
Published as a conference paper at ICLR 2025

ADVERSARIAL GENERATIVE FLOW NETWORK FOR
SOLVING VEHICLE ROUTING PROBLEMS

Ni Zhang1, Jingfeng Yang2, Zhiguang Cao1,∗, Xu Chi2
1Singapore Management University, Singapore
2Singapore Institute of Manufacturing Technology (SIMTech),
Agency of Science, Technology and Research (A*STAR), Singapore
zhangni0128@outlook.com, Yang Jingfeng@simtech.a-star.edu.sg
zgcao@smu.edu.sg, cxu@simtech.a-star.edu.sg

ABSTRACT

Recent research into solving vehicle routing problems (VRPs) has gained signif-
icant traction, particularly through the application of deep (reinforcement) learn-
ing for end-to-end solution construction. However, many current construction-
based neural solvers predominantly utilize Transformer architectures, which can
face scalability challenges and struggle to produce diverse solutions. To address
these limitations, we introduce a novel framework beyond Transformer-based ap-
proaches, i.e., Adversarial Generative Flow Networks (AGFN). This framework
integrates the generative flow network (GFlowNet)—a probabilistic model inher-
ently adept at generating diverse solutions (routes)—with a complementary model
for discriminating (or evaluating) the solutions. These models are trained alter-
nately in an adversarial manner to improve the overall solution quality, followed
by a proposed hybrid decoding method to construct the solution. We apply the
AGFN framework to solve the capacitated vehicle routing problem (CVRP) and
the travelling salesman problem (TSP), and our experimental results demonstrate
that AGFN surpasses the popular construction-based neural solvers, showcas-
ing strong generalization capabilities on synthetic and real-world benchmark in-
stances. Our code is available at https://github.com/ZHANG-NI/AGFN.

1 INTRODUCTION

The vehicle routing problem (VRP) represents a fundamental and intricate combinatorial optimiza-
tion challenge with extensive real-world implications (Toth & Vigo, 2014), including supply chain
management (Lee et al., 2006), last-mile delivery services (Koç et al., 2020), and public trans-
portation (Hassold & Ceder, 2014). Given its widespread occurrence across numerous domains,
the VRPs have been the subject of extensive research for decades within the Operations Research
(OR) community. Particularly, practitioners employ both exact and heuristic methods to tackle com-
plex optimization problems including VRPs. Exact methods, such as branch-and-bound (Lawler &
Wood, 1966), branch-and-cut (Tawarmalani & Sahinidis, 2005), and column generation (Barnhart
et al., 1998), guarantee optimal solutions but often face computational limitations for large-scale
instances. Consequently, heuristic approaches like tabu search (Osman, 1993), adaptive large neigh-
borhood search (Ropke & Pisinger, 2006), and hybrid genetic search (Vidal, 2022) have gained
prominence for their ability to efficiently produce near-optimal solutions.

While these traditional methods continue to play a vital role, recent years have seen the rise of
learning-based Neural Combinatorial Optimization (NCO) approaches that can learn solution con-
struction policies directly through supervised or reinforcement learning, without relying on much
problem-specific heuristic design. However, these neural constructive solvers encounter substantial
challenges concerning scalability. Typically based on Transformer architectures, their training be-
comes increasingly difficult as problem sizes grow. Consequently, while these approaches exhibit
strong performance on small-scale problems, they often struggle to generalize effectively to larger
and more complex real-world instances. To address these generalization issues, recent studies have

∗corresponding author

1

https://github.com/ZHANG-NI/AGFN

Published as a conference paper at ICLR 2025

proposed several innovative approaches. Luo et al. (2023) introduced the Light Encoder and Heavy
Decoder (LEHD) Transformer-based model via supervised learning, which enhances the model’s
generalization ability. Xin et al. (2022) proposed to enhance the generalization by generating adver-
sarial instance distributions specifically designed to be challenging for neural constructive models
to solve. However, both methods still rely on the existing Transformer-based architecture, which
remains difficult to be trained directly on (relatively) large instances due to limited device memory.

In this paper, we aim to develop a new constructive neural solver that does not rely on the Trans-
former architecture. Inspired by recent advancements in Generative Flow Networks (GFlowNets)
(Bengio et al., 2021; 2023; Zhang et al., 2024) for solving COPs, we propose a novel GFlowNet-
based neural VRP solver with adversarial training. Specifically, we leverage the GFlowNet to act as
a generator, with the objective of constructing diverse solutions using a forward sampling policy, and
a discriminative network classifier to evaluate the quality of the generated solutions. The GFlowNet
and the discriminative network are trained alternately in an adversarial manner. In particular, the
GFlowNet is trained by minimizing the trajectory balance objective function (Malkin et al., 2022)
while the discriminative classifier is trained to distinguish between the original solutions produced
by the GFlowNet and the enhanced solutions obtained through a local search. This iterative process
enables the GFlowNet to progressively generate higher-quality solutions based on feedback from
the discriminator. Moreover, to further leverage the inherent diversity of GFlowNet, we propose a
hybrid decoding method that combines greedy and sampling schemes to construct the routes more
effectively. In summary, our contributions are outlined as follows:

• We propose a constructive Adversarial Generative Flow Networks (AGFN) framework for
solving vehicle routing problems including CVRP and TSP in an end-to-end manner.

• We introduce a simple yet effective hybrid decoding method that significantly improves the
solution quality with a modest increases in inference time.

• We perform a comprehensive evaluation of our AGFN, and experimental results on both
synthetic and benchmark instances confirm its competitiveness against traditional and neu-
ral baselines, with effective generalization to varying problem sizes and distributions.

