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Abstract

One of the fundamental goals in code search
is to retrieve a functionally correct code for a
given natural language query. As annotating
for correctness requires executing test cases (i.e.
obtaining execution feedback), existing code
search training datasets approximate text-code
co-occurrences as positive execution feedback.
However, this approximation may misalign
models’ retrieval decisions from ground-truth
correctness. To address such limitation, we pro-
pose Code Intervention-based Reinforcement
Learning (CIRL) that perturbs training code
to result in misalignment (i.e. code interven-
tion), then tests models’ decisions and corrects
them with the execution feedback by reinforce-
ment learning. The first technical contribution
of CIRL is to induce the execution feedback
from perturbation, without actual execution.
Secondly, CIRL introduces structural perturba-
tions using abstract syntax trees, going beyond
simple lexical changes. Experimental results on
various datasets demonstrate the effectiveness
of CIRL compared to conventional approaches.

1 Introduction

Code search aims to retrieve code snippets that are
most relevant to a given query. However, the notion
of relevance often falls short of capturing the ulti-
mate goal of functional correctness, focusing on
whether the code would execute as the programmer
intended (Ding et al., 2022). For instance, pro-
grammers would prefer c (in Figure 1a) over c1 (in
Figure 1b), as the entire “else” clause is missing in
c1.

Ideally, ground truth labels for functional cor-
rectness should be obtained from execution feed-
back, collected after executing each code c with
a sufficient amount of test cases for each query q.
We denote such execution feedback as EFpq, cq.
However, conventional training datasets, such as
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from bisect import bisect_left

def find_LIS(array): 
dp = [] 
for num in array: 

idx = bisect_left(dp, num) 
if idx == len(dp): 

dp.append(num) 
else: 

dp[idx] = num 
return len(dp)

Query (𝑞): Find the longest increasing subsequence (LIS) 
of a given array.

Code (𝑐): 

𝐄𝐅 = 𝟏 𝑹𝜽 = 𝟏

(a) A positive code c to a query q in conventional dataset.

𝐄𝐅 = 𝟎 𝑹𝜽 = 𝟏

from bisect import bisect_left

def find_LIS(array): 
dp = [] 
for num in array: 

idx = bisect_left(dp, num) 
if idx == len(dp): 

dp.append(num)
return len(dp)

Code (𝑐"): 

(b) A negative code c1 with misaligned Rθ with EF.

Figure 1: Example code snippets with the execution
feedback (EF) from a running environment and the
model’s retrieval decisions (Rθ) trained on a conven-
tional code search dataset. The code line difference
between the code pair is highlighted as blue.

CodeSearchNet (CSN; Husain et al., 2019), collect
data from GitHub by regarding commented text
descriptions as queries then labeling code snippets
by query-code co-occurrences. This collection pro-
cess can introduce an observation bias of lexical
dissimilarity between positive and negative train-
ing snippets. Consequently, models can learn such
observation bias, resulting in misaligned retrieval
decisions with EF of returning a negative code with
high lexical similarity as a false positive. For ex-
ample, Figure 1b shows that a code search model



θ, trained from a conventional dataset, decides to
retrieve c1, or Rθpq, c1q “ 1, but this model deci-
sion is misaligned with the execution feedback, or
EFpq, c1q “ 0.

The objective of this paper is to resolve the
misalignment, i.e., Rθ ‰ EF. A straightforward
solution is to expose models to misaligned code
pairs and correct the model decisions by EF. In
reinforcement learning (RL), this trial-and-error
process is achieved by interacting with agents
while perturbing input states, referred to as inter-
vention (Lee and Bareinboim, 2020; Carta et al.,
2023). We employ this intervention technique by
perturbing the positive training code c to gener-
ate its negative counterpart c1, where both code
snippets yield the same model decision. Formally,
Rθpq, c1q “ Rθpq, cq “ 1 but EFpq, cq ą EFpq, c1q.

However, obtaining EF to correct decisions for
each c1 is expensive, and to make matters worse,
there are infinite possible perturbations satisfying
the above misalignment condition. To identify a
representative c1, existing solution known as coun-
terfactual perturbation (Kaushik et al., 2020; Han
et al., 2021; Choi et al., 2022; Chen et al., 2022),
suggests to find c1 that is lexically closest to c, but
with different EF. However, adopting this strategy
would expose models solely to trivial syntax errors,
such as omitting a colon from Figure 1a, causing a
syntax error (and thus different EF). A realistic in-
tervention, such as Figure 1a to Figure 1b, induces
a larger lexical change, such as removing the “else”
clause.

Our key technical contribution is a sample-
efficient code intervention for RL. Our pro-
posed approach, namely Code Intervention-based
Reinforcement Learning (CIRL), perturbs a pos-
itive code into negative with ϵ structural changes,
which is designed to include the intuition of mini-
mal lexical edit, but generalizes beyond to enfold
structural similarity.

Specifically, we leverage the abstract syntax tree
(AST) representation of the code, treating subtrees
such as statements, clauses and expressions, as
units of structural changes. A structural pertur-
bation is done by masking out a subtree from a
positive code then filling it out unless model pre-
diction changes. We stress that CIRL subsumes
counterfactual perturbation (when subtree is a leaf),
and also adapts to the test distribution, by select-
ing subtrees with a realistic granularity (e.g. “else”
clause in Figure 1a). Further, we ensure syntac-

tic validity while replacing subtrees, to discourage
exposures to trivial syntax errors.

We summarize our contributions as follows:
First, we employ reinforcement learning with in-
tervention that performs perturbation to simulate
misaligned code without feedback from real code
execution. Second, we propose CIRL, which uti-
lizes AST information to inject ϵ structural changes
to code to alter EF while preserving model decision.
Third, our experimental results on various datasets
show that CIRL effectively contributes to aligning
code search with EF.

All our implementation and datasets are publicly
available1 for future research purposes.

2 Preliminary

In this section, we will begin by defining the code
search task and addressing the misalignment issue
in existing supervised code search training.

2.1 Code Search
For a universe of queries Q and code snippets C,
the ultimate goal of this task is to find functionally
correct snippets for each query.2 The functional
correctness between a query q P Q and a code
c P C can be confirmed by execution feedback (EF)
from an environment using a set of test cases TCq:

EFpq, cq “

#

1, if @pti, toq P TCq, cptiq “ to,

0, otherwise,
(1)

where pti, toq P TCq is a test input-output pair and
cptiq signifies running c by feeding ti. Our goal is
to build a code search model θ making its retrieval
decision Rθ P t0, 1u to align with EF for any q and
c, i.e., @q P Q @c P C, Rθpq, cq “ EFpq, cq.

