reconstruction 068

performance with Cross Entropy (CE), L2 loss, 069

and Explained Variance metrics, while using fea- 070

ture matching techniques (Balagansky et al., 2025; 071

Laptev et al., 2025; Paulo and Belrose, 2025) to 072
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assess stability across different seeds.073

Based on our experiments, SAEs trained on074

OOD datasets yield feature sets sensitive to seed075

differences and lack robustness across different076

datasets. First, SAEs were trained on instruction077

dataset using non-instruction-tuned Pythia (Bider-078

man et al., 2023) models, representing naturally079

OOD data. Second, Faithful datasets were com-080

pared with potentially OOD Web datasets with dif-081

ferent model architectures. Results showed visi-082

ble differences in stability across seeds between083

instruction datasets and Faithful Datasets, while084

such differences were less pronounced against085

Web datasets. Additionally, SAEs trained on086

Web datasets showed unstable faithfulness across087

datasets with the above metrics, when compared to088

FaithfulSAEs.089

2 Background090

2.1 Mechanistic Interpretability091

Mechanistic Interpretability encompasses ap-092

proaches that reverse-engineer neural networks093

through examination of their underlying mecha-094

nisms and intermediate representations (Olah et al.,095

2020; Elhage et al., 2021). Researchers systemat-096

ically analyse multidimensional latent representa-097

tions, uncovering phenomena such as layer pattern098

features (Olah et al., 2017; Carter et al., 2019) and099

neuron-level features (Goh et al., 2021; Schubert100

et al., 2021) within vision models. The develop-101

ment of the attention mechanism (Vaswani et al.,102

2017) and Transformer architecture has intensified103

research into understanding the emergent capabili-104

ties of these models (Wei et al., 2022b).105

2.2 Superposition Hypothesis106

Within neural networks’ representational space, the107

superposition of word embeddings (Arora et al.,108

2018) has provided substantial evidence for super-109

position phenomena. Through studies with toy110

models, Elhage et al. 2022 elaborated on how111

the superposition hypothesis emerges via Phase112

Change in feature dimensionality, establishing con-113

nections to compressed sensing (Donoho, 2006;114

Bora et al., 2017). This hypothesis suggests that115

polysemanticity emerges as a consequence of neu-116

ral networks optimizing their representational ca-117

pacity. Research has demonstrated that trans-118

former activations contain significant superposition119

(Gurnee et al., 2023), suggesting these models en-120

code information as linear combinations of sparse,121

independent features. 122

2.3 Sparse Autoencoders 123

Sparse Autoencoders (Huben et al., 2023; Bricken 124

et al., 2023b) address the Superposition Hypoth- 125

esis in Transformers by disentangling representa- 126

tional patterns through sparse dictionary learning 127

(Olshausen and Field, 1997; Elad, 2010) for the un- 128

derlying features. These models are structured as 129

overcomplete autoencoders, featuring hidden lay- 130

ers with greater dimensionality than their inputs, 131

while incorporating sparsity constraints through L1 132

regularisation or explicit TopK mechanisms (Gao 133

et al., 2024). Their architectural diversity encom- 134

passes various activation functions including ReLU 135

(Dunefsky et al., 2024), JumpReLU (Rajamanoha- 136

ran et al., 2025), TopK (Gao et al., 2024), Batch- 137

TopK (Bussmann et al., 2024), alongside differ- 138

ent regularisation approaches and decoding mecha- 139

nisms. 140

2.4 SAE Feature 141

The SAE features refer to the simplest factoriza- 142

tion of hidden activations, which are expected to 143

be human-interpretable latent activations for cer- 144

tain contexts (Bricken et al., 2023a). However, 145

sparsity and reconstruction are competing objec- 146

tives; minimizing loss may occur without preserv- 147

ing conceptual (Leask et al., 2025) coherence, as 148

sparsity loss randomly suppresses features, which 149

may cause low reproducibility in SAEs. Moreover, 150

SAEs trained with different seeds or hyperparam- 151

eters often converge to different sets of features 152

(Paulo and Belrose, 2025). This instability chal- 153

lenges the assumption that SAEs reliably uncover 154

a unique, model-intrinsic feature dictionary. 155

2.5 SAE Weight 156

The SAE reconstructs the activations through the 157

following process: 158

xfeature = σ(xhidden ·Wenc + benc) (1) 159

x̂hidden = xfeature ·Wdec + bdec (2) 160

where σ is the activation function. 161

The encoder weight matrix multiplication can be 162

represented in two forms that yield the same result: 163
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xfeature = σ

