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ABSTRACT

Federated learning is vulnerable to poisoning attacks due to the characteristics
of its learning paradigm. There are a number of server-based and client-based
poisoning defense methods to mitigate the impact of the attack. However, when
facing persistent attacks with long-lasting attack effects, defense methods fail to
guarantee robust and stable performance. In this paper, we propose a client-side
defense method, EA-PS, which can be effectively combined with server-side
methods to address the above issues. The key idea of EA-PS is to constrain the
perturbation range of local parameters while minimizing the impact of attacks. To
theoretically guarantee the performance and robustness of EA-PS, we prove that
our methods have an efficiency guarantee with a lower upper bound, a robustness
guarantee with a smaller certified radius, and a larger convergence upper bound.
Experimental results show that, compared with other client-side defense methods
combined with different server-side defense methods under both IID and non-IID
data distributions, EA-PS reduces more performance degradation, achieves lower
attack success rates and has more stable defense performance with smaller variance.
Our code can be found at https://anonymous.4open.science/r/EA-SP-6BC9.

1 INTRODUCTION

Federated learning (FL) (Huang et al., 2023b) is a distributed machine learning paradigm that enables
multiple parties to train models while preserving data privacy collaboratively. However, numerous
studies (Lyu et al., 2023) have shown that malicious clients can manipulate the global model to result
in significant damage.

Various defense strategies (Yin et al., 2018; Mhamdi et al., 2018; Blanchard et al., 2017) have been
proposed to mitigate the impact of these attacks on the server-side, while fail to withstand strong
attacks, such as persistent backdoor attacks (Liu et al., 2024) with long-lasting attack effects (Sun
et al., 2021). To tackle the above issue, client-side defense methods provide more effective protection
performance, combined with server-side defense methods. FL-WBC Sun et al. (2021) employs
perturbations for defense, but their randomness can lead to a worse performance. To minimize the
effect of attacks, LeadFL Zhu et al. (2023) is enhanced by utilizing hessian matrix. In this paper, we
further enhance the objective function with a smaller optimization upper bound than LeadFL.

We empirically show that EA-PS− (LeadFL with our objective function) has lower backdoor accuracy
than FL-WBC and LeadFL with various server-side defense methods in IID and non-IID settings, as
shown in Figure 1. More importantly, we observe that the backdoor defense performance of all three
methods is unstable with large backdoor accuracy variances and distribution intervals. In addition,
LeadFL and FL-WBC do not take into account the impact of untargeted attacks on the perturbation
of model parameters.

Therefore, we propose a client-based defense approach named Estimated Attack Effectiveness based
Poisoning Defense method under Parameter Constraint Strategy (EA-PS). It minimizes the long-
lasting poisoning attack effect with a parameter constraint strategy to enhance stability by constraining
the perturb range in the parameter space. We derive that our method has a smaller optimization upper
bound and certified radius. Then, through Lagrangian relaxation and linear robust optimization, we
integrate the constraints into the loss function to obtain an approximately optimal solution. Finally,
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Figure 1: Defense performance of server-side defense methods under different attacks and data
distributions on CIFAR10 dataset. The upper images are about the performance intervals of BA, and
the other images are about the performance variances of BA.

by using a regularization method on parameter constraint, we increase the convergence upper bound
while adaptively limiting the disturbance range of the parameter space. We evaluate our defense
methods on CIFAR10 and FEMNIST (We also explore FashionMNIST in Appendix D) against the
model poisoning attack under IID and non-IID settings. The results demonstrate that EA-PS can
effectively mitigate the attack effect with stable defense performance.

Our key contributions are summarized as follows:

• We designed the EA-PS method, which effectively defends against poisoning attacks by
minimizing the impact of long-lasting attacks and ensures the stability of the defense effect
by the parameter constraint strategy.

• We derive a lower theoretical upper bound of the enhanced objective function to prove the
efficiency of EA-PS. When implementing EA-PS, we further derive a robustness guarantee
featuring a smaller certified radius and a larger convergence upper bound.

• We evaluate our defense methods on CIFAR10 and FEMNIST datasets under IID and non-
IID settings against the model poisoning attacks with different server-side defense methods.
Experimental results show that compared with other client defense methods, EA-PS can
reduce more performance degradation by 0.79% for untargeted attacks, the backdoor success
rate can be reduced by 14.9% at most for backdoor attacks with stability.

2 RELATED WORK

2.1 POISONING ATTACK IN FL

Model poisoning attacks can be classified into untargeted attacks (Lian et al., 2023b) and targeted
attacks (Lyu et al., 2023). The objective of untargeted attacks is to disrupt the prediction accuracy
of the model for any input, while targeted attacks aim to misclassify samples with specific triggers
into categories chosen by the attacker. The attack mode we focus on in our work is poisoning attacks
(targeted attacks in (Bagdasaryan & Shmatikov, 2020; Yang et al., 2025) and untargeted attacks in
(Tolpegin et al., 2020; Fang et al., 2019)) with persistent attack strategies (Liu et al., 2024).

2.2 PRIOR ART ON DEFENSE METHODS

Server-side federated learning defenses fall into two categories: outlier detection/filtering (Huang
et al., 2023a; Xu et al., 2025b) and robust aggregation (Huang et al., 2025). Filtering methods mitigate
attacks by identifying and excluding malicious client model updates but may underutilize client
information (Li et al., 2019a). Robust aggregation techniques are designed to identify and discard
malicious updates, and mitigating their impact on the server.

Client-side defense methods provide more powerful protection performance combined with server-
side defense methods. Existing client defense methods are divided into differential-privacy based
methods (Naseri et al., 2020; Guo et al., 2024) and parameterized methods (Sun et al., 2021; Zhu et al.,
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2023). When facing long-lasting attack effects, Parameterized methods perform better than differential-
privacy based methods due to target and mechanism differences. Differential-privacy based methods
not only have an uncontrollable defense effect but also unable to handle the accumulation of parameter
pollution, and excessively large defense variance (Lian et al., 2023a; Bok et al., 2024; Bu & Liu,
2025). However, current parameterized approaches lack of tighter upper bounds and stable defense
performance. Therefore, we propose the EA-PS method with lower upper optimization bounds,
superior convergence properties and more stable defense performance compared to other methods.

3 MOTIVATION

To investigate the performance of current state-of-the-art methods (Sun et al., 2021; Zhu et al., 2023)
with persistent attacks, we measured backdoor accuracy (BA) and their variance (VAR), as shown in
Figure 1. Details about the results can be found in Appendix D. we can get two observations. 1) WBC
Sun et al. (2021) method, designed with gradient constraint, has the most stable performance with
the worst BA performance; 2) LeadFL (Zhu et al., 2023), designed with the constraint of gradient
variation trend, has a better but not stable BA performance than WBC. Motivated by these, we design
a new optimization method (Denoted as EA-PS−) with more historical information on the constraint
of gradient variation trends, to minimize the impact of long-lasting attacks. The experimental results
are shown in Figure 1 to verify that EA-PS− is significantly improved compared with LeadFL,
while still unstable. In addition, LeadFL, WBC and EA-PS− do not take into account the impact of
untargeted attacks on the perturbation of model parameters.

To ensure the stability of the defense effect and to improve the untargeted defense performance,
we designed the parameter constraint strategy to ensure the stability in the optimization space. The
simple idea of the parameter constraint strategy is to map the optimized manifold space of A into
the unit space I by converting the spatial constraints into the base (rank) constraint λ with spatial
mapping B, reducing the dimensionality of the constraint space, and improving the efficiency of the
constraint by simplifying the complexity of the parameter constraints.

4 MODEL POISONING ATTACK IN FL

4.1 PROBLEM FORMULATION

The aggregation objective of FedAvg is defined as follows:

θ = min
θ

{
F (θ)

△
=

N∑
k=1

pkF k(θ)

}
, (1)

where θ is the weights of the global model, N represents the number of devices, F k is the local
objective of the k-th device, pk represents the weight of the k-th device. In the t-th round of
communication, the client updates the weights in the e-th round of local training as follows:

θkt,e+1 ← θkt,e − ηt,e ▽ F (θkt,e), (2)

where ηt,e represents the learning rate and each local training round is updated on a mini-batch of
data samples chosen from k-th client’s data set. Finally, the server averages the parameters submitted
by the k models selected for aggregation (Zhu et al., 2023) as follows:

θt ← N

K

∑
k∈St

pkθkt , (3)

where St is a set of participating clients in round t. K is the number of selected clients by server-side
defense methods. Based on FL-WBC Sun et al. (2021), define δt as the effect of the attack on the
client in the t-th round as follows:

δt =
N

K

[∑
k∈St

pk
E−1∏
e=0

(
I − ηt,eH

k
t,e

)]
δt−1, (4)

where Hk
t,e

△
= ▽2F (θkt,e) = (θkt,e+1 − θkt,e −∆θkt,e)/ηt is the Hessian matrix at local iteration e of

global round t and I is the identify matrix.
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For convenience, We define coefficient of attack impact At as the relationship between two rounds as
follows:

At
△
=

∑
k∈St

pk
E−1∏
e=0

(
I − ηt,eH

k
t,e

)
. (5)

Theorem 4.1. Minimizing At −At−1 yields a lower optimization upper bound than minimizing At̂,
where At̂ is the coefficient of attack impact in LeadFL.

First, the definition of At = I − (Pt − Pt−1) + ∆t, which is rearranged to derive At − At−1

with the assumption At − At−1 > ϵ > 0, and further used to obtain the recursive formula for
Pt =

∑t
i=1 ∆i +P0 + [(t− 1)+ ε(Pt−1)]ε.; similarly, the definition of At̂ = I − (Pt̂−Pt̂−1) +∆t̂

with At̂ > ϵ > 0, which leads to the recursive formula for Pt̂ = P0 + t̂I +
∑t̂

k=1 ∆k + t̂ε. Then,
substituting the recursive formula of Pt into the definition of At derives At = I−(Pt−Pt−1)+∆t =
I +∆1 − P1 + P0 − tε, simplifying At to I − (Pt̂ − Pt̂−1) + ∆t̂, while substituting the recursive
formula of Pt̂ into the definition of At̂ results in I − (Pt̂−Pt̂−1)+∆t̂ = I + ε, reducing At̂ to I + ε.
Finally, calculating the difference At̂ −At shows it equals (t+ 1)ε > 0, thus proving At ≤ At̂ and
verifying Theorem 4.1. See Appendix B for a detailed proof.

4.2 PARAMETER CONSTRAINT STRATEGY

From the observations in Figure 1, it can be noticed that only minimizing the coefficient of attack
impact (At − At−1 and At ) can lead to unstable backdoor defense performance. Therefore, we
propose a parameter constraint strategy that constraints A to a parameter boundary (denoted as λ)
to ensure that certain specific attacks are effectively detected while ensuring the stability of the
parameters. In addition, the parameter constraint strategy can further alleviate the attack effect of
untargeted attacks. The constraint equation is as follows:

λI = B−1AB =⇒ AB = λB, (6)

where B is equivalent to δ as the spatial mapping for the effects of the attack.

5 EA-PS

5.1 DEFENSE DESIGN

The core idea of EA-PS is to achieve two goals:

• Goal 1: Minimize the impact of attacks to a better defense performance.
• Goal 2: Ensure the stability of defense performance by the parameter constraint strategy.

To achieve the first goal, we designed a new optimization objective function, namely At −At−1. To
achieve the second goal, we designed the parameter constraint strategy to ensure the stability of the
defense effect, namely AB = λB.

Obj.min At −At−1

s.t. AB = λB
t > 1.

(7)

Since AB = λB is the constraint, we assume that parameter boundary λ is a linear set of A based on
the linear decision rule (Bertsimas et al., 2019). Without loss of generality, we define the following
set:

LT,N =

{
A ∈ RT,N

∣∣∣∣ ∃At,At−1, t ∈ [T1] :
λ = ℘At + ξAt−1

}
, (8)

where ℘ and ξ are auxiliary variables. Then, the problem becomes equation (9) with an upper bound
approximation to the near-optimal solution of the model (Ben-Tal et al., 2004).

Obj.min (At −At−1) + α(AB − λB)
s.t. λ ∈ LT,N ,

t > 1.
(9)
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Notably, the fixed B in the above formulation fails to adapt to the varying spatial characteristics of
At and At−1. Then, we let B adaptively change with coefficient β to map better spatial space. And,
we further denote Regu as a regulation function to control the influence degree of β. The equation is
as follows, {

B = βB,
Regu(β,B) = Max(β − βold, 0.00001β),

(10)

where βold is β of the previous round. And the 0.00001β term enforces a minimal effective update
for β, ensuring that even small adjustments to B are numerically distinguishable while preserving
stability.