2.2 Supervised Baseline
Ideally, a training dataset D˚ should comprise
query-code pairs along with EF as labels, encom-
passing both positive and negative examples, i.e.,
D˚ “ tpq, c, EFpq, cqq|q P Q, c P Cu. However,
building such a dataset at scale is nontrivial due
to the high costs and efforts involved in manu-
ally annotating test cases for each query, execut-
ing the code with test cases, and creating a secure

1https://github.com/stovecat/CIRL
2Although code search typically aims to retrieve relevant

code snippets, pursuing functional correctness is valuable, e.g.,
in scenarios where generated codes are directly executed, as
relevance is a subset of functional correctness.

https://github.com/stovecat/CIRL
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Figure 2: Overview of our reinforcement learning framework with code intervention. 1 Given a state st consists
of a query and a set of candidate code snippets, a code search policy θ takes an action at to retrieve a code ct. 2
CIRL perturbs the retrieved code ct into c1

t with Abstract Syntax Tree (AST) information. 3 CIRL intervenes the
state st to s1

t by replacing ct into c1
t and makes θ take another action a1

t from s1
t. If c1

t is not retrieved, we go back to
the second stage. 4 When c1

t is retrieved by a1
t, though we expect to receive the EF from an execution environment

as a reward—rt`1 “ EFpq, ctq and r1
t`1 “ EFpq, c1

tq—CIRL can skip this costly stage by inducing the EF during
perturbation. 5 θ is updated to align its decision with the EF.

environment for possibly unsafe code when exe-
cuted (Chen et al., 2021; Li et al., 2022c). Due
to this reason, a traditional training dataset such
as CodeSearchNet (CSN; Husain et al., 2019) is
gathered from GitHub by assuming that each func-
tion implementation c and its corresponding com-
mented description q (i.e. Rpq, cq “ 1) can sub-
stitute EF: D “ tpq, c, 1q|q P Q, c P C, Rpq, cq “

1u.
In training time, negative code snippets for a

query are sampled from other queries’ positive snip-
pets. However, these sampled negative snippets are
both lexically and structurally dissimilar to posi-
tive ones. To illustrate, we examine that „ 97% of
positive-negative code pairs in CSN Python train-
ing set score very low in lexical/structural similar-
ity.3 As a consequence, dataset D exhibits bias
towards positive code, leading to functionally mis-
aligned retrieval decisions by a model θ trained
on D when comparing positive code to lexically
similar negative code. Figure 1 is an example of
such bias—retrieving both c and c1 despite their
different EF due to a missing “else” clause.

3 Methodology

3.1 Contribution I: Reinforcement Learning
with Intervention

We employ RL with code intervention to resolve
the misalignment of model decisions and EF. Al-
though RL behavior may resemble supervised or
curriculum learning in specific scenarios where
rules align with model decisions, our proposed RL

3
ă 0.3 CodeBLEU (Ren et al., 2020) scores, which con-

siders both lexical and structural similarity.

abstraction enables to extend beyond these cases to
situations where the RL-based model can choose
to contradict (lesser-effective) curriculum rules.4

RL Formulation. In the process of retrieving
positive code snippets from a pool of M candidates
in D by a model θ, we regard θ as a policy and for-
mulate code search as a Markov decision process,
which consists of following elements:

• States: Given a query q, the state st in time
step t is defined as pq, Ctq where C0 is the set
of M candidate code snippets.

• Actions: Apstq is a set of possible actions
from the state st, and at P Apstq is a retrieval
decision of a code ct P Ct, i.e., Rθpq, ctq “ 1.

• Reward: The reward of at is defined as the
EF of ct, i.e., EFpq, ctq.

• Transition: The transition from st to st`1 by
at is done by removing ct from Ct.

• Discount factor: γ P r0, 1s is a discount fac-
tor to estimate the current value of future re-
wards, i.e., Gt “

řM´t´1
k“0 γkEFpq, ct`kq.

Code Intervention. To resolve the misalignment,
we intervene a retrieved code ct in step t by replac-
ing it into c1

t such that Rθpq, c1
tq “ Rθpq, ctq “ 1

but EFpq, ctq ą EFpq, c1
tq. The overall process of

our RL with code intervention is illustrated in Fig-
ure 2. Formally, the pairwise policy gradient of θ
in step t from two actions at and a1

t respectively

4Refer to Appendix B for details.



retrieving code ct and c1
t is,

∆θ “ pGt ´ G1
tqp∇ log pθpat|stq

´∇ log pθpa1
t|s

1
tqq, (2)

where pθ is the probability distribution of actions
taken by θ, and s1

t is the state after intervention by
replacing ct into c1

t. Gt and G1
t is the cumulative re-

wards starting from t for at and a1
t respectively. As

we replace the retrieved code ct into c1
t to generate

s1
t from st, both states have the same next state, or,
st`1 “ s1

t`1, thus Gt´G1
t “ EFpq, ctq´EFpq, c1

tq.
Then Eq (2) becomes,

∆θ “ pEFpq, ctq ´ EFpq, c1
tqqp∇ log pθpat|stq

´∇ log pθpa1
t|s

1
tqq.

(3)

This equation suggests that gradients can be cal-
culated efficiently, in a single transition. Lastly,
to avoid directly comparing the policy gradients
from different states st and s1

t, we approximate two
states into a single virtual state st “ pq, Ct Y tc1

tuq.
As θ can take both at and a1

t in st, we only need to
maximize at in pθ:

∆θ “ pEFpq, ctq ´ EFpq, c1
tqq∇ log pθpat|stq.

(4)

From the perspective of Levine et al. (2020), our
approach can be understood as an online off-policy
RL, where a1

t acts as an action produced by an off-
policy and θ is the target policy. In this light, code
intervention is akin to importance sampling that
leverages predictions of the target policy to choose
actions likely to be undertaken.

3.2 Contribution II: Structural Perturbation

However, computing ∆θ in Eq (4) is still expensive,
due to the following challenges: First, we need to
compute EFpq, c1q for each gradient calculation.
Second, from the perspective of off-policy RL, we
need to pursue sample efficiency, as the search
space of c1

t satisfying Rθpq, c1
tq “ Rθpq, ctq “ 1

yet EFpq, ctq ą EFpq, c1
tq is enormously broad.

A conservative approach is applying a minimal
lexical edit, e.g., changing ‘+’ operator to ‘-’, to
guarantee to alter the EF, keeping Rθ unchanged
as two code snippets are lexically near-identical,
which we denote as lexical counterfactual pertur-
bation (Kaushik et al., 2020; Han et al., 2021; Choi
et al., 2022; Chen et al., 2022). As we intended

Try stmt

If stmt

Expr stmtCall stmt

“foo” “()”

Try stmt

If stmt

try:
if foo():

try:
if False:

“False”

𝑐!

𝑐

Figure 3: CIRL replaces subtrees that share the same
ancestor AST node sequence (“try” statement Ñ “if”
statement) to avoid syntax errors.

the perturbation to flip EF from 1 to 0, we can la-
bel EF=0 for the perturbed code without incurring
actual execution.

However, the counterfactual objective of mini-
mizing lexical edits is too restrictive for composi-
tional nature of code (Han et al., 2022). To illus-
trate, Figure 1a and 1b are lexically rather distant,
but semantically close, or, parse tree structure is
only ϵ away.

Inspired, we propose to relax lexical minimiza-
tion to train more realistic EF-contrastive pairs,
with the following goals:

• A pair should be free of syntax errors. Using
lexical perturbation often incurs syntax errors
such as omitting a semicolon.

• A pair must maintain contextual consistency.
For example, when we change the if condition
in Figure 3, lexical perturbation can break the
context of ‘try statement - if statement’.

• A pair should match the target distribution
such as large lexical edits. Lexical perturba-
tion with minimal edits results in deviate from
the desired distribution.

Toward the goals, we propose subtree pertur-
bation for augmenting a pair, ensuring the above
criteria:

• Controlled Syntax and EF Error: We model
code revisions utilizing Abstract Syntax Trees
(ASTs), to consider subtrees like statements
and clauses as elements for perturbations.5

5Empirical evidence suggests that less than 1% of the
code snippets augmented by our method (sourced from the
Codeforces training set) contain syntax errors and potential
EF noises play negligible roles for our contrastive training
objectives.



• Maintaining Contextual Consistency: As
shown in Figure 3, the augmented code satis-
fies contextual consistency by matching the
ancestor nodes during subtree replacement.

• Target Distribution Matching: The newly
inserted subtrees, being derived from actual
code snippets, match the target distribution.

Note that we can avoid expensive EFpq, c1q invoca-
tion, as it subsumes counterfactual perturbation as
a special case where the subtree is a leaf node.