(
A∑
i=1

(ai · wenc
i,· ) + benc

)
(3)164

xfeature = σ

 D⊕
j=1

(xhidden · wenc
·,j + benc

j )

 (4)165

where A is the activation size and D is the dic-166

tionary size and
⊕

denotes group concatenation.167

• wenc
i,· : Each row of the encoder matrix rep-168

resents the coefficients for linearly disentan-169

gling a hidden representation’s superposition.170

• wenc
·,j : Each column of the encoder matrix rep-171

resents the coefficients for linearly composing172

a hidden representation from monosemantic173

features.174

• wenc
i,j : The specific weight at index (i, j) indi-175

cates how much the jth feature contributes to176

the superposition at the ith hidden representa-177

tion.178

The decoder weight matrix multiplication can179

also be represented in two forms that yield the same180

result:181

x̂hidden =

D∑
j=1

(dj · wdec
j,· + bdec

j ) (5)182

x̂hidden =
A⊕
i=1

(xfeature · wdec
·,i ) + bdec (6)183

• wdec
j,· : Each row of the decoder matrix shows184

dictionary features in hidden activations, a185

Feature Direction (Templeton et al., 2024) that186

capture the direction of the feature in the hid-187

den space.188

• wdec
·,i : Each column of the decoder matrix189

shows how each monosemantic dictionary fea-190

ture contributes to the reconstructed hidden191

superposition.192

• wdec
j,i : The specific weight at index (j, i) speci-193

fies how feature j is composited to reconstruct194

hidden representation i.195

This formulation underscores the critical role of196

the encoder and decoder weights in disentangling197

features and accurately reconstructing hidden acti-198

vations.199

Figure 2: Shared Feature Ratio (SFR) comparison be-
tween Faithful Dataset and Instruction Dataset trained
SAEs. Detailed values for each run are listed in Table 2.

3 Methods 200

3.1 Faithful Dataset Generation 201

To develop Faithful SAEs that accurately reflect the 202

capabilities of LLMs, the training dataset should 203

closely align with the model’s inherent distribution. 204

The model’s generative distribution was captured 205

through unconditional sampling, providing only the 206

Beginning-of-Sequence (BOS) token as the input 207

prompt. This is referred to as the Faithful Dataset, 208

as it directly corresponds to the model’s natural 209

next-token prediction distribution. 210

3.2 Faithful SAE Training 211

Using the generated Faithful Dataset, the Top-K 212

SAEs (Gao et al., 2024) were trained. To demon- 213

strate the faithfulness of the trained models, two 214

Faithful SAEs were trained with the same con- 215

figuration but different seeds. For comparison, 216

SAEs with the same seeds were also trained us- 217

ing not only the SAE dataset but also various other 218

datasets. 219

3.3 Evaluation Metrics 220

Faithfulness was evaluated by examining individ- 221

ual learned features in the SAE latent space across 222

different seeds, with specific metrics as follows. To 223

quantify the faithfulness of SAEs, several comple- 224

mentary metrics were employed. The primary met- 225

rics include Shared Feature Ratio, Cross-Entropy 226

(CE) difference, L2 reconstruction error, and Ex- 227

plained Variance. 228

3.4 Feature Matching 229

To understand how different training conditions 230

affect the learned representations within SAEs, 231

features discovered by different SAEs are com- 232

pared using Feature Matching (Balagansky et al., 233
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Model Total Tokens Vocab Size
All Token

Coverage (%)
First Token

Coverage (%)
KL (Model
→ Dataset)

GPT-2 Small 110,718,964 50,257 99.80 21.49 0.2631
Pythia 1.4B 99,999,541 50,254 99.31 5.43 1.0498
Pythia 2.8B 103,204,690 50,254 99.04 3.14 1.1198
Pythia 6.9B 57,580,971 50,254 99.41 13.38 0.2893
Gemma 2B 121,006,576 256,000 93.44 0.40 2.2392
LLaMA 3.2-1B 110,070,117 128,000 95.78 8.27 0.1521
LLaMA 3.2-3B 110,395,870 128,000 96.09 9.18 0.1909
LLaMA 3.1-8B 180,268,487 128,000 98.04 10.31 0.1054

Table 1: Token statistics across models in the Faithful dataset. KL (Model → Dataset) represents the forward KL
divergence between generated dataset’s first token distribution and BOS prediction distribution.