2 RELATED WORKS

Neural Solvers for VRPs. The literature on neural solvers for vehicle routing problems (VRPs) can
be broadly categorized into two main approaches: (1) the construction-based method, and (2) the
improvement-based method. Kool et al. (2019) first introduced an Attention Model (AM) using a
Transformer architecture to solve VRPs. The Policy Optimization with Multiple Optima (POMO)
proposed by Kwon et al. (2020) further enhanced the AM model by employing a more advanced
learning and inference strategy that leverages multiple optimal policies. Building upon AM and
POMO, numerous other construction-based solvers have been developed (Kwon et al., 2021; Li
et al., 2021a; Xin et al., 2020; 2021a; Chalumeau et al., 2023; Luo et al., 2023). Compared to tradi-
tional handcrafted heuristics, these neural solvers employing Transformer architectures can generate
solutions quickly. However, these methods often face scalability challenges due to the quadratic
complexity of the self-attention mechanism, which makes them resource-intensive for training and
limits their generalizability to large problem instances. On the other hand, improvement-based
neural solvers iteratively refine solutions by combining with traditional heuristic search algorithms,
such as beam search (Choo et al., 2022), ant colony optimization (Ye et al., 2024), local search (Hud-
son et al., 2022), and dynamic programming (Kool et al., 2022). Other notable works include Li
et al. (2018); Chen & Tian (2019); Lu et al. (2019); Hottung et al. (2021). Generally, improvement-
based methods can produce superior results when given additional inference time compared to their
construction-based counterparts, but also suffer from scalability issue.

GFlowNets for Combinatorial Optimization. GFlowNets (Bengio et al., 2021) are probabilistic
models designed to generate diverse solutions (structures or sequences) by modeling a distribu-
tion proportional to a specified reward function. The first notable application of GFlowNets was
in molecular design for drug discovery, a problem often approached as a black-box optimization
challenge. Very recent studies have applied GFlowNets to various combinatorial optimization prob-
lems (COPs), such as the maximum independent set (Zhang et al., 2023), job scheduling (Zhang
et al.), and vehicle routing problems (Kim et al., 2024b), due to their strong capability to effec-
tively explore vast, discrete solution spaces while balancing exploration and exploitation. While

2

Published as a conference paper at ICLR 2025

GFlowNet is highly capable of generating diverse solutions, it often results in over-exploration,
leading to being trapped in numerous locally optimal solutions with low-reward. To overcome this
issue, Kim et al. (2023) proposed local search GFlowNets (LS-GFN) to enhance the training ef-
fectiveness by encouraging the exploitation of high-rewarded solution spaces. Similarly, Kim et al.
(2024b) integrated GFlowNets with ant colony optimization, using a local search operator to manage
the trade-off between exploration and exploitation in solving combinatorial optimization problems.

To the best of our knowledge, the most closely related work utilizing GFlowNet for solving VRPs
is Kim et al. (2024b), where GFlowNet is trained to learn a constructive policy that provides an
informed prior distribution over the edges of routes, guiding the search of the ant colony optimization
(ACO). In contrast, our proposed framework enables GFlowNet to directly generate high-quality
solutions, without relying on additional heuristic algorithms like ACO during inference.

3 ADVERSARIAL GFLOWNET

One of the distinctive features of GFlowNet, compared to traditional models for learning to con-
struct solutions, is its ability to generate a diverse range of solutions—not only optimal ones but also
suboptimal and even inferior ones. Previous research has primarily focused on training models to
produce highly diverse solutions by incorporating diversity reward functions and other techniques
(Nica et al., 2022; Jain et al., 2022). However, there has been relatively little exploration of how the
multiple solutions generated by GFlowNet during training can be utilized to enhance performance
beyond merely increasing diversity. In solving COPs with GFlowNet, most existing studies have em-
phasized high-reward solutions while paying insufficient attention to low-reward ones (Zhang et al.,
2023; Shen et al., 2023; Kim et al., 2023; 2024b;a) to avoid over-exploration. This imbalance, how-
ever, can cause certain edges in the graph of a VRP instance to be overestimated by the GFlowNet,
increasing the risk of local optima traps, which ultimately affects the overall performance.

To address this issue, we propose Adversarial GFlowNet (AGFN) for solving VRPs. It leverages the
inherent diversity brought by GFlowNet and incorporates adversarial training to evaluate the quality
of the generated solutions, further balancing exploration and exploitation. With the adversarial
scoring mechanism, we provide more nuanced feedback to GFlowNet, which refines the training
process. This approach directs the model to conduct a more precise evaluation of each edge while
promoting a balanced representation of the entire graph for a VRP instance, thus enhancing its
overall performance and generalization capabilities. Consequently, AGFN not only preserves the
desired diversity brought by GFlowNet but also systematically integrates it into the optimization
process. To facilitate a better understanding of our AGFN framework, we include a section that
provides the preliminaries of GFlowNet in the Appendix A.

3.1 GENERATOR

In the GFlowNet based generator, to reduce the computational complexity, the model employs
a sparsification technique on the input instance. Taking CVRP as an example, we use graph
G = (V, E) to represent it, where V = {v0, v1, . . . , vn} denotes the locations of all nodes, with
v0 representing the depot and {vi}ni=1 representing customers. The set E includes each edge eij ,
associated with a travel cost cij (e.g., distance). Drawing inspiration from NeuroLKH (Xin et al.,
2021b), we acknowledge that handling a fully connected graph for large-scale VRP instances is com-
putationally prohibitive. To overcome this challenge, the underlying graph is reformulated where
each node is constrained to retain only k of its shortest outgoing edges. In doing so, it helps reduce
the computational burden while preserving the core structural features, allowing the method to scale
effectively to larger problem sizes. The resulting sparse graph G∗, consisting of the node set V and
the sparse edge set E∗, is then encoded into a higher-dimensional space by linearly projecting the
node coordinates xv ∈ R2 and edge distances xe ∈ R into node feature vectors h0

i ∈ Rd and edge
feature vectors e0ij ∈ Rd for i ∈ V and (i, j) ∈ E∗, where d is the feature dimension. The selection
probabilities for each edge are then computed using a Graph Neural Network (GNN) model. The
GNN updates the node features hl+1

i and the edge features el+1
ij based on the features from the lth

layer, hli and elij , respectively. The GNN operates as follows:

3

Published as a conference paper at ICLR 2025

hl+1
i ← hli +ACT(BN(Ulhli +Aj∈Ni

(σ(elij)�Vlhlj))), (1)

el+1
ij ← elij +ACT(BN(Plelij +Qlhli +Rlhlj)). (2)

Here, Ul,Vl,Pl,Ql,Rl ∈ Rd×d are trainable parameters, ACT denotes the activation function,
BN stands for batch normalization, Aj∈N i represents the aggregation operation over the neighbors
of node i, σ is the sigmoid function, and � indicates the Hadamard product. The activation function
(ACT) used for all layers is SiLU (Elfwing et al., 2018), while the aggregation functionA is defined
as mean pooling. To produce the edge probability distribution (heatmap) η(G∗,θgenerator) using
GFlowNet, the node and edge embeddings from the final layer are passed through a fully connected
multi-layer perceptron (MLP), where SiLU is applied as the activation function for all layers except
the last one, which employs a sigmoid function to yield normalized outputs.

