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ABSTRACT

Even though vision transformers (ViTs) have provided state-of-the-art results on
image classification, their requirements of large data, model size, and GPU usage
have put them out of reach of most practitioners of computer vision. We present
WaveMix as an alternative to self-attention mechanisms in ViT and convolutional
neural networks to significantly reduce computational costs and memory footprint
without compromising on image classification accuracy. WaveMix uses a multi-
level two-dimensional discrete wavelet transform for mixing tokens and aggregat-
ing multi-resolution pixel information over long distances, which gives it the fol-
lowing advantages. Firstly, unlike the self-attention mechanism of ViT, WaveMix
does not unroll the image. Thus, it has the right inductive bias to utilize the 2-D
structure of an image, which reduces the demand for large training data. Addition-
ally, the quadratic complexity with respect to sequence length is also eliminated.
Secondly, due to its multi-resolution token-mixing, WaveMix also requires much
fewer layers than a CNN does for comparable accuracy. Preliminary results from
our experiments on supervised learning using CIFAR-10 dataset show that a four-
layer WaveMix model can be 37% more accurate than a ViT with a comparable
number of parameters, while consuming only 3% of the latter’s GPU RAM and
memory. This model also performs better than efficient transformers and models
not based on attention, such as, FNet, and MLP Mixer. Scaling up the WaveMix
model to achieve a top-1 accuracy of over 85% on CIFAR-10 could be done on
a 16 GB GPU, while consuming only 6% of the GPU RAM used by the largest
ViT which could fit in that GPU. Our work suggests that research on model struc-
tures that exploit the right inductive bias is far from over, and that such models
can enable the training of computer vision models in settings with limited GPU
resources.

1 INTRODUCTION

The self-attention mechanism in the transformer architecture (Vaswani et al., 2017) has been suc-
cessful in utilising long range relationships between tokens and achieving state-of-the-art results in
NLP and computer vision tasks (Dosovitskiy et al.,2021). However, in low data regime, transformer
models are shown to perform poorly compared to convolutional models as they lack the proper in-
ductive bias, and hence require more data to model the 2D image features. This demand for huge
data, especially for pre-training, limits the use of vision transformer (ViT) models among practi-
tioners who work with low data. Also, the quadratic complexity of self-attention with respect to
sequence length, which can be large for image data (number of pixels), creates another challenge
for the training of ViT models. These limitations of self-attention have sparked research into find-
ing better alternatives that can find the long range relationships between tokens with reduced data
and computational costs. Most of the work towards reducing the complexity of self-attention has
been in creating sparse attention models and linear attention mechanisms that can approximate the
attention matrix. Alternatives, such as Hybrid Vision X-formers (Jeevan & Sethi, [2021), utilise
the inductive priors, such as convolutions, and linear attention mechanisms, such as Performer and
Nystromformer, to reduce computational costs (Choromanski et al.l 2021; Xiong et al., [2021]).

We propose WaveMix as an alternative neural network architecture for image analysis that can
achieve performance comparable to self-attention models while consuming orders of magnitude
fewer GPU memory, model size, and computations for the same accuracy as a ViT architecture.
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WaveMix uses a two-dimensional discrete wavelet transform for token mixing. WaveMix is more
suitable for handling images than ViT architectures because it does not unroll the image at any
point. We demonstrate that WaveMix can scale up and work on low resource environments (GPU
< 16GB) with less data, while still giving higher accuracy in image classification. Compared to the
standard ViT, WaveMix performed 37% better on CIFAR-10 dataset, while using only 3% of the
GPU RAM as that used by ViT. WaveMix combines the long range token mixing of self-attention,
and efficiency, both computationally and in terms of memory, of CNNs.