During computation, we employ an approximation by simplifying Equation (8) to λ ≃ (At+At−1)/2.
This approximation approach enables the equal fusion of the influence coefficients corresponding to
the prior round (t− 1) and the subsequent round (t). On one hand, it suppresses the cumulative effect
induced by persistent attacks; on the other hand, the ”stability objective” of the matching parameter
constraint strategy can also preclude the deviation of the optimization space across rounds. We also
showed its defensive stability in the ablation experiments (subsection 6.3). Then, the problem is
approximated to Equation (11) as follows,

Obj.min (At −At−1) + α(AB − λB) + γRegu(β,B)
s.t. λ ≃ (At +At−1)/2

t > 1.
(11)

To ensure the converge after above process, gradient trimming is performed during local training with
a threshold q.

clip
(
∇
(
I− ηt,eH̃

k
t,e

)
, q
)
r,c

=
∇
(
I− ηt,eH̃

k
t,e

)
r,c

,

∣∣∣∣∇(
I− ηt,eH̃

k
t,e

)
r,c

∣∣∣∣ ≤ q,

q,

∣∣∣∣∇(
I− ηt,eH̃

k
t,e

)
r,c

∣∣∣∣ > q,

where r and c are the indexes of rows and columns.

5.2 CONVERGENCE ANALYSIS

In this subsection, we derive convergence guarantees for FedAvg using EA-PS in the context of no
malicious model attack. Specifically, for the t-th round, the local model on the k-th benign device is
updated as:

▽F
′
(θkt,e) = ▽F (θkt,e) + γRegu+ clip. (12)

Based on Assumptions B.1 to B.5 of the Appendix, we can derive the convergence guarantee of our
defense on FedAvg(None) as follows.

Theorem 5.1. (Convergence Guarantee): Let Assumptions B.1 to B.5 hold and
l, µ, σk, G,K,N,Γ, F ∗ be defined therein and in Definition B.6. Choose κ = l

µ , φ = max(8κ, I)

and the learning rate ηt =
2

µ(φ+t) . Then we have the following bound for EA-PS:

E[F (θT )]− F ∗ ≤ κ

φ+ T − 1
(
2(M + C)

µ
+

µφ

2
E[||θ0 − θ∗||2]), (13)

where
D = E||γRegu||22, (14)

C =
N −K

N − 1

4

K
E2(d2q2 +G2 +D2), (15)

M =

N∑
k=1

p2k(d
2q2 + σ2

k +D2) + 6lΓ + 8(I − 1)2(d2q2 +G2 +D2). (16)

This proof begins by bounding the expected squared norm of the difference between the gradients
before and after regularization, using the properties of the clip function and the definition of D to
show it is at most (d2q2 +D2). Leveraging this bound and Assumption B.3, along with the triangle

5
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inequality, it derives that the variance of the modified gradient (i.e., the expected squared norm of the
difference between the modified gradient and the true gradient) is bounded by (d2q2 + σ2

k +D2).
Similarly, using Assumption B.4 and the same technique of splitting the norm difference, it obtains an
upper bound of (d2q2+G2+D2) for the expected squared norm of the modified gradient. Compared
with LeadFL, EA-PS has a larger convergence upper bound, because of the parameter constraint
and its regulation in Equation (12). A higher tolerance to perturbations is achieved at the cost
of a reduction in the convergence speed. It is noteworthy that in experiments, we set the same
number of epochs as in LeadFL and still achieved better and more robust results. See Appendix
B for a detailed proof.

5.3 ROBUSTNESS ANALYSIS

In this subsection, we analyze the robustness of EA-PS using the certified radius framework proposed
by (Panda et al., 2021) for the case of periodic attacks. We provide the definitions and assumptions in
Appendix B.1. We consider a general threat model where the number of malicious clients in each
round of attacks is random. Then, the certified radius of EA-PS combined with any given server-side
defense is derived as:

Certified Radius: Let f be a c-coordinatewise-Lipschitz protocol on a dataset Ω. Then
R(ρ) = Λ(T )(1 + dc)Λ(T )ρ is a certified radius for f , where Λ(t) is the cumulative learning rate
Λ(t) =

∑T−1
t=0 ηt, d is the dimension of model parameters.

Theorem 5.2. (Certified Radius): Let Assumption B.9 hold. The certified radius of the threat model is

R(ρ) = (1 + dc)
∑

t∈ΦT
ηtρ

(|
∏

t∈ΓT

∑
k∈S∗

t
pk( N

|S∗
t |
At)|+ |ΦT |

∑
t∈ΦT

ηt),

where ΦT is the set of communication rounds that server-side defenses cannot filter out all malicious
updates. ΓT is the set of communication rounds that server-side defenses filter out all malicious
updates. S∗

t is a set of clients whose updates are not filtered out by the server-side defense in
round t. Kt

m is the number of malicious clients selected in round t. gatk is the probability that
the server-side defense filters out all malicious updates versus the number of malicious clients
selected in a communication round. |ΦT | and |S∗

t | are the cardinality of the set ΦT and S∗
t , where

E[|ΦT |] =
∑T−1

t=0 gatk(K
t
m).

Proof. Based on the definition of model updates, we use the triangle inequality to get the following
inequality between |θt − θ∗t | and |θt−1 − θ∗t−1| when the system is attacked in round t− 1.

|θt − θ∗t | = |θt−1 − ηtµt − θ∗t−1 + ηtµ̂t| (17)
≤ |θt−1 − θ∗t−1|+ ηt|µt − µ̂t|. (18)

Using the triangle inequality again, we can get:

|µt − µ̂t| = |µt − µ∗
t + µ∗

t − µ̂t| ≤ |µt − µ∗
t |+ |µ∗

t − µ̂t|. (19)

According to Definition B.7 and coordinate-wise Lipshitz in Assumption B.9:

|µt − µ̂t| ≤ |µt − µ∗
t |+ |µ∗

t − µ̂t| = dc|θt − θ∗t |+ ρ. (20)

By plugging the above equation into Equation (18), we get:

|θt − θ∗t | ≤ |θt−1 − θ∗t−1|+ ηt(dc|θt − θ∗t |+ ρ) (21)
= (1 + dcηt)|θt − θ∗t |+ ρηt. (22)

According to Bernoulli’s inequality, we have:

|θt − θ∗t | ≤ (1 + dc)ηt |θt − θ∗t |+ ρηt. (23)

Now we get the inequality between |θt − θ∗t | and |θt−1 − θ∗t−1| when the system is attacked in round
t− 1. Since we introduced server-side defense, we obtain the Equation (24) from the Equation (4):

θt − θ∗t =
∑
k∈S∗

t

pk

∣∣∣∣∣
I−1∏
i=0

(
N

|S∗
t |
At

)∣∣∣∣∣ (θt−1 − θ∗t−1). (24)
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Then we get the following relationship between |θt − θ∗t | and |θt−1 − θ∗t−1| when server-side defense
filters out all malicious updates in round t− 1.

|θt − θ∗t | ≤
∑
k∈S∗

t

pk

∣∣∣∣∣
I−1∏
i=0

(
N

|S∗
t |
At

)∣∣∣∣∣ |θt−1 − θ∗t−1|. (25)

Finally, we can use Equations (23) and (25) to prove Theorem 5.2 by induction hypothesis:

R(ρ) = (1 + dc)
∑

t∈ΦT
ηtρ(|

∏
t∈ΓT

∑
k∈S∗

t

pk(
N

|S∗
t |
At)|+ |ΦT |

∑
t∈ΦT

ηt). (26)

Theorem 4.1 also indicates that EA-PS has a smaller coefficient of attack impact A compared with
LeadFL in the same environment. We have a smaller certified radius, as illustrated in Theorem 5.2.

6 EXPERIMENTS

We evaluate the client-side defense performances with multiple server-side defense methods on
CIFAR10 dataset (Krizhevsky, 2009) under both IID and non-IID settings and on FEMNIST dataset
(Caldas et al., 2018) under nature non-IID. We also explore the performance on FashionMNIST (Xiao
et al., 2017) dataset (see Appendix D for detailed results). Our goal is to maintain main task accuracy
and at the same time to achieve better and more stable backdoor defense performance. So, main task
accuracy(MA), backdoor accuracy(BA) and its max, min, variance are used in this paper. We
use the 1/9-pixel attacks (Bagdasaryan & Shmatikov, 2020), spectrum attack (Wang et al., 2022),
Gaussian attack (Tolpegin et al., 2020) and Label Flipping attack(Fang et al., 2019).

We use CMA & CTMA (Yin et al., 2018), Multi-Krum (Mhamdi et al., 2018), Bulyan (Blanchard et al.,
2017) and alignins (Xu et al., 2025a) as server-side defense methods. For client-side defense methods,
We choose FL-WBC Sun et al. (2021), LDP (Naseri et al., 2020), LeadFLZhu et al. (2023), LeadFL
with our parameter constraint strategy (noted as LeadFL+) and EA-PS− as baseline methods. And
the attack setting is the same as LeadFL Zhu et al. (2023) and FL-WBC Sun et al. (2021). The epoch
is set to 80 for our experiments. In each round of training, 10 clients are randomly selected (1 to 5 of
them are selected as malicious clients) to participate in the training. We set hyperparameters β as 0.01,
α as 0.1, λ as 0.5, and γ as 0.01. All baselines are built based on the source code of LeadFL Zhu et al.
(2023). At the same time, our experimental results are obtained through five repeated experiments.

6.1 EFFECTIVENESS OF LEADFL+ , EA-PS− AND EA-PS

Table 1 shows the defense results against on CIFAR10 and FEMNIST datasets. For the FEMNIST
dataset, LeadFL+, EA-PS− and EA-PS methods outperform LeadFL in backdoor accuracy and
its variance, which indicates that our methods can effectively defend against backdoor attacks.
By comparing LeadFL with LeadFL+ and EA-PS− with EA-PS, we observe that the parameter
constraint strategy can improve the performance of BA by up to 22.55% and increase variance by up
to 3.3% to ensure the effect and its stability. Comparing LeadFL with EA-PS− and LeadFL+ with
EA-PS, we find that the defense effect of EA-PS− and EA-PS is significantly higher than that of
LeadFL and LeadFL+, which illustrate that the proposed new objective function can guarantee a
more effective defense performance.

Meanwhile, we find that LeadFL+, EA-PS− and EA-PS methods have a more balanced per-
formance on the CIFAR10 dataset compared with the FEMNIST dataset in the face of different
server-side methods. By comparing LeadFL with LeadFL+, and EA-PS− with EA-PS, We find
that the BA is improved by up to 14.9%, and the variance is improved by up to 40%. This also
illustrates the effectiveness of our parameter constraint strategy. Comparing LeadFL with EA-PS−

and LeadFL+ with EA-PS, we get the same conclusion that the proposed new objective function can
guarantee a more effective defense performance. Finally, comparing the improvement of LeadFL+

and EA-PS− with respect to LeadFL individually, we get two observations. 1) EA-PS− has a
significantly higher improvement in BA than LeadFL+, which indicates the proposed objective
function has a better defense capability than the proposed parameter constraint strategy. 2) EA-PS−

has a far less improvement of stability than LeadFL+, which indicates the proposed parameter
constraint strategy has a significant capability to maintain defense stability. In addition, we conducted

7
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comparative experiments on None (FedAvg), LDP (Naseri et al., 2020), and FL-WBC Sun et al.
(2021) methods to prove the effectiveness of our proposed methods. The specific BA, variance, upper
and lower bounds, and other information are shown in Table 10-16 of Appendix D.