Note that, the GNN used here efficiently handles the complex relationship between node and edge,
and its low computational complexity makes our GFlowNet based model more effective than the
Transformer one. Furthermore, this GNN has fewer parameters compared to the classic GCN (Joshi
et al., 2020), allowing it to be directly trained on large problems. Later, multiple paths, represented
as T = {τ0, τ1, . . . , τK}, are generated through sampling and evaluated by a discriminator to obtain
scores. These scores are then incorporated into the reward function as follows,

− log R̃(τk) = (1− S(τk)) +R(τk)−
1

K

K∑
t=1

R(τt), (3)

where R(τt) represents the total length of the path τt, and a lower R value indicates a higher path
quality (since we aim to minimize the route length in VRPs); The scores, S ∈ [0, 1], reflect the
discriminator’s assessment of path quality, with values closer to 1 indicating higher quality paths
and values approaching 0 indicating lower quality paths. As training progresses, the quality of the
generated paths steadily improves, theR distribution shifts towards smaller values, and the deviation
of each solution’s length from the mean becomes increasingly smaller. Furthermore, the solutions
align more closely with the discriminator’s decision criteria. Consequently, − log R̃(τk) will tend to
approach smaller values.

Integrating the score as a factor into the reward function guides the generator to better utilize solu-
tions of varying quality to train the model. Additionally, using the score as a regulator also enables
the model to account for suboptimal solutions while avoiding excessive bias toward the current op-
timal solution, thereby enhancing the exploration capability for global optima. Finally, the gradient
loss, which aims at optimizing the training process of the GFlowNet is described as follows,

LTB(T ;θgenerator) =
1

K

K∑
k=1

(
log

Zθ ∗ PF (τk;θgenerator)
R̃(τk) ∗ PB(τk;θgenerator)

)2

. (4)

Here, PF (τk;θgenerator) in Eq. (4) represents the forward probability of the trajectory τk = (s0 →
s1 → · · · → sn). This probability is calculated using the edge probabilities PF which is selected
from heatmap η(G∗,θgenerator), defined as follows,

PF (τk;θgenerator) =

n∏
t=1

PF (st|st−1;θgenerator). (5)

PB(τk;θgenerator) in Eq. (4) represents the backward probability of the trajectory τk, calculated
from the instance, defined as follows,

PB(τk;θgenerator) =

n∏
t=1

PB(st−1|st;θgenerator). (6)

Generally, the GFlowNet focuses on accurately evaluating the edge probabilities during training for
solving VRPs. This enables the generator to more precisely assess edge probabilities and capture
more nuanced graph features, leading to a deeper understanding of the underlying structure. As a
result, the generator can better handle complex relationships within the graph, which significantly
enhances its generalization across a wider range of tasks and diverse graph structures.

4

Published as a conference paper at ICLR 2025

 GFlowNet
with

Depot

Customer

 Classifier
with

Depot

Customer

Local Search

Original Solutions Local Search Solutions

Generator with Loss Function: Discriminator with Loss Function:

Input Instance

VRP Instance: Sparse Directed
Graph

Depot

Customer

Adversarial Training with Iterations

Figure 1: Illustration for the Overall Framework of Adversarial Generative Flow Network (AGFN).

3.2 DISCRIMINATOR

In the discriminator, the model receives two types of paths as input: the original paths Tfalse =
{τ0, τ1, . . . , τN}, created directly by the generator and labeled as “false”, and the paths Ttrue =
{τ0, τ1, . . . , τM}, which are enhanced or optimized by local search and labeled as “true”. The
discriminator then generates scores S for these paths and compares the differences between the
scores and their corresponding labels. For Ttrue, the training objective is to bring the scores closer
to 1, while for Tfalse, the goal is to push the scores closer to 0. The loss function is described as:

L(T ;θdiscriminator) =
1

M +N
(
∑

τm∈Ttrue

(1− S(τm))2 +
∑

τn∈Tfalse

S(τn)2). (7)

By doing so, the discriminator learns to differentiate between the raw generated paths and the op-
timized paths of higher quality, thereby enhancing its capability to evaluate the generator’s output.
This design not only allows the discriminator to more accurately assess the quality of the generated
paths but also provides more informative feedback to the generator, leading to further improvement
in the model’s overall performance.

3.3 OVERALL FRAMEWORK

The overall framework, depicted in Figure 1, operates as a closed-loop system for adversarial learn-
ing. The generator iteratively produces new solutions based on a heatmap generated from the current
model parameters and input instances, which are then evaluated by the discriminator. The discrimi-
nator assigns quality scores that are integrated into the generator’s loss function, serving as feedback
for backpropagation. Meanwhile, the discriminator continuously learns to distinguish subtle differ-
ences between the generated paths and the optimized paths.

The discriminator’s score not only evaluates the quality of each path solution in path set T but also
assists the generator in exploring the global optimum within the solution space. At the beginning
of training, the generated paths exhibit a broad spectrum of quality, ranging from high-quality to
suboptimal and even lower-quality solutions. By considering this diverse set of paths, the model
converges more rapidly. As training progresses, the generator refines its ability to produce higher-
quality paths, guided by the discriminator’s feedback. This mechanism helps the generator focus
on generating paths that increasingly align with the target distribution. The generator updates its
internal parameters by minimizing the loss, further enhances its capability to produce optimal paths.

Remarks: In the discriminator, we employ a local search to refine the path by iteratively performing
destruction, reconstruction, and top-K selection over a fixed number of rounds. It is worth noting that
the local search used in the discriminator is generic, and, as shown in our subsequent experiments,
alternative local search methods perform equally well. Conversely, during inference, the local search
is unnecessary, as only the generator is used to construct the route.

3.4 HYBRID DECODING

To solve vehicle routing problems like the CVRP, traditional neural models (Li et al., 2021b; Kwon
et al., 2020; Hu et al., 2020; Nazari et al., 2018) often converge to locally optimal solutions by

5

Published as a conference paper at ICLR 2025

assigning disproportionately high selection probabilities to the optimal edges while evaluating sub-
optimal edges with low probabilities. Such imbalance causes these models to predominantly rely
on greedy strategies for path generation, as the high evaluation bias towards optimal edges restricts
the exploration of alternative paths. Hence, incorporating sampling methods may not significantly
improve the performance, as they lack the flexibility to effectively explore a broader solution space.