2025; Laptev et al., 2025; Paulo and Belrose,234

2025). A common approach, inspired by Maximum235

Marginal Cosine Similarity (MMCS) (Sharkey236

et al., 2022), computes the cosine similarity be-237

tween feature vectors using their corresponding238

decoder weight vectors, where wj = wdec
j,· .239

mj = max
w′

k∈W2

wj · w′
k

∥wj∥ ∥w′
k∥

240

Following Paulo and Belrose (2025), the Hun-241

garian matching algorithm (Kuhn, 1955) was used242

to find an optimal one-to-one correspondence be-243

tween feature sets. We compute the similarity ma-244

trix S ∈ Rd×d between all features of two SAEs:245

Sj,k =
wdec
j,· · wdec′

k,·

∥wdec
j,· ∥ ∥wdec′

k,· ∥
246

After applying the Hungarian algorithm to find247

the optimal assignment that maximizes the total248

similarity, each feature is classified based on a249

threshold τs into ’shared’ or ’orphan’ features, ter-250

minology introduced by Paulo and Belrose (2025):251

Feature Type(dj) =

{
shared if Sj,k ≥ τs,

orphan if Sj,k < τs.
252

This approach ensures that each feature from253

one SAE is matched with at most one feature from254

the other SAE, providing a measure of feature set255

similarity.256

Using this methodology, the Shared Feature Ra-257

tio is defined as the proportion of shared features258

relative to the total number of features in an SAE:259

SFR =
|{dj ∈ D | Sj,k ≥ τs}|

|D|
260

where D is the complete dictionary of features 261

in the SAE, and | · | denotes the cardinality of a set. 262

3.5 Fake Feature Ratio 263

Frequently activating features have been identi- 264

fied as problematic in SAE literature (Stolfo et al., 265

2025; Smith et al., 2025), often leading to poor 266

interpretability. "Fake Feature" is defined as a fea- 267

ture that activate on randomly generated token se- 268

quences (OOD inputs). A feature is considered 269

fake if it frequently activates on more than a certain 270

threshold τf of OOD samples. The Fake Feature 271

Ratio (FFR) is defined as: 272

FFR =
|{i ∈ D : activation frequency(i) > τf}|

|D|
273

where D is the total feature dictionary. Lower FFR 274

indicates better feature quality. 275

3.6 SAE Probing 276

To evaluate downstream task performance of SAE, 277

three approaches are compared on classification 278

tasks: original model activations (Baseline), sparse 279

feature activations (SAE), and reconstructed activa- 280

tions (Reconstruction). Logistic regression probes 281

are trained for each representation type and ac- 282

curacy and F1 scores are measured across SST-2, 283

CoLA, AG News, and Yelp Polarity datasets. A 284

faithful SAE should show minimal performance 285

drop between baseline and SAE/reconstruction ap- 286

proaches. 287

4 Experiments 288

We used SFR with threshold τs as 0.7 between 289

SAEs trained with different random seeds. For the 290

FFR threshold, we followed Smith et al. (2025) and 291
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Figure 3: Shared Feature Ratio by model and dataset.
SAE training hyperparameters are listed in Appendix A,
and complete results appear in Table 4.