Data
-set

distri
-bution

server
defense

client
defense

Attack

1-pixel 9-pixel Freq SADBA GAUS-
SIAN LabelFlip

MA BA MA BA MA BA MA BA MA MA

F
E
M
N
I
S
T

NON
-IID

FedAvg

LeadFL 89.62 95.42/1.02 89.56 99.65/0.01 89.41 4.76/0.63 89.61 0.72/8.13 34.32 85.11
LeadFL+ 89.24 95.23/0.63 89.37 99.59/0.01 88.53 4.82/0.01 89.12 0.56/0.17 33.81 84.1
EA-PS- 89.45 92.95/0.69 89.41 94.7/1.42 88.69 4.63/0.21 89.00 0.11/7.24 33.62 84.12
EA-PS 88.79 95.33/0.18 88.75 98.84/0.01 88.49 4.79/0.75 89.12 0.84/0.03 35.21 86.02

CMA

LeadFL 89.21 91.46/1.63 88.52 95.60/1.44 89.06 4.57/0.08 88.72 0.40/0.03 88.08 87.67
LeadFL+ 88.16 89.56/1.32 88.86 96.34/1.52 88 4/0.07 89.14 1.66/1.56 88.19 86.91
EA-PS- 88.28 88.92/1.40 88.30 86.66/1.12 87.97 4.44/0.15 88.81 1.90/0.20 87.09 86.93
EA-PS 88.63 87.86/1.05 89.22 87.75/3.78 87.94 4.18/0.13 88.49 0.23/0.06 87.75 86.77

multi
-Krum

LeadFL 88.31 65.75/21.54 88.38 59.01/49.62 88.57 4.61/0.83 88.65 2.12/2.36 86.12 87.7
LeadFL+ 87.27 64.28/7.8 88.52 68.2/19.88 88.12 4.15/0.02 88.39 1.84/1.68 85.28 88.1
EA-PS- 88.13 53.79/21.36 88.59 52.67/51.45 88.29 4.1/0.03 88.35 0.51/3.21 82.59 88.26
EA-PS 87.76 43.2/7.68 88.48 53.84/16.33 87.92 4.24/0.17 89.12 0.21/0.01 85.82 87.95

bulyan

LeadFL 88.25 65.09/24.07 87.81 76.62/32.97 87.17 9.35/3.89 88.19 0.33/0.35 86.58 87.44
LeadFL+ 87.76 57.95/10.38 86.40 71.68/22.9 87.03 7.62/2.69 87.62 0.37/0.02 86.55 87.23
EA-PS- 87.46 50.92/28.90 87.58 74.93/17.2 87.52 4.21/0.04 88.09 0.04/2.63 86.27 87.66
EA-PS 86.25 49.43/9.62 84.76 66.43/12.59 86.84 4.08/1.68 87.49 0.99/0.02 87.28 87.81

alignins

LeadFL 89.09 85.75/1.23 88.97 92.59/2.97 88.80 94.68/3.98 89.30 1.72/1.01 88.27 88.44
LeadFL+ 88.60 83.25/1.66 88.84 76.33/3.25 88.87 85.45/5.03 88.75 2.71/0.05 87.72 88.21
EA-PS- 88.54 83.30/1.36 88.68 74.60/60.01 87.76 87.76/20.65 88.75 1.3/0.06 87.93 88.46
EA-PS 88.43 84.26/1.23 88.60 73.59/3.45 88.93 86.94/15.69 88.76 1.32/0.14 88.94 88.13

C
I
F
A
R
1
0

IID

FedAvg

LeadFL 40.67 53.09/158.59 36.41 76.9/41.04 34.05 56.73/16.28 33.34 4.26/1.87 33.93 16.01
LeadFL+ 39.36 54.79/141.63 35.82 70.97/33.85 33.81 57.44/7.82 44.51 3.19/1.32 37.97 22.20
EA-PS- 38.38 61.14/4.9 35.01 79.35/25.91 33.77 47.48/27.06 28.13 7.08/8.94 26.53 23.64
EA-PS 39.79 54.52/34.95 44.17 77.8/6.69 34.76 46.55/3.83 33.03 4.49/0.67 38.87 21.93

NON
-IID

LeadFL 37.64 51.84/63.03 45.08 78.78/32.38 30.18 85.02/84.48 29.02 8.94/25.62 19.08 16.16
LeadFL+ 38.81 58.33/10.55 39.11 78/10.52 29.78 42.04/78.68 39.59 5.37/3.12 38.4 25.54
EA-PS- 37.8 54.74/21.37 36.19 78.57/40.99 31.6 42.74/62.85 36.4 3.87/1.80 32.34 25.77
EA-PS 40.31 50.6/15.6 43.22 77.1/5.52 31.04 47.57/77.29 35.69 6.15/1.24 32.43 24.58

IID

CMA

LeadFL 40.14 46.54/301.31 36.45 78.34/14.66 31.15 45.78/13.68 34.93 6.60/5.29 28.79 15.15
LeadFL+ 41.13 34.19/48.78 40.56 73.61/8.62 30.78 46.72/23.29 41.7 3.25/1.17 32.49 24.14
EA-PS- 34.64 44.71/427.22 30.75 62.05/35.68 32.61 43.19/57.28 36.78 4.78/1.52 22.3 18.64
EA-PS 39.8 32.58/0.02 42.9 63.57/0.01 35.84 42.43/2.14 36.87 11.51/1.60 33.87 16.92

NON
-IID

LeadFL 37.39 31.47/2.35 32.79 61.21/11.06 28.01 33.83/45.05 31.77 6.51/5.17 17.19 18.71
LeadFL+ 36.2 36.46/30.19 36.99 59.51/33.69 34.63 43.36/27.99 45.03 3.25/1.38 30.3 26.69
EA-PS- 35.98 37.66/83.36 32.76 63.66/18.54 32.58 37.9/37.52 35.12 37.23/20.87 30.9 19.79
EA-PS 41.36 33.18/91.01 44.47 63.21/3.35 31.79 41.02/6.87 43.16 3.88/2.82 34.50 18.57

IID

multi
-Krum

LeadFL 30 64.26/640.64 42.06 60.63/166.51 33.95 76.77/105.1 30.71 7.66/3.89 12.63 10.9
LeadFL+ 32.88 61.72/62.41 40.29 63.39/5.2 32.64 77.31/42.75 39.16 10.21/0.85 15.17 19.36
EA-PS- 31.05 67.4/126.97 32.12 32.12/100.78 33.79 74.66/14.63 35.49 60.27/0.01 13.05 20.64
EA-PS 40.3 52.5/15 48 62.75/0.38 32.41 73.06/25.26 42.83 4.03/0.08 15.52 13.39

NON
-IID

LeadFL 30.23 61.74/11.71 29.44 58.13/21.63 33.95 55.42/72.54 37.62 12.73/8.78 15.20 13.42
LeadFL+ 33.4 56.84/26.28 30.22 61.55/14.22 37.72 49.12/36.09 41.7 4.92/1.44 23.15 13.35
EA-PS- 36.63 45.2/4.54 38.12 53.42/16.76 35.6 45.92/69.23 33.13 7.08/13.95 12.49 13.39
EA-PS 31.33 52.5/15 39.81 52.2/8.78 33.75 46.12/37.11 36.68 7.65/1.67 23.98 15.9

IID

bulyan

LeadFL 34.75 63/236.4 37.66 79.16/54.75 33.44 40.85/52.83 39.35 5.51/0.71 13.01 14.27
LeadFL+ 33.76 66.14/120.55 38.25 78.06/32.56 33.08 42.69/10.75 39.97 9.94/38.09 24.27 13.51
EA-PS- 29.37 59.15/500.37 30.17 66.37/383.42 33.15 47.97/28.74 36.51 5.30/7.18 14.86 15.85
EA-PS 33.88 59.11/7.61 30.25 61.3/0.04 32.18 49.76/12.17 37.25 9.25/7.71 36.38 14.8

NON
-IID

LeadFL 32.31 65.96/71.8 37.3 64.65/25.71 32.1 41.33/7.62 37.79 12.77/46.70 20.69 18.94
LeadFL+ 39.92 56.02/92.72 39.28 61.76/18.55 37.05 68.88/6.23 38.42 36.27/5.45 24.38 13.40
EA-PS- 40.5 58.19/2.63 36.35 71.11/23.79 34.1 39.79/62.97 38.93 7.34/5.46 12.42 16.27
EA-PS 43.12 59.11/7.61 38.55 66.05/15.58 34.81 40.13/7.81 36.64 8.83/3.73 27.62 16.08

IID

alignins

LeadFL 37.25 71.79/0.04 32.87 62.02/13.39 39.18 62.23/17.20 32.88 3.40/1.98 12.41 17.88
LeadFL+ 38.6 36.92/27.97 43.68 47.18/2.30 32.43 52.23/8.95 36.78 3.39/1.20 24.39 12.09
EA-PS- 35.98 25.23/5.24 31.16 56.49/14.35 32.3 47.56/104.81 30.17 5.22/2.99 21.08 21.65
EA-PS 29.46 27.51/7.83 25.71 55.57/5.33 37.29 60.15/13.56 41.07 4.85/0.34 32.08 26.36

NON
-IID

LeadFL 32.99 32.37/8.39 37.28 60.15/13.56 36.83 48.35/122.83 34.34 10.92/125.66 30.58 12.94
LeadFL+ 31.79 40.09/9.14 39.62 57.47/29.88 36.09 49.75/22.17 34.63 2.01/0.01 22.33 13.14
EA-PS- 33.41 35.39/139.14 32.76 36.01/117.89 32.69 47.53/67.53 31.23 6.17/156.85 17.60 18.61
EA-PS 22.19 32.09/0.16 39.75 57.79/12.96 42.05 54.15/15.44 34.5 3.43/2.02 31.75 17.07

Table 1: Comparison of main accuracy and backdoor accuracy on FEMNIST and CIFAR10 with
IID/non-IID settings under poisoning attack. Where, the indicators are MA (%), BA (%/var(10−4)).

6.2 EFFECTIVENESS OF PARAMETER CONSTRAINT

The effect of parameter constraints depends on spatial mapping β and regulation rate γ. Figure 2
shows EA-PS performance under 1/9-pixel attacks (IID and non-IID distributions) on CIFAR10: it is
more stable under 9-pixel attacks than 1-pixel ones (due to weaker aggressiveness); BA performance is
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more stable under IID than non-IID distributions (affected by data heterogeneity); attacks significantly
impact defense stability; BA mean variance differences under different β are < 10%, indicating
spatial mapping dynamic coefficients ensure defense stability. Additionally, γ is more stable on
non-IID, with optimal performance at γ=0.05. Experiments show that through the constraint of γ
on β, EA-PS can fully utilize the current round and historical attack data during training, effectively
balancing the dynamic changes and cumulative impact of attacks. Tables 17 and 20 in Appendix D
also show EA-PS is more stable across β on FashionMNIST than CIFAR10.

Figure 2: Impact of dynamic coefficient of the spatial mapping β and regulation rate γ.

Figure 3: Impact of linear ratio in λ and constraint rate α.

6.3 EFFECTIVENESS OF THE SPATIAL MAPPING

The effect of parameter constraints is influenced by linear ratio λ and constraint rate α. Figure
3 shows the proposed method’s performance on CIFAR10 under 1/9-pixel attacks (IID/non-IID
distributions): 1) BA performance is more stable under 1-pixel than 9-pixel attacks; 2) No significant
difference in BA stability between the two attacks; 3) Defense performance is most stable at λ=0.5,
as it equally considers historical information of At and At−1. For α, the optimal range is 0.2-0.4.
Larger α increases parameter constraint weight, biasing loss toward stability, but excessive weight
raises variance via optimization space changes. This indicates the objective function ensures low BA,
while parameter constraints guarantee effect stability. Consistent results are seen in FashionMNIST
(Tables 18 and 19, Appendix D).

7 CONCLUSION

To defend against persistent attacks with long-lasting attack effects, we propose a client-side defense
method, EA-PS, which can be effectively combined with server-side methods to guarantee robust
and stable performance. Benefiting from minimizing the impact of attacks and the constraint of the
perturbation range of local parameters, EA-PS method effectively thwarts backdoor poisoning attacks
with stable performance. To theoretically guarantee the performance and robustness of EA-PS, we
prove that our methods have a lower upper bound, a smaller certified radius, and a larger convergence
upper bound. Evaluated on FEMNIST and CIFAR10 combined with different server-side defense
methods under IID and non-IID data distributions, EA-PS reduces more performance degradation by
0.79%, achieves lower attack success rates by up to 14.9% and more stable defense performance with
smaller variance by up to 40% compared with other client-side defense methods.

9
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Reproducibility Statement

To ensure the reproducibility of the study, all key experimental information, theoretical derivation
details, and technical resources are standardized and accessible, with specific references as follows:

Model and Algorithm Implementation: The core code of EA-PS is uploaded to an anonymous repos-
itory (https://anonymous.4open.science/r/EA-SP-6BC9), including complete parameter constraint
strategies, gradient clipping mechanisms, and objective function optimization logic—consistent with
Chapter 4 (Model Design) and Chapter 5 (Convergence and Robustness Analysis) of the main paper,
enabling direct reproduction of experimental results.

Theoretical Derivation Verification: All assumptions (e.g., Assumptions B.1-B.9 in Appendix B),
formula derivations, and key parameter definitions for EA-PS’s optimization upper bound (Theorem
4.1), convergence guarantee (Theorem 5.1), and certified radius (Theorem 5.2) are detailed in the
paper’s appendix, facilitating verification of theoretical conclusions.

Experimental Design and Data: Datasets (CIFAR10, FEMNIST, FashionMNIST) with their sources,
IID/non-IID division rules, attack sample construction (1/9-pixel, spectrum attacks), and hyperparam-
eters (β=0.01, α=0.1, λ=0.5, γ=0.01) are fully described in Chapter 6 (Experiments) and Appendix
D. Detailed data (MA, BA, variance) for cross-validation is provided in Tables 10-20 of Appendix D.

Experimental Environment and Process: Training rounds (80), client selection rules (10 clients/round,
1-5 malicious), and server-side defense integration (CMA, Multi-Krum, Bulyan, alignins) are stated
in Chapter 6. All results are averaged over 5 repeated experiments to ensure stability.