3.3 CIRL

We present CIRL by providing a summary of
the steps involved in the code perturbation from
the original code c to c1. We begin with a posi-
tive query-code pair pq, cq in the dataset D where
EFpq, cq “ 1. We initialize a perturbation ratio
0 ă δ ă 100%, which determines the number
of nodes to be changed. This ratio is gradually
increased through iterations using a schedule func-
tion s.6 Note that a structural change of magnitude
ϵ can lead to significant lexical modifications with
a magnitude of δ, impacting multiple leaf nodes.

During each iteration, we perform the follow-
ing two steps and verify whether the model’s de-
cision on code c is maintained for the perturbed
code c1, i.e., Rθpq, cq “ Rθpq, c1q. If the deci-
sion is preserved, we calculate ∆θ in Eq (4) using
c1, increase δ using the schedule function s, and
proceed with another iteration using the updated
δ. The iteration process terminates either when
Rθpq, cq ‰ Rθpq, c1q is satisfied or when the maxi-
mum number of iterations n is reached.

Step 1: Subtree Removal. We convert c into
its AST representation. Then, based on the node
perturbation ratio δ, we randomly select a set of
subtrees to remove. Each subtree’s root node is a
statement, clause, or expression. The total number
of nodes for the selected subtrees is approximately
equal to δ% of the AST nodes for c.

Step 2: Subtree Insertion. For each removed
subtree, we sample a new subtree from other code
snippets in the dataset D. To maintain syntactic va-
lidity, we adopt a conservative guideline: we select
a new subtree only if it shares the same ancestor
AST node sequence with the removed subtree as
depicted in Figure 3. To prevent name errors, we

6We empirically tune δ to adapt to the test distribution.
Please refer to Appendix C.2 for more details.

uniformly sample names from the code c for vari-
ables and functions in the injected subtrees. We
ensure consistent replacements for repeated names.
Finally, we convert the perturbed AST back into its
code form, resulting in c1.

4 Experiments

4.1 Datasets
The evaluation is performed on three categories of
benchmarks.

The first category involves large-scale public
code competition datasets, namely Codeforces (Ca-
ballero et al., 2016) and CodeNet (Puri et al.,
2021). These datasets consist of natural language
descriptions paired with code submissions includ-
ing Python. We use the cleansed version from
CodeContests (Li et al., 2022c), filter examples
not written in Python language, code/description
longer than 512 tokens, and those which cannot be
parsed into ASTs.7 We train on Codeforces and
conduct evaluations on both sets. To see the perfor-
mance across diverse difficulty, we split CodeNet
into 10 subsets by accept-ratios (the number of
answer code snippets among submissions) as an ad-
ditional evaluation set, to complement Codeforces
that is relatively too easy (accept ratio is mostly 0.5
or higher).

The second category involves AdvTest (Lu et al.,
2021), which evaluates the misalignment of pos-
itive code snippets that are not retrieved by code
search models. This dataset is created by perturb-
ing variable and function names while preserving
EF from the test set of CodeSearchNet Python
(CSN-Python; Husain et al., 2019) .

The third category focuses on CSN benchmark,
which includes six different programming lan-
guages. The evaluation specifically examines the
performance on the Python and Ruby subset of
CSN, which is filtered from previous work (Guo
et al., 2021).

Overall, these benchmark categories provide
comprehensive evaluations of CIRL and its im-
pact on aligning model decisions with EF across
various datasets and scenarios.

4.2 Code Search Baselines
We consider two code search baselines in our ex-
periments. First baseline is GraphCodeBERT (Guo
et al., 2021), a popular code search model that uses
data flow, a graph structure for representing the

7Detailed statistics are shown in Appendix D.



Metric: MRR

Method
EFpq, c1q High- Codeforces CodeNet

Zero-cost Neg. struct. sim. Valid Test 0-10 10-20 20-30 30-40
ContraCode - - - 84.24 83.33 44.21 46.83 57.51 54.13
GraphCodeBERT - - - 90.58 73.71 39.24 48.02 53.48 56.14
CI-ADV ✓ ✗ ✓ 75.65 74.54 34.54 42.79 48.18 49.58
CI-PLM ✗ ✓ △ 88.91 75.52 45.65 47.82 60.14 67.17
CI-HUMAN ✗ ✓ ✓ 93.48 76.40 44.68 60.17 62.31 68.84
CIRL ✓ ✓ ✓ 92.39 79.90 54.99 55.98 63.23 66.09
+ CI-HUMAN ✗ ✓ ✓ 96.74 79.02 56.99 57.86 68.36 71.04
- Code Intervention ✗ ✓ ✓ 86.96 85.75 43.86 51.89 55.53 64.63

Method
EFpq, c1q High- CodeNet

Zero-cost Neg. struct. sim. 40-50 50-60 60-70 70-80 80-90 90-100
ContraCode - - - 59.39 70.16 73.78 71.44 73.45 93.93
GraphCodeBERT - - - 65.29 68.16 73.24 76.34 74.04 94.65
CI-ADV ✓ ✗ ✓ 56.27 66.15 68.25 73.19 70.98 93.67
CI-PLM ✗ ✓ △ 66.61 74.35 81.31 82.77 81.24 98.11
CI-HUMAN ✗ ✓ ✓ 77.34 77.77 83.26 86.59 85.54 96.86
CIRL ✓ ✓ ✓ 78.01 80.64 87.50 90.81 87.99 98.11
+ CI-HUMAN ✗ ✓ ✓ 79.32 82.44 87.75 90.94 89.79 99.06
- Code Intervention ✗ ✓ ✓ 72.92 77.97 83.61 84.94 89.97 93.87

Table 1: Results on Codeforces and CodeNet. Zero-cost and Neg. columns below EFpq, c1q respectively stands
for whether the method requires zero-cost to obtain EF of intervened data, and whether intervened codes receive
negative EF. High-struct. sim. column signifies whether intervened codes share high structural similarity with
original codes, where a triangle for CI-PLM means that the high similarity is not ensured as language models are
hard to be fully controlled in their generation process. ‘- Code Intervention’ is an ablation study that employs a
simple curriculum contrastive learning instead of reinforcement learning with code intervention.

relation among variables–declaration, assignment,
usage, and removal. Second baseline is Contra-
Code (Jain et al., 2021), which conducts contrastive
pretraining on conventional datasets. To minimize
truncation, we use a bi-encoder for encoding the
description and code separately, following Guo
et al. (2021) and Jain et al. (2021).8 We obtain
the last layer’s representation of the [CLS] token
for each query and code, then compute the predic-
tion score.9

4.3 Code Intervention Baselines

We compare CIRL with different code augmen-
tation approaches as code intervention baselines
instead of our structural perturbation.10 Note that

8Note that CIRL maintains a model-agnostic nature, as
it acknowledges the potential enhancement of cross-encoder
models by intervened data, such as iteratively sampled hard
negatives in dense text retrieval, as demonstrated in Zhang
et al. (2022).

9Refer to Appendix C.1 for implementation details.
10Refer to Appendix C.2 for implementation details.

we compare CI-HUMAN and CI-PLM on Code-
forces and CodeNet, because of the prerequisites
in both baselines– the existence of test cases and
human generated negative code snippets.

CI-HUMAN This baseline utilizes human efforts
by generating additional code snippets that receive
negative EF. Unlike conventional distribution such
as CSN, Codeforces provides not only the set of
positive code for each query, but also the set of
negative code for each query. This approach addi-
tionally utilizes the latter set for code intervention.

CI-PLM Following Inala et al. (2022), we can
augment negative code snippets generated by code
generation models instead of expensive human ef-
forts. We use GPT-Neo 2.7B (Black et al., 2021)
finetuned on APPS (Hendrycks et al., 2021) dataset
to generate snippets in Codeforces training set, then
calculate the EF for each generated code.