set τf = 0.1. For each experiment, we trained mul-292

tiple SAEs using two different initialization seeds293

while keeping all other hyperparameters constant.294

For all datasets except LLaMA 8B, we used 100M295

tokens for training. For LLaMA 8B, we used 150M296

tokens to ensure convergence. FFR measurement297

was measured by generating 1M tokens and aver-298

aged across all different seed SAEs for a reliable299

measure.300

4.1 Instruction Dataset Comparison301

The training dataset used during pre-training must302

be publicly available. For example, models like303

LLaMA (Team, 2024b) do not disclose their train-304

ing data. The research leveraged the fact that pre-305

trained models have internalised the distribution306

of their training data and rely on this distribution307

for inference. Therefore, the pre-trained model308

was treated as a proxy for its training distribution309

and used to generate synthetic data. The open-310

source Pythia (Biderman et al., 2023) model was311

employed, for which the training dataset is publicly312

available.313

For the Out-of-Distribution (OOD) datasets, In-314

struction Tuning (Wei et al., 2022a) datasets were315

used: FLAN (Longpre et al., 2023), OpenInstruct316

(Wang et al., 2023), and Alpaca dataset (Taori et al.,317

2023). Selecting an uncensored dataset was crucial318

for constructing a valid OOD benchmark. This de-319

cision was based on the fact that commonly used320

datasets for training SAEs contain data scraped321

from the same sources. Additionally, models with322

different parameter scales were compared: Pythia323

1.4B and Pythia 2.8B, to study the impact of model324

size on SAE faithfulness.325

4.2 Web-based Dataset Comparison 326

For cross-architecture comparison against Web- 327

based dataset and Faithful dataset, the Top-K SAE 328

model (Gao et al., 2024) was utilized. To evalu- 329

ate a diverse range of architectures and examine 330

scaling effects, five models were employed: GPT- 331

2 Small (Radford et al., 2019), LLaMA 3.2 1B, 332

LLaMA 3.2 3B, LLaMA 3.1 8B (Team, 2024b), 333

and Gemma 2B (Team, 2024a). SAEs were trained 334

on three distinct datasets—The Pile (Gao et al., 335

2021), FineWeb (Penedo et al., 2024), and our 336

Faithful Dataset—for each model architecture, with 337

hyperparameters specified in Table 5. After train- 338

ing SAEs across different datasets and architectures 339

using two initialization seeds, the SFR metric was 340

compared when only the seed was altered to assess 341

model stability. 342

4.3 SAE Faithfulness Metrics 343

The objective is to determine whether training 344

SAEs on the generated Faithful dataset produces 345

more faithful sparse representations of model ac- 346

tivations. It is argued that a more faithful SAE 347

should adapt more flexibly to the model when en- 348

coding and decoding activations, maintaining the 349

essential information flow through the model. To 350

quantify this faithfulness, Cross-Entropy (CE) dif- 351

ference, L2 reconstruction error, and Explained 352

Variance were used as proxy metrics, comparing 353

trained SAEs to measure their impact on the under- 354

lying model. This evaluation was conducted using 355

SAEs trained on The Pile, FineWeb, and the Faith- 356

ful Dataset, and extended the test suite to include 357

not only these three datasets but also OpenWebText 358

(Gokaslan and Cohen, 2019) and TinyStories (Li 359

and Eldan, 2024) for comprehensive assessment. 360

4.4 SAE Probing 361

For our SAE Probing experiments, four di- 362

verse classification datasets were selected: SST-2 363

(Socher et al., 2013), CoLA (Warstadt et al., 2019), 364

AG News and Yelp Polarity (Zhang et al., 2015). 365

For each dataset, reconstructed activations were 366

used as input for logistic regression classifier. Acti- 367

vations were aggregated by mean pooling on every 368

token in the sequence. The classifiers were trained 369

on each representation type and accuracy score was 370

measured, using a maximum of 100,000 samples 371

for training. The accuracy scores were averaged 372

across all seed SAEs to obtain more reliable data. 373
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Figure 4: Cross-Entropy difference between SAEs trained on different datasets. Colors represent training datasets:
orange for FineWeb, gray for Pile-Uncopyrighted, and green for Faithful dataset. Point shapes indicate evaluation
datasets: circles for FineWeb, squares for The Pile, X markers for TinyStories, crosses for OpenWebText, and
diamonds for Faithful dataset. You can find the detailed metrics in Appendix B.

5 Results374

5.1 Impact of OOD Levels on SAE Stability375

Across Datasets376

As shown in Table 2, FaithfulSAEs, trained on a377

synthetic dataset, exhibit greater stability across378

seeds compared to SAEs trained on mixed or379

instruction-based datasets. These results support380

our hypothesis that higher OOD levels reduce SFR.381

Notably, layer 16 demonstrates higher stability than382

layer 8, likely due to SAEs capturing more complex383

features in deeper layers.384

Dataset Pythia 1.4B Pythia 2.8B

Faithful 0.7145 0.2911
Alpaca-Instruction 0.7138 0.2231
Open-Instruct 0.7134 0.2210
FLAN 0.6113 0.1283

Table 2: Shared Feature Ratio for Pythia 1.4B and 2.8B
model. AI denotes Alpaca-Instruction for compactness.