All materials above are available via the paper’s main text, appendices, or the anonymous repository,
supporting full reproduction of this study’s results.
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APPENDIX FOR
“EA-PS: ESTIMATED ATTACK EFFECTIVENESS BASED POISONING DEFENSE IN

FEDERATED LEARNING UNDER PARAMETER CONSTRAINT STRATEGY”

In the appendix of this paper, we provide further details:

• In Appendix A, we show the detailed local training process after applying EA-PS and the
comparison between server-side defense and EA-PS.

• In Appendix B, we make some definitions and assumptions for EA-PS. This includes mathe-
matical assumptions, federated environment assumptions and definitions, and authentication
radius definitions. Finally, we prove the three theorems we have presented.

• In Appendix C, we present the details of our experiments, including the dataset, the server-
side & client-side defense methods, and the detailed experimental configuration, such as
client selection and rounds, training details, model architectures, and evaluation metrics.

• In Appendix D, we show the detailed results (including main task accuracy, backdoor accu-
racy and their MAX, MIN and VAR values) of the baselines and proposed methods
(including LeadFL+, EA-PS−, and EA-PS ) against 1/9-pixel, spectrum and label flipping
attacks under IID and non-IID distributions on the FashionMNIST and CIFAR10 datasets.

• In Appendix E, we discuss the potential positive societal impacts of the work performed, the
problem of dataset selection, baseline selection, performance improvement, heterogene-
ity applicability and limitations of the proposed method in this paper.

• In Appendix F, we state the use of EA-PS’s large language models (LLMs).

A. DETAILS OF ALGORITHM EA-PS

Algorithm for training process applying EA-PS. The detailed local training process of benign
devices after applying EA-PS is shown in Algorithm 1.

Comparison between server-side defense and EA-PS. We analyze the differences in knowledge,
capabilities, and assumptions between EA-PS and server-side defense, as shown in Table 2.

Component Client-Side Defense (Ours) Server-Side Defense
Knowledge Local model parameters and gradientsLocal training data distribution Global aggregated modelAggregated update statistics (e.g., gradient norms)
Capability Can apply local parameter masking/smoothing; Cannot modify server aggregation logic Can modify aggregation rules (e.g., clip gradients, weight averaging)

Assumptions Clients may be malicious Server is honest Server is fully trustedClients may be malicious

Table 2: Knowledge and capability comparison between server-side defense and EA-PS

B. ASSUMPTIONS AND DEFINITIONS

Assumption B.1 (Smoothness). L is ℓ− smooth if ∀x, y ∈ ℜd

L(x)− L(y) + (x− y)T ▽ L(x) ≤ ℓ
2 ||x− y||22.

Assumption B.2 (Convex). L is µ− strongly convex if ∀x, y ∈ ℜd

L(x)− L(y) + (x− y)T ▽ L(y) ≥ µ
2 ||x− y||22.

Assumption B.3 (Bound of Variance). Let ξkt be sampled from the k-th device’s local data uniformly
at random. The variance of the stochastic gradient in each device is bounded: E|| ▽ Lk(θkt , ξ

k
t )−

▽Lk(θkt )||2 ≤ σ2
k for k = 1, ..., N .

Assumption B.4 (Bound of Norm). The expected squared norm of stochastic gradients is uniformly
bounded, i.e., E|| ▽ Lk(θkt,e, ξ

k
t,e)|| ≤ G2 for all k = 1, ..., N , e = 0, ..., E − 1 and t = 0, ..., T − 1.
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Algorithm 1 EA-PS and robust aggregation

Input: number of global rounds T , constraint rate α, clipping bound q, ♯ of clients selected in a
round K, dynamic coefficient of the spatial mapping β, regulation rate γ.
for communication round t = 0 to T − 1 do

Server randomly chooses K clients;
parallel k = 0 . . .K do
Update model weights as global weights from the last round;
for local iteration e = 0, 1, ... do

Compute gradients and update weights:
θkt,e+1 ← θkt,e − ηt,e ▽ F (θkt,e);
Compute the effect of poisoning attack:
At =

∑
k∈St p

k
∏E−1

e=0

(
I − ηt,eH

k
t,e

)
;

Compute the parameter boundary:
λ = (At +At−1)/2;
Minimize the effect of poisoning attack and constraint the boundary of parameter:
At −At−1 + α(AB − λB) + γRegu(β,B);
Compute and clip gradients:
Rk

t,e = clip
(
∇
(
I − ηtH̃

k
t,e

)
, q
)

;
Update weights;
Update dynamic coefficient of the spatial mapping:
βold ← β;

end for
Compute updates;
end parallel
Aggregate updates using server-side defense;
Update weights;

end for

Assumption B.5 (Selection of Clients). Assume St contains a subset of K indices uniformly sampled
from [N] without replacement. Assume the data is balanced in the sense that p1 = ... = pN = 1

N .
The aggregation step of FedAvg performs θt ←− N

K

∑
k∈St

pkθ
k
t .

Definition B.6 (Loss of clients). Denote L∗ and L∗
k as the minimum value of L and Lk, where L is

the loss of a model trained on the combination of datasets from all the clients and Lk is the loss of a
model trained on the dataset of client k. we can set Γ = L∗ −

∑N
k=1 pkL

∗
k, which can quantify the

degree of non-IID. If the data are IID, then Γ goes to zero as the number of samples grows. If the data
are non-IID, the Γ is non-zero, and its magnitude reflects the heterogeneity of the data distribution.

Definition B.7 (Poisoning Attack). For a protocol f = (G,A, η) we define the set of poisoned
protocols F (ρ) to be all protocols f∗ = (G∗,A, η) that are exactly the same as f except that the
gradient oracle G∗ is a ρ− corrupted version of G. That is, for any round t and any model θt and
any dataset D we have G∗(θt, D) = G(θt, D) + ϵ for some ϵ with ||ϵ||1 ≤ ρ.

Definition B.8 (Certified Radius). Let f be a protocol and f∗ ∈ F (ρ) be a poisoned version of the
same protocol. Let θT , θ∗T be the benign and poisoned final outputs of the above protocols. We call R
a certified radius for f if ∀f∗ ∈ F (ρ);R(ρ) ≥ |θT − θ∗T |1.

Assumption B.9 (Coordinate-wise Lipschitz). The protocol f(G,A, η) is c-coordinate-wise Lipschitz
if for any round t ∈ [T ], models θt, θ∗t ∈M, and a dataset D we have that the outputs of the gradient
oracle on any coordinate can’t drift too much farther apart. Specifically, for any coordinate index
i ∈ [d]

|G(θ∗t , D)[i]− G(θt, D)[i]| ≤ c|θ∗t − θt|1.

B.10 PROOF OF THEOREM 4.1

Theorem 4.1. Minimizing At −At−1 yields a smaller optimization upper bound than minimizing At̂,
where At̂ is the coefficient of attack impact in LeadFL.
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Proof.

From the definition of At, we can get Equations (27) as follows:

At = I − (Pt − Pt−1) + ∆t. (27)

According to Equation (27), we can obtain:

At −At−1 = (∆t −∆t−1)− (Pt − 2Pt−1 + Pt−2), (28)

where we assume that the lower bound on the difference between At − At−1 and 0 is ϵ. For
convenience, we consider this difference to be ϵ.
According to Equation (28), we can obtain the recursion formula as follows:

P2 = ∆2 −∆1 + 2P1 − P0 + ε
P3 = ∆3 −∆2 + 2P2 − P1 + ε

...
Pt = ∆t −∆t−1 + 2Pt−1 − Pt−2 + ε.

(29)

The recursive formula can be obtained from Equation (29) as follows:
P3 = ∆3 +∆2 − 2∆1 + 3P1 − 2P0 + 3ε

P4 = ∆4 +∆3 +∆2 − 3∆1 + 4P1 − 3P0 + 6ε
...

Pt =
∑t

i=1 ∆i + P0 + [(t− 1) + ε(Pt−1)]ε.

(30)

where ε(Pt−1) represents the coefficient of the ε in Pt−1. From the definition of At̂, we can get
Equations (31) as follows:

At̂ = I − (Pt̂ − Pt̂−1) + ∆t̂. (31)

Similarly, assume that the lower bound on the difference between At̂ and 0 is also ϵ.
According to Equation (31), we can obtain the recursion formula as follows:

P1 = P0 + I +∆1 + ε
P2 = P1 + I +∆2 + ε
P3 = P2 + I +∆3 + ε

...
Pt̂ = Pt̂−1 + I +∆t̂ + ε.

(32)

The recursive formula can be obtained from Equation (32) as follows:
P2 = P0 + 2I +∆1 +∆2 + 2ε

P3 = P0 + 3I +∆1 +∆2 +∆3 + 2ε
...

Pt̂ = P0 + t̂I +
∑t̂

k=1 ∆k + t̂ε.

(33)

According to the Equation (28) and (30), we can obtain Equation (34) as follows:

At = I − (Pt − Pt−1) + ∆t = I +∆1 − P1 + P0 − tε. (34)

According to the Equation (31) and (33), we can obtain Equation (35) as follows:

At̂ = I − (Pt̂ − Pt̂−1) + ∆t̂ = I + ε. (35)

We can obtain that At has a lower upper bound than At̂ as follows:

At̂ −At = (t+ 1)ε+ P1 − P0 −∆1 = (t+ 1)ε. (36)

According to Equation (36), At ≤ At̂. Then we can get Theorem 4.1 that minimizing At − At−1

yields a smaller optimization upper bound than minimizing At̂.
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B.11 PROOF OF CONVERGENCE GUARANTEE

Theorem 5.1. (Convergence Guarantee): Let Assumptions B.1 to B.5 hold and
l, µ, σk, G,K,N,Γ, F ∗ be defined therein and in Definition B.6. Choose κ = l

µ , φ = max(8κ, I)

and the learning rate ηt =
2

µ(φ+t) . Then we have the following bound for EA-PS:

E[F (θT )]− F ∗ ≤ κ

φ+ T − 1
(
2(M + C)

µ
+

µφ

2
E[||θ0 − θ∗||2]), (37)

where
D = E||γRegu||22, (38)

C =
N −K

N − 1

4

K
E2(d2q2 +G2 +D2), (39)

M =

N∑
k=1

p2k(d
2q2 + σ2

k +D2) + 6lΓ + 8(I − 1)2(d2q2 +G2 +D2). (40)

Proof. The expected distance between the gradients before and after regularization can be bounded.

E|| ▽ L
′
(θkt,i, ξ

k
t,i)−▽L(θkt,i, ξ

k
t,i)||22 (41)

= E||clip(At, q) + γRegu||22 (42)

≤ E||clip(At, q)||22 + E||γRegu||22 (43)

≤ d2q2 +D2. (44)

Using the bounds above and Assumption B.3, we can derive new bounds for the variance of modified
gradient E|| ▽ L

′
(θkt,i, ξ

k
t,i)−▽L(θkt,i)||2

E|| ▽ L
′
(θkt,i, ξ

k
t,i)−▽L(θkt,i)||2 (45)

≤ E|| ▽ L
′
(θkt,i, ξ

k
t,i)−▽L(θkt,i, ξ

k
t,i)||2 (46)

+ E|| ▽ L(θkt,i, ξ
k
t,i)−▽L(θkt,i)||2 (47)

≤ d2q2 + σ2
k +D2, (48)

where we use the triangle inequality. Similarly, we can also derive bounds for the expected squared
norm of modified gradients using Assumption B.4.

E|| ▽ L
′
(θkt,i, ξ

k
t,i)||2 (49)

≤ E|| ▽ L
′
(θkt,i, ξ

k
t,i)−▽L(θkt,i, ξ

k
t,i)||22 (50)

+ E|| ▽ L(θkt,i, ξ
k
t,i)||2 (51)

≤ d2q2 +G2 +D2. (52)

Applying the bounds for the variance and the expected squared norm of modified gradients after
applying EA-PS, we can derive our convergence guarantee from Theorem 5.1 in Li et al. (2019b) by
replacing these bounds. Compared with LeadFL, the EA-PS method has a larger convergence upper
bound, because of the parameter constraint and its regulation in Equation (12).

B.12 PROOF OF CERTIFIED RADIUS OF THE THREAT MODEL

Our paper uses the same Poisoning Attack Definition (Definition B.7) and Coordinate-wise Lipschitz
Assumption (Assumption B.9) as LeadFL.

Theorem 5.2. Certified Radius of the Threat Model: EA-PS has a smaller upper bound and its
certified radius is also smaller than LeadFL.