1.1 RELATED WORKS

Experiments have shown that replacing the self-attention in transformers with fixed token mixing
mechanisms, such as the Fourier transform, achieves comparable performance at lower memory and
computational costs (Lee-Thorp et al.l 2021)). This has led to search for other linear transforms that
can mix the tokens in a way that helps the model learn the inter-dependencies between them. Given
the multi-resolution analysis properties of the wavelet transform that are suitable for natural images,
which have been exploited for image denoising (Ruikar & Doye| [2010)), super-resolution (Guo et al.,
2017)), recognition (Mahmood et al.,[2018)), and compression (Lewis & Knowles} [1992), we propose
using the two-dimensional Discrete Wavelet Transform (2D DWT) for token mixing.

Among the different types of mother wavelets available, we used the Haar wavelet, (a special case
of the Daubechies wavelet (Daubechies| |1990)) also known as Dbl which is frequently used due to
its simplicity and faster computation. Haar wavelet is both orthogonal and symmetric in nature, and
have been used to extract basic structural information from images (Porwik & Lisowska, 2004)).

2D DWT for extracting image features has been used extensively in machine learning litera-
ture (Ghazali et al.l [2007). Most of the previous work focused on using 2D DWT in conjunction
with other machine learning models, such as support vector machines and neural networks, espe-
cially for classification of medical images (Ranaware & Deshpandel|[2016; Nayak et al.,[2016). Scat-
Net architecture cascades wavelet transform layers with non-linear modulus and average pooling to
extract a translation invariant feature that is robust to deformations and preserves high-frequency
information for image classification (Bruna & Mallat, [2013). WaveCNets replaces max-pooling,
strided-convolution, and average-pooling of CNNs with DWT for noise-robust image classifica-
tion (Li et al., [2020a)). Multi-level wavelet CNN (MWCNN) is used for image restoration in U-Net
architectures for better trade-off between receptive field size and computational efficiency (Liu et al.,
2018)). Wavelet transform has also been combined with a fully convolutional neural network for im-
age super resolution (Kumar et al., 2017).

Our work extends a large body of literature that uses wavelet transforms in neural networks. Rather
than using the wavelet transform to extract image features for use in a downstream neural network,
we build wavelet blocks that process images at multiple resolutions, and then combine the infor-
mation from this multi-resolution analysis to gather relationships between tokens. Using a linear
transform, such as the DWT, reduces the model size considerably, since there are no learnable pa-
rameters in the DWT operation.

2  WAVEMIX ARCHITECTURE

Our model consists of a series of WaveMix blocks that perform 2D DWT on the input and extract
the approximation and detail coefficients. The input image is first passed through a convolutional
layer that creates feature maps of the image, as shown in Figure [ Convolutional layers have the
ability to learn representations of low level image features in the earlier layers more efficiently due
to their strong inductive bias (Graham et al.| 2021)). The number of feature maps generated is equal
to the dimension of embedding needed. The feature maps generated by the CNN layers are passed
to the WaveMix block where multi-level 2D DWT is applied and passed through feed-forward lay-
ers before it is send to the succeeding WaveMix blocks. A residual connection is provided within
each WaveMix block so that the model can be made deeper with a larger number of blocks if nec-
essary (He et al.,[2015). The output from the last WaveMix block is then passed through a pooling
layer and finally to an MLP head, which gives the output.

At no point in the token-mixing phase of the model do we unroll the image into a sequence of pixels.
So we have developed a model that can exchange information between pixels which are separated by
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long distances without using self-attention and thereby escaping the quadratic complexity bottleneck
of self-attention.

2.1 WAVEMIX BLOCK

The detail and approximation coefficients are extracted from the input using multi-level 2D DWT.
We use Haar wavelet (Dbl) for generating the 2D DWT output [ﬂ The number of levels needed is
decided based on the image size. Each level reduces the DWT output by half, therefore, we use
as many levels as necessary till the input size is reduced to 2x2. For example, a 32x32 image
requires a 4-level 2D DWT, which creates 16x16, 8x8, 4x4 and 2x?2 sized outputs respectively.
We retain the low resolution images generated at each level and concatenate the corresponding 3 sets
of approximation coefficient outputs from the same level of 2D DWT along the channel dimension,
as shown in Figure

The concatenated output from each DWT level is passed through feed-forward layers to reduce the
feature maps and passed through deconvolutional layers. The kernel size and strides are chosen
such that all the different sized outputs from different levels of DWT are brought back to the image
size. These output feature maps are then passed through another convolutional layer which reduces
the number of feature maps such that when output of this layer is concatenated, it creates as many
feature maps as was input to the WaveMix block.