Metric: MRR

Model
Maximum

AdvTest
Train Epochs

ContraCode 10 22.2
CIRL 10 22.1
GraphCodeBERT 2 35.2:

GraphCodeBERT 10 37.1
CI-ADV 10 32.3
CIRL 10 39.0

Table 2: Results on AdvTest: All results were optimized
with early stopping, tailored to performance on the vali-
dation set. We have omitted CI-PLM and CI-HUMAN
since the training set (CSN) lacks test cases and human
annotations. The result for : is reported in Wang et al.
(2021).

CI-ADV Like in AdvTest, code intervention may
tackle misaligned model decisions caused by pos-
itive code that are not retrieved, by semantic-
preserving perturbation of each positive code c
from D to c1 such that Rθpq, cq ą Rθpq, c1q but
EFpq, c1q “ EFpq, cq “ 1. Following Bui et al.
(2021) and Lu et al. (2022), heuristic rules such
as the replacement of variable and function names,
or the insertion of dead code lines can be seen as
defining such adversarial perturbation.

4.4 Main Results

For evaluation, we used Mean Reciprocal Rank
(MRR), a standard code search metric from previ-
ous studies (Feng et al., 2020; Guo et al., 2021; Lu
et al., 2021; Wang et al., 2021), with respect to the
ground-truth of ranking the correct answer as the
top.

Codeforces and CodeNet Table 1 presents im-
proved MRR scores for evaluating the alignment
of model decisions with EF using different code in-
tervention approaches. Among the low-cost meth-
ods, CIRL outperformed ContraCode, GraphCode-
BERT, and CI-ADV. Even when compared to
the costly methods, CIRL still significantly out-
performed CI-PLM and generally outperformed
CI-HUMAN. Regarding the code difficulty, CI-
Human enhanced MRR by over 2% in difficult
CodeNet ranges (0-10 to 30-40), but less in easier
ranges (40-50 to 90-100). Conversely, CIRL con-
sistently boosted MRR across all code difficulties,
showcasing its widespread efficacy. Additionally,
CIRL combined with CI-HUMAN, achieved the
best performance, showing the augmentation from

Metric: MRR

Model
Maximum

CSN-Python
Train Epochs

ContraCode 10 59.9
CIRL 10 62.2
GraphCodeBERT 10 69.2;

CI-ADV 10 64.1
CIRL 10 68.3

Table 3: Results on CSN-Python: All results were opti-
mized with early stopping, tailored to performance on
the validation set. We have omitted CI-PLM and CI-
HUMAN since CSN-Python lacks test cases and human
annotations. The result for ; is reported in Guo et al.
(2021).

Metric: MRR

Model
Maximum

CSN-Ruby
Train Epochs

GraphCodeBERT 10 70.3;

CIRL 10 72.0

Table 4: Results on CSN-Ruby: All results were opti-
mized with early stopping, tailored to performance on
the validation set. The result for ; is reported in Guo
et al. (2021).

CIRL can complement human efforts. Lastly, the
‘- Code Intervention’ ablation replaced RL with a
basic curriculum contrastive learning, following
settings in Appendix B. Its underperformance com-
pared to CIRL highlights our RL mechanism’s
effectiveness.

AdvTest To evaluate whether CIRL contributes
to aligned model decisions for adversarially per-
turbed positive code, we applied CIRL on CSN-
Python training set and evaluate on AdvTest. The
training epochs were increased from 2 to 10,
resulting in improved GraphCodeBERT perfor-
mance. The results in Table 2 confirm that ap-
plying CIRL on ContraCode maintained perfor-
mance, while it enhanced performance on Graph-
CodeBERT, indicating that CIRL is reliable and
potentially beneficial for correcting misaligned de-
cisions in adversarial positive code. In contrast,
CI-ADV exhibited a drop of approximately 5%
compared to GraphCodeBERT, which is further
discussed in Section 5.4.

CSN The results on the conventional distribution,
where observation bias is strongly correlated with
the label, are presented in Table 3. CIRL enhanced



Metric: MRR

Model
CodeNet + Structural Perturbation by CIRL

0-10 10-20 20-30 30-40 40-50
ContraCode 37.32 -6.89 39.30 -7.53 44.99 -12.52 35.34 -18.79 38.40 -20.99

GraphCodeBERT 32.79 -6.45 38.99 -9.03 40.25 -13.23 41.60 -14.54 43.65 -21.64

+CI-HUMAN 42.34 -2.34 57.30 -2.87 55.04 -7.27 60.82 -8.02 70.75 -6.59

CIRL 54.99 -0.00 55.98 -0.00 63.23 -0.00 66.09 -0.00 78.01 -0.00

+ CI-HUMAN 56.99 -0.00 57.86 -0.00 68.36 -0.00 71.04 -0.00 79.32 -0.00

Table 5: Test time code augmentation by our structural perturbation to CodeNet. The red colored numbers are MRR
drops after augmentation of intervened codes by CIRL. Note that CIRL is trained without the test set.

the MRR score on ContraCode and showed only a
marginal decrease on GraphCodeBERT. Addition-
ally, Table 4 demonstrates CIRL’s effectiveness
across programming languages, showcasing results
on Ruby code snippets.

5 Discussion

5.1 Is CIRL Perturbation Sample-efficient?

We conducted a stress test by applying CIRL on 5
test subsets of CodeNet (0.0-0.1 to 0.4-0.5).11 The
results in Table 5 demonstrate that both Contra-
Code and GraphCodeBERT experienced drops in
MRR scores after augmenting the intervened code
snippets, indicating confusion between intervened
negative code and positive code. Although CI-
HUMAN reduced this confusion, the model still
suffered from MRR drops. However, applying
CIRL successfully resolved this confusion and pre-
vented MRR drops.

5.2 Does CIRL Generalize Over
Counterfactual Perturbation?

We examined the impact of CIRL allowing for
more structural changes, compared to counterfac-
tual perturbation with minimal lexical changes. To
ensure a fair comparison, we implemented a COUN-
TERFACTUAL baseline from CIRL by fixing the
perturbation ratio δ to a small value (δ “ 2) to
focus on small lexical changes. Figure 4 presents a
comparison of GraphCodeBERT, COUNTERFAC-
TUAL, and CIRL on Codeforces and CodeNet
benchmarks. As expected, COUNTERFACTUAL

exhibited lower MRR scores compared to CIRL,
and even lower than GraphCodeBERT in some test
sets.

11Refer to Appendix C.3 for details.
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Figure 4: Relative MRR performance to CIRL. COUN-
TERFACTUAL approach which intervenes code with a
minimal lexical edit is suboptimal.

5.3 Does CIRL Generalize Over Different
Programming Languages?

Table 4 shows that CIRL successfully improved
the MRR performance on CSN-Ruby. Though our
AST perturbation mechanism may look more com-
plex than lexical perturbation, it straightforwardly
generalizes to other languages, as AST parser (e.g.,
tree-sitter) easily applies to other languages for
extracting a language-generic representation to per-
turb.

5.4 Can Augmentation Negatively Affect
Performance?

It may seem counter-intuitive that one of the exist-
ing augmentation approaches, CI-ADV, negatively
affects the MRR scores throughout our experiments.
We speculate that CI-ADV relies on heuristic rules
for perturbation, which inherently have limitations



in terms of the coverage of perturbations in order
to preserve EF. For instance, augmenting code per-
turbation by variable renaming results in high lexi-
cal and structural similarity with the original code.
Consequently, this augmentation may amplify the
observation bias from the original code, leading to
more misaligned decisions in trained models.