Proof.
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From the proof of the certified radius in LeadFL, it is known that under the assumption of unification,
EA-PS has a smaller upper bound and its certified radius is also smaller than LeadFL. Based on the
definition of model updates, we use the triangle inequality to get the following inequality between
|θt − θ∗t | and |θt−1 − θ∗t−1| when the system is attacked in round t− 1.

|θt − θ∗t | = |θt−1 − ηtµt − θ∗t−1 + ηtµ̂t| ≤ |θt−1 − θ∗t−1|+ ηt|µt − µ̂t|. (53)

Using the triangle inequality again, we can get:

|µt − µ̂t| = |µt − µ∗
t + µ∗

t − µ̂t| ≤ |µt − µ∗
t |+ |µ∗

t − µ̂t|. (54)

According to Definition B.7 and coordinate-wise Lipshitz in Assumption B.9:

|µt − µ̂t| ≤ |µt − µ∗
t |+ |µ∗

t − µ̂t| = dc|θt − θ∗t |+ ρ. (55)

By plugging the above equation into Equation (53), we get:

|θt − θ∗t | ≤ |θt−1 − θ∗t−1|+ ηt(dc|θt − θ∗t |+ ρ) = (1 + dcηt)|θt − θ∗t |+ ρηt. (56)

According to Bernoulli’s inequality, we have:

|θt − θ∗t | ≤ (1 + dc)ηt |θt − θ∗t |+ ρηt. (57)

Now we get the inequality between |θt − θ∗t | and |θt−1 − θ∗t−1| when the system is attacked in round
t− 1. Since we introduced server-side defense, we obtain the Equation (58) from the Equation (4):

θt − θ∗t =
∑
k∈S∗

t

pk

∣∣∣∣∣
I−1∏
i=0

(
N

|S∗
t |
At

)∣∣∣∣∣ (θt−1 − θ∗t−1). (58)

Then we get the following relationship between |θt − θ∗t | and |θt−1 − θ∗t−1| when server-side defense
filters out all malicious updates in round t− 1.

|θt − θ∗t | ≤
∑
k∈S∗

t

pk

∣∣∣∣∣
I−1∏
i=0

(
N

|S∗
t |
At

)∣∣∣∣∣ |θt−1 − θ∗t−1|. (59)

Finally, we can use Equations (57) and (59) to prove Theorem 5.2 by induction hypothesis:

R(ρ) = (1 + dc)
∑

t∈ΦT
ηtρ(|

∏
t∈ΓT

∑
k∈S∗

t

pk(
N

|S∗
t |
At)|+ |ΦT |

∑
t∈ΦT

ηt). (60)

From Theorem 4.1., we have a smaller coefficient of attack impact A compared with LeadFL in the
same environment. So, we have a smaller certified radius.

C. EXPERIMENTS DETAIL

C.1. DATASETS

We conduct experiments on FashionMNIST, CIFAR10 and FEMNIST (nature NON-IID). In the
case of FashionMNIST, every one of the 100 clients is allocated 600 images from a total of 60,000
images. As for CIFAR10, each client obtains 500 images out of the 50,000 available images. As for
FEMNIST, each client obtains 433 images.

In the IID setting, samples are uniformly distributed to clients. In the non-IID setting, we deploy
the limited label strategy (McMahan et al., 2016) that is also used for the evaluation of LeadFL in
FashionMNIST and CIFAR10: Of the 10 classes in each of the two datasets, each client is assigned 5
random classes. They are then assigned an equal number of randomly selected samples from each of
their classes. The clients’ datasets are selected independently.

For the regularization term, we tune the parameters of the Dirichlet distribution in the non-IID case
using hyper-parameters α. Here we set α = 0.4 in FashionMNIST and FEMNIST and 0.25 in
CIFAR10.
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C.2. SERVER-SIDE & CLIENT-SIDE DEFENSES

We use CMA&CTMA (Yin et al., 2018), Multi-Krum (Mhamdi et al., 2018), Bulyan (Blanchard
et al., 2017) and alignins(Xu et al., 2025a) as server-side defenses.

For client-side defenses, we choose FL-WBC (Sun et al., 2021), LDP (Naseri et al., 2020), LeadFL,
LeadFL with our parameter constraint strategy (noted as LeadFL+) and EA-PS− as the baseline.
For FL-WBC (Sun et al., 2021) and LDP (Naseri et al., 2020) defenses, we apply Laplace noise with
mean = 0 and std = 0.2 as in the original papers. For LeadFL and EA-PS−, we set the clipping
norm q = 0.2. For LeadFL+, we set the dynamic coefficient of the spatial mapping β = 0.05,
regularization rate α = 0.1 and linear ratio of λ to 0.5.

C.3. CONFIGURATIONS

Client Selection and Rounds. There are 100 clients in total, of which 25 are malicious. There
are 80 global rounds and 10 local rounds. The server selects 10 clients per global round. For most
experiments, the selection is random but consistent over experiments, i.e., for two experiments, the
clients selected in round t are the same to enable comparison between the different settings.

Training Details. For training, we set local epoch E as 1 and batch size BS as 32. We apply SGD
optimizer and set the learning rate η to 0.01. Up to five clients are selected as malicious clients in each
round of 80 communication rounds. Our hyper-parameters are (1) β is the initial value of adaptive
parameter constraint, set to 0.01. (2) α is the ratio of adaptive parameter constraint to EA-PS−, set
to 0.1. (3) λ is the ratio of linear decision rules, set to 0.5. (4) γ is the ratio of regulation to control
the influence degree of β, set to 0.01.

Model Architectures. We adopt the same model architecture as LeadFL (Zhu et al., 2023) on the
FashionMNIST and CIFAR10 with convolutional layers and fully-connected layers. Meanwhile, a
similar network structure is adopted for the FashionMNIST dataset on the FEMNIST dataset.

Evaluation Metrics. Our goal is to maintain main task accuracy and at the same time achieve
better and more stable backdoor defense performance. So, Main Task Accuracy(MA), Backdoor
Accuracy(BA) and its MAX, MIN, Variance are used in this paper. (1)Main Task Accuracy(MA):
We measure the main task accuracy using the accuracy of the global model on the benign test
set of the main task. As in other works, we consider the maximum accuracy achieved during
training. (2)Backdoor Accuracy(BA): Backdoor accuracy measures how successful an attacker is in
integrating the backdoor into the model. We measure the accuracy of the backdoor as the percentage
of samples with triggers that are classified as attacker intent. We find that the backdoor accuracy does
not converge in our experiments, so we consider the average backdoor accuracy. And because the
difference in backdoor accuracy is large in each round, we use the average backdoor accuracy in our
experiments. At the same time, we also give the MAX and MIN of the experimental results, which
represent the defense effect interval of the EA-PS method. (3)Backdoor Accuracy Variance: We
measure the backdoor accuracy variance to represent the stability of the defense effect.

C.4. COMPUTE WORKER

The computing device used in our experiments is an RTX3090 GPU and a CPU with 60G memory.

D. ADDITIONAL RESULTS

Table 3 shows the results of different client-side defense methods combined with different server-side
defense methods in the FashionMNIST dataset under IID distribution in the case of 9-pixel attacks.

Table 4 shows the results of different client-side defense methods combined with different server-side
defense methods in the FashionMNIST dataset under non-IID distribution in the case of 9-pixel
attacks.

Table 5 shows the results of different client-side defense methods combined with different server-side
defense methods in the FashionMNIST dataset under IID distribution in the case of 1-pixel attacks.
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Table 6 shows the results of different client-side defense methods combined with different server-side
defense methods in the FashionMNIST dataset under non-IID distribution in the case of 1-pixel
attacks.

Table 7 shows the results of different client-side defense methods combined with different server-side
defense methods in the FashionMNIST dataset under IID distribution in the case of spectrum
attacks.

Table 8 shows the results of different client-side defense methods combined with different server-side
defense methods in the FashionMNIST dataset under non-IID distribution in the case of spectrum
attacks.

Table 9 shows the results of different client-side defense methods combined with different server-side
defense methods in the FashionMNIST dataset under IID and NON-IID distribution in the case of
Label Flipping attacks.

Table 10 shows the results of different client-side defense methods combined with different server-side
defense methods in the CIFAR10 dataset under IID distribution in the case of 9-pixel attacks.

Table 11 shows the results of different client-side defense methods combined with different server-side
defense methods in the CIFAR10 dataset under non-IID distribution in the case of 9-pixel attacks.

Table 12 shows the results of different client-side defense methods combined with different server-side
defense methods in the CIFAR10 dataset under IID distribution in the case of 1-pixel attacks.

Table 13 shows the results of different client-side defense methods combined with different server-side
defense methods in the CIFAR10 dataset under non-IID distribution in the case of 1-pixel attacks.

Table 14 shows the results of different client-side defense methods combined with different server-side
defense methods in the CIFAR10 dataset under IID distribution in the case of spectrum attacks.

Table 15 shows the results of different client-side defense methods combined with different server-side
defense methods in the CIFAR10 dataset under non-IID distribution in the case of spectrum attacks.

Table 16 shows the results of different client-side defense methods combined with different server-side
defense methods in the CIFAR10 dataset under IID and non-IID distribution in the case of Label
Flipping attacks.

Table 17 shows the experimental results of tuning the hyper-parameter β on the FashionMNIST
dataset under 1/9-pixel backdoor attacks.

Table 18 shows the experimental results of tuning the hyper-parameter α on the FashionMNIST
dataset under 1/9-pixel backdoor attacks.

Table 19 shows the experimental results of tuning the hyper-parameter λ on the FashionMNIST
dataset under 1/9-pixel backdoor attacks.

Table 20 shows the experimental results of tuning γ on FashionMNIST with IID/non-IID settings
under 1/9-pixel backdoor attacks.

Table 21 shows the experimental results of time overhead.

E. DISCUSSIONS AND LIMITATIONS

Potential positive societal impacts of the work performed: Our research focuses on the defense
of federated learning poisoning attacks, which ensures data privacy and system stability. It not
only protects public safety and business fairness, but also clears the way for the implementation of
federated learning technology.

Dataset Selection: Due to the limitation of the paper’s length, we used two commonly used datasets
for verification. Although our experimental results perform better on the FashionMNIST dataset, the
CIFAR10 dataset is superior to the FashionMNIST dataset in terms of complexity, generalization,
and scene diversity, we mainly adopt the experimental results of the CIFAR10 dataset in the analysis
of the main text.
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Server-side Defense Client-side Defense MA BA VAR

None

None 89.88 98.53 (+0.36 / -0.35) 0.13
LDP 88.36 90.81(+1.33 / -1.06) 1.47
WBC 88.23 90.30(+0.86 / -1.26) 1.24

LeadFL 87.42 93.22(+1.5/ -3.48) 7.75
LeadFL+ 87.39 89.36(+1.73/-2.26) 3.66
EA-PS− 87.11 88.8(+2.35/ -1.22) 1.86
EA-PS 86.92 90.72(+1.8 / -2.13) 3.02

CMA

None 89.79 96.65(+0.49 /-0.83) 0.52
LDP 87.03 96.66(+1.59 /-1.30) 2.15
WBC 87.19 96.78(+0.72 / -0.37) 0.39

LeadFL 87.72 95.2(+1.64/ -2.64) 2.8
LeadFL+ 87.22 93.62(+1.55/-1.43) 2.71
EA-PS− 86.87 92.73(+3.3/ -2.39) 6.91
EA-PS 86.98 91.93(+2.36/ -1.97) 4.23

CTMA

None 89.86 96.32(+0.38 / -0.61) 0.29
LDP 88.26 98.18(+0.11 / -0.06) 0.01
WBC 88.2 97.8(+0.18 /-0.17) 0.03

LeadFL 87.32 87.42(+4.55/ -6.17) 15.04
LeadFL+ 86.82 83.65(+4.36/-5.62) 16.77
EA-PS− 86.67 79.38(+4.85/ -7.36) 29.5
EA-PS 86.76 84.65(+4.11/ -4.63) 13.31

multiKrum

None 89.40 33.59(+37.15 /-18.95) 1034.74
LDP 86.78 76.41(+2.17 /-1.89) 4.18
WBC 86.83 77.52(+0.52 / -0.52) 0.27

LeadFL 86.72 32.82(+7.56 / -5.52) 23.4
LeadFL+ 86.38 23.34(+5.15/-4.33) 19.7
EA-PS− 86.08 21.73(+6.7/ -9.75) 52.13
EA-PS 86.18 22.97(+3.29/ -3.16) 7.95

bulyan

None 89.4 36.23(+46.58 /-23.93) 1627.7
LDP 85.88 74.34(+3.42/-2.74) 9.84
WBC 85.96 73.93(+4.16 /-6.82) 35.29

LeadFL 85.73 32.78(+10.54/ -13.99) 99.34
LeadFL+ 85.44 22.57(+10.81/-9.39) 84.13
EA-PS− 85.03 19.7(+25.72/ -13.56) 246.97
EA-PS 85.77 19.59(+6.67/ -11.42) 65.19

Table 3: Comparison under 9-pixel pattern backdoor attack on IID FashionMNIST dataset

Performance Improvement: As can be seen from Table 17-20 in the appendix and the default
experimental settings of this paper, there still exists much room for defense performance improvement
of the proposed method through fine-tuning of hyperparameters. However, current experiments and
theoretical analyses are sufficient to prove the superiority of the proposed method. Additionally,
although our method has a larger convergence upper bound, we set the same number of epochs in
the experiment for a fair comparison with methods such as LeadFL and WBC. To further improve
defense performance, our method can appropriately increase the number of epochs.