Each level of 2D DWT creates a low-resolution approximation of the image with the information
on reconstructing the original high-resolution image in separate channels. The first and second level
resolutions capture the finer details of the image while further lower-stage resolutions capture more
global information. The feed-forward sub-layers immediately following this DWT have access only
to the outputs at the corresponding level to learn the features. Once the features learned from each
resolution level are passed through transposed convolutions, where all the different low-resolution
images are up-sampled to full image size and concatenated along channel dimension, the feed-
forward sub-layers in the succeeding layers have full access to all the local and global information
carried by the tokens. Transposed convolution of the lower resolution DWT outputs will spread the
global information to all regions of the image which helps the succeeding feed-forward sub-layers
understand relationships between tokens both locally and globally.

3 EXPERIMENTS

The CIFAR-10 dataset was used for the experiments (Krizhevsky, 2009). Models were also trained
on the Tiny ImageNet dataset to analyse their performance on larger images (Le & Yang| [2015). All
the 2D DWT computations were done using Haar wavelet. The Adam optimizer with o = 0.001
(learning rate), 51 = 0.9, and B3 = 0.999 was used for computing running averages of gradient
and its square, with ¢ = 10~® and a weight decay coefficient of 0.01. We used automatic mixed
precision in PyTorch during training to make it faster and consume less memory. Experiments were
done with 16 GB Tesla P100-PCle and Tesla T4 GPU available in Kaggle and Google Colab. GPU
usage for a batch size of 64 was reported along with top-1% and top-5% accuracy from best of 3
runs. Patch size of 1 was chosen for all the models that unrolled the images as a sequence of pixels,
such as the ViT.

We applied 2 layers of 3x3 convolutions to the input image with stride and padding set to 1. The 2
CNN layers increased the channel dimension from 3 to the required final embedding dimension in 2
stages. We used linear and convolutional feed-forward layers with 1x 1 kernel in our experiments,
as the number of parameters of linear layer and 1x 1 convolutional layer was almost the same, and
using larger kernel sizes would have significantly increased the number of parameters in the network.
Performance was tested by increasing the number of feature maps (embedding dimensions) and
varying the depth and dropout rates.

"The code for 2D DWT was taken from Pytorch Wavelets


https://pytorch-wavelets.readthedocs.io/en/latest/readme.html

Under review as a conference paper at ICLR 2022

Table 1: Performance of different models on CIFAR-10 dataset

Models Parameters Size (MB) Top-1 Accuracy Top-5 Accuracy GPU (GB)

ViT 0.53 M 209.39 57.39 94.98 14.1
Hybrid VIN 0.61M 88.38 75.26 98.39 5.0
FNet 0.27M 60.12 51.54 93.84 1.6
MLP Mixer 853 M 90.59 60.33 95.79 1.4
WaveMix 0.57M 6.24 78.55 98.72 04

Table 2: Performance of different WaveMix models on CIFAR-10 dataset

Models Parameters Size (MB) Top-1 Accuracy GPU (GB)

WaveMix-16 0.16 M 3.09 75.74 0.2

WaveMix-32 0.57M 6.24 78.55 0.4

WaveMix-64 23M 16.86 83.63 0.7

WaveMix-128 92M 51.22 85.21 0.8
4 RESULTS

Table |1| shows the performance of 4-layer WaveMix compared to other 4-layer architectures for
CIFAR-10 classification using supervised learning. We choose a WaveMix model having al-
most the same number of parameters as ViT for a better comparison of performance. We can
see that WaveMix outperforms all other models, especially the ViT by 37% and Hybrid Vision
Nystromformer (ViN) by 4%. This shows that in the low data regime, WaveMix is a good alter-
native to attention-based architectures. It performs 53% better than FNet since we use the wavelet
instead of the Fourier transform, where the former is better suited for multi-resolution modeling of
the image data and does not need unrolling the images as a sequence of pixels.