5.5 Can LLMs Align better with EF?

We explore whether general-purpose large lan-
guage models, benefiting from enormous parameter
scales, can detect misalignments. To confirm this,
we use GPT-3.5 (OpenAI, 2022) to evaluate query-
code pairs from CodeNet 0.0-0.1 and determine
whether the code is correct for the given query,
in the following two settings: (1) zero-shot; (2)
in-context learning (ICL) by providing a positive
pq, cq and a negative pair pq, c1q randomly sampled
from the Codeforces training set.12

Fail to Align Human Perturbations. GPT-3.5
inaccurately identified negative code snippets by
CI-HUMAN as false positives, performing worse
than random guessing of 50% (see the ‘Negative
Codes (CI-HUMAN)’ graphs in Figure 5).

Fail to Align Subtree Removals. To illustrate
the weakness of GPT-3.5 for negative code with
subtree removals, we implemented CIRLRM doing
the removal step only. GPT-3.5 failed to identify
omitted implementations such as handling edge
cases13, as shown in Figure 5 that ‘Negative Codes
(CIRLRM)’ graphs were lower than random guess-
ing (50%).

Succeed When Code Lines are Replaced. GPT-
3.5 showed 100% aligned decisions with EF for
negative code snippets consisting of replaced sub-
trees, shown as ‘Negative Codes (CIRL)’ graphs
in Figure 5. GPT-3.5 often explained the reason
for its decision as the presence of unnecessary or
unrelated code lines.13

In-Context Learning Fails. A naive solution of
employing ICL with positive and negative exam-
ples did not improve the alignment, as contrasted
by zero-shot and ICL groups in Figure 5. Against
our expectation, it even increased misalignment for
negative code by CI-HUMAN and CIRLRM. We
leave the alignment of LLMs’ decisions with EF
for future work.

12Refer to Appendix C.4 for details.
13Example outputs are shown in Appendix F.
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Figure 5: Alignment accuracy (i.e. 100% if Rθ “ EF
for all Rθ) of GPT-3.5 on CodeNet 0.0-0.1. For in-
context learning, we additionally gave a query and its
positive-negative code snippets sampled from Code-
forces training set.

6 Conclusion

This paper has explored the issue of misalignment
of model decisions and EF due to observation bias
in traditional training datasets. To overcome this
limitation, we have introduced a novel RL frame-
work with code intervention called CIRL. The pri-
mary contribution of CIRL is to expose models
to misaligned code snippets, which can be sub-
sequently corrected through EF. CIRL is sample
efficient by utilizing ASTs to simulate structural
perturbations for code intervention, allowing us to
bypass actual execution for EF. Extensive experi-
mental results on various datasets demonstrate that
CIRL enhances the alignment of model decisions
and EF in code search compared to conventional
approaches.
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Limitations

Despite our achievements, there are following lim-
itations in this work. First, we mainly tackled
Python language, appending with Ruby. Second,
while CIRL is model-agnostic, we applied it to



ContraCode and GraphCodeBERT, conducting pre-
liminary analysis on LLMs, and leaving extensive
application on LLMs for future work.
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A Related Work

A.1 Deep Code Search Models
Recently, deep learning models have shown dra-
matic improvements in the conventional code
search task. Early approaches (Gu et al., 2018;
Feng et al., 2020) directly mimic NLP archi-
tectures and objectives. Later approaches addi-
tionally utilize code specific information such as
data flow (Guo et al., 2021), abstract syntax tree
(AST; Wang et al., 2021; Guo et al., 2022, and tem-
plate (Han et al., 2022). For pretraining, several
approaches (Jain et al., 2021; Wang et al., 2021;
Guo et al., 2022; Li et al., 2022b) employ con-
trastive learning of semantically related code-code
and text-code pairs. Instead of random sampling,
existing works (Li et al., 2022a; Shi et al., 2023)
have proposed negative code sampling methods
in expense of extensive model predictions or addi-
tional memory usage.

Our distinction. Existing approaches are trained
by (self-)supervised learning in conventional
datasets where execution feedback (EF) is approx-
imated by text-code coocurrences, suffering from
misalignment of model decisions with EF. Our dis-
tinction is to employ reinforcement learning and
intervene code to test and correct misaligned model
decisions. Regarding negative code sampling, our
approach plays a similar role as hard negative min-
ing, all while circumventing the need for extensive
computational resources or memory usage.

A.2 Reinforcement Learning in IR and Code
Generation

Reinforcement Learning to Rank. In informa-
tion retrieval (IR) and recommender system, which
are related to code search, recent approaches have
been applied reinforcement learning (RL), formu-
lating document retrieval and item recommenda-
tion as markov decision process (MDP). In early
approaches like PPG (Wei et al., 2017) a policy
estimates the absolute rank score of each candi-
date (i.e. pointwise). Inspired by pairwise learn-
ing to rank (Liu, 2009), later approaches (Zhao
et al., 2018; Xu et al., 2020; Hu et al., 2018) use
pairwise loss between candidates sharing certain
features with different feedback, improving sample
efficiency.

Reinforcement Learning on Code Generation.
Several approaches have employed RL to gen-
erate code snippets. CodeRL (Le et al., 2022)

uses an actor-critic algorithm that gives rewards
for policy gradients by a trained reward model.
PPOCoder (Shojaee et al., 2023) utilizes Proximal
Policy Optimization (PPO) to reduce syntax errors
and improve functional correctness.

Our distinction. Unlike IR, recommender sys-
tem, and code generation domains, traditional code
search training sets do not contain misaligned code
pairs. Our distinction is to generate misalignment
pairs with intervention, by perturbing a given pos-
itive code to a negative code while not changing
model decision.

A.3 Synthetic Code Augmentation

To automatically supplement training code distri-
bution, existing approaches (Bui et al., 2021; Yang
et al., 2022) utilize semantic-preserving perturba-
tions by changing semantically ineffective lexi-
cons (e.g., variable and function names). Other ap-
proaches target software vulnerability by semantic-
preserving perturbations to conduct adversarial at-
tacks (Jha and Reddy, 2023), or learning to capture
the semantics (Ding et al., 2022). Meanwhile, sev-
eral approaches like CODERANKER (Inala et al.,
2022) augment generated code snippets to train
code search models.

Our distinction. Unlike existing methods, we
directly target to code intervention in RL to align
code search with EF, while managing both sample
efficiency and zero-cost for EF calculation.

A.4 Counterfactual Text Augmentation

In NLP, early approaches (Kaushik et al., 2020) pair
each instance with its label-flipped augmentation,
obtained from perturbing labels by human efforts
with ϵ lexical changes. Later approaches propose
automatic syntheses to alleviate human efforts (Han
et al., 2021; Paranjape et al., 2022; Choi et al., 2022;
Calderon et al., 2022).

Our distinction. Applying ϵ lexical changes to
flip EF for code intervention is not sufficient as it
only exposes to trivial lexical errors such as forget-
ting colon from Figure 1a, thus fails to generalize
in misaligned decisions over larger lexical changes
like Figure 1b. Instead, we produce ϵ structural
changes, which subsume ϵ lexical changes as a
special case of replacing a single leaf node, thus
broaden model exposures for generalization.



Metric: MRR

Method Rank Order
Contrastive Learning w/ Curriculum NEGdiff (Top 1) > NEGsim (Top 6) > POS (Top 7)
CIRL POS (Top 1) > NEGdiff (Top 7) > NEGsim (Top 15)

Table 6: The rank order of three code snippets for each method. Each code is respectively shown in Table 7, 8,
and 9.