However, GFlowNet (Bengio et al., 2023) offers a more balanced probabilistic evaluation, enabling
a nuanced representation of the solution space by appropriately considering both optimal and sub-
optimal edges during path generation. To fully exploit this capability, we further propose a hy-
brid decoding method, which combines the original sampling with greedy strategies. Specifically,
GFlowNet, acting as the generator, constructs each path in path set T by selecting the next node,
st+1, at each step with a probability P . This probability is used to sample the edge distribution
probability PF (st+1|st;θgenerator), derived from the heatmap and representing the likelihood of
transitioning from node st to st+1. With P serving as a hyperparameter, our model also selects
the next node based on the distribution using a greedy strategy with a probability of 1 − P during
inference. The selection process is stated as follows,

st+1 =

{
s, with probability P
s∗, with probability 1− P (8)

where st denotes the current node in the trajectory, s ∼ PF (st+1|st;θgenerator), and s∗ =
argmaxs PF (st+1|st;θgenerator). This means that with probability P the next node st+1 is chosen
by sampling from the edge distribution probability PF (st+1|st;θgenerator), while with probability
1 − P , the next node st+1 is selected based on the highest edge probability. On the one hand, the
sampling mechanism enables the model to explore a wider range of possible paths, increasing so-
lution diversity. On the other hand, the greedy selection ensures path quality and guides the model
toward better solutions. Building on the balanced and naunced probabilistic evaluation inherent to
GFlowNet, this integration allows our model to effectively utilize the strengths of both schemes,
which not only expands the search space but also enhances its ability to discover higher-quality
solutions by avoiding premature convergence to suboptimal regions.

4 EXPERIMENTS

In this section, we first conduct extensive experiments on the CVRP of various sizes to demonstrate
the effectiveness of our AGFN against the traditional and neural baseline methods. Additionally, to
highlight the generality of our AGFN, we also apply it to solving the TSP.

Dataset: Following previous works (Kim et al., 2024b; Kwon et al., 2020), we perform CVRP
experiments using synthetic datasets for both training and testing. Each CVRP instance consists of
a set of customer nodes, a single depot node, and a vehicle with a fixed capacity C. The customer
nodes are characterized by their positions (2D coordinates) and demands, while the depot is defined
solely by its location. To generate a random CVRP instance, the coordinates of both customers
and the depot are sampled from a unit square [0, 1]2, and the customer demands are drawn from a
predefined uniform distribution U [a, b]. In our experiments, we set a = 1 and b = 9, with a fixed
vehicle capacity of C = 50 for all problem sizes: 200, 500, and 1, 000 customers. Each synthetic
test dataset, corresponding to 200, 500, and 1, 000 nodes, contains 128 instances.

Hyperparameters: The number of directed edges, k, originating from a single node in the sparse
edge set, |E∗|, is set to |V|/4. For training the model, we only employ the sampling decoding
(without greedy selection) for route generation, with the number of sampled routes per instance,N ,
set to 20. The ratio of training rounds between the generator and the discriminator is maintained at
4 : 1. During testing, hybrid decoding is used for route generation, with N set to 100 and the P in
Eq. (8), set to 0.05 (see Appendix B for more details on the selection of P). All experiments were
conducted on a server equipped with an NVIDIA Tesla V100-32G GPU and an Intel Xeon Gold
6148 CPU. Our code is available at https://github.com/ZHANG-NI/AGFN.

6

https://github.com/ZHANG-NI/AGFN

Published as a conference paper at ICLR 2025

Table 1: Overall performance comparison on the synthetic CVRP dataset. The ‘Obj.’ indicates the
average total travel distance, while ‘Time’ denotes the average time to solve a single instance.

|V | = 200 |V | = 500 |V | = 1000
Method Obj. Gap (%) Time (s) Obj. Gap (%) Time (s) Obj. Gap (%) Time (s)

LKH-3(100) 28.833135 - 1.65 66.902511 - 5.86 131.795858 - 19.30
LKH-3(1000) 28.278438 -1.92 10.72 64.387969 -3.76 23.55 124.575469 -5.48 66.57

LKH-3(10000) 28.041563 -2.75 59.81 63.320078 -5.35 233.72 120.531406 -8.55 433.90

POMO(*8) 29.178707 1.20 0.33 79.785673 19.26 0.88 192.78563 46.28 3.20
POMO 29.424647 2.05 0.26 83.079016 24.19 0.62 233.093524 76.86 1.62
NeuOpt 38.478607 33.45 17.34 187.812195 180.73 39.41 - - -
GANCO 29.978834 3.97 0.50 71.258026 6.51 1.31 145.40277 10.32 4.88

AGFN-100 31.260145 8.41 0.17 71.051109 6.20 0.45 133.96624 1.65 0.72
ACO 71.5753186 143.24 3.50 187.616745 179.88 11.36 383.960999 191.11 25.08

GFACS 45.357657 57.31 4.82 76.771554 14.75 13.27 158.971658 20.26 28.52
AGFN-200 30.35164 5.27 0.17 69.599289 4.03 0.46 132.477417 0.52 0.72
AGFN-500 31.826736 10.38 0.17 69.375366 3.70 0.46 129.017487 -2.11 0.72
AGFN-1000 32.235001 11.80 0.17 69.873100 4.44 0.46 129.624237 -1.65 0.73

4.1 COMPARATIVE STUDY ON CVRP

4.1.1 COMPARISON OF MODEL TRAINING AT THE SAME SCALE

Baselines: We use LKH-3 (Helsgaun, 2000), a heuristic solver, POMO (Kwon et al., 2020), a
classical construction model, NeuOpt (Ma et al., 2024), a recent improvement model, and GANCO
(Xin et al., 2022), which combines adversarial training and POMO, as baselines for comparing the
model trained at the same scale. All neural models, including POMO, NeuOpt, GANCO, and ours,
were trained on synthetic instances with 100 nodes (since those baselines are hard to train on more
than 100 nodes), and tested on 200, 500, and 1,000 nodes. For heuristic baseline LKH-3, we provide
the results on 100, 1,000, 10,000 iterations, where the ones with 100 iterations are used to calculate
the gaps for all other methods. Additionally, AGFN was also trained on 200, 500, and 1,000 nodes
for further evaluation.