WaveMix performed 236% better than a 4-layer CNN which was trained on this dataset. The higher
accuracy obtained is due the ability of the WaveMix model to process the image at multiple resolu-
tions in parallel where it can learn image features obtained at different scales. This ability is absent
in convolutional layers, which require pooling for large-scale information mixing, and it comes at
the cost of quadratic complexity in attention networks.

In our notation, we use the embedding dimension to differentiate various WaveMix models. The
number following WaveMix is its embedding dimension; for example, WaveMix-64 has an embed-
ding dimension of 64. The FNet has less parameters than WaveMix-32 as shown in Table|I|and is
more comparable to WaveMix-16 shown in Table[2 with respect to the number of parameters. We see
that even the smaller WaveMix-16 outperforms FNet by 47% using only 5% of its memory and 12%
of its GPU RAM usage. FNet just uses one feed-forward sub-layer in each layer, while WaveMix
uses multiple parallel feed-forward sub-layers and transposed convolution sub-layers in each layer.
This helps WaveMix in mixing tokens at multiple resolutions to learn image representations better
than the FNet.

Table 2] shows the performance and resource consumption of 4-layer WaveMix models differing in
their embedding dimensions. We can see that increasing the embedding dimension increases the
performance of the model without much increase in the GPU RAM consumption. These results
demonstrate the ability of the WaveMix architecture to be extremely efficient in low-resource envi-
ronments even while using high embedding dimensions.

The WaveMix architecture uses only %-th of the GPU RAM consumed by a ViT that has a similar
number of parameters. More importantly, the WaveMix and can still outperform the ViT in terms
of accuracy when used in classification of small datasets, such as CIFAR-10 and Tiny ImageNet,
as shown in Figure 2] Since the major limitation with use of self-attention based models is need
for large GPU resources and memory, WaveMix model offers a new way forward in the search for
low-GPU models which can still provide global token-mixing similar to attention.
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Figure 2: Comparison of classification accuracy and GPU usage by various models on CIFAR-10
dataset for a batch size of 64
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Figure 3: Variation of accuracy with depth for various WaveMix models

There is also a higher flexibility with the WaveMix architecture in controlling the number of pa-
rameters, as we can separately change the embedding dimensions of the feature maps and output of
the feed-forward sub-layers, since the embedding dimension of output of the WaveMix layer is only
dependent on how the concatenation of transposed convolutions are performed.
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Figure 4: Impact of Dropout in various WaveMix Models

Figure [3| shows the variation of accuracy in image classification with depth for different WaveMix
models. We observe the general trend where accuracy of the model increases with addition of each
WaveMix layer across different model embedding sizes.

Our experiments also show that dropout rates have a significant impact on the accuracy of the models
as shown in Figure[d] Low dropout rates (0.2-0.3) were found to be optimal for smaller models while
higher dropout rates (0.5-0.6) were found to be better for larger models. This huge improvement in
accuracy (greater than 10 percentage points) is surprising since dropout does not cause such a large
performance boost in either transformers or CNN networks.

We also checked the importance of convolutional layers by dropping the initial two convolutional
layers before the WaveMix blocks. The performance deteriorated by more than 10% without these
layers. This shows that the convolutional layers provides the inductive bias to learn low-level image
features, such as edges, which are useful for the global token mixing performed by the WaveMix
blocks.

We tried both, convolutional layer with 1x 1 kernel, and linear layers in our feed-forward sub-layers
and found that convolutional layers are better and faster. The main purpose of the feed-forward
sub-layers is to learn the image features and reduce the embedding dimensions after concatenation.