Baseline Selection: In this paper, the proposed method is compared with the latest parameterized
client-side methods. There are new developments in client-side methods from 2024 to 2025, but most
of them are based on differential privacy, distillation learning, or malicious client detection, which
means they are not comparable to the proposed method.

Heterogeneity Applicability: Our method is based on the client backdoor defense method, so our
method can also perform backdoor defense under heterogeneity, but it needs to be adjusted adaptively
according to the structure of different client networks.

Limitations: We present an experimental analysis of the time overhead to illustrate the main limitation
of EA-PS. The experimental results, in Table 21, show that EA-PS combined with various server
defense methods is higher than LeadFL on CIFAR10 and FEMNIST datasets. This is because adaptive
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Server-side Defense Client-side Defense MA BA VAR

None

None 89.69 97.97(+0.87 / -0.56) 0.59
LDP 87.88 88.24(+1.42 / -0.93) 1.59
WBC 88.05 89.4(+1.56 / -1.18) 1.9

LeadFL 87.21 92.43(+1.47/ -2.06) 2.29
LeadFL+ 86.24 89.04(+1.56/-1.69) 2.24
EA-PS− 86.43 88.10(+3.54/ -8.27) 13.98
EA-PS 86.48 86.67(+2.77/ -0.676) 2.15

CMA

None 89.67 95.07(+0.32 /-0.51) 0.2
LDP 86.86 95.18(+0.31 /-0.25) 0.2
WBC 86.3 96.1(+1.98 / -1.06) 2.94

LeadFL 87.51 91.93(+3.36/ -2.87) 8.37
LeadFL+ 86.93 89.91(+4.06/-4.33) 11.99
EA-PS− 86.56 89.90(+4.66/ -4.71) 18.91
EA-PS 88.47 91.82(+1.11/ -1.08) 0.68

CTMA

None 89.72 64.64(+4.3 / -3.77) 16.54
LDP 87.4 96.37(+1.36 / -1.19) 3.25
WBC 87.79 97.93(+0.29 /-0.14) 0.06

LeadFL 87.27 87.25(+7.67/ -3.88) 24.10
LeadFL+ 86.62 88.01(+4.5/-4.53) 18.09
EA-PS− 86.04 80.88(+7.70/ -9.77) 47.14
EA-PS 86.48 81.28(+6.89/ -9.09) 36.07

multiKrum

None 89.08 64.64(+4.3 /-3.77) 16.54
LDP 86.37 31.39(+3.11 / -3.15) 9.81
WBC 86.36 31.9(+4.14/-6.19) 29.81

LeadFL 85.94 17.38(+6.94 / -7.76) 28.33
LeadFL+ 85.55 16.43(+6.65/-4.31) 20.65
EA-PS− 85.96 12.58(+4.96/ -5.11) 17.4
EA-PS 85.41 11.79(+2.52/ -2.95) 4.76

bulyan

None 88.83 69.94(+2.45 / -3.39) 9.17
LDP 85.39 27.31(+4.99 / -4.61) 23.11
WBC 85.99 32.36(+3.67/-4.89) 19.42

LeadFL 85.3 15.14(+9.14/ -11.98) 61.37
LeadFL+ 85.12 13.77(+8.39/-7.46) 59.88
EA-PS− 85.34 11.38(+16.85/ -7.63) 93.83
EA-PS 84.97 12.45(+6.2/ -3.53) 22.72

Table 4: Comparison under 9-pixel pattern backdoor attack on non-IID FashionMNIST dataset

parameter limiting requires finding a more stable parameter space through optimization.

F. THE USE OF LARGE LANGUAGE MODELS (LLMS)

In our writing process, the large language model only played the role of correcting grammar and
spelling errors.
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Server-side Defense Client-side Defense MA BA VAR

None

None 89.83 96.03(+0.33 / -0.26) 0.08
LDP 88.32 86.54(+1.27 / 0.68) 0.77
WBC 88.12 86.55(+0.4 / -0.33) 0.09

LeadFL 87.35 89.83(+2.1/ -1.73) 2.49
LeadFL+ 86.99 86.42(+0.12/-0.86) 0.68
EA-PS− 86.6 86.24(+1.22/ -1.33) 2.07
EA-PS 86.75 88.76(+1.26 / -2.49) 4.67

CMA

None 89.69 91.19(+1.66 /-2.39) 3.54
LDP 87.15 94.63(+1.7 /-1.30) 1.56
WBC 86.99 95.29(+0.83 / -0.67) 0.39

LeadFL 87.71 89.53(+1.54/ -1.94) 2.76
LeadFL+ 87.33 86.24(+1.12/-1.66) 2
EA-PS− 86.86 85.48(+3.59/ -2.1) 6.52
EA-PS 86.87 84.84(+2.11/ -1.08) 3.34

CTMA

None 89.85 92.47(+0.36 / -0.6) 0.2
LDP 88.08 96.32(+0.75 / -0.8) 0.53
WBC 87.88 87.71(+0.7 /-0.44) 0.37

LeadFL 87.17 87.71(+0.7/ -0.44) 0.37
LeadFL+ 86.23 86.59(+1.32/-2.04) 5.21
EA-PS− 87.16 86.09(+1.53/ -1.54) 4.69
EA-PS 86.78 84.06(+4.13/ -8.11) 49.33

multiKrum

None 89.62 22.6(+8.42 /-5.59) 33.06
LDP 86.89 71.45(+3.97 /-4.07) 11.3
WBC 86.7 72.18(+4.24 / -5.59) 18.73

LeadFL 86.77 60.5(+10.3 / -8.23) 64.4
LeadFL+ 86.03 56(+11.06/-7.79) 93.83
EA-PS− 86.19 49.87(+7.45/ -4.67) 42.56
EA-PS 86.32 45.32(+4.5/ -3.91) 17.94

bulyan

None 89.26 73.04(+7.39 /-12.98) 83.48
LDP 85.8 70.31(+2.56/-1.6) 3.21
WBC 85.63 68.39(+1.63 /-3.63) 3.48

LeadFL 85.63 58.72(+9.96/ -21.83) 215.5
LeadFL+ 84.99 51.39(+5.28/-3.69) 41.29
EA-PS− 85.55 45.45(+10.56/ -22.91) 237.83
EA-PS 85.57 45.68(+9.51/ -15.77) 189.3

Table 5: Comparison under 1-pixel pattern backdoor attack on IID FashionMNIST dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 89.8 96.2(+0.87 / -0.79) 0.47
LDP 87.95 85.01(+0.34 / -0.63) 0.19
WBC 87.76 85.39(+1.46 / -1.23) 1.31

LeadFL 87.31 88.52(+0.76 / -0.72 ) 0.54
LeadFL+ 86.51 86.47(+0.61/-0.88) 0.55
EA-PS− 86.47 86.06(+2.58 / -3.69 ) 7
EA-PS 86.75 86.46(+1.96 / -2.76 ) 6.06

CMA

None 89.62 90.77(+0.58 /-0.57) 0.33
LDP 86.62 94.24(+0.53 /-0.50) 0.19
WBC 86.27 95.16(+0.61 / -0.59) 0.35

LeadFL 87.55 91.27(+1.76 / -2.53 ) 5.03
LeadFL+ 86.77 87.89(+1.46/-2.23) 6.87
EA-PS− 86.57 85.52(+2.87 / -1.87 ) 4.42
EA-PS 86.63 84.96(+0.59 / -0.35 ) 0.26

CTMA

None 89.7 92.92(+0.99 / -0.87) 0.86
LDP 87.88 95.91(+0.27 / -0.37) 0.07
WBC 88.06 96.4(+0.23 /-0.23) 0.5

LeadFL 86.95 87.64(+1.98 / -4.73 ) 9.32
LeadFL+ 86.72 83.59(+1.29/-3.61) 7.64
EA-PS− 86.44 82.44(+1.15 / -1.68 ) 1.45
EA-PS 86.82 83.83(+1.77 / -2.42 ) 4.72

multiKrum

None 89.35 57.07(+2.62 /-2.87) 7.57
LDP 86.29 32.4(+4.26 / -4.77) 14.36
WBC 86.35 43.78(+1.32/-1.72) 1.72

LeadFL 86.6 47.5(+7.29 / -8.14 ) 66.29
LeadFL+ 86.16 40.96(+5.66/-4.68) 20.36
EA-PS− 85.64 34.97(+13.74 / -7.53 ) 101.25
EA-PS 86.03 35.27(+5.02 / -3.01 ) 32.24

bulyan

None 86.75 56.33(+2.18 / -3.9) 11.44
LDP 85.49 32.25(+5.48 / -3.75) 23.54
WBC 85.55 28.02(+1.88/-3.18) 5.1

LeadFL 85.44 32.32(+8.4 / -5.7 ) 46.74
LeadFL+ 85.41 33.65(+4.41/-2.15) 26.62
EA-PS− 85.26 27.29(+3.79 / -3.95 ) 29.88
EA-PS 84.88 22.13(+3.89 / -4.58 ) 18.3

Table 6: Comparison under 1-pixel pattern backdoor attack on non-IID FashionMNIST dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 89.27 23.48(+0.17 / -0.51) 0.49
LDP 87.81 13.45(+0.81 / -0.73) 0.39
WBC 87.84 13.86(+2.13 / -0.06) 2.26

LeadFL 87.37 16.26(+1.14/ -0.61) 1.46
LeadFL+ 87.16 17.21(+1.03/-0.72) 1.33
EA-PS− 86.88 15.44(+2.17/ -1.88) 3.14
EA-PS 86.57 15.62(+0.96/ -0.87) 1.05

CMA

None 88.01 20.16(+3.71/-2.01) 22.72
LDP 86.16 28.94(+4.37/-1.01) 20.38
WBC 87.07 31.88(+5.83 / -2.05) 28.81

LeadFL 87.51 14.35(+1.26/ -0.81) 1.27
LeadFL+ 87.18 15.26(+1.13/-1.19) 1.29
EA-PS− 86.99 13.57(+2.05/ -3.41) 8.38
EA-PS 86.79 13.39(+0.95/ -1.73) 3.44

CTMA

None 87.95 24.39(+0.31 / -1.14) 1.23
LDP 87.14 39.86(+7.19 / -1.33) 23.74
WBC 87.54 38.61(+7.54 /-2.09) 30.98

LeadFL 87.38 18.51(+5.31/ -2.96) 23.68
LeadFL+ 87.2 17.37(+4.36/-2.58) 16.84
EA-PS− 87.03 15.93(+4.72/ -4.08) 14.49
EA-PS 86.95 16.66(+2.19/ -1.41) 5.87

multiKrum

None 87.02 14.31(+1.31 /-1.35) 3.64
LDP 87.34 15.92(+4.28 / -5.87) 39.11
WBC 86.69 16.45(+3.22/-6.26) 27.19

LeadFL 86.29 10.97(+4.14 / -2.15) 14.53
LeadFL+ 86.34 11.86(+2.46/-1.51) 4.73
EA-PS− 86.07 9.89(+3.53/ -3.26) 13.62
EA-PS 85.94 10.77(+2.87/ -2.08) 4.02

bulyan

None 86.93 19.21(+3.53 / -2.61) 9.66
LDP 85.66 15.78(+3.27 / -5.65) 27.88
WBC 85.59 15.26(+2.26/-5.21) 19.76

LeadFL 86.55 12.41(+1.24/ -1.72) 4.23
LeadFL+ 86.25 13.05(+0.93/-1.47) 2.08
EA-PS− 86.49 11.8(+1.94/ -2.56) 5.37
EA-PS 86.14 12.75(+1.16/ -2.02) 3.38

Table 7: Comparison under Spectrum backdoor attack on IID FashionMNIST dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 88.69 32.04(+0.12 / -0.73) 0.81
LDP 87.77 12.76(+0.41 / -0.36) 0.08
WBC 87.32 13.59(+0.34/ -0.27) 0.06

LeadFL 87.5 17.91(+2/ -1.81) 5.38
LeadFL+ 87.28 17.1(+1.53/-0.77) 1.33
EA-PS− 86.91 16.08(+3.37/ -2.48) 14.39
EA-PS 86.58 16.02(+0.89/ -0.77) 1.14

CMA

None 88.41 25.76(+1.61/-2.98) 7.03
LDP 85.06 31.01(+3.1/-3.38) 29.13
WBC 86.12 31.4(+3.84 / -2.83) 23.57

LeadFL 87.19 15.09(+1.28/-0.7) 1.26
LeadFL+ 87.06 14.98(+1.19/-0.95) 1.41
EA-PS− 86.81 12.7(+1.98/ -2.61) 5.88
EA-PS 86.44 13.02(+0.78/ -0.82) 0.74