Result: As shown in the upper half of Table 1, our algorithm significantly outperforms POMO,
NeuOpt, and GANCO in terms of computation time. For instances with 200 nodes, our method
reduces computation time by 34.62%, 99.01%, and 66.00%, respectively, compared to POMO,
NeuOpt, and GANCO. For 500 nodes, the reductions are 27.42%, 98.86%, and 65.65%. On 1,000-
node instances, our method achieves a reduction of 55.55% and 85.25% in computation time com-
pared to POMO and GANCO. Importantly, while NeuOpt demonstrates much longer computational
times, both POMO and GANCO—although computationally efficient—cannot achieve the balance
between runtime and solution quality that AGFN offers. For example, AGFN’s computation time on
instances of 1,000 nodes is only 0.72 seconds, compared to GANCO’s 4.88 seconds and POMO’s
1.62 seconds. This highlights AGFN’s advantage in scaling to larger instances while maintaining
efficiency. In terms of objective value, our model performs 18.76% better than NeuOpt on 200-
node instances, but is 7.13% and 4.27% worse than POMO(*8) and GANCO, respectively. On
500-node instances, our model outperforms POMO(*8), NeuOpt, and GANCO by 8.90%, 62.17%,
and 0.29%. For 1, 000 nodes, our model shows a 30.51% and 7.86% improvement over POMO(*8)
and GANCO, respectively. Although the generalization of our model trained on 100-node instances
is slightly limited for 200-node cases, it excels at both 500 and 1, 000 nodes, surpassing POMO,
NeuOpt, and GANCO in terms of both computation time and objective value.

4.1.2 COMPARISON ON TRAINING SIZES

Baselines: For comparisons across different training sizes, we include the heuristic method ACO
and the GFACS model (Kim et al., 2024b), which combines GFlowNet with ACO. To ensure a fair
comparison of route generation capabilities between AGFN and other neural baselines, none of them
in our experiments utilize local search to further refine the solution after the route is generated.

Result: We evaluated AGFN on instances with 200, 500, and 1, 000 nodes, which are trained on
datasets of corresponding sizes. The results are presented in the lower half of Table 1. In terms
of computation time, our model surpasses ACO by 95.14%, 95.95%, and 97.09%, and GFACS by

7

Published as a conference paper at ICLR 2025

96.47%, 96.53%, and 97.44% on 200, 500, and 1, 000 nodes, respectively. This substantial re-
duction in runtime demonstrates the scalability of AGFN and its ability to efficiently handle larger
problem instances without requiring additional heuristic search refinements during inference. Re-
garding objective values, our model shows improvements of 57.59% and 33.08% over ACO and
GFACS on 200 nodes, 62.95% and 9.63% on 500 nodes, and 66.21% and 18.46% on 1, 000 nodes.
Overall, AGFN significantly outperforms both ACO and GFACS in terms of computation time and
objective value on all three tested scales of the training ones. These results highlight the desirable
generalization capability of our model across various problem sizes, along with its computational
efficiency, making it potentially suitable for practical applications involving large-scale VRPs.

4.2 EXPERIMENTS ON OTHER ROUTING PROBLEM

Table 2: Overall performance comparison on the synthetic TSP dataset. The ‘Obj.’ indicates the av-
erage total travel distance, while ‘Time’ denotes the average time required to solve a single instance.

|V | = 200 |V | = 500 |V | = 1000
Method Obj. Gap (%) Time (s) Obj. Gap (%) Time (s) Obj. Gap (%) Time (s)

LKH-3(100) 10.719512 - 0.57 16.547770 - 1.90 23.123401 - 4.42
LKH-3(1000) 10.657703 -0.58 5.90 16.384766 -0.99 7.19 22.845391 -1.20 32.81

LKH-3(10000) 10.626953 -0.86 40.19 16.304531 -1.47 78.43 22.678438 -1.92 255.05

POMO(*8) 10.894811 1.64 0.225 20.310184 22.74 0.59 32.783411 41.78 3.47
POMO 10.969289 2.33 0.13 20.753397 25.42 0.42 33.237161 43.74 1.04
NeuOpt 13.190890 23.05 6.43 137.858551 733.09 14.63 325.764008 1308.81 27.96
GANCO 11.281924 5.25 0.12 19.361128 17.00 0.38 29.989326 29.69 0.90

AGFN-100 11.84754 10.52 0.10 19.076220 15.28 0.30 27.144802 17.39 0.75
ACO 48.3356921 350.91 1.82 151.4268301 815.09 5.99 317.4939855 1273.04 13.48

GFACS 13.448596 25.46 3.21 23.301532 40.81 9.86 36.784744 59.08 21.68
AGFN-200 11.923518 11.23 0.10 18.663813 12.78 0.30 26.572329 14.92 0.77
AGFN-500 12.121796 13.08 0.10 18.855522 13.95 0.30 26.529234 14.73 0.75
AGFN-1000 12.353358 15.24 0.10 19.301237 16.64 0.31 27.144802 17.39 0.75

We also evaluate the performance of AGFN on the Traveling Salesman Problem (TSP). Similar to
the CVRP experiments, we use LKH-3 (Helsgaun, 2000), POMO (Kwon et al., 2020), NeuOpt (Ma
et al., 2024), and GANCO (Xin et al., 2022) as baselines for model training with 100 nodes, and
ACO and GFACS (Kim et al., 2024b) as baselines for comparisons across different training sizes.
The test datasets consist of synthetic instances at scales of 200, 500, and 1, 000 nodes, with each
dataset containing 128 TSP instances. Each instance comprises a set of nodes represented by 2D
coordinates, which are randomly sampled from a unit square [0, 1]2.