B Motivation of RL framework

Both supervised learning and curriculum learn-
ing can be viewed as specific instances of the RL
framework. Thus, it shouldn’t be surprising that
in certain fortuitous scenarios when Rθpq, cq “

Rθpq, c1q for every c1, the RL framework may re-
semble to them. However, this does not undermine
the value of our RL framework. To illustrate, cur-
riculum learning utilizes a predetermined rule for
data selection during augmentation (like measur-
ing AST perturbation levels). Our proposed RL
framework encompasses such fortuitous scenarios
where the rule strongly correlates with agent de-
cision, making both RL and curriculum learning
optimal.

However, our framework extends beyond these
specific cases, into general scenarios when (a)
agent disagrees with the rules from curriculum
learning, contributing (b) disagreements to gains:

(a) Agent-Curriculum Disagreements. We sam-
pled 100 positive code snippets from the Code-
forces (Caballero et al., 2016) training set and
corresponding generated negative snippets with
five different perturbation ratios (same as in Ap-
pendix C.2). A Spearman rank correlation analysis
between selection orderings of these negative snip-
pets by curriculum and by RL with intervention
revealed that 17% of the rank correlations are be-
low 0.5. This underscores that curriculum learning
and RL-based intervention often have differing data
selection preferences.

(b) Disagreements Contribute to Gains. An
analysis of cases where curriculum learning fal-
tered (i.e., top 1 ranked code is negative) on the
CodeNet (Puri et al., 2021) 0.0-0.1 test set revealed
frequent rank discrepancies. For instance, the top 1
ranked negative code typically shared only one line
with the positive code, whereas the negative code
with the most line overlaps had 19 lines in common
with its positive counterpart. Table 6 provides the
qualitative evidence. Here, CIRL differs from the
curriculum baseline by intervening code based on

target agent predictions. From the online off-policy
RL perspective mentioned in Section 3.1, this data
selection driven by the target agent can enhance
the quality of decisions made by the agent during
testing.

C Implementation Detail

C.1 Code Search Baselines

GraphCodeBERT For all scenarios except CSN-
Ruby, we finetuned the pretrained checkpoint14

of GraphCodeBERT (Guo et al., 2021) on the
CSN (Guo et al., 2021) Python training set for 10
epochs using AdamW optimizer, a 2e-5 learning
rate, max token lengths 128 (description) and 256
(code), a max data flow length of 64, and a batch
size of 32. The total training time was 1.5 days
with 4 NVIDIA GeForce RTX 3090 (24GB) GPUs.
In Codeforces (Caballero et al., 2016) training set,
we further fine-tuned GraphCodeBERT using 16
NVIDIA Tesla V100 (32GB) GPUs for 3 days with
the following settings: using AdamW optimizer, a
2e-5 learning rate, a batch size of 480, a max train-
ing epoch of 10, max token lengths 512 for both
description and code, and a max data flow length
of 64.

ContraCode We finetune the pretrained check-
point of ContraCode (Jain et al., 2021) on Code-
forces training set using 8 NVIDIA GeForce RTX
3090 (24GB) GPUs for 3 days with the same set-
ting of GraphCodeBERT, except for the batch size
of 96 and not using data flow. For CSN-Python
and CSN-Ruby, we used the same setting of Graph-
CodeBERT but not using data flow.

C.2 Code Intervention Approaches

Throughout all approaches, we use GraphCode-
BERT as a code search policy.

CIRL In Codeforces training set, CIRL inter-
venes each positive code with maximum n “ 5
iterations, where the initial perturbation ratio δ

14https://huggingface.co/microsoft/graphcodebert-base



is initialized by δ “ 2 and updated by a sched-
ule function spδ, µq “ δµ where µ P r1, 2, ..., ns

is the current iteration. The structural element is
one of the following AST subtrees: future import
statement, import statement, import from statement,
print statement, assert statement, expression state-
ment, return statement, delete statement, raise state-
ment, pass statement, break statement, continue
statement, global statement, nonlocal statement,
exec statement, if statement, for statement, while
statement, try statement, with statement, function
definition, class definition, decorated definition,
elif clause, else clause, except clause, with clause,
and block. In CSN training set, CIRL conducts
a single intervention per code (n “ 1), where the
perturbation ratio is set by δ “ 32. For other hy-
perparameters, we use the same values with Graph-
CodeBERT, except for changing the batch size to
40 training with 8 NVIDIA GeForce RTX 3090
(24GB) GPUs for 10 days on Codeforces training
set.

CI-HUMAN We augment 1 negative code for
each positive code to avoid overfitting, as the size of
negative code snippets is 30.70% of that of positive
snippets in Codeforces training set.

CI-PLM We use GPT-Neo 2.7B (Black et al.,
2021) finetuned on APPS (Hendrycks et al., 2021)
dataset to generate 5 code snippets per problem
description in Codeforces training set, then calcu-
late the execution feedback (EF) for each synthetic
code using the provided test cases from CodeCon-
tests (Li et al., 2022c). We train this baseline on
the same setting with our approach, including the
batch size of 40.

CI-ADV To implement CI-ADV, we use the
available implementation from Lu et al. (2022) for
variable/function renaming and and dead code in-
sertion. In both Codeforces and CSN training sets,
we augment the same number of iterations for each
positive code, along with the same training config-
uration.

C.3 Test Time Code Augmentation by CIRL

We intervene with a single iteration for each posi-
tive code in 5 CodeNet (Puri et al., 2021) subsets
(0.0-0.1 to 0.4-0.5), where each of the perturbation
ratio δ “ 5, 15, 25, 35, and 45 is set by the average
of min-max accept ratio for each subset.

C.4 Misalignment in LLMs
We use GPT-3.5-turbo-0613 (OpenAI, 2022)15,
with the top_p as 1 and the temperature as 0 for re-
producibility. Appendix F shows examples of input
prompts for both zero-shot and in-context learning
settings.

CIRLRM For each code, we remove a single
structural element, where element is one of the
following AST subtrees that do not incur syntax
errors when removed: print statement, assert state-
ment, if statement, for statement, while statement,
try statement, with statement, function definition,
class definition, else clause, except clause, and with
clause.

15https://platform.openai.com/docs/model-index-for-
researchers



from sys import stdin
from operator import attrgetter
readline = stdin.readline

def norm(a):
return a.real * a.real + a.imag * a.imag

def closest_pair(p):
if len(p) <= 1:

return float(’inf’)
m = len(p) // 2
d = min(closest_pair(p[:m]), closest_pair(p[m:]))
p = [pi for pi in p if p[m].imag - d < pi.imag < p[m].imag + d]
return brute_force(p, d)

def brute_force(p, d=float(’inf’)):
p.sort(key=attrgetter(’real’))
for i in range(1, len(p)):

for j in reversed(range(i)):
tmp = p[i] - p[j]
if d < tmp.real:

break
tmp = abs(tmp)
if d > tmp:

d = tmp
return d

def main():
n = int(readline())
p = [map(float, readline().split()) for _ in range(n)]
p = [x + y * 1j for x, y in p]

p.sort(key=attrgetter(’imag’))
print(’:.6f’.format(closest_pair(p)))

main()

Table 7: POS: A correct solution (EF=1) for a test query in CodeNet 0.0-0.1.



from sys import stdin
import operator
readline = stdin.readline

def norm(self):
return abs(self)

def closest_pair(p):
m = 0
p.sort(key=operator.attrgetter(’real’))
d = float(’inf’)
for i in range(1, len(p)):

for j in reversed(range(m, i)):
tmp = p[i] - p[j]
if d < tmp.real:

m = j + 1
break

tmp = abs(tmp)
if d > tmp:

d = tmp
return d

from itertools import combinations

def brute_force(p):
return min(abs(p[i] - p[j]) for i, j in combinations(range(len(p)), 2))

def main():
n = int(readline())
p = [map(float, readline().split()) for _ in range(n)]
p = [x + y * 1j for x, y in p]

# print(’{:.6f}’.format(brute_force(p)))
print(’{:.6f}’.format(closest_pair(p)))

main()

Table 8: NEGsim: An incorrect solution (EF=0) for a test query in CodeNet 0.0-0.1. 55.2% of code line overlaps
with POS in Table 7.



import numpy as np
n = int(input())
p = []
for i in range(n):

p.append(tuple(map(float,input().split())))
d = []
min = 999999999999
for i in range(n-1):

for j in range(i+1,n):
a = ((p[j][0]-p[i][0])**2+(p[j][1]-p[i][1])**2)
if a < min:

min = a

print(round(np.sqrt(min),11))

Table 9: NEGdiff : An incorrect solution (EF=0) for a test query in CodeNet 0.0-0.1. 0% of code line overlaps with
POS in Table 7.