CTMA

None 88.67 28.27(+0.84 / -0.65) 0.94
LDP 88.1 39.17(+5.59 / -3.27) 24.64
WBC 87.82 41.8(+5.05 /-4.98) 40.58

LeadFL 87.07 19.11(+1.04/ -1.46) 2.06
LeadFL+ 86.92 19.87(+1.16/-0.98) 1.33
EA-PS− 87.02 17.61(+2.36/ -1.98) 6.42
EA-PS 86.81 17.86(+1.16/ -1.03) 1.71

multiKrum

None 86.95 16.28(+3.46 /-2.17) 11.84
LDP 86.55 14.16(+0.99 / -1.81) 2.74
WBC 86.56 10.12(+0.12/-0.28) 0.05

LeadFL 86.36 10.53(+0.42 / -0.5) 0.17
LeadFL+ 86.22 11.31(+0.77/-1.12) 0.94
EA-PS− 86.19 9.16(+1.15/ -0.76) 0.64
EA-PS 86.01 11.26(+0.32/ -0.52) 0.55

bulyan

None 86.84 17.61(+2.13 / -1.86) 3.17
LDP 85.57 10.4(+0.67 / -0.6) 0.33
WBC 85.35 10.76(+0.53/-0.84) 0.26

LeadFL 84.55 10.21(+0.08/ -0.16) 0.07
LeadFL+ 84.48 11.12(+0.41/-0.27) 0.13
EA-PS− 84.71 10.2(+0.91/ -0.69) 0.78
EA-PS 84.18 11.59(+0.06/ -0.22) 0.08

Table 8: Comparison under Spectrum backdoor attack on NON-IID FashionMNIST dataset
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IID NON-IID
Server-side

Defense
Client-side

Defense MA MA

None

None 88.4 88.33
LDP 87.19 86.62
WBC 86.29 87.16
LeadFL 85.79 86.44
leadFL+ 85.26 85.46
EA-PS− 86.03 86.52
EA-PS 85.98 85.42

CMA

None 88.6 88.56
LDP 83.29 84.4
WBC 81.49 81.26
LeadFL 86.24 87.37
leadFL+ 85.51 85.64
EA-PS− 86.62 87.81
EA-PS 85.69 85.71

CTMA

None 89.12 89
LDP 86.66 85.66
WBC 85.99 85.41
LeadFL 87.75 87.14
leadFL+ 86.43 85.26
EA-PS− 87.61 87.37
EA-PS 86.8 85.31

multiKrum

None 89.65 85.66
LDP 86.5 85.64
WBC 86.65 86
LeadFL 87 86.3
leadFL+ 86.28 85.41
EA-PS− 87.04 86.24
EA-PS 86.33 85.7

bulyan

None 87.42 86.81
LDP 84.37 84.76
WBC 85.19 84.43
LeadFL 86.01 84.68
leadFL+ 85.42 84.18
EA-PS− 86.34 85.47
EA-PS 85.44 85.25

Table 9: Comparison under Label Flipping attack on IID and NON-IID FashionMNIST dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 57.4 79.02(+0.74/-1.35) 1.37
LDP 54.21 79.61(+1.32/-2.02) 3.16
WBC 53.7 78.5(+0.96/-0.53) 0.7

LeadFL 36.41 76.9(+7.03/-5.51) 41.04
LeadFL+ 35.82 70.97(+4.22/-4.41) 33.85
EA-PS− 35.01 79.35(+4.34/-5.6) 25.91
EA-PS 44.17 77.8(+1.95/-2.93) 6.69

CMA

None 55.87 58.83(+6.21/-7.96) 52.49
LDP 40.25 89.11(+1.96/-2.32) 4.67
WBC 38.71 87.15(+3.94/-5.54) 24.39

LeadFL 36.45 78.34(+3.14/-4.32) 14.66
LeadFL+ 40.56 73.61(+2.58/-3.81) 8.62
EA-PS− 30.75 62.05(+4.08/-6.86) 35.68
EA-PS 42.9 63.57(+0.05/-0.04) 0.01

CTMA

None 56.25 64.49(+2.26/-2.09) 4.76
LDP 54.29 90.25(+0.74/-1.43) 1.53
WBC 54.08 90.54(+2.97/-1.91) 6.8

LeadFL 38.2 64.87(+10.51/-8.57) 93.85
LeadFL+ 38.82 61.75(+5.39/-7.21) 56.73
EA-PS− 41.42 57.24(+5.33/-7.38) 43.53
EA-PS 45.54 65.95(+1.55/-2.65) 5.35

multiKrum

None 56.36 72.23(+9.34/-7.89) 75.88
LDP 53.15 92.02(+0.39/-0.2) 0.11
WBC 51.49 89.97(+0.88/-0.64) 0.62

LeadFL 42.06 60.63(+11.72/-13.83) 166.51
LeadFL+ 40.29 63.39(+1.83/-1.72) 5.2
EA-PS− 32.12 70.03(+9.28/-10.65) 100.78
EA-PS 48 62.75(+0.43/-0.44) 0.38

bulyan

None 55.87 69.29(+9.5/-5.25) 67.94
LDP 49.32 90.27(+0.7/-1.32) 1.3
WBC 49.7 89.96(+1.14/-1.02) 1.17

LeadFL 37.66 79.16(+5.23/-5.24) 54.75
LeadFL+ 38.25 78.06(+4.29/-5.97) 32.56
EA-PS− 30.17 66.37(+18.15/-20.75) 383.42
EA-PS 30.25 61.3(+0.14/-0.15) 0.04

Table 10: Comparison under 9-pixel pattern backdoor attack on IID CIAFR10 dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 55.84 80.22(+1.14/-1.28) 1.48
LDP 52.06 77.4(+2.5/-2.34) 5.89
WBC 52.56 78.96(+2.5/-2.34) 5.89

LeadFL 45.08 78.78(+5.14/-6.12) 32.38
LeadFL+ 39.11 78(+2.58/-1.73) 10.52
EA-PS− 36.19 78.57(+5.12/-7.18) 40.99
EA-PS 43.22 77.1(+1.46/-2.98) 5.52

CMA

None 54.35 61.76(+4.34/-5.83) 27.48
LDP 39.22 85.07(+1.03/-1.25) 1.34
WBC 40.91 85.2(+2.2/-1.57) 3.87

LeadFL 32.79 61.21(+2.2/-3.83) 11.06
LeadFL+ 36.99 59.51(+5.26/-4.18) 33.69
EA-PS− 32.76 63.66(+3.04/-4.93) 18.54
EA-PS 44.47 63.21(+0.13/-1.89) 3.35

CTMA

None 55.34 66.7(+1.42/-2.35) 4.17
LDP 53.29 89.64(+1.72/-1.61) 2.78
WBC 53.75 92.3(+1.88/-1.81) 3.4

LeadFL 30.2 60.9(+18.7/-13.65) 280.77
LeadFL+ 39.25 57.17(+4.22/-3.67) 20.36
EA-PS− 38.91 49.53(+5.44/-6.34) 35.29
EA-PS 44.57 54.82(+14.84/-9.17) 189.97

multiKrum

None 54.97 68.5(+1.49/-1.01) 1.73
LDP 51.06 92.75(+0.96//-1.38) 1.49
WBC 50.07 92.13(+0.94/-0.61) 0.69

LeadFL 29.44 58.13(+5.16/-3.85) 21.63
LeadFL+ 30.22 61.55(+3.95/-2.48) 14.22
EA-PS− 38.12 53.42(+2.9/-2.8) 16.76
EA-PS 39.81 52.2(+2.13/-2.44) 8.78

bulyan

None 53.63 70.41(+10.4/-5.85) 81.51
LDP 45.64 90.42(+1.36/-0.75) 1.39
WBC 46.16 89.55(+1.91/-1.14) 2.79

LeadFL 37.3 64.65(+5.71/-3.98) 25.71
LeadFL+ 39.28 61.76(+3.4/-4.18) 18.55
EA-PS− 36.35 71.11(+5.35/-4.2) 23.79
EA-PS 38.55 66.05(+4.42/-3.15) 15.58

Table 11: Comparison under 9-pixel pattern backdoor attack on non-IID CIFAR10 dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 55.73 39.25(+5.91/-4.37) 28.22
LDP 53.64 49.19(+2.06/-3.57) 9.64
WBC 52.77 44.23(+8.8//-5.3) 58.88

LeadFL 40.67 53.09(+11.21/-13.11) 158.59
LeadFL+ 39.36 54.79(+12.71/-10.88) 141.63
EA-PS− 38.38 61.14(+1.92/-2.42) 4.9
EA-PS 39.79 54.52(+3.59/-6.83) 34.95

CMA

None 54.05 21.14(+2.81/-2.56) 7.26
LDP 37.23 33.4(+2.21/-3.01) 7.3
WBC 34.32 40.3(+5.45/-7.55) 45.6

LeadFL 40.14 46.54(+17.35/-17.36) 301.31
LeadFL+ 41.13 34.19(+7.31/-4.29) 48.78
EA-PS− 34.64 44.71(+23.3/-16.13) 427.22
EA-PS 39.8 32.58(+0.09/-0.1) 0.02

CTMA

None 56.54 30.95(+0.55/-0.5) 0.28
LDP 54.24 72.49(+1.98/-1.69) 3.44
WBC 53.98 73.17(+2.25/-1.45) 3.92

LeadFL 49.31 64.46(+9/-9.01) 162.16
LeadFL+ 42.56 54.58(+7.25/-6.16) 48.1
EA-PS− 34.07 50.36(+28.63/-14.5) 614.8
EA-PS 36.24 42.62(+0.49/-0.34) 0.19

multiKrum

None 55.71 58.08(+2/-3.31) 8.33
LDP 51.81 73.06(+3.38/-1.8) 8.56
WBC 52.05 76.63(+2.64/-2.08) 5.8

LeadFL 30 64.26(+15.5/-29.21) 640.64
LeadFL+ 32.88 61.72(+7.98/-5.76) 62.41
EA-PS− 31.05 67.4(+11.3/-11.23) 126.97
EA-PS 40.3 52.5(+2.4/-2.7) 15

bulyan

None 54.06 60.57(+0.77/- 1.02) 0.85
LDP 49.16 76.12( +0.89/- 1.42) 1.53
WBC 48.56 76.48(+0.71/-0.72) 1.02

LeadFL 34.75 63(+16.85/-13.28) 236.4
LeadFL+ 33.76 66.14(+8.77/-7.39) 120.55
EA-PS− 29.37 59.15(+21.54/-23.12) 500.37
EA-PS 33.88 63.74(+9.04/-10.51) 97.22

Table 12: Comparison under 1-pixel pattern backdoor attack on IID CIFAR10 dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 56.17 41.3(+8.58/-7.35) 64.56
LDP 52.29 49.51(+1.67/-1.67) 2.78
WBC 54.04 45.37(+4.17/-5.91) 27.72

LeadFL 37.64 51.84(+7.01/-8.62) 63.03
LeadFL+ 38.81 58.33(+3.21/-3.7) 10.55
EA-PS− 37.8 54.74(+3.86/-5.12) 21.37
EA-PS 40.31 50.6(+3.84/-4.05) 15.6

CMA

None 54.79 21.31(+0.74/-1.34) 1.34
LDP 37.52 37.18(+3.07/-4.94) 18.7
WBC 30.25 35.95(+19.66/-13.88) 306.25

LeadFL 37.39 31.47(+1.3/- 1.64) 2.35
LeadFL+ 36.2 36.46(+3.29/-2.8) 30.19
EA-PS− 35.98 37.66(+9.34/-16.43) 83.36
EA-PS 41.36 33.18(+7.08/-10.69) 91.01

CTMA

None 55.69 29.58(+3.73/-4.44) 17.04
LDP 52.81 75.64(+1.37/-2.16) 3.6
WBC 52.75 75.24(+1.04/-1.24) 1.33

LeadFL 30.34 43.3(+16.8/-9.77) 213.57
LeadFL+ 40.5 42.61(+4.71/-3.92) 40.6
EA-PS− 38.96 39.6(+8.29/-9.54) 57.13
EA-PS 43.96 40.01(+3.46/-2.09) 9.12

multiKrum

None 53.81 47.25(+6.4/-3.99) 31.3
LDP 49.94 75.55(+3.72/-3.44) 12.86
WBC 49.54 76.56(+2.66/-4.84) 17.64

LeadFL 30.23 61.74(+3.92/-2.33) 11.71
LeadFL+ 33.4 56.84(+3.89/-3.72) 26.28
EA-PS− 36.63 45.2(+2.41/-1.61) 4.54
EA-PS 31.33 52.5(+2.49/-4.46) 15

bulyan

None 55.54 56.28(+4.93/-6.65) 35.72
LDP 44.54 79.19(+0.86/-0.78) 0.68
WBC 44.45 78.18(+2.79/-2.94) 8.22