As shown in the upper half of Table 2, AGFN achieves significant reductions in computation time
and improvements in objective value compared to POMO, NeuOpt, and GANCO on 500-node in-
stances. Specifically, it reduces computation time by 49.15%, 97.95%, and 11.24%, while improv-
ing the objective value by 8.08%, 86.16%, and 1.47%, respectively. For 1, 000-node instances, our
model further reduces computation time by 27.88%, 97.32%, and 16.67%, and enhances the ob-
jective value by 18.33%, 99.87%, and 9.49% compared to the baselines. This indicates that our
model performs better than POMO, NeuOpt, and GANCO in both computation time and objective
value at larger scales (500 and 1, 000 nodes). However, for 200-node instances, while our model
achieves time reductions of 23.08%, 98.44%, and 16.67%, it slightly underperforms POMO and
GANCO in terms of objective value. When comparing the performance of the three training sizes,
as shown in the lower half of Table 2, AGFN consistently outperforms both ACO and GFACS.
On 200 nodes, it reduces computation time by 94.51% and 96.88%, and improves the objective
value by 75.33% and 11.34%, respectively. On 500 nodes, the reductions in computation time are
94.99% and 96.96%, with objective value improvements of 87.55% and 19.08%. On 1, 000 nodes,
our model reduces computation time by 94.43% and 96.54%, and improves the objective value by
91.45% and 26.21%. Overall, AGFN demonstrates superior performance compared to ACO and
GFACS in computation time and objective value on all the three tested scales of the training ones.

4.3 GENERALIZATION ANALYSIS

We assess the generalization performance of models trained on 200, 500, and 1, 000 nodes, and
tested on sizes different from the training one on synthetic datasets. Additionally, we also evaluate

8

Published as a conference paper at ICLR 2025

the performance of AGFN trained on synthetic datasets with 100 nodes, as well as the POMO and
GFACS models, on the CVRPLib (Uchoa et al., 2017) and TSPLib (Reinelt, 1991) benchmarks.

The results of cross-size evaluation on synthetic datasets are also included in the lower half of Table
1 and Table 2. Models trained on respective sizes demonstrate strong generalization across different
scales, without significant performance degradation. For real-world benchmark datasets, detailed
results are shown in Table 3. On TSPLib, our model achieves an improvement in performance by
15.10% and 36.96%, while reducing computation time by 82.61% and 77.78%, compared to POMO
and GFACS, respectively. On CVRPLib, our model shows a 12.61% and 39.34% enhancement in
performance and a 73.06% and 89.64% reduction in computation time. Overall, AGFN significantly
outperforms POMO and GFACS across the TSPLib and CVRPLib datasets. In the Appendix C, we
further show that AGFN substantially outperforms other construction-based neural methods on much
larger instances with up to 10,000 nodes.

Table 3: Overall performance comparison on the CVRPLib and TSPLib. The ‘Obj.’ indicates the
average total travel distance, while ‘Time’ denotes the average time to solve a single instance.

CVRPLib Optimal AGFN-100 POMO(*8) GFACS

Obj. 63107.01 74437.39 85178.56 122718.46
Time (s) - 0.58 2.19 5.60
Gap (%) - 17.95 34.97 94.46

TSPLib Optimal AGFN-100 POMO(*8) GFACS

Obj. 32488.72 41375.67 48738.61 65628.95
Time (s) - 0.04 0.23 0.18
Gap (%) - 27.36 50.02 102.01

4.4 ABLATION STUDY

100 200 500 1000
Model Size

0
2
4
6
8

10
12
14
16

Ga
p

(%
)

CVRP200

100 200 500 1000
Model Size

0
2
4
6
8

10
12

Ga
p

(%
)

CVRP500

100 200 500 1000
Model Size

2

0

2

4

6

8

Ga
p

(%
)

CVRP1000
Sample
Greedy
Hybrid

100 200 500 1000
Model Size

0
5

10
15
20
25
30
35

Ga
p

(%
)

TSP200

100 200 500 1000
Model Size

0
5

10
15
20
25
30

Ga
p

(%
)

TSP500

100 200 500 1000
Model Size

0
10
20
30
40
50
60

Ga
p

(%
)

TSP1000
Sample
Greedy
Hybrid

Figure 2: Comparison of the performance of greedy, sampling, and hybrid sampling strategies.

Hybrid decoding. We demonstrate the effectiveness of the hybrid decoding algorithm in our AGFN
by comparing its performance against the pure sampling and greedy approaches. The results, pre-
sented in Figure 2, highlight the comparative advantages of the hybrid strategy across various sce-
narios. As shown, our hybrid method consistently achieves lower gap percentages than the other
two methods across different problems and model sizes. These comparisons reveal that the hybrid
method not only excels in generalization but also adapts more effectively to datasets of varying
scales. Notably, in cases like CVRP1000 and TSP1000, the hybrid method significantly reduces
the performance gap, demonstrating its robustness and versatility. These findings confirm that our
hybrid models, trained on different node counts, outperform the individual sampling and greedy
strategies, particularly when tested on large-scale instances.

Local search in discriminator. To train the discriminator in our AGFN, we employ local search to
generate samples labeled as “true” for the discriminator. Here, we investigate the impacts of 1) using
alternative methods for generating such true samples, and 2) removing the adversarial component.
As illustrated for the scenario of CVRP200 in Figure 3, we exhibit the effects of using our local

9

Published as a conference paper at ICLR 2025

search against the LKH (Lin-Kernighan-Helsgaun Helsgaun (2000)) heuristic to generate true sam-
ples during training. The results indicate that these two different search methods in the discriminator
have almost equal impact on the performance. Regardless of the search method used, the genera-
tor converges in a similar yet satisfactory manner, indicating the robustness of the training process.
Furthermore, we observe that incorporating the adversarial component into our AGFN significantly
accelerates the convergence of the training curve and leads to superior overall performance. This
is evident from the sharper decline in the average objective value when the adversarial component
is included, compared to training without it. Note that, without the adversarial scheme, our model
can be viewed as a simplified version of GFACS. The faster convergence and better results high-
light the effectiveness of integrating adversarial training in our AGFN, making it a powerful tool for
enhancing solution quality in complex optimization tasks such as CVRP.

0 500 1000 1500 2000 2500 3000
of evaluation

30

35

40

45

50

55

Av
g.

 O
bj

.

CVRP200_local search
CVRP200_LKH
CVRP200_non-adversarial

Figure 3: Training Performance Comparison of our model with different settings.