D Dataset

Dataset Type Dataset Name No. Descriptions No. Answer No. Wrong Accept Ratio
Codes Answer Codes (Answers/Total Candidates)

Training dataset Codeforces (Train) 2,734 842,296 258,551 76.51%

Evaluation dataset

Codeforces (Valid) 23 2,078 1,578 56.84%
Codeforces (Test) 34 2,336 1,914 54.96%
CodeNet 0.0-0.1 35 578 9,514 5.73%
CodeNet 0.1-0.2 58 17,127 87,466 16.37%
CodeNet 0.2-0.3 87 47,025 138,043 25.41%
CodeNet 0.3-0.4 115 88,936 167,185 34.72%
CodeNet 0.4-0.5 151 132,689 161,173 45.15%
CodeNet 0.5-0.6 137 161,632 134,858 54.52%
CodeNet 0.6-0.7 159 235,737 126,197 65.13%
CodeNet 0.7-0.8 232 427,723 141,323 75.16%
CodeNet 0.8-0.9 169 317,505 61,476 83.78%
CodeNet 0.9-1.0 53 16,914 1,359 92.56%

Table 10: Statistics for Codeforces and CodeNet.

E CIRL: Case Study

a = list(map(int, input().split()))
trans = [

{1: 5, 3: 7, 5: 9, 7: 11, 9: 22, 11: 24, 22: 1, 24: 3},
{5: 17, 6: 18, 17: 21, 18: 22, 21: 13, 22: 14, 13: 5, 14: 6},
{3: 17, 4: 19, 17: 10, 19: 9, 9: 14, 10: 16, 14: 4, 16: 3},

]
⋮

def rotate(b, s, t):
c = b[:]
for i, j in zip(s, t):

c[i - 1] = b[j - 1]
return c

for k in trans:
if check(rotate(a, *zip(*k.items()))):

print('YES')
exit()

if check(rotate(a, *(list(zip(*k.items())))[::-1])):
print('YES')
exit()

print('NO')

s = input()
trans = [

{1: 5, 3: 7, 5: 9, 7: 11, 9: 22, 11: 24, 22: 1, 24: 3},
{5: 17, 6: 18, 17: 21, 18: 22, 21: 13, 22: 14, 13: 5, 14: 6},
{3: 17, 4: 19, 17: 10, 19: 9, 9: 14, 10: 16, 14: 4, 16: 3},

]
⋮

def rotate(b, s, t):
c = b[:]
for i, j in zip(s, t):

c[i - 1] = b[j - 1]
return j

i, b = map(s, input().split())
print('NO’)

887_C. Solution for Cube

N = int(1e6+100)
n = int(input())
arr = list(map(int, input().split()))
cnt = [0] * N
for i in arr:

cnt[i] += 1
res, s = 0, 0
for i in range(N):

s += cnt[i]
res += s % 2
s //= 2

print(res)

N = int(1e6+100)
n = int(input())
arr = list(map(int, input().split()))
cnt = [0] * N
for i in arr:

cnt[i] += 1
res, s = 0, 0
for i in range(N):

s += cnt[i]
res += s % 2
res += 1

print(res)

def print2d(a):
for i in range(len(a)):

print(''.join(list(map(str, a[i]))))

st = input()
for i in range(1, 5 + 1):

vst = len(st) // i
ost = len(st) % i
if vst + min(ost, 1) > 20:

continue
⋮

for j in range(len(a)):
for k in range(vst):

a[j].append(st[ind])
ind += 1

if ost > 0:
ost -= 1
a[j].append(st[ind])
ind += 1

⋮

def print2d(a):
a = 1
for a in range(1, a+1):

a *= a
return a

st = input()
for i in range(1, 5 + 1):

vst = len(st) // i
ost = len(st) % i
if vst + min(ost, 1) > 20:

break
⋮

for j in range(len(a)):
for k in range(vst):

a[j].append(st[ind])
a = 0

if ost > 0:
ost -= 1
a[j].append(st[ind])
j = True

⋮

587_A. Duff and Weight Lifting

1032_B. Personalized Cup

Figure 6: Examples of original (left) and intervened (right) code snippets by CIRL.



F GPT-3.5: Case Study

Prompt
Please answer whether the following code is the correct implementation of the problem:
Problem: "Score : 700 points Problem Statement N cells are arranged in a row. Some of them may contain tokens. You are given a string s that consists of 0 s
and 1 s. If the i-th character of s is 1, the i-th cell (from left) contains a token. Otherwise, it doesn’t contain a token. Snuke wants to perform the following
operation as many times as possible. In each operation, he chooses three consecutive cells. Let’s call the cells X, Y, Z from left to right. In order for the
operation to be valid, both X and Z must contain tokens and Y must not contain a token. Then, he removes these two tokens and puts a new token on Y.
How many operations can he perform if he performs operations in the optimal way?
Constraints
1 ď N ď 500,000
|s| = N
Each character in s is either 0 or 1.
Input
Input is given from Standard Input in the following format:
N
s
Output
Print the answer.
Sample Input 1
7
1010101
Sample Output 1
2
For example, he can perform two operations in the following way: Perform an operation on the last three cells. Now the string that Perform an operation on
the first three cells. Now the string that represents tokens becomes 0100010. Note that the choice of operations matters. For example, if he chooses three cells
in the middle first, he can perform no more operations.
Sample Input 2
50
10101000010011011110001001111110000101010111100110
Sample Output 2
10"

Code: "import re
def update(d, k, v):

if k in d:
d[k] = max(d[k], v)

else:
d[k] = v

rep_zeros = re.compile(’0{2,}’)
n = input()
s = input().strip(’0’)
ans = 0
for ps in re.split(rep_zeros, s):

fs = ps.split(’0’)
lfs = len(fs)
if lfs == 1:

continue
ls = list(map(len, fs))
pl = {ls[0]: 0}
for cc in ls[1:]:

nl = {}
for pc, a in pl.items():

update(nl, cc, a)
if pc == 0:

continue
if cc == 1:

update(nl, 0, a + pc)
else:

update(nl, 0, a + cc)
update(nl, 1, a + cc - 1)
if cc > 1:

update(nl, cc - 1, a + pc)
pl = nl

ans += max(pl.values())
print(ans)"
GPT-3.5 Response
Yes, the given code is the correct implementation of the problem. It correctly solves the problem by finding the maximum number of operations that can be
performed in the optimal way. The code uses regular expressions to split the string into consecutive sequences of 1s and then calculates the maximum number
of operations that can be performed on each sequence. Finally, it sums up the maximum number of operations for all sequences and prints the result.

Table 11: A zero-shot example of aligned retrieval decision of GTP-3.5 with EF for a positive code from CodeNet
0.0-0.1.