5.2 SFR on Cross-Model Synthetic Datasets385

From Table 3, we observe that SFR is consistently386

higher when the target model is the same as the387

source model (e.g., training SAEs on a Pythia 2.8B388

model with a synthetic dataset from a 2.8B model),389

and lower when the source and target models are390

different. This suggests that SAE training on its391

own synthetic dataset is more stable even within392

the same model family trained on the same dataset393

Target Model Source Model SFR

Pythia 2.8b Pythia 2.8b 0.2911
Pythia 2.8B Pythia 1.4B 0.2288

Pythia 1.4B Pythia 1.4B 0.7145
Pythia 1.4B Pythia 2.8B 0.6887

Table 3: Shared Feature Ratio on Pythia models. Faith-
fulSAEs were trained on target models with synthetic
datasets generated from source models.

with different scaling. This indicates that SFR dif- 394

ferences stem from out-of-distribution effects, and 395

a smaller model’s dataset is not necessarily easier 396

to learn stable feature sets from. The results are 397

consistent with our hypothesis: more OOD input 398

leads to lower SAE stability across seeds (lower 399

SFR), while less OOD leads to more consistent 400

SAE training (higher SFR). 401

5.3 Performance on Web-based Datasets 402

The Faithful dataset did not demonstrate higher 403

SFR compared to web-based datasets as shown in 404

Figure 3; rather, it showed lower SFR across most 405

models. As evident in Table 4, the Faithful dataset 406

exhibited lower SFR than FineWeb or The Pile for 407

all models. 408

We concluded that this issue arises because web- 409

based datasets are sufficiently diverse to encom- 410

pass model coverage, and out-of-distribution data 411

beyond the scope of the Faithful dataset does not 412

negatively impact the robustness of SAEs. 413
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Figure 5: Faithful SAE representation for LLaMa 8B. This figure shows the SAE’s reconstruction of the LLaMa 8B
hidden state and its faithfulness across datasets.

Model Pile Faithful FineWeb

GPT-2 0.5405 0.5258 0.5209
LLaMA 1B 0.5778 0.5517 0.5789
Gemma 2B 0.3889 0.3881 0.4229
LLaMA 3B 0.2222 0.1835 0.2248
LLaMA 8B 0.1066 0.0914 0.0936

Table 4: Shared Feature Ratio across models and
datasets. It compares SAEs trained with identical set-
tings but different seeds. The models listed were used
for SAE activation extraction, and the datasets on the
right were used for training them.