5 CONCLUSION

In this paper, we propose AGFN, a novel constructive framework for solving vehicle routing prob-
lems (VRPs). By leveraging GFlowNet and an adversarial training strategy, our approach provides
high-quality solutions with strong generalization capabilities as a purely constructive neural solver.
Extensive experimental comparisons with other representative Transformer-based constructive and
improvement methods, as well as existing GFlowNet-based solvers, on both synthetic and real-world
instances demonstrate the promise of AGFN in solving VRPs. We believe that AGFN can provide
valuable insights and pave the way for further exploration of GFlowNets in solving more VRP vari-
ants and other combinatorial optimization problems. A limitation of AGFN is that its performance
heavily relies on the generator’s ability to produce diverse, high-quality solutions, which may ac-
count for its slightly lower test performance on 200-node CVRP and TSP instances. A potential
future direction is to incorporate more advanced graph neural network (GNN) architectures with
improved representation capability for VRPs, and more advanced adversarial training schemes. We
will also compare AGFN against a broader range of robust neural VRP solvers on larger instances.

6 ACKNOWLEDGEMENT

This work is supported by the National Research Foundation, Singapore under its AI Singapore
Programme (AISG Award No. AISG3-RP-2022-031), and the Singapore Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant.

10

Published as a conference paper at ICLR 2025

REFERENCES

Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and Pamela H
Vance. Branch-and-price: Column generation for solving huge integer programs. Operations
research, 46(3):316–329, 1998.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space
search. Advances in Neural Information Processing Systems, 36:7947–7959, 2023.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in neural information processing systems, 32, 2019.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:8760–8772, 2022.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Stephan Hassold and Avishai Avi Ceder. Public transport vehicle scheduling featuring multiple
vehicle types. Transportation Research Part B: Methodological, 67:129–143, 2014.

Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing prob-
lems using variational autoencoders. In International Conference on Learning Representations,
2021.

Yujiao Hu, Yuan Yao, and Wee Sun Lee. A reinforcement learning approach for optimizing multiple
traveling salesman problems over graphs. Knowledge-Based Systems, 204:106244, 2020.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?id=ar92oEosBIg.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning,
pp. 9786–9801. PMLR, 2022.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learn-
ing the travelling salesperson problem requires rethinking generalization. arXiv preprint
arXiv:2006.07054, 2020.

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets: Advanc-
ing in practical molecular optimization benchmark. arXiv preprint arXiv:2402.05961, 2024a.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn,
and Jinkyoo Park. Local search gflownets. arXiv preprint arXiv:2310.02710, 2023.

Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Ben-
gio. Ant colony sampling with gflownets for combinatorial optimization. arXiv preprint
arXiv:2403.07041, 2024b.

11

https://openreview.net/forum?id=ar92oEosBIg

Published as a conference paper at ICLR 2025

Çağrı Koç, Gilbert Laporte, and İlknur Tükenmez. A review of vehicle routing with simultaneous
pickup and delivery. Computers & Operations Research, 122:104987, 2020.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
ByxBFsRqYm.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International conference on integration of constraint
programming, artificial intelligence, and operations research, pp. 190–213. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Operations research,
14(4):699–719, 1966.

Young Hae Lee, Jung Woo Jung, and Kyong Min Lee. Vehicle routing scheduling for cross-docking
in the supply chain. Computers & industrial engineering, 51(2):247–256, 2006.

Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Heterogeneous
attentions for solving pickup and delivery problem via deep reinforcement learning. IEEE Trans-
actions on Intelligent Transportation Systems, 23(3):2306–2315, 2021a.

Kaiwen Li, Tao Zhang, Rui Wang, Yuheng Wang, Yi Han, and Ling Wang. Deep reinforcement
learning for combinatorial optimization: Covering salesman problems. IEEE transactions on
cybernetics, 52(12):13142–13155, 2021b.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Shuchang Liu, Qingpeng Cai, Zhankui He, Bowen Sun, Julian McAuley, Dong Zheng, Peng Jiang,
and Kun Gai. Generative flow network for listwise recommendation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1524–1534, 2023.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible re-
gions of routing problems with flexible neural k-opt. Advances in Neural Information Processing
Systems, 36, 2024.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, Cheng-Hao Liu, Maksym Korablyov,
Michael M Bronstein, and Yoshua Bengio. Evaluating generalization in gflownets for molecule
design. In ICLR2022 Machine Learning for Drug Discovery, 2022.

12

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm

Published as a conference paper at ICLR 2025

Ibrahim Hassan Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of operations research, 41:421–451, 1993.

Ling Pan, Moksh Jain, Kanika Madan, and Yoshua Bengio. Pre-training and fine-tuning generative
flow networks. In The Twelfth International Conference on Learning Representations.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation science, 40(4):455–472, 2006.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
Conference on Machine Learning, pp. 30956–30975. PMLR, 2023.

Mohit Tawarmalani and Nikolaos V Sahinidis. A polyhedral branch-and-cut approach to global
optimization. Mathematical programming, 103(2):225–249, 2005.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving
routing problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021a.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in
Neural Information Processing Systems, 34:7472–7483, 2021b.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Generative adversarial training for neural
combinatorial optimization models. 2022.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: neural-enhanced ant
systems for combinatorial optimization. Advances in Neural Information Processing Systems, 36,
2024.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. In The Eleventh International Conference on Learning Representations.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952–11969, 2023.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in Neural
Information Processing Systems, 36, 2024.

13

Published as a conference paper at ICLR 2025

A PRELIMINARIES ON GFLOWNET

GFlowNet (Bengio et al., 2021) is a probabilistic framework designed to generate diverse structures
or sequences by learning a distribution over a set of possible states S, which are represented as
a directed acyclic graph. GFlowNets have shown remarkable versatility across various challenging
domains, including molecular discovery (Pan et al.), combinatorial optimization (Zhang et al., 2024),
and recommendation systems (Liu et al., 2023). Let s0 denote the initial state. A sequence of states,
τ = (s0 → s1 → · · · → sn), is generated via a policy that defines a probability distribution
over actions at each state. The fundamental concept involves sampling sequences of actions that
transition from an initial state s0 to a terminal state sn, with each sequence uniquely corresponding
to an object x ∈ X . In the context of VRP, st represents the current partial route, covering a total of
t customers visited, while each x corresponds to a unique, complete route that visits every customer
exactly once and returns to the starting point.