4.1 HIGHER RESOLUTION IMAGES

For the classification of higher resolution images of size 64x64 in the Tiny ImageNet dataset, we
tried 3 different methods:

1. WaveMix ConvStride-2: Use the initial Convolution layer with stride 2, which will reduce
the image output to size 32x32 and the WaveMix blocks will remain unchanged.

2. WaveMix Top-4 DWT: Use the first 4 levels of 2D DWT and remove the 5th level. This will
create output sizes of 32x32, 16x16, 8 x8, and 4 x4 while we eliminate the 2 x2 output.

3. WaveMix All-5 DWT: Use all 5 levels of 2D DWT but reduce the channel dimension of
the 5th level so that the output channel dimension after concatenation matches the input in
the WaveMix block.
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Table 3: Performance of different models on Tiny ImageNet dataset

Models Parameters Size (MB) Top-1 Accuracy GPU (GB)
ViT 0.55M 209.59 26.43 14.1
WaveMix ConvStride-2 0.58 M 6.30 31.57 0.4
WaveMix Top-4 DWT 0.58 M 6.30 31.90 0.4
WaveMix All-5 DWT 1.1 M 8.41 30.54 0.4

The comparison of performance of the three approaches are shown in Table [3] where we used a
4-layered WaveMix-32 to train on Tiny ImageNet. We see that removing the 2x2 resolution level
does not affect the performance, and also does not increase the model size. All 3 models consumed
the same amount of GPU RAM but the model which used all 5 levels of 2D DWT had almost twice
the number of parameters and used slightly more memory than the others. For tasks involving higher
resolution images of sizes 256x256 or 512x512, we recommend using at least 6 level 2D DWT.
We also see that WaveMix models outperform ViT by 17% for classification of the Tiny ImageNet
dataset.

5 CONCLUSIONS

The WaveMix architectures offers the best of both self-attention networks and CNNs by combining
long distance token mixing of attention, and low GPU consumption, efficiency and speed of CNNs.
It is more tailored to computer vision applications as it handles the data in 2D format without un-
rolling it as sequence as done by the ViT. Experiments on low data image classification tasks show
that WaveMix achieves considerably higher accuracy with less than 3% of the GPU RAM when
compared to a ViT with comparable number of parameters.

More testing is needed to analyse the performance of WaveMix in classification of higher resolution
images and also in other computer vision tasks, such as object detection and segmentation. Fusing
this architectures with efficient attention layers might also be a way forward. We should also test
different mother wavelets for various computer vision tasks and find which family of wavelets is
suitable for each task. Identifying the right wavelet may significantly improve the performance of
WaveMix by introducing an even more optimal inductive bias and sparseness of response. It is
possible that the output of the convolutional filters require a different wavelet family compared to
those required for the pixel for optimal performance. Additionally, the role of sparseness of wavelet
response needs to be studied as well, which was found to be desirable for image compression,
denoising, and pattern recognition. Further experiments with hyper-parameter tuning, alternative
mixing models, image datasets and vision tasks can lead to more insights for improving the accuracy
and efficiency in low data, low GPU RAM regime.

Our research suggests several significant directions for developing alternatives to CNN and attention
based architectures for vision. While transformer architectures have produced some of the highest
image classification accuracies, they come with higher costs in terms of training data, computa-
tions, GPU RAM, hardware costs, and power consumption |Li et al.[|(2020b). This makes training
attention-based architectures inaccessible for most practitioners, except those who work for a select
few organizations with massive resources. On the other hand, we also see that proposals of neural
architectures that exploit domain-specific inductive biases have resulted in usable increases in per-
formance and decreases in computational and data requirements. Our work suggests that the quest
for better, efficient, faster and smaller models is far from over, and these innovations can democratize
the ability to train neural networks from scratch to state-of-the-art performance.
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