By observing that GPT2 relatively showed sim-414

ilar SFR with other Web-based datasets, while415

the larger models such as Gemma and LLaMA416

consistently showed lower SFR. This is because417

the pretraining datasets of Gemma and LLaMA418

already contain Web-based data generalization,419

which means they are not OOD datasets. To ad-420

dress this limitation, generating larger Faithful421

datasets would better cover the full range of model422

capabilities, which we analyze in more detail in423

Subsection 5.4 by comparing SAE faithfulness.424

5.4 Faithfulness of Faithful Dataset425

As shown in Table 1, KL divergence values stay426

below 2 except for Gemma 2B, demonstrating ef-427

fective mode covering via Forward KL. The ta-428

ble confirms >90% Unique Tokens Used in All429

Positions, indicating adequate model distribution430

capture. However, first token distribution lacks vo-431

cabulary breadth, possibly explaining why Figure 3432

shows FaithfulSAEs underperforming Web-based433

SAEs. Alternative approaches include starting with434

a flat distribution instead of BOS tokens or increas-435

ing the sampling temperature.436

In Appendix C, we verify the proper generation437

of the dataset by confirming that the distribution438

of top tokens follows the predicted distribution of439

BOS tokens. However, due to limited sampling 440

in the dataset, it does not cover all token distri- 441

butions from the BOS prediction, which follow a 442

logarithmic decrease. 443

5.5 Faithfulness of FaithfulSAE 444

To determine whether training SAEs on the gener- 445

ated Faithful dataset produces more faithful SAEs, 446

we evaluated model fidelity during activation en- 447

coding and decoding processes with trained SAEs 448

as presented in Table 5. We measured Cross- 449

Entropy difference, L2, and Explained Variance 450

metrics across five datasets. The full results are 451

available in Appendix B, while the results for 452

LLaMa 8B are shown in Figure 5. 453

Although FineWeb SAE showed higher SFR 454

than Faithful SAE, it demonstrated significantly 455

higher CE difference and overall lower generalized 456

performance on faithfulness metrics. SAEs trained 457

on The Pile achieved higher SFR, while faithful- 458

ness metrics were similar as shown in Appendix B. 459

SAEs trained exclusively on the Faithful Dataset 460

demonstrated more stable performance across mul- 461

tiple evaluation datasets compared to FineWeb. 462

5.6 SAE Probing 463

Notably in Figure 6, FaithfulSAE demonstrates 464

overall better performance compared to the other 465

Web-based trained SAEs. FaithfulSAE achieved su- 466

perior performance in 12 out of 18 cases across six 467

models and three classification tasks. While perfor- 468

mance varied by task, FaithfulSAE consistently out- 469

performed alternatives on the CoLA dataset across 470

all model configurations. Despite showing lower 471

SFR compared to Web-based datasets, the higher 472

downstream task performance of FaithfulSAE sug- 473

gests it more accurately reflects the model’s hidden 474

state with less reconstruction noise. 475

7



Figure 6: SAE Probing performance comparison between FaithfulSAE and Web-based SAEs with different types of
LLM architectures. Detailed values can be found in Table 6.

5.7 Fake Feature476

While FaithfulSAE generally shows lower SFR477

compared to web-based datasets, it demonstrates478

better performance in terms of FFR (lower), sug-479

gesting potential benefits for interpretability with480

the Faithful Dataset. Among the 7 models tested,481

5 models showed lower FFR with FaithfulSAE,482

with the exception of the Pythia model family.483

This is likely because the Pythia model, as men-484

tioned above, was trained exclusively on The Pile485

dataset, which closely overlaps with the web-based486

FineWeb and The Pile datasets used for comparison.487

We also observed that within the same model fam-488

ily, larger models showed higher FFR with Faithful-489

SAE, indicating that interpretability becomes more490

challenging as model size increases.491

6 Conclusion492

Out-of-distribution datasets that exceed a model’s493

pretraining distribution or capabilities hinder SAEs494

from reliably identifying consistent feature sets495

across different initialization seeds. To mitigate496

this, we proposed Faithful SAE—trained on the497

model’s own synthetic dataset—to ensure that train-498

ing remains strictly within the model’s inherent499

capabilities. Our experiments showed that Faith-500

fulSAEs yield higher SFR than those trained on501

instruction-tuned datasets and outperform SAEs502

trained on Web-based datasets in the SAE prov-503

ing task. While FaithfulSAEs obtain lower FFR504

than web-based dataset trained SAEs leading to505

improved potential interpretability, they also offer506

a key advantage: encapsulation.507

7 Limitations508

While Faithful Datasets improve feature consis-509

tency for non-instruction-tuned models, our experi-510

ment lacked evaluation on instruction-tuned or rea-511

soning models. Our evaluation of Shared Feature 512

Ratio may not fully reflect the complexity of high- 513

dimensional feature spaces, and we did not assess 514

the interpretability of individual features. Specifi- 515

cally, Shared Feature Ratio was higher compared 516

to instruction datasets, but lower compared to web- 517

based datasets. Additionally, we need to verify 518

whether Faithful SAE provides interpretable expla- 519

nations for individual features through case studies. 520

Although we defined the Fake Feature Ratio and 521

confirmed lower values, we did not remove these 522

features or assess their interpretability further. 523

8 Future Work 524

This work shows that our approach can reduce Fake 525

Features and improve probing performance. An im- 526

portant direction for future research is exploring 527

improved dataset generation and training strate- 528

gies that could completely outperform Web-based 529

methods. Such progress would further validate the 530

promise of training interpretability models using 531

only the model itself, without reliance on external 532

data. This dataset independence could be particu- 533

larly advantageous for interpretability in domain- 534

specific generative models where data is scarce. 535

For example, the FaithfulSAE approach could be 536

adopted for interpretability of models in biology or 537

robotics where data production costs are high. 538

Another priority is to evaluate whether Faithful 539

SAEs provide meaningful and interpretable expla- 540

nations for individual features through detailed case 541

studies. For example, we hypothesize that pruning 542

Fake Features from a Faithful SAE may yield a 543

representation close to the Simplest Factorization 544

(Bricken et al., 2023a), aligning with the principle 545

of Minimal Description Length (Ayonrinde et al., 546

2024). Confirming this connection remains an open 547

and exciting avenue for future investigation. 548
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Appendix813