The transition from a state st to its child state st+1 is determined by an action at, sampled from a dis-
tribution PF (st+1|st), referred to as the forward policy. Conversely, the backward policy, denoted
as PB(st|st+1), captures the transition probability from a child state st+1 back to its parent state st.
The marginal likelihood of sampling an object x ∈ X is defined as PF (x) =

∑
τ∈T :τ→x PF (τ),

where τ → x denotes a complete trajectory τ terminating at object x, and PF (τ) represents the
forward probability of a complete trajectory τ . The principal aim of GFlowNet is to ensure that
this marginal likelihood is proportional to the reward of the generated object while preserving the
diversity of sequences: PF (x) ∝ R(x).
Trajectory Balance (TB) (Malkin et al., 2022) is a widely adopted objective for training
GFlowNets, designed to minimize the following loss function:

LTB(τ ;θ) =

(
log

Zθ

∏n−1
t=0 PF (st+1|st;θ)

R(x)
∏n−1
t=0 PB(st|st+1;θ)

)2

. (9)

The TB objective ensures that the product of forward transition probabilities aligns with the product
of backward transition probabilities, thereby promoting consistent flow across all paths leading to
the same outcome. The trajectory balance loss, LTB , comprises three key components: the source
flow Zθ, representing the initial state flow F (s0), which is computed as Zθ =

∑
τ∈T F (τ); the

forward policy PF (st+1|st;θ); and the backward policy PB(st|st+1;θ).

B HYPERPARAMETER IN HYBRID DECODING

As mentioned in Section 3.4, hyperparameterP is used to sample the node with the edge distribution
probability PF (st+1|st;θgenerator). Here, we evaluate the model performance under different value
of P . Based on the results shown in Table 4 and Table 5, We set the hyperparameter P = 0.05 to
achieve the highest solution quality.

Table 4: Sensitivity analyses of hyperparameters P in Hybrid Decoding on synthetic CVRP dataset.

P/Node |V | = 200 Gap(%) |V | = 500 Gap(%) |V | = 1000 Gap(%)
LKH-3(100) 28.833135 – 66.902511 – 131.795858 –

0.01 31.555902 9.44 71.622154 7.05 134.074051 1.73
0.03 31.377661 8.83 71.111671 6.29 133.875488 1.58
0.05 31.260145 8.41 71.051109 6.20 133.966240 1.65
0.07 31.363468 8.78 71.092043 6.26 134.133682 1.77
0.10 31.347300 8.72 71.101418 6.28 134.436279 2.00

C GENERALIZATION ANALYSIS ON LARGER INSTANCES

To further evaluate the scalability of AGFN, we conducted experiments using the AGFN model
trained on synthetic instances with 100 nodes and tested it on larger instances comprising 2,000,

14

Published as a conference paper at ICLR 2025

Table 5: Sensitivity analyses of hyperparameters P in Hybrid Decoding on synthetic TSP dataset.

P/Node |V | = 200 Gap(%) |V | = 500 Gap(%) |V | = 1000 Gap(%)
LKH-3(100) 10.719512 – 16.547770 – 23.123401 –

0.01 11.873071 10.76 19.172634 15.86 27.760757 20.05
0.03 11.854967 10.59 19.140463 15.67 27.882353 20.58
0.05 11.847540 10.52 19.076220 15.28 27.144802 17.39
0.07 11.867495 10.71 19.212893 16.11 27.231346 17.77
0.10 11.898133 11.00 19.295887 16.61 27.562878 19.20

Table 6: Comparative results on much larger synthetic CVRP dataset with up to 10,000 nodes. The
‘Obj.’ indicates the average total travel distance, while ‘Time’ denotes the average time to solve a
single instance.

CVRP |V | = 2000 |V | = 3000 |V | = 5000 |V | = 10000
Obj. Gap (%) Time (s) Obj. Gap (%) Time (s) Obj. Gap (%) Time (s) Obj. Gap (%) Time (s)

LKH-3(1000) 256.631797 - 224.98 383.820625 - 482.06 - - - - - -
AGFN-100 259.536438 1.13 2.61 369.998596 -3.60 4.03 607.290527 - 7.13 1146.165161 - 14.60

GANCO-100 291.824432 13.71 6.39 - - - - - - - - -
GFACS-200 284.539154 10.87 77.44 405.368347 5.61 139.31 663.644958 - 280.69 - - -
POMO-100 627.439657 144.49 3.87 1124.936861 193.09 7.27 1507.168600 - 19.63 - - -

POMO(*8)-100 411.848147 60.48 8.67 733.698417 91.16 20.33 1456.011373 - 45.38 - - -

3,000, 5,000, and 10,000 nodes. The 2,000 and 3,000 node scales contain 128 instances each, while
the 5,000 and 10,000 node scales contain 64 instances each. For the baseline heuristic LKH-3,
we limited its runtime to 30 minutes per instance.Due to time constraints, we were only able to
provide LKH-3 results for 1,000 iterations and could not complete 10,000 iterations, as running
10,000 iterations for just 18 instances took more than 24 hours. The results, summarized in Table
6, demonstrate that our AGFN framework generalizes effectively to larger problem sizes, main-
taining high solution quality and outperforming other baselines by a substantial margin across all
CVRP instances. AGFN achieved the best objective values among neural models, showing gaps of
1.13% and -3.60% compared to LKH-3 on instances with 2,000 and 3,000 nodes, respectively. For
larger instances with 5,000 and 10,000 nodes, AGFN completed each instance in just 14.60 seconds,
whereas other baselines, including LKH-3, failed to produce results at this scale due to computa-
tional constraints. It is worth noting that our model, trained on 100-node instances, outperforms
GFACS, which is pretrained on 200-node1 instances, with much shorter computation time. Notably,
on the largest instance with 10,000 nodes, AGFN completed in just 14.60 seconds for each instance,
whereas other baselines including LKH-3 were unable to produce results for this scale due to com-
putational constraints. These findings underscore the strong generalization ability and scalability of
our approach, making it well-suited for solving real-world large-scale VRPs.

1We use the GFACS-200 because its pretrained model based on 100-node instances is unavailable.

15

	Introduction
	Related Works
	Adversarial GFlowNet
	Generator
	Discriminator
	Overall Framework
	Hybrid Decoding

	Experiments
	Comparative study on CVRP
	Comparison of model training at the same scale
	Comparison on training sizes

	Experiments on other routing problem
	Generalization analysis
	Ablation study

	Conclusion
	Acknowledgement
	Preliminaries on GFlowNet
	Hyperparameter in Hybrid Decoding
	Generalization Analysis on Larger Instances