Prompt
Please answer whether the following code is the correct implementation of the problem:
Problem: "Score : 700 points Problem Statement N cells are arranged in a row. Some of them may contain tokens. You are given a string s that consists of 0 s
and 1 s. If the i-th character of s is 1, the i-th cell (from left) contains a token. Otherwise, it doesn’t contain a token. Snuke wants to perform the following
operation as many times as possible. In each operation, he chooses three consecutive cells. Let’s call the cells X, Y, Z from left to right. In order for the
operation to be valid, both X and Z must contain tokens and Y must not contain a token. Then, he removes these two tokens and puts a new token on Y.
How many operations can he perform if he performs operations in the optimal way?
Constraints
1 ď N ď 500,000
|s| = N
Each character in s is either 0 or 1.
Input
Input is given from Standard Input in the following format:
N
s
Output
Print the answer.
Sample Input 1
7
1010101
Sample Output 1
2
For example, he can perform two operations in the following way: Perform an operation on the last three cells. Now the string that Perform an operation on
the first three cells. Now the string that represents tokens becomes 0100010. Note that the choice of operations matters. For example, if he chooses three cells
in the middle first, he can perform no more operations.
Sample Input 2
50
10101000010011011110001001111110000101010111100110
Sample Output 2
10"

Code: "import re
def update(d, k, v):

if k in d:
d[k] = max(d[k], v)

else:
d[k] = v

rep_zeros = re.compile(’0{2,}’)
n = input()
s = input().strip(’0’)
ans = 0
for ps in re.split(rep_zeros, s):

fs = ps.split(’0’)
lfs = len(fs)
if lfs == 1:

continue
ls = list(map(len, fs))
pl = {ls[0]: 0}
ans += max(pl.values())

print(ans)"
GPT-3.5 Response
Yes, the given code is the correct implementation of the problem. It correctly counts the number of operations that can be performed in the optimal way.

Table 12: A zero-shot example of misaligned retrieval decision of GTP-3.5 with EF for a negative code by CIRLRM
removing the inner “for” statement from the positive code.



Prompt
Please answer whether the following code is the correct implementation of the problem:
Problem: "During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand
...
Code: "import sys
import math
f=sys.stdin
...
Reason: "The given code is the correct implementation of the problem because it follows the requirements and constraints stated in the problem description.
...
Answer: Correct

Please answer whether the following code is the correct implementation of the problem:
Problem: "During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand
...
Code: "import sys
import math
f=sys.stdin
...
Reason: "The code is not the correct implementation of the problem because it does not consider all possible combinations of pairs to find the weakened
...
Answer: Incorrect

Please answer whether the following code is the correct implementation of the problem:
Problem: "Score : 700 points Problem Statement There are N strings arranged in a row. It is known that, for any two adjacent strings, the string to the left is
...
Code: "N = int(input())
A = list(map(int,input().split()))
if A == sorted(A) and len(A) == len(set(A)):

print(1)
exit(0)

def check(X):
idx = [0]
ltr = [0]
for a in A:

if idx[-1] < a:
idx.append(a)
ltr.append(0)

else:
while True:

while idx[-1] > a:
idx.pop()
ltr.pop()

if idx[-1] != a:
idx.append(a)
ltr.append(0)

if idx[-1] == 0:
return False

ltr[-1] += 1
if ltr[-1] < X:

break
a = idx[-1] - 1
idx.pop()
ltr.pop()

return ltr[0] == 0
t = [1, N]
while t[1] - t[0] > 1:

mid = (t[0] + t[1]) // 2
t[check(mid)] = mid

print(t[1])"
GPT-3.5 Response
Reasoning: The given code is the correct implementation of the problem.

1. The code reads the input values correctly. It takes the number of strings, N, as the first input and then reads N integers, Ai, representing the lengths of
the strings.

2. The code first checks if the given lengths of the strings are already sorted in ascending order and if all the lengths are distinct. If this condition is
satisfied, it means that each string has a different set of characters, so the minimum possible number of different characters is 1. The code prints 1 and exits.

3. If the condition in step 2 is not satisfied, the code defines a function called "check" to check if it is possible to have a certain number of different characters
in the strings. The function takes an integer X as input and returns True if it is possible to have X different characters and False otherwise.

4. The code then uses binary search to find the minimum possible number of different characters. It initializes a range [1, N] and iteratively updates the range
based on the result of the "check" function. The binary search continues until the range is reduced to a single value. The code then prints the maximum value
in the range, which represents the minimum possible number of different characters.

Overall, the code correctly calculates the minimum possible number of different characters contained in the strings and handles the case where all the strings
have distinct lengths.

Answer: Correct

Table 13: An ICL example of aligned retrieval decision of GTP-3.5 with EF for a positive code.



Prompt
Please answer whether the following code is the correct implementation of the problem:
Problem: "During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand
...
Code: "import sys
import math
f=sys.stdin
...
Reason: "The given code is the correct implementation of the problem because it follows the requirements and constraints stated in the problem description.
...
Answer: Correct

Please answer whether the following code is the correct implementation of the problem:
Problem: "During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand
...
Code: "import sys
import math
f=sys.stdin
...
Reason: "The code is not the correct implementation of the problem because it does not consider all possible combinations of pairs to find the weakened
...
Answer: Incorrect

Please answer whether the following code is the correct implementation of the problem:
Problem: "Score : 700 points Problem Statement There are N strings arranged in a row. It is known that, for any two adjacent strings, the string to the left is
...
Code: "N = int(input())
A = list(map(int,input().split()))
if A == sorted(A) and len(A) == len(set(A)):

print(1)
int = print()

def check(X):
idx = [0]
ltr = [0]
for a in A:

if idx[-1] < a:
idx.append(a)
ltr.append(0)

for ltr in range(X-1):
if a[ltr][A]<a[ltr+1][A]:

int[ltr]=1
return ltr[0] == 0

for ltr in ltr:
if len(ltr) <= 10:

print(ltr)
else:

ltr = ltr[0]
ltr = ltr[len(ltr)-1]
ltr = str(len(ltr)-2)
ltr = ltr+ltr+ltr
print(ltr)

while t[1] - t[0] > 1:
mid = (t[0] + t[1]) // 2
t[check(mid)] = mid

print(t[1])"
GPT-3.5 Response
Reasoning: The given code is not the correct implementation of the problem.

1. The code starts by reading the input values correctly. It takes the number of strings, N, as the first input and then reads N integers, Ai, representing
the lengths of the strings.

2. The code then checks if the list of lengths, A, is already sorted in ascending order and if all the elements in A are distinct. If both conditions are true, it
prints 1 and exits. However, this condition does not guarantee that the minimum possible number of different characters is being calculated correctly.

3. The code defines a function, check(X), which takes an integer X as input. Inside the function, it initializes two lists, idx and ltr, with initial values of 0.
It then iterates through each element, a, in A and checks if the last element in idx is less than a. If it is, it appends a to idx and appends 0 to ltr. This part of
the code is not clear and seems to have syntax errors.

4. The code then has a nested loop, which is not properly indented and has incorrect variable names. It tries to compare elements in A to check if they are in
lexicographically increasing order, but the logic is incorrect.

5. The code has another loop that checks the length of ltr and prints the result accordingly. However, the logic and syntax of this part of the code are incorrect.

6. Finally, the code has a while loop that uses binary search to find the minimum possible number of different characters. However, the logic and syntax of
this part of the code are also incorrect.

Overall, the code does not correctly calculate the minimum possible number of different characters contained in the strings. It has syntax errors, incorrect
logic, and incomplete implementation.

Answer: Incorrect

Table 14: An ICL example of aligned retrieval decision of GTP-3.5 with EF for a negative code by CIRL.