A SAE Training814

For the SAE training, the learning rates and TopK values roughly followed the scaling laws proposed by815

Gao et al. (2024). 100 M tokens were used for all datasets except for LLaMA 8B, where 150 M tokens816

were used to ensure convergence. All SAE training was conducted using an NVIDIA RTX 3090ti 24GB.817

Additionally, to obtain a sufficiently complex feature set when training a single layer, we used the target818

layer at the 3/4 position except Gemma2 2B model. For the uncensored instruction dataset, we utilized819

FLAN1, Open-Instruct 2, and Alpaca dataset 3 in our experiments.820

Model Layer DictSize TopK LR Seed Dataset Sequence Length

GPT2-small 8 12288 48 0.0002 42,49 Faithful-gpt2-small 128
GPT2-small 8 12288 48 0.0002 42,49 Pile-uncopyrighted 128
GPT2-small 8 12288 48 0.0002 42,49 FineWeb 128
GPT2-small 8 12288 48 0.0002 42,49 OpenWebText 128
GPT2-small 8 12288 48 0.0002 42,49 TinyStories 128

Llama-3.2-1B 12 14336 48 0.0002 42,49 Faithful-llama3.2-1b 512
Llama-3.2-1B 12 14336 48 0.0002 42,49 Pile-uncopyrighted 512
Llama-3.2-1B 12 14336 48 0.0002 42,49 Fineweb 512

Gemma-2-2b 20 18432 64 0.0003 42,49 Faithful-gemma2-2b 1024
Gemma-2-2b 20 18432 64 0.0003 42,49 Pile-uncopyrighted 1024
Gemma-2-2b 20 18432 64 0.0003 42,49 Fineweb 1024

Llama-3.2-3B 21 18432 64 0.0001 42,49 Faithful-llama3.2-3b 512
Llama-3.2-3B 21 18432 64 0.0001 42,49 Pile-uncopyrighted 512
Llama-3.2-3B 21 18432 64 0.0001 42,49 Fineweb 512

Llama-3.1-8B 24 16384 80 6e-05 42,49 Faithful-llama3.1-8b 512
Llama-3.1-8B 24 16384 80 6e-05 42,49 Pile-uncopyrighted 512
Llama-3.1-8B 24 16384 80 6e-05 42,49 Fineweb 512

Pythia-1.4B 18 14336 48 0.0002 42,49 Faithful-pythia-1.4b 512
Pythia-1.4B 18 14336 48 0.0002 42,49 Faithful-pythia-2.8b 512
Pythia-1.4B 18 14336 48 0.0002 42,49 Open-Instruct 512
Pythia-1.4B 18 14336 48 0.0002 42,49 Alpaca-Instruction 512
Pythia-1.4B 18 14336 48 0.0002 42,49 FLAN 512

Pythia-2.8B 24 15360 64 0.0001 42,49 Faithful-pythia-1.4b 512
Pythia-2.8B 24 15360 64 0.0001 42,49 Faithful-pythia-2.8b 512
Pythia-2.8B 24 15360 64 0.0001 42,49 Open-Instruct 512
Pythia-2.8B 24 15360 64 0.0001 42,49 Alpaca-instruction 512
Pythia-2.8B 24 15360 64 0.0001 42,49 FLAN 512

Table 5: SAE training hyperparameters for each model and dataset. The configuration includes the model name, layer
index, dictionary size, top-k sparsity, learning rate, random seed, training dataset, and sequence/token dimensions.
(a) and (b) are shorthand tags used for table compactness.