LeadFL 32.31 65.96(+9.02/-7.79) 71.8
LeadFL+ 39.92 56.02(+7.29/-8.06) 92.72
EA-PS− 40.5 58.19(+1.59/-1.65) 2.63
EA-PS 43.12 59.11(+1.78/-3.18) 7.61

Table 13: Comparison under 1-pixel pattern backdoor attack on non-IID CIFAR10 dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 57.42 67.82(+5.34/-4.91) 29.51
LDP 53.36 64.03(+1.26/-1.74) 3.82
WBC 55.16 48.27(+4.15/-4.74) 15.79

LeadFL 34.05 56.73(+3.71/-4.19) 16.28
LeadFL+ 33.81 57.44(+2.37/-1.96) 7.82
EA-PS− 33.77 47.48(+4.62/-5.71) 27.06
EA-PS 34.76 46.55(+2.17/-1.7) 3.83

CMA

None 53.17 49.28(+2.74/-2.28) 8.51
LDP 39.83 77.65(+8.07/-6.38) 75.46
WBC 39.48 73.92(+4.31/-2.4) 29.06

LeadFL 31.15 45.78(+2.71/-2.39) 13.68
LeadFL+ 30.78 46.72(+1.74/-3.41) 23.29
EA-PS− 32.61 43.19(+4.03/-3.91) 57.28
EA-PS 35.84 42.43(+1.63/-1.16) 2.14

CTMA

None 55.17 61.72(+3.12/-3.81) 22.14
LDP 48.79 79.23(+2.74/-2.83) 19.47
WBC 47.61 81.26(+5.34/-6.59) 63.85

LeadFL 31.21 49.71(+8.46/-15.3) 244.86
LeadFL+ 32.72 47.28(+3.85/-2.18) 22.71
EA-PS− 32.15 43.89(+4.37/-5.15) 63.87
EA-PS 32.9 44.05(+4.32/-4.11) 11.87

multiKrum

None 53.78 76.94(+0.31/-0.48) 0.39
LDP 42.85 85.04(+5.24/-6.82) 47.72
WBC 45.97 88.46(+4.38/-2.75) 25.09

LeadFL 33.95 76.77(+9.21/-7.18) 105.1
LeadFL+ 32.64 77.31(+3.06/-5.17) 42.75
EA-PS− 33.79 74.66(+3.19/-1.64) 14.63
EA-PS 32.41 73.06(+4.59/-3.72) 25.26

bulyan

None 46.02 52.97(+5.41/-6.24) 23.38
LDP 42.74 71.09(+6.96/-4.28) 17.59
WBC 41.38 74.13(+3.74/-6.27) 32.83

LeadFL 33.44 40.85(+7.36/-4.27) 52.83
LeadFL+ 33.08 42.69(+2.14/-3.23) 10.75
EA-PS− 33.15 47.97(+3.17/-5.68) 28.74
EA-PS 32.18 49.76(+2.86/-3.67) 12.17

Table 14: Comparison under Spectrum backdoor attack on IID CIFAR10 dataset
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Server-side Defense Client-side Defense MA BA VAR

None

None 53.5 66.31(+3.31/-3.63) 14.65
LDP 50.07 65.06(+3.17/-2.49) 15.58
WBC 48.98 65.76(+5.27/-3.18) 29.41

LeadFL 30.18 85.02(+6.73/-3.27) 84.48
LeadFL+ 29.78 42.04(+5.59/-5.73) 78.68
EA-PS− 31.6 42.74(+3.65/-5.49) 62.85
EA-PS 31.04 47.57(+3.2/-6.37) 77.29

CMA

None 52.06 51.06(+2.18/-1.96) 3.62
LDP 33.59 89.56(+0.87/-2.41) 4.94
WBC 38.17 77.79(+2.16/-3.74) 19.05

LeadFL 28.01 33.83(+8.36/-7.05) 45.05
LeadFL+ 34.63 43.36(+4.28/-3.89) 27.99
EA-PS− 32.58 37.9(+2.43/-4.97) 37.52
EA-PS 31.79 41.02(+2.17/-1.83) 6.87

CTMA

None 53.69 65.93(+2.2/-2.86) 12.74
LDP 49.02 80.08(+1.36/-3.77) 9.33
WBC 48.92 82.45(+3.17/-4.23) 25.62

LeadFL 29.65 57.59(+6.01/-8.41) 84.28
LeadFL+ 30.12 57.22(+3.71/-2.66) 14.63
EA-PS− 30.05 55.46(+4.29/-6.57) 51.83
EA-PS 27.3 56.61(+4.62/-6.75) 37.43

multiKrum

None 53.25 72.86(+1.64/-2.19) 3.28
LDP 45.71 87.78(+2.82/-3.59) 14.01
WBC 46.92 89.98(+4.27/-3.13) 29.92

LeadFL 33.95 55.42(+6.38/-4.61) 72.54
LeadFL+ 37.72 49.12(+3.28/-5.85) 36.09
EA-PS− 35.6 45.92(+4.89/-5.13) 69.23
EA-PS 33.75 46.12(+3.17/-4.67) 37.11

bulyan

None 49.16 56.72(+4.36/-5.81) 29.75
LDP 44.48 85.15(+1.76/-1.57) 15.9
WBC 43.6 89.35(+2.13/-1.77) 15.72

LeadFL 32.1 41.33(+3.19/-1.58) 7.62
LeadFL+ 37.05 68.88(+1.65/-3.07) 6.23
EA-PS− 34.1 39.79(+7.27/6.09) 62.97
EA-PS 34.81 40.13(+1.74/-3.25) 7.81

Table 15: Comparison under Spectrum backdoor attack on NON-IID CIFAR10 dataset
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IID NON-IID
Server-side

Defense
Client-side

Defense MA MA

None

None 53.18 53.68
LDP 48.29 48.53
WBC 50.89 50.35
LeadFL 16.01 16.16
leadFL+ 22.20 25.54
EA-PS− 23.64 25.77
EA-PS 21.93 24.58

CMA

None 50.87 49.67
LDP 15.05 14.42
WBC 14.92 14.16
LeadFL 15.15 18.71
leadFL+ 24.14 26.69
EA-PS− 18.64 19.79
EA-PS 16.92 18.57

CTMA

None 52.42 51.09
LDP 45.67 44.28
WBC 45.28 44.13
LeadFL 21.47 12.24
leadFL+ 22.51 19.82
EA-PS− 21.19 20.03
EA-PS 19.85 17.22

multiKrum

None 52.93 51.48
LDP 42.1 41.44
WBC 44.08 42.64
LeadFL 10.9 13.42
leadFL+ 19.36 13.35
EA-PS− 20.64 13.39
EA-PS 13.39 15.9

bulyan

None 51.3 51.29
LDP 40.45 34.19
WBC 42.43 37.78
LeadFL 14.27 18.94
leadFL+ 13.51 13.40
EA-PS− 15.85 16.27
EA-PS 14.8 16.08

Table 16: Comparison under Label Flipping attack on IID and NON-IID CIFAR10 dataset

(mean(%)\var(10−4)) IID non-IID
β 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09

9-pixel
none 90.24/0.05 87.08/6.17 95.87/0.61 88.7/4.36 89.38/10.78 87.23/0.44 86.47/3.69 87.79/0.21 87.97/7.68 86.96/2.31

Multikrum 32.45/51.18 25.81/39.85 22.38/84.09 18.29/0.97 24.13/30.63 16.17/251.97 6.61/8.09 7.39/13.4 17.55/1.42 24.13/30.63
Bulyan 21.4/29.19 29.25/4.77 33.15/175.49 19.58/0.01 16.24/59.42 11.39/10.38 6.85/26.68 5.19/4.25 13.01/48.52 6.3/4.24

1-pixel
none 91.96/0.12 91.90/0.92 89.09/0.07 87.28/0.44 91.60/3.1 89.36/19.39 86.46/6.06 89.35/0.98 89.81/0.94 87.21/1.85

Multikrum 45.58/0.66 59.74/176.35 44.65/6.67 57.04/118.49 46.07/74.95 39.50/0.64 31.59/98.35 36.42/132.46 51.47/64.03 40.69/41.37
Bulyan 45.68/189.3 54.14/32.44 39.62/14.76 47.81/184.62 55.9/116.15 33.06/32.33 26.52/0.06 30.72/56.31 25.40/221.80 27.95/1.29

Table 17: Comparison of different β on FashionMNIST with IID/non-IID settings under 1/9-pixel
backdoor attack.

α(mean(%)/var(10−4)) server-defense 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IID
9-pixel MultiKrum 8.85/1.93 23/3.96 35.74/1.77 28.46/10.25 13.05/1.32 27.73/12.65 30.61/1.55 25.86/10.09 19.75/5.06

Bulyan 26.87/76.91 7.96/1.48 32.39/59.97 42.03/139.27 36.81/68.19 41.97/136.82 33.44/0.33 47.14/257.44 67.64/37.09

1-pixel MultiKrum 69.27/15.19 43.07/52.73 42.03/50.85 33.58/5.43 37.05/2.83 39.29/7.25 48.45/4.44 38.64/3.88 48.12/3.25
Bulyan 31.26/183.19 54.07/125.02 36.05/145.32 34.16/97.46 41.12/65.35 51.71/95.86 73.17/143.11 80.37/25.9 85.27/0.12

non-IID
9-pixel MultiKrum 5.34/15.48 23.33/8.24 8.82/3.22 10.34/7.22 10.49/20.36 6.83/14.09 10.34/9.32 13.34/4.65 16.89/12.81

Bulyan 20.14/14.45 20.04/21.26 7.32/1.14 25.5/1.16 20.33/6.58 19.27/41.37 25.57/5.44 28.53/4.66 30.45/2.12

1-pixel MultiKrum 22.39/19.34 25.39/16.47 39.45/10.26 36.84/1.55 40.07/7.45 36.57/2.15 42.38/0.01 26.67/9.8 42.07/13.23
Bulyan 34.66/30.25 42.63/275.9 18.99/89.01 32.57/5.43 30.04/31.08 30.51/29.67 36.45/18.98 41.44/28.32 42.63/35.36

Table 18: Comparison of different α on FashionMNIST with IID/non-IID settings under 1/9-pixel
backdoor attack.
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(mean(%)/var(10−4)) IID non-IID
linear ratio in λ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

9-pixel MultiKrum 45.02/8.3 32.75/8.33 10.83/18.66 22.86/12.18 36.58/16.27 16.8/6.78 7.81/0.55 8.32/6.44 10.54/4.81 11.73/11.93
Bulyan 21.14/13.68 15.94/1.08 17.67/1.55 19.47/10.61 27.96/30.29 4.81/0.04 20.02/14.3 7.59/4.32 24.47/22.88 10.29/7.51

1-pixel MultiKrum 49.96/5.76 61.99/7.16 47.25/2.54 40.34/1.38 49.06/1.01 54.43/3.83 36.39/5.05 36.86/1.57 39.96/4.42 27.84/3.41
Bulyan 30.64/1.47 46.92/13.68 55.78/5.51 31/0.46 42.94/3.37 46.85/1.72 30.7/2.74 29.88/9.24 41.56/4.38 28.34/2.4

Table 19: Comparison of different linear ratio in λ on FashionMNIST with IID/non-IID settings
under 1/9-pixel backdoor attack.

mean%/var10−4 IID non-IID
γ 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09

9-pixel MultiKrum 22.19/17.57 42.16/4.42 34.44/9.69 22.94/1.98 27.09/9.35 13.49/4.82 7.39/2.43 28.7/7.3 4.39/0.64 15.59/8.01
Bulyan 34.01/67.96 4.55/0.04 19.17/31.21 10.06/6.71 37.61/4.43 7.21/0.8 7.8/3.24 4.47/1.22 4.25/0.65 9.57/1.02

1-pixel MultiKrum 50.89/0.79 40.24/2.11 48.95/0.78 46.17/7.74 48.96/7.2 34.32/5.37 24.37/0.98 27.99/7.66 56.77/6.3 20.44/7.25
Bulyan 43.74/2.29 36.78/0.83 44.72/17.42 40.9/7.87 23.76/2 29.57/4.60 17.61/2.1 25.85/9.09 25.06/7.05 44.9/3.68

Table 20: Comparison of different γ on FashionMNIST with IID/non-IID settings under 1/9-pixel
backdoor attack.

Time(s/r) CIFAR10 FEMNIST
Defense FedAvg multiKrum Bulyan CRFL FedAvg multiKrum Bulyan CRFL
LeadFL 27.98 28.66 28.21 45.13 80.75 82.63 78.89 118.51
EA-PS 22.55 23.11 22.83 40.62 56.51 58.74 58.02 109.36
FL-WBC 20.95 21.34 21.27 38.32 44.17 50.44 49.38 98.27
NULL 19.74 20.94 20.61 37.68 43.17 47.55 46.57 97.46

Table 21: Overhead analysis
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