1https://huggingface.co/datasets/Open-Orca/FLAN
2https://huggingface.co/datasets/xzuyn/open-instruct-uncensored-alpaca
3https://huggingface.co/datasets/aifeifei798/merged_uncensored_alpaca
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B Faithful SAEs 821

Below figures show how each SAE trained on different datasets generalizes its reconstruction capability on 822

other datasets, reflecting its faithfulness. It compares the Explained Variance, L2 loss, and CE difference 823

across datasets when the LLM’s hidden state is replaced by the SAE’s reconstructed activation trained 824

on a specific dataset. The X-axis represents the evaluation dataset, and the Y-axis indicates the SAE’s 825

training dataset. All results are based on SAE models trained with seed 42. 826

Figure 7: Faithful SAE representation for GPT-2. This figure visualizes the SAE model’s ability to reconstruct
GPT-2’s hidden state.

Figure 8: Faithful SAE representation for LLaMA 1B. This figure demonstrates the SAE’s performance in
reconstructing the hidden state of LLaMA 1B.

Figure 9: Faithful SAE representation for LLaMA 3B. This figure highlights the SAE’s reconstruction quality for
the LLaMA 3B model’s hidden state.
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Figure 10: Faithful SAE representation for Gemma 2B. This figure shows the SAE’s reconstruction of the Gemma
2B hidden state and its faithfulness across datasets.

C Faithful Dataset827

Below figures compare the model’s BOS token’s next token distribution and the real frequency distribution828

of the first token from our generated Faithful dataset. The left two figures represent the model’s distribution,829

and the right two figures represent the dataset’s token frequency distribution. The upper two figures830

only select the top 10 tokens, which show almost identical shapes to the original model. However, the831

bottom two graphs show that the frequency distribution does not cover the whole token distribution, as832

the probability decreases exponentially for the first generation. By comparing the coverage and token833

statistics, we verified that the Faithful dataset reflects the original model’s capability well. Additionally,834

the Pythia 6.9B model was only used for dataset generation to check the token distribution matching the835

model’s BOS token and was not used for training.836

Figure 11: This figure compares the token distribution of the generated dataset for GPT-2 with the model’s expected
token distribution.
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Figure 12: This figure compares the token distribution of the generated dataset for LLaMA 1B with the model’s
original token distribution.

Figure 13: This comparison shows the token distribution of LLaMA 3B’s generated dataset versus the model’s
distribution.
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Figure 14: This figure visualizes how well the generated dataset represents LLaMA 8B’s token distribution.

Figure 15: This visualization compares the generated token distribution with the original model for Gemma 2B.
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Figure 16: This figure shows the token distribution for the generated Pythia 1.4B dataset, comparing it to the model’s
distribution.

Figure 17: This figure shows the token distribution for the generated Pythia 2.8B dataset, comparing it to the model’s
distribution.
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Figure 18: This figure shows the token distribution for the generated Pythia 6.9B dataset, comparing it to the model’s
distribution.

C.1 SAE Probing837

Model
SST-2 CoLA Yelp

Faithful Fineweb Pile Faithful Fineweb Pile Faithful Fineweb Pile

GPT2-small 0.7746 0.7723 0.7500 0.7076 0.6989 0.6912 0.6532 0.6502 0.6444
Pythia 1.4B 0.8451 0.8354 0.8314 0.7281 0.7253 0.7262 0.9341 0.9399 0.9289
Gemma 2B 0.7729 0.8394 0.8085 0.7478 0.7291 0.7430 0.9536 0.9495 0.9440
Pythia 2.8B 0.8050 0.8256 0.8365 0.6985 0.6371 0.6783 0.9392 0.9428 0.9442
LLaMA 1B 0.8342 0.8491 0.8428 0.7469 0.7411 0.7411 0.9431 0.9437 0.9429
LLaMA 3B 0.8532 0.8423 0.8497 0.6889 0.6826 0.6888 0.9547 0.9544 0.9525

Table 6: Reconstruction accuracy of SAE probing across 3 datasets and 6 model architectures. FaithfulSAE
compared against SAEs trained on web-based datasets (Fineweb, Pile).

C.2 Fake Feature838

Dataset GPT2 Pythia 1.4B Gemma 2B Pythia 2.8B LLaMA 1B LLaMA 3B LLaMA 8B

Faithful 0.1139 0.3871 0.5425 0.4655 0.0314 0.1899 0.4150
Pile 0.1180 0.3871 0.5669 0.4460 0.0446 0.2930 0.5341
Fineweb 0.1587 0.3802 0.5995 0.4362 0.0600 0.2713 0.5493

Table 7: Average fake feature ratio (%) across training datasets and model architectures.